blob: ac8d36da4d08fe21c97cadcdcfeaccc44e60cd6c [file] [log] [blame]
Christoffer Dall749cf76c2013-01-20 18:28:06 -05001/*
2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3 * Authors: Rusty Russell <rusty@rustcorp.com.au>
4 * Christoffer Dall <c.dall@virtualopensystems.com>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License, version 2, as
8 * published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
18 */
Marc Zyngierd06a5442016-01-21 17:34:22 +000019
20#include <linux/bsearch.h>
Christoffer Dall5b3e5e52013-01-20 18:28:09 -050021#include <linux/mm.h>
Christoffer Dall749cf76c2013-01-20 18:28:06 -050022#include <linux/kvm_host.h>
Christoffer Dall11382452013-01-20 18:28:10 -050023#include <linux/uaccess.h>
Christoffer Dall5b3e5e52013-01-20 18:28:09 -050024#include <asm/kvm_arm.h>
25#include <asm/kvm_host.h>
26#include <asm/kvm_emulate.h>
27#include <asm/kvm_coproc.h>
Marc Zyngier80346992014-01-14 18:00:55 +000028#include <asm/kvm_mmu.h>
Christoffer Dall5b3e5e52013-01-20 18:28:09 -050029#include <asm/cacheflush.h>
30#include <asm/cputype.h>
31#include <trace/events/kvm.h>
Rusty Russell4fe21e42013-01-20 18:28:11 -050032#include <asm/vfp.h>
33#include "../vfp/vfpinstr.h"
Christoffer Dall749cf76c2013-01-20 18:28:06 -050034
Marc Zyngier01630ab2017-05-12 11:04:52 +010035#define CREATE_TRACE_POINTS
Christoffer Dall5b3e5e52013-01-20 18:28:09 -050036#include "trace.h"
37#include "coproc.h"
38
39
40/******************************************************************************
41 * Co-processor emulation
42 *****************************************************************************/
43
Marc Zyngierb1d4cb62017-03-27 17:03:44 +010044static bool write_to_read_only(struct kvm_vcpu *vcpu,
45 const struct coproc_params *params)
46{
47 WARN_ONCE(1, "CP15 write to read-only register\n");
48 print_cp_instr(params);
49 kvm_inject_undefined(vcpu);
50 return false;
51}
52
53static bool read_from_write_only(struct kvm_vcpu *vcpu,
54 const struct coproc_params *params)
55{
56 WARN_ONCE(1, "CP15 read to write-only register\n");
57 print_cp_instr(params);
58 kvm_inject_undefined(vcpu);
59 return false;
60}
61
Christoffer Dallc27581e2013-01-20 18:28:10 -050062/* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
63static u32 cache_levels;
64
65/* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
66#define CSSELR_MAX 12
67
Victor Kamensky73891f72014-06-12 09:30:06 -070068/*
69 * kvm_vcpu_arch.cp15 holds cp15 registers as an array of u32, but some
70 * of cp15 registers can be viewed either as couple of two u32 registers
71 * or one u64 register. Current u64 register encoding is that least
72 * significant u32 word is followed by most significant u32 word.
73 */
74static inline void vcpu_cp15_reg64_set(struct kvm_vcpu *vcpu,
75 const struct coproc_reg *r,
76 u64 val)
77{
Marc Zyngierfb32a522016-01-03 11:26:01 +000078 vcpu_cp15(vcpu, r->reg) = val & 0xffffffff;
79 vcpu_cp15(vcpu, r->reg + 1) = val >> 32;
Victor Kamensky73891f72014-06-12 09:30:06 -070080}
81
82static inline u64 vcpu_cp15_reg64_get(struct kvm_vcpu *vcpu,
83 const struct coproc_reg *r)
84{
85 u64 val;
86
Marc Zyngierfb32a522016-01-03 11:26:01 +000087 val = vcpu_cp15(vcpu, r->reg + 1);
Victor Kamensky73891f72014-06-12 09:30:06 -070088 val = val << 32;
Marc Zyngierfb32a522016-01-03 11:26:01 +000089 val = val | vcpu_cp15(vcpu, r->reg);
Victor Kamensky73891f72014-06-12 09:30:06 -070090 return val;
91}
92
Christoffer Dall5b3e5e52013-01-20 18:28:09 -050093int kvm_handle_cp10_id(struct kvm_vcpu *vcpu, struct kvm_run *run)
94{
95 kvm_inject_undefined(vcpu);
96 return 1;
97}
98
99int kvm_handle_cp_0_13_access(struct kvm_vcpu *vcpu, struct kvm_run *run)
100{
101 /*
102 * We can get here, if the host has been built without VFPv3 support,
103 * but the guest attempted a floating point operation.
104 */
105 kvm_inject_undefined(vcpu);
106 return 1;
107}
108
109int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
110{
111 kvm_inject_undefined(vcpu);
112 return 1;
113}
114
115int kvm_handle_cp14_access(struct kvm_vcpu *vcpu, struct kvm_run *run)
116{
117 kvm_inject_undefined(vcpu);
118 return 1;
119}
120
Jonathan Austine8c2d992013-09-26 16:49:28 +0100121static void reset_mpidr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
122{
123 /*
Marc Zyngier2d1d8412013-10-18 18:19:04 +0100124 * Compute guest MPIDR. We build a virtual cluster out of the
125 * vcpu_id, but we read the 'U' bit from the underlying
126 * hardware directly.
Jonathan Austine8c2d992013-09-26 16:49:28 +0100127 */
Marc Zyngierfb32a522016-01-03 11:26:01 +0000128 vcpu_cp15(vcpu, c0_MPIDR) = ((read_cpuid_mpidr() & MPIDR_SMP_BITMASK) |
Marc Zyngier2d1d8412013-10-18 18:19:04 +0100129 ((vcpu->vcpu_id >> 2) << MPIDR_LEVEL_BITS) |
130 (vcpu->vcpu_id & 3));
Jonathan Austine8c2d992013-09-26 16:49:28 +0100131}
132
133/* TRM entries A7:4.3.31 A15:4.3.28 - RO WI */
134static bool access_actlr(struct kvm_vcpu *vcpu,
135 const struct coproc_params *p,
136 const struct coproc_reg *r)
137{
138 if (p->is_write)
139 return ignore_write(vcpu, p);
140
Marc Zyngierfb32a522016-01-03 11:26:01 +0000141 *vcpu_reg(vcpu, p->Rt1) = vcpu_cp15(vcpu, c1_ACTLR);
Jonathan Austine8c2d992013-09-26 16:49:28 +0100142 return true;
143}
144
145/* TRM entries A7:4.3.56, A15:4.3.60 - R/O. */
146static bool access_cbar(struct kvm_vcpu *vcpu,
147 const struct coproc_params *p,
148 const struct coproc_reg *r)
149{
150 if (p->is_write)
151 return write_to_read_only(vcpu, p);
152 return read_zero(vcpu, p);
153}
154
155/* TRM entries A7:4.3.49, A15:4.3.48 - R/O WI */
156static bool access_l2ctlr(struct kvm_vcpu *vcpu,
157 const struct coproc_params *p,
158 const struct coproc_reg *r)
159{
160 if (p->is_write)
161 return ignore_write(vcpu, p);
162
Marc Zyngierfb32a522016-01-03 11:26:01 +0000163 *vcpu_reg(vcpu, p->Rt1) = vcpu_cp15(vcpu, c9_L2CTLR);
Jonathan Austine8c2d992013-09-26 16:49:28 +0100164 return true;
165}
166
167static void reset_l2ctlr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
168{
169 u32 l2ctlr, ncores;
170
171 asm volatile("mrc p15, 1, %0, c9, c0, 2\n" : "=r" (l2ctlr));
172 l2ctlr &= ~(3 << 24);
173 ncores = atomic_read(&vcpu->kvm->online_vcpus) - 1;
Marc Zyngier9cbb6d92013-10-18 18:19:05 +0100174 /* How many cores in the current cluster and the next ones */
175 ncores -= (vcpu->vcpu_id & ~3);
176 /* Cap it to the maximum number of cores in a single cluster */
177 ncores = min(ncores, 3U);
Jonathan Austine8c2d992013-09-26 16:49:28 +0100178 l2ctlr |= (ncores & 3) << 24;
179
Marc Zyngierfb32a522016-01-03 11:26:01 +0000180 vcpu_cp15(vcpu, c9_L2CTLR) = l2ctlr;
Jonathan Austine8c2d992013-09-26 16:49:28 +0100181}
182
183static void reset_actlr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
184{
185 u32 actlr;
186
187 /* ACTLR contains SMP bit: make sure you create all cpus first! */
188 asm volatile("mrc p15, 0, %0, c1, c0, 1\n" : "=r" (actlr));
189 /* Make the SMP bit consistent with the guest configuration */
190 if (atomic_read(&vcpu->kvm->online_vcpus) > 1)
191 actlr |= 1U << 6;
192 else
193 actlr &= ~(1U << 6);
194
Marc Zyngierfb32a522016-01-03 11:26:01 +0000195 vcpu_cp15(vcpu, c1_ACTLR) = actlr;
Jonathan Austine8c2d992013-09-26 16:49:28 +0100196}
197
198/*
199 * TRM entries: A7:4.3.50, A15:4.3.49
200 * R/O WI (even if NSACR.NS_L2ERR, a write of 1 is ignored).
201 */
202static bool access_l2ectlr(struct kvm_vcpu *vcpu,
203 const struct coproc_params *p,
204 const struct coproc_reg *r)
205{
206 if (p->is_write)
207 return ignore_write(vcpu, p);
208
209 *vcpu_reg(vcpu, p->Rt1) = 0;
210 return true;
211}
212
Marc Zyngier3c1e7162014-12-19 16:05:31 +0000213/*
214 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
215 */
Christoffer Dall5b3e5e52013-01-20 18:28:09 -0500216static bool access_dcsw(struct kvm_vcpu *vcpu,
217 const struct coproc_params *p,
218 const struct coproc_reg *r)
219{
Christoffer Dall5b3e5e52013-01-20 18:28:09 -0500220 if (!p->is_write)
221 return read_from_write_only(vcpu, p);
222
Marc Zyngier3c1e7162014-12-19 16:05:31 +0000223 kvm_set_way_flush(vcpu);
Christoffer Dall5b3e5e52013-01-20 18:28:09 -0500224 return true;
225}
226
227/*
Marc Zyngier80346992014-01-14 18:00:55 +0000228 * Generic accessor for VM registers. Only called as long as HCR_TVM
Marc Zyngier3c1e7162014-12-19 16:05:31 +0000229 * is set. If the guest enables the MMU, we stop trapping the VM
230 * sys_regs and leave it in complete control of the caches.
231 *
232 * Used by the cpu-specific code.
Marc Zyngier80346992014-01-14 18:00:55 +0000233 */
Marc Zyngier3c1e7162014-12-19 16:05:31 +0000234bool access_vm_reg(struct kvm_vcpu *vcpu,
235 const struct coproc_params *p,
236 const struct coproc_reg *r)
Marc Zyngier80346992014-01-14 18:00:55 +0000237{
Marc Zyngier3c1e7162014-12-19 16:05:31 +0000238 bool was_enabled = vcpu_has_cache_enabled(vcpu);
239
Marc Zyngier80346992014-01-14 18:00:55 +0000240 BUG_ON(!p->is_write);
241
Marc Zyngierfb32a522016-01-03 11:26:01 +0000242 vcpu_cp15(vcpu, r->reg) = *vcpu_reg(vcpu, p->Rt1);
Marc Zyngier80346992014-01-14 18:00:55 +0000243 if (p->is_64bit)
Marc Zyngierfb32a522016-01-03 11:26:01 +0000244 vcpu_cp15(vcpu, r->reg + 1) = *vcpu_reg(vcpu, p->Rt2);
Marc Zyngier80346992014-01-14 18:00:55 +0000245
Marc Zyngier3c1e7162014-12-19 16:05:31 +0000246 kvm_toggle_cache(vcpu, was_enabled);
Marc Zyngier80346992014-01-14 18:00:55 +0000247 return true;
248}
249
Vladimir Murzinacda5432016-09-12 15:49:24 +0100250static bool access_gic_sgi(struct kvm_vcpu *vcpu,
251 const struct coproc_params *p,
252 const struct coproc_reg *r)
253{
254 u64 reg;
255
256 if (!p->is_write)
257 return read_from_write_only(vcpu, p);
258
259 reg = (u64)*vcpu_reg(vcpu, p->Rt2) << 32;
260 reg |= *vcpu_reg(vcpu, p->Rt1) ;
261
262 vgic_v3_dispatch_sgi(vcpu, reg);
263
264 return true;
265}
266
267static bool access_gic_sre(struct kvm_vcpu *vcpu,
268 const struct coproc_params *p,
269 const struct coproc_reg *r)
270{
271 if (p->is_write)
272 return ignore_write(vcpu, p);
273
274 *vcpu_reg(vcpu, p->Rt1) = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
275
276 return true;
277}
278
Marc Zyngier80346992014-01-14 18:00:55 +0000279/*
Christoffer Dall5b3e5e52013-01-20 18:28:09 -0500280 * We could trap ID_DFR0 and tell the guest we don't support performance
281 * monitoring. Unfortunately the patch to make the kernel check ID_DFR0 was
282 * NAKed, so it will read the PMCR anyway.
283 *
284 * Therefore we tell the guest we have 0 counters. Unfortunately, we
285 * must always support PMCCNTR (the cycle counter): we just RAZ/WI for
286 * all PM registers, which doesn't crash the guest kernel at least.
287 */
288static bool pm_fake(struct kvm_vcpu *vcpu,
289 const struct coproc_params *p,
290 const struct coproc_reg *r)
291{
292 if (p->is_write)
293 return ignore_write(vcpu, p);
294 else
295 return read_zero(vcpu, p);
296}
297
298#define access_pmcr pm_fake
299#define access_pmcntenset pm_fake
300#define access_pmcntenclr pm_fake
301#define access_pmovsr pm_fake
302#define access_pmselr pm_fake
303#define access_pmceid0 pm_fake
304#define access_pmceid1 pm_fake
305#define access_pmccntr pm_fake
306#define access_pmxevtyper pm_fake
307#define access_pmxevcntr pm_fake
308#define access_pmuserenr pm_fake
309#define access_pmintenset pm_fake
310#define access_pmintenclr pm_fake
311
312/* Architected CP15 registers.
Christoffer Dall240e99c2013-08-05 18:08:41 -0700313 * CRn denotes the primary register number, but is copied to the CRm in the
314 * user space API for 64-bit register access in line with the terminology used
315 * in the ARM ARM.
316 * Important: Must be sorted ascending by CRn, CRM, Op1, Op2 and with 64-bit
317 * registers preceding 32-bit ones.
Christoffer Dall5b3e5e52013-01-20 18:28:09 -0500318 */
319static const struct coproc_reg cp15_regs[] = {
Jonathan Austine8c2d992013-09-26 16:49:28 +0100320 /* MPIDR: we use VMPIDR for guest access. */
321 { CRn( 0), CRm( 0), Op1( 0), Op2( 5), is32,
322 NULL, reset_mpidr, c0_MPIDR },
323
Christoffer Dall5b3e5e52013-01-20 18:28:09 -0500324 /* CSSELR: swapped by interrupt.S. */
325 { CRn( 0), CRm( 0), Op1( 2), Op2( 0), is32,
326 NULL, reset_unknown, c0_CSSELR },
327
Jonathan Austine8c2d992013-09-26 16:49:28 +0100328 /* ACTLR: trapped by HCR.TAC bit. */
329 { CRn( 1), CRm( 0), Op1( 0), Op2( 1), is32,
330 access_actlr, reset_actlr, c1_ACTLR },
331
332 /* CPACR: swapped by interrupt.S. */
333 { CRn( 1), CRm( 0), Op1( 0), Op2( 2), is32,
334 NULL, reset_val, c1_CPACR, 0x00000000 },
335
Marc Zyngier80346992014-01-14 18:00:55 +0000336 /* TTBR0/TTBR1/TTBCR: swapped by interrupt.S. */
337 { CRm64( 2), Op1( 0), is64, access_vm_reg, reset_unknown64, c2_TTBR0 },
338 { CRn(2), CRm( 0), Op1( 0), Op2( 0), is32,
339 access_vm_reg, reset_unknown, c2_TTBR0 },
340 { CRn(2), CRm( 0), Op1( 0), Op2( 1), is32,
341 access_vm_reg, reset_unknown, c2_TTBR1 },
Christoffer Dall5b3e5e52013-01-20 18:28:09 -0500342 { CRn( 2), CRm( 0), Op1( 0), Op2( 2), is32,
Marc Zyngier80346992014-01-14 18:00:55 +0000343 access_vm_reg, reset_val, c2_TTBCR, 0x00000000 },
344 { CRm64( 2), Op1( 1), is64, access_vm_reg, reset_unknown64, c2_TTBR1 },
345
Christoffer Dall5b3e5e52013-01-20 18:28:09 -0500346
347 /* DACR: swapped by interrupt.S. */
348 { CRn( 3), CRm( 0), Op1( 0), Op2( 0), is32,
Marc Zyngier80346992014-01-14 18:00:55 +0000349 access_vm_reg, reset_unknown, c3_DACR },
Christoffer Dall5b3e5e52013-01-20 18:28:09 -0500350
351 /* DFSR/IFSR/ADFSR/AIFSR: swapped by interrupt.S. */
352 { CRn( 5), CRm( 0), Op1( 0), Op2( 0), is32,
Marc Zyngier80346992014-01-14 18:00:55 +0000353 access_vm_reg, reset_unknown, c5_DFSR },
Christoffer Dall5b3e5e52013-01-20 18:28:09 -0500354 { CRn( 5), CRm( 0), Op1( 0), Op2( 1), is32,
Marc Zyngier80346992014-01-14 18:00:55 +0000355 access_vm_reg, reset_unknown, c5_IFSR },
Christoffer Dall5b3e5e52013-01-20 18:28:09 -0500356 { CRn( 5), CRm( 1), Op1( 0), Op2( 0), is32,
Marc Zyngier80346992014-01-14 18:00:55 +0000357 access_vm_reg, reset_unknown, c5_ADFSR },
Christoffer Dall5b3e5e52013-01-20 18:28:09 -0500358 { CRn( 5), CRm( 1), Op1( 0), Op2( 1), is32,
Marc Zyngier80346992014-01-14 18:00:55 +0000359 access_vm_reg, reset_unknown, c5_AIFSR },
Christoffer Dall5b3e5e52013-01-20 18:28:09 -0500360
361 /* DFAR/IFAR: swapped by interrupt.S. */
362 { CRn( 6), CRm( 0), Op1( 0), Op2( 0), is32,
Marc Zyngier80346992014-01-14 18:00:55 +0000363 access_vm_reg, reset_unknown, c6_DFAR },
Christoffer Dall5b3e5e52013-01-20 18:28:09 -0500364 { CRn( 6), CRm( 0), Op1( 0), Op2( 2), is32,
Marc Zyngier80346992014-01-14 18:00:55 +0000365 access_vm_reg, reset_unknown, c6_IFAR },
Marc Zyngier6a077e42013-06-21 13:08:46 +0100366
367 /* PAR swapped by interrupt.S */
Christoffer Dall240e99c2013-08-05 18:08:41 -0700368 { CRm64( 7), Op1( 0), is64, NULL, reset_unknown64, c7_PAR },
Marc Zyngier6a077e42013-06-21 13:08:46 +0100369
Christoffer Dall5b3e5e52013-01-20 18:28:09 -0500370 /*
371 * DC{C,I,CI}SW operations:
372 */
373 { CRn( 7), CRm( 6), Op1( 0), Op2( 2), is32, access_dcsw},
374 { CRn( 7), CRm(10), Op1( 0), Op2( 2), is32, access_dcsw},
375 { CRn( 7), CRm(14), Op1( 0), Op2( 2), is32, access_dcsw},
376 /*
Jonathan Austine8c2d992013-09-26 16:49:28 +0100377 * L2CTLR access (guest wants to know #CPUs).
378 */
379 { CRn( 9), CRm( 0), Op1( 1), Op2( 2), is32,
380 access_l2ctlr, reset_l2ctlr, c9_L2CTLR },
381 { CRn( 9), CRm( 0), Op1( 1), Op2( 3), is32, access_l2ectlr},
382
383 /*
Christoffer Dall5b3e5e52013-01-20 18:28:09 -0500384 * Dummy performance monitor implementation.
385 */
386 { CRn( 9), CRm(12), Op1( 0), Op2( 0), is32, access_pmcr},
387 { CRn( 9), CRm(12), Op1( 0), Op2( 1), is32, access_pmcntenset},
388 { CRn( 9), CRm(12), Op1( 0), Op2( 2), is32, access_pmcntenclr},
389 { CRn( 9), CRm(12), Op1( 0), Op2( 3), is32, access_pmovsr},
390 { CRn( 9), CRm(12), Op1( 0), Op2( 5), is32, access_pmselr},
391 { CRn( 9), CRm(12), Op1( 0), Op2( 6), is32, access_pmceid0},
392 { CRn( 9), CRm(12), Op1( 0), Op2( 7), is32, access_pmceid1},
393 { CRn( 9), CRm(13), Op1( 0), Op2( 0), is32, access_pmccntr},
394 { CRn( 9), CRm(13), Op1( 0), Op2( 1), is32, access_pmxevtyper},
395 { CRn( 9), CRm(13), Op1( 0), Op2( 2), is32, access_pmxevcntr},
396 { CRn( 9), CRm(14), Op1( 0), Op2( 0), is32, access_pmuserenr},
397 { CRn( 9), CRm(14), Op1( 0), Op2( 1), is32, access_pmintenset},
398 { CRn( 9), CRm(14), Op1( 0), Op2( 2), is32, access_pmintenclr},
399
400 /* PRRR/NMRR (aka MAIR0/MAIR1): swapped by interrupt.S. */
401 { CRn(10), CRm( 2), Op1( 0), Op2( 0), is32,
Marc Zyngier80346992014-01-14 18:00:55 +0000402 access_vm_reg, reset_unknown, c10_PRRR},
Christoffer Dall5b3e5e52013-01-20 18:28:09 -0500403 { CRn(10), CRm( 2), Op1( 0), Op2( 1), is32,
Marc Zyngier80346992014-01-14 18:00:55 +0000404 access_vm_reg, reset_unknown, c10_NMRR},
Christoffer Dall5b3e5e52013-01-20 18:28:09 -0500405
Marc Zyngieraf208142014-01-22 10:20:09 +0000406 /* AMAIR0/AMAIR1: swapped by interrupt.S. */
407 { CRn(10), CRm( 3), Op1( 0), Op2( 0), is32,
408 access_vm_reg, reset_unknown, c10_AMAIR0},
409 { CRn(10), CRm( 3), Op1( 0), Op2( 1), is32,
410 access_vm_reg, reset_unknown, c10_AMAIR1},
411
Vladimir Murzinacda5432016-09-12 15:49:24 +0100412 /* ICC_SGI1R */
413 { CRm64(12), Op1( 0), is64, access_gic_sgi},
414
Christoffer Dall5b3e5e52013-01-20 18:28:09 -0500415 /* VBAR: swapped by interrupt.S. */
416 { CRn(12), CRm( 0), Op1( 0), Op2( 0), is32,
417 NULL, reset_val, c12_VBAR, 0x00000000 },
418
Vladimir Murzinacda5432016-09-12 15:49:24 +0100419 /* ICC_SRE */
420 { CRn(12), CRm(12), Op1( 0), Op2(5), is32, access_gic_sre },
421
Christoffer Dall5b3e5e52013-01-20 18:28:09 -0500422 /* CONTEXTIDR/TPIDRURW/TPIDRURO/TPIDRPRW: swapped by interrupt.S. */
423 { CRn(13), CRm( 0), Op1( 0), Op2( 1), is32,
Marc Zyngier80346992014-01-14 18:00:55 +0000424 access_vm_reg, reset_val, c13_CID, 0x00000000 },
Christoffer Dall5b3e5e52013-01-20 18:28:09 -0500425 { CRn(13), CRm( 0), Op1( 0), Op2( 2), is32,
426 NULL, reset_unknown, c13_TID_URW },
427 { CRn(13), CRm( 0), Op1( 0), Op2( 3), is32,
428 NULL, reset_unknown, c13_TID_URO },
429 { CRn(13), CRm( 0), Op1( 0), Op2( 4), is32,
430 NULL, reset_unknown, c13_TID_PRIV },
Marc Zyngierc7e3ba62013-01-23 13:21:59 -0500431
432 /* CNTKCTL: swapped by interrupt.S. */
433 { CRn(14), CRm( 1), Op1( 0), Op2( 0), is32,
434 NULL, reset_val, c14_CNTKCTL, 0x00000000 },
Jonathan Austine8c2d992013-09-26 16:49:28 +0100435
436 /* The Configuration Base Address Register. */
437 { CRn(15), CRm( 0), Op1( 4), Op2( 0), is32, access_cbar},
Christoffer Dall5b3e5e52013-01-20 18:28:09 -0500438};
439
Marc Zyngierb613f592016-01-21 15:34:35 +0000440static int check_reg_table(const struct coproc_reg *table, unsigned int n)
441{
442 unsigned int i;
443
444 for (i = 1; i < n; i++) {
445 if (cmp_reg(&table[i-1], &table[i]) >= 0) {
446 kvm_err("reg table %p out of order (%d)\n", table, i - 1);
447 return 1;
448 }
449 }
450
451 return 0;
452}
453
Christoffer Dall5b3e5e52013-01-20 18:28:09 -0500454/* Target specific emulation tables */
455static struct kvm_coproc_target_table *target_tables[KVM_ARM_NUM_TARGETS];
456
457void kvm_register_target_coproc_table(struct kvm_coproc_target_table *table)
458{
Marc Zyngierb613f592016-01-21 15:34:35 +0000459 BUG_ON(check_reg_table(table->table, table->num));
Christoffer Dall5b3e5e52013-01-20 18:28:09 -0500460 target_tables[table->target] = table;
461}
462
463/* Get specific register table for this target. */
464static const struct coproc_reg *get_target_table(unsigned target, size_t *num)
465{
466 struct kvm_coproc_target_table *table;
467
468 table = target_tables[target];
469 *num = table->num;
470 return table->table;
471}
472
Marc Zyngierd06a5442016-01-21 17:34:22 +0000473#define reg_to_match_value(x) \
474 ({ \
475 unsigned long val; \
476 val = (x)->CRn << 11; \
477 val |= (x)->CRm << 7; \
478 val |= (x)->Op1 << 4; \
479 val |= (x)->Op2 << 1; \
480 val |= !(x)->is_64bit; \
481 val; \
482 })
483
484static int match_reg(const void *key, const void *elt)
485{
486 const unsigned long pval = (unsigned long)key;
487 const struct coproc_reg *r = elt;
488
489 return pval - reg_to_match_value(r);
490}
491
Christoffer Dall5b3e5e52013-01-20 18:28:09 -0500492static const struct coproc_reg *find_reg(const struct coproc_params *params,
493 const struct coproc_reg table[],
494 unsigned int num)
495{
Marc Zyngierd06a5442016-01-21 17:34:22 +0000496 unsigned long pval = reg_to_match_value(params);
Christoffer Dall5b3e5e52013-01-20 18:28:09 -0500497
Marc Zyngierd06a5442016-01-21 17:34:22 +0000498 return bsearch((void *)pval, table, num, sizeof(table[0]), match_reg);
Christoffer Dall5b3e5e52013-01-20 18:28:09 -0500499}
500
501static int emulate_cp15(struct kvm_vcpu *vcpu,
502 const struct coproc_params *params)
503{
504 size_t num;
505 const struct coproc_reg *table, *r;
506
507 trace_kvm_emulate_cp15_imp(params->Op1, params->Rt1, params->CRn,
508 params->CRm, params->Op2, params->is_write);
509
510 table = get_target_table(vcpu->arch.target, &num);
511
512 /* Search target-specific then generic table. */
513 r = find_reg(params, table, num);
514 if (!r)
515 r = find_reg(params, cp15_regs, ARRAY_SIZE(cp15_regs));
516
517 if (likely(r)) {
518 /* If we don't have an accessor, we should never get here! */
519 BUG_ON(!r->access);
520
521 if (likely(r->access(vcpu, params, r))) {
522 /* Skip instruction, since it was emulated */
Marc Zyngier23b415d2012-09-18 12:07:06 +0100523 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
Christoffer Dall5b3e5e52013-01-20 18:28:09 -0500524 }
Christoffer Dall5b3e5e52013-01-20 18:28:09 -0500525 } else {
Marc Zyngier9d0d4d32017-03-27 17:03:45 +0100526 /* If access function fails, it should complain. */
Marc Zyngierdb730d82012-10-03 11:17:02 +0100527 kvm_err("Unsupported guest CP15 access at: %08lx\n",
Christoffer Dall5b3e5e52013-01-20 18:28:09 -0500528 *vcpu_pc(vcpu));
529 print_cp_instr(params);
Marc Zyngier9d0d4d32017-03-27 17:03:45 +0100530 kvm_inject_undefined(vcpu);
Christoffer Dall5b3e5e52013-01-20 18:28:09 -0500531 }
Marc Zyngier9d0d4d32017-03-27 17:03:45 +0100532
Christoffer Dall5b3e5e52013-01-20 18:28:09 -0500533 return 1;
534}
535
536/**
537 * kvm_handle_cp15_64 -- handles a mrrc/mcrr trap on a guest CP15 access
538 * @vcpu: The VCPU pointer
539 * @run: The kvm_run struct
540 */
541int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
542{
543 struct coproc_params params;
544
Marc Zyngier46c214d2014-01-21 18:56:26 +0000545 params.CRn = (kvm_vcpu_get_hsr(vcpu) >> 1) & 0xf;
Marc Zyngier7393b592012-09-17 19:27:09 +0100546 params.Rt1 = (kvm_vcpu_get_hsr(vcpu) >> 5) & 0xf;
547 params.is_write = ((kvm_vcpu_get_hsr(vcpu) & 1) == 0);
Christoffer Dall5b3e5e52013-01-20 18:28:09 -0500548 params.is_64bit = true;
549
Marc Zyngier7393b592012-09-17 19:27:09 +0100550 params.Op1 = (kvm_vcpu_get_hsr(vcpu) >> 16) & 0xf;
Christoffer Dall5b3e5e52013-01-20 18:28:09 -0500551 params.Op2 = 0;
Marc Zyngier7393b592012-09-17 19:27:09 +0100552 params.Rt2 = (kvm_vcpu_get_hsr(vcpu) >> 10) & 0xf;
Marc Zyngier46c214d2014-01-21 18:56:26 +0000553 params.CRm = 0;
Christoffer Dall5b3e5e52013-01-20 18:28:09 -0500554
555 return emulate_cp15(vcpu, &params);
556}
557
558static void reset_coproc_regs(struct kvm_vcpu *vcpu,
559 const struct coproc_reg *table, size_t num)
560{
561 unsigned long i;
562
563 for (i = 0; i < num; i++)
564 if (table[i].reset)
565 table[i].reset(vcpu, &table[i]);
566}
567
568/**
569 * kvm_handle_cp15_32 -- handles a mrc/mcr trap on a guest CP15 access
570 * @vcpu: The VCPU pointer
571 * @run: The kvm_run struct
572 */
573int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
574{
575 struct coproc_params params;
576
Marc Zyngier7393b592012-09-17 19:27:09 +0100577 params.CRm = (kvm_vcpu_get_hsr(vcpu) >> 1) & 0xf;
578 params.Rt1 = (kvm_vcpu_get_hsr(vcpu) >> 5) & 0xf;
579 params.is_write = ((kvm_vcpu_get_hsr(vcpu) & 1) == 0);
Christoffer Dall5b3e5e52013-01-20 18:28:09 -0500580 params.is_64bit = false;
581
Marc Zyngier7393b592012-09-17 19:27:09 +0100582 params.CRn = (kvm_vcpu_get_hsr(vcpu) >> 10) & 0xf;
583 params.Op1 = (kvm_vcpu_get_hsr(vcpu) >> 14) & 0x7;
584 params.Op2 = (kvm_vcpu_get_hsr(vcpu) >> 17) & 0x7;
Christoffer Dall5b3e5e52013-01-20 18:28:09 -0500585 params.Rt2 = 0;
586
587 return emulate_cp15(vcpu, &params);
588}
589
Christoffer Dall11382452013-01-20 18:28:10 -0500590/******************************************************************************
591 * Userspace API
592 *****************************************************************************/
593
594static bool index_to_params(u64 id, struct coproc_params *params)
595{
596 switch (id & KVM_REG_SIZE_MASK) {
597 case KVM_REG_SIZE_U32:
598 /* Any unused index bits means it's not valid. */
599 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
600 | KVM_REG_ARM_COPROC_MASK
601 | KVM_REG_ARM_32_CRN_MASK
602 | KVM_REG_ARM_CRM_MASK
603 | KVM_REG_ARM_OPC1_MASK
604 | KVM_REG_ARM_32_OPC2_MASK))
605 return false;
606
607 params->is_64bit = false;
608 params->CRn = ((id & KVM_REG_ARM_32_CRN_MASK)
609 >> KVM_REG_ARM_32_CRN_SHIFT);
610 params->CRm = ((id & KVM_REG_ARM_CRM_MASK)
611 >> KVM_REG_ARM_CRM_SHIFT);
612 params->Op1 = ((id & KVM_REG_ARM_OPC1_MASK)
613 >> KVM_REG_ARM_OPC1_SHIFT);
614 params->Op2 = ((id & KVM_REG_ARM_32_OPC2_MASK)
615 >> KVM_REG_ARM_32_OPC2_SHIFT);
616 return true;
617 case KVM_REG_SIZE_U64:
618 /* Any unused index bits means it's not valid. */
619 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
620 | KVM_REG_ARM_COPROC_MASK
621 | KVM_REG_ARM_CRM_MASK
622 | KVM_REG_ARM_OPC1_MASK))
623 return false;
624 params->is_64bit = true;
Christoffer Dall240e99c2013-08-05 18:08:41 -0700625 /* CRm to CRn: see cp15_to_index for details */
626 params->CRn = ((id & KVM_REG_ARM_CRM_MASK)
Christoffer Dall11382452013-01-20 18:28:10 -0500627 >> KVM_REG_ARM_CRM_SHIFT);
628 params->Op1 = ((id & KVM_REG_ARM_OPC1_MASK)
629 >> KVM_REG_ARM_OPC1_SHIFT);
630 params->Op2 = 0;
Christoffer Dall240e99c2013-08-05 18:08:41 -0700631 params->CRm = 0;
Christoffer Dall11382452013-01-20 18:28:10 -0500632 return true;
633 default:
634 return false;
635 }
636}
637
638/* Decode an index value, and find the cp15 coproc_reg entry. */
639static const struct coproc_reg *index_to_coproc_reg(struct kvm_vcpu *vcpu,
640 u64 id)
641{
642 size_t num;
643 const struct coproc_reg *table, *r;
644 struct coproc_params params;
645
646 /* We only do cp15 for now. */
647 if ((id & KVM_REG_ARM_COPROC_MASK) >> KVM_REG_ARM_COPROC_SHIFT != 15)
648 return NULL;
649
650 if (!index_to_params(id, &params))
651 return NULL;
652
653 table = get_target_table(vcpu->arch.target, &num);
654 r = find_reg(&params, table, num);
655 if (!r)
656 r = find_reg(&params, cp15_regs, ARRAY_SIZE(cp15_regs));
657
658 /* Not saved in the cp15 array? */
659 if (r && !r->reg)
660 r = NULL;
661
662 return r;
663}
664
665/*
666 * These are the invariant cp15 registers: we let the guest see the host
667 * versions of these, so they're part of the guest state.
668 *
669 * A future CPU may provide a mechanism to present different values to
670 * the guest, or a future kvm may trap them.
671 */
672/* Unfortunately, there's no register-argument for mrc, so generate. */
673#define FUNCTION_FOR32(crn, crm, op1, op2, name) \
674 static void get_##name(struct kvm_vcpu *v, \
675 const struct coproc_reg *r) \
676 { \
677 u32 val; \
678 \
679 asm volatile("mrc p15, " __stringify(op1) \
680 ", %0, c" __stringify(crn) \
681 ", c" __stringify(crm) \
682 ", " __stringify(op2) "\n" : "=r" (val)); \
683 ((struct coproc_reg *)r)->val = val; \
684 }
685
686FUNCTION_FOR32(0, 0, 0, 0, MIDR)
687FUNCTION_FOR32(0, 0, 0, 1, CTR)
688FUNCTION_FOR32(0, 0, 0, 2, TCMTR)
689FUNCTION_FOR32(0, 0, 0, 3, TLBTR)
690FUNCTION_FOR32(0, 0, 0, 6, REVIDR)
691FUNCTION_FOR32(0, 1, 0, 0, ID_PFR0)
692FUNCTION_FOR32(0, 1, 0, 1, ID_PFR1)
693FUNCTION_FOR32(0, 1, 0, 2, ID_DFR0)
694FUNCTION_FOR32(0, 1, 0, 3, ID_AFR0)
695FUNCTION_FOR32(0, 1, 0, 4, ID_MMFR0)
696FUNCTION_FOR32(0, 1, 0, 5, ID_MMFR1)
697FUNCTION_FOR32(0, 1, 0, 6, ID_MMFR2)
698FUNCTION_FOR32(0, 1, 0, 7, ID_MMFR3)
699FUNCTION_FOR32(0, 2, 0, 0, ID_ISAR0)
700FUNCTION_FOR32(0, 2, 0, 1, ID_ISAR1)
701FUNCTION_FOR32(0, 2, 0, 2, ID_ISAR2)
702FUNCTION_FOR32(0, 2, 0, 3, ID_ISAR3)
703FUNCTION_FOR32(0, 2, 0, 4, ID_ISAR4)
704FUNCTION_FOR32(0, 2, 0, 5, ID_ISAR5)
705FUNCTION_FOR32(0, 0, 1, 1, CLIDR)
706FUNCTION_FOR32(0, 0, 1, 7, AIDR)
707
708/* ->val is filled in by kvm_invariant_coproc_table_init() */
709static struct coproc_reg invariant_cp15[] = {
710 { CRn( 0), CRm( 0), Op1( 0), Op2( 0), is32, NULL, get_MIDR },
711 { CRn( 0), CRm( 0), Op1( 0), Op2( 1), is32, NULL, get_CTR },
712 { CRn( 0), CRm( 0), Op1( 0), Op2( 2), is32, NULL, get_TCMTR },
713 { CRn( 0), CRm( 0), Op1( 0), Op2( 3), is32, NULL, get_TLBTR },
714 { CRn( 0), CRm( 0), Op1( 0), Op2( 6), is32, NULL, get_REVIDR },
715
Marc Zyngier504bfce2016-01-21 15:37:03 +0000716 { CRn( 0), CRm( 0), Op1( 1), Op2( 1), is32, NULL, get_CLIDR },
717 { CRn( 0), CRm( 0), Op1( 1), Op2( 7), is32, NULL, get_AIDR },
718
Christoffer Dall11382452013-01-20 18:28:10 -0500719 { CRn( 0), CRm( 1), Op1( 0), Op2( 0), is32, NULL, get_ID_PFR0 },
720 { CRn( 0), CRm( 1), Op1( 0), Op2( 1), is32, NULL, get_ID_PFR1 },
721 { CRn( 0), CRm( 1), Op1( 0), Op2( 2), is32, NULL, get_ID_DFR0 },
722 { CRn( 0), CRm( 1), Op1( 0), Op2( 3), is32, NULL, get_ID_AFR0 },
723 { CRn( 0), CRm( 1), Op1( 0), Op2( 4), is32, NULL, get_ID_MMFR0 },
724 { CRn( 0), CRm( 1), Op1( 0), Op2( 5), is32, NULL, get_ID_MMFR1 },
725 { CRn( 0), CRm( 1), Op1( 0), Op2( 6), is32, NULL, get_ID_MMFR2 },
726 { CRn( 0), CRm( 1), Op1( 0), Op2( 7), is32, NULL, get_ID_MMFR3 },
727
728 { CRn( 0), CRm( 2), Op1( 0), Op2( 0), is32, NULL, get_ID_ISAR0 },
729 { CRn( 0), CRm( 2), Op1( 0), Op2( 1), is32, NULL, get_ID_ISAR1 },
730 { CRn( 0), CRm( 2), Op1( 0), Op2( 2), is32, NULL, get_ID_ISAR2 },
731 { CRn( 0), CRm( 2), Op1( 0), Op2( 3), is32, NULL, get_ID_ISAR3 },
732 { CRn( 0), CRm( 2), Op1( 0), Op2( 4), is32, NULL, get_ID_ISAR4 },
733 { CRn( 0), CRm( 2), Op1( 0), Op2( 5), is32, NULL, get_ID_ISAR5 },
Christoffer Dall11382452013-01-20 18:28:10 -0500734};
735
Victor Kamensky73891f72014-06-12 09:30:06 -0700736/*
737 * Reads a register value from a userspace address to a kernel
738 * variable. Make sure that register size matches sizeof(*__val).
739 */
Christoffer Dall11382452013-01-20 18:28:10 -0500740static int reg_from_user(void *val, const void __user *uaddr, u64 id)
741{
Christoffer Dall11382452013-01-20 18:28:10 -0500742 if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
743 return -EFAULT;
744 return 0;
745}
746
Victor Kamensky73891f72014-06-12 09:30:06 -0700747/*
748 * Writes a register value to a userspace address from a kernel variable.
749 * Make sure that register size matches sizeof(*__val).
750 */
Christoffer Dall11382452013-01-20 18:28:10 -0500751static int reg_to_user(void __user *uaddr, const void *val, u64 id)
752{
Christoffer Dall11382452013-01-20 18:28:10 -0500753 if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
754 return -EFAULT;
755 return 0;
756}
757
758static int get_invariant_cp15(u64 id, void __user *uaddr)
759{
760 struct coproc_params params;
761 const struct coproc_reg *r;
Victor Kamensky73891f72014-06-12 09:30:06 -0700762 int ret;
Christoffer Dall11382452013-01-20 18:28:10 -0500763
764 if (!index_to_params(id, &params))
765 return -ENOENT;
766
767 r = find_reg(&params, invariant_cp15, ARRAY_SIZE(invariant_cp15));
768 if (!r)
769 return -ENOENT;
770
Victor Kamensky73891f72014-06-12 09:30:06 -0700771 ret = -ENOENT;
772 if (KVM_REG_SIZE(id) == 4) {
773 u32 val = r->val;
774
775 ret = reg_to_user(uaddr, &val, id);
776 } else if (KVM_REG_SIZE(id) == 8) {
777 ret = reg_to_user(uaddr, &r->val, id);
778 }
779 return ret;
Christoffer Dall11382452013-01-20 18:28:10 -0500780}
781
782static int set_invariant_cp15(u64 id, void __user *uaddr)
783{
784 struct coproc_params params;
785 const struct coproc_reg *r;
786 int err;
Victor Kamensky73891f72014-06-12 09:30:06 -0700787 u64 val;
Christoffer Dall11382452013-01-20 18:28:10 -0500788
789 if (!index_to_params(id, &params))
790 return -ENOENT;
791 r = find_reg(&params, invariant_cp15, ARRAY_SIZE(invariant_cp15));
792 if (!r)
793 return -ENOENT;
794
Victor Kamensky73891f72014-06-12 09:30:06 -0700795 err = -ENOENT;
796 if (KVM_REG_SIZE(id) == 4) {
797 u32 val32;
798
799 err = reg_from_user(&val32, uaddr, id);
800 if (!err)
801 val = val32;
802 } else if (KVM_REG_SIZE(id) == 8) {
803 err = reg_from_user(&val, uaddr, id);
804 }
Christoffer Dall11382452013-01-20 18:28:10 -0500805 if (err)
806 return err;
807
808 /* This is what we mean by invariant: you can't change it. */
809 if (r->val != val)
810 return -EINVAL;
811
812 return 0;
813}
814
Christoffer Dallc27581e2013-01-20 18:28:10 -0500815static bool is_valid_cache(u32 val)
816{
817 u32 level, ctype;
818
819 if (val >= CSSELR_MAX)
Will Deacon18d45762014-08-26 15:13:22 +0100820 return false;
Christoffer Dallc27581e2013-01-20 18:28:10 -0500821
822 /* Bottom bit is Instruction or Data bit. Next 3 bits are level. */
823 level = (val >> 1);
824 ctype = (cache_levels >> (level * 3)) & 7;
825
826 switch (ctype) {
827 case 0: /* No cache */
828 return false;
829 case 1: /* Instruction cache only */
830 return (val & 1);
831 case 2: /* Data cache only */
832 case 4: /* Unified cache */
833 return !(val & 1);
834 case 3: /* Separate instruction and data caches */
835 return true;
836 default: /* Reserved: we can't know instruction or data. */
837 return false;
838 }
839}
840
841/* Which cache CCSIDR represents depends on CSSELR value. */
842static u32 get_ccsidr(u32 csselr)
843{
844 u32 ccsidr;
845
846 /* Make sure noone else changes CSSELR during this! */
847 local_irq_disable();
848 /* Put value into CSSELR */
849 asm volatile("mcr p15, 2, %0, c0, c0, 0" : : "r" (csselr));
850 isb();
851 /* Read result out of CCSIDR */
852 asm volatile("mrc p15, 1, %0, c0, c0, 0" : "=r" (ccsidr));
853 local_irq_enable();
854
855 return ccsidr;
856}
857
858static int demux_c15_get(u64 id, void __user *uaddr)
859{
860 u32 val;
861 u32 __user *uval = uaddr;
862
863 /* Fail if we have unknown bits set. */
864 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
865 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
866 return -ENOENT;
867
868 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
869 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
870 if (KVM_REG_SIZE(id) != 4)
871 return -ENOENT;
872 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
873 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
874 if (!is_valid_cache(val))
875 return -ENOENT;
876
877 return put_user(get_ccsidr(val), uval);
878 default:
879 return -ENOENT;
880 }
881}
882
883static int demux_c15_set(u64 id, void __user *uaddr)
884{
885 u32 val, newval;
886 u32 __user *uval = uaddr;
887
888 /* Fail if we have unknown bits set. */
889 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
890 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
891 return -ENOENT;
892
893 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
894 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
895 if (KVM_REG_SIZE(id) != 4)
896 return -ENOENT;
897 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
898 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
899 if (!is_valid_cache(val))
900 return -ENOENT;
901
902 if (get_user(newval, uval))
903 return -EFAULT;
904
905 /* This is also invariant: you can't change it. */
906 if (newval != get_ccsidr(val))
907 return -EINVAL;
908 return 0;
909 default:
910 return -ENOENT;
911 }
912}
913
Rusty Russell4fe21e42013-01-20 18:28:11 -0500914#ifdef CONFIG_VFPv3
915static const int vfp_sysregs[] = { KVM_REG_ARM_VFP_FPEXC,
916 KVM_REG_ARM_VFP_FPSCR,
917 KVM_REG_ARM_VFP_FPINST,
918 KVM_REG_ARM_VFP_FPINST2,
919 KVM_REG_ARM_VFP_MVFR0,
920 KVM_REG_ARM_VFP_MVFR1,
921 KVM_REG_ARM_VFP_FPSID };
922
923static unsigned int num_fp_regs(void)
924{
925 if (((fmrx(MVFR0) & MVFR0_A_SIMD_MASK) >> MVFR0_A_SIMD_BIT) == 2)
926 return 32;
927 else
928 return 16;
929}
930
931static unsigned int num_vfp_regs(void)
932{
933 /* Normal FP regs + control regs. */
934 return num_fp_regs() + ARRAY_SIZE(vfp_sysregs);
935}
936
937static int copy_vfp_regids(u64 __user *uindices)
938{
939 unsigned int i;
940 const u64 u32reg = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP;
941 const u64 u64reg = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP;
942
943 for (i = 0; i < num_fp_regs(); i++) {
944 if (put_user((u64reg | KVM_REG_ARM_VFP_BASE_REG) + i,
945 uindices))
946 return -EFAULT;
947 uindices++;
948 }
949
950 for (i = 0; i < ARRAY_SIZE(vfp_sysregs); i++) {
951 if (put_user(u32reg | vfp_sysregs[i], uindices))
952 return -EFAULT;
953 uindices++;
954 }
955
956 return num_vfp_regs();
957}
958
959static int vfp_get_reg(const struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
960{
961 u32 vfpid = (id & KVM_REG_ARM_VFP_MASK);
962 u32 val;
963
964 /* Fail if we have unknown bits set. */
965 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
966 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
967 return -ENOENT;
968
969 if (vfpid < num_fp_regs()) {
970 if (KVM_REG_SIZE(id) != 8)
971 return -ENOENT;
Marc Zyngier0ca55652016-01-03 11:01:49 +0000972 return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpregs[vfpid],
Rusty Russell4fe21e42013-01-20 18:28:11 -0500973 id);
974 }
975
976 /* FP control registers are all 32 bit. */
977 if (KVM_REG_SIZE(id) != 4)
978 return -ENOENT;
979
980 switch (vfpid) {
981 case KVM_REG_ARM_VFP_FPEXC:
Marc Zyngier0ca55652016-01-03 11:01:49 +0000982 return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpexc, id);
Rusty Russell4fe21e42013-01-20 18:28:11 -0500983 case KVM_REG_ARM_VFP_FPSCR:
Marc Zyngier0ca55652016-01-03 11:01:49 +0000984 return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpscr, id);
Rusty Russell4fe21e42013-01-20 18:28:11 -0500985 case KVM_REG_ARM_VFP_FPINST:
Marc Zyngier0ca55652016-01-03 11:01:49 +0000986 return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpinst, id);
Rusty Russell4fe21e42013-01-20 18:28:11 -0500987 case KVM_REG_ARM_VFP_FPINST2:
Marc Zyngier0ca55652016-01-03 11:01:49 +0000988 return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpinst2, id);
Rusty Russell4fe21e42013-01-20 18:28:11 -0500989 case KVM_REG_ARM_VFP_MVFR0:
990 val = fmrx(MVFR0);
991 return reg_to_user(uaddr, &val, id);
992 case KVM_REG_ARM_VFP_MVFR1:
993 val = fmrx(MVFR1);
994 return reg_to_user(uaddr, &val, id);
995 case KVM_REG_ARM_VFP_FPSID:
996 val = fmrx(FPSID);
997 return reg_to_user(uaddr, &val, id);
998 default:
999 return -ENOENT;
1000 }
1001}
1002
1003static int vfp_set_reg(struct kvm_vcpu *vcpu, u64 id, const void __user *uaddr)
1004{
1005 u32 vfpid = (id & KVM_REG_ARM_VFP_MASK);
1006 u32 val;
1007
1008 /* Fail if we have unknown bits set. */
1009 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
1010 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
1011 return -ENOENT;
1012
1013 if (vfpid < num_fp_regs()) {
1014 if (KVM_REG_SIZE(id) != 8)
1015 return -ENOENT;
Marc Zyngier0ca55652016-01-03 11:01:49 +00001016 return reg_from_user(&vcpu->arch.ctxt.vfp.fpregs[vfpid],
Rusty Russell4fe21e42013-01-20 18:28:11 -05001017 uaddr, id);
1018 }
1019
1020 /* FP control registers are all 32 bit. */
1021 if (KVM_REG_SIZE(id) != 4)
1022 return -ENOENT;
1023
1024 switch (vfpid) {
1025 case KVM_REG_ARM_VFP_FPEXC:
Marc Zyngier0ca55652016-01-03 11:01:49 +00001026 return reg_from_user(&vcpu->arch.ctxt.vfp.fpexc, uaddr, id);
Rusty Russell4fe21e42013-01-20 18:28:11 -05001027 case KVM_REG_ARM_VFP_FPSCR:
Marc Zyngier0ca55652016-01-03 11:01:49 +00001028 return reg_from_user(&vcpu->arch.ctxt.vfp.fpscr, uaddr, id);
Rusty Russell4fe21e42013-01-20 18:28:11 -05001029 case KVM_REG_ARM_VFP_FPINST:
Marc Zyngier0ca55652016-01-03 11:01:49 +00001030 return reg_from_user(&vcpu->arch.ctxt.vfp.fpinst, uaddr, id);
Rusty Russell4fe21e42013-01-20 18:28:11 -05001031 case KVM_REG_ARM_VFP_FPINST2:
Marc Zyngier0ca55652016-01-03 11:01:49 +00001032 return reg_from_user(&vcpu->arch.ctxt.vfp.fpinst2, uaddr, id);
Rusty Russell4fe21e42013-01-20 18:28:11 -05001033 /* These are invariant. */
1034 case KVM_REG_ARM_VFP_MVFR0:
1035 if (reg_from_user(&val, uaddr, id))
1036 return -EFAULT;
1037 if (val != fmrx(MVFR0))
1038 return -EINVAL;
1039 return 0;
1040 case KVM_REG_ARM_VFP_MVFR1:
1041 if (reg_from_user(&val, uaddr, id))
1042 return -EFAULT;
1043 if (val != fmrx(MVFR1))
1044 return -EINVAL;
1045 return 0;
1046 case KVM_REG_ARM_VFP_FPSID:
1047 if (reg_from_user(&val, uaddr, id))
1048 return -EFAULT;
1049 if (val != fmrx(FPSID))
1050 return -EINVAL;
1051 return 0;
1052 default:
1053 return -ENOENT;
1054 }
1055}
1056#else /* !CONFIG_VFPv3 */
1057static unsigned int num_vfp_regs(void)
1058{
1059 return 0;
1060}
1061
1062static int copy_vfp_regids(u64 __user *uindices)
1063{
1064 return 0;
1065}
1066
1067static int vfp_get_reg(const struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
1068{
1069 return -ENOENT;
1070}
1071
1072static int vfp_set_reg(struct kvm_vcpu *vcpu, u64 id, const void __user *uaddr)
1073{
1074 return -ENOENT;
1075}
1076#endif /* !CONFIG_VFPv3 */
1077
Christoffer Dall11382452013-01-20 18:28:10 -05001078int kvm_arm_coproc_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
1079{
1080 const struct coproc_reg *r;
1081 void __user *uaddr = (void __user *)(long)reg->addr;
Victor Kamensky73891f72014-06-12 09:30:06 -07001082 int ret;
Christoffer Dall11382452013-01-20 18:28:10 -05001083
Christoffer Dallc27581e2013-01-20 18:28:10 -05001084 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
1085 return demux_c15_get(reg->id, uaddr);
1086
Rusty Russell4fe21e42013-01-20 18:28:11 -05001087 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_VFP)
1088 return vfp_get_reg(vcpu, reg->id, uaddr);
1089
Christoffer Dall11382452013-01-20 18:28:10 -05001090 r = index_to_coproc_reg(vcpu, reg->id);
1091 if (!r)
1092 return get_invariant_cp15(reg->id, uaddr);
1093
Victor Kamensky73891f72014-06-12 09:30:06 -07001094 ret = -ENOENT;
1095 if (KVM_REG_SIZE(reg->id) == 8) {
1096 u64 val;
1097
1098 val = vcpu_cp15_reg64_get(vcpu, r);
1099 ret = reg_to_user(uaddr, &val, reg->id);
1100 } else if (KVM_REG_SIZE(reg->id) == 4) {
Marc Zyngierfb32a522016-01-03 11:26:01 +00001101 ret = reg_to_user(uaddr, &vcpu_cp15(vcpu, r->reg), reg->id);
Victor Kamensky73891f72014-06-12 09:30:06 -07001102 }
1103
1104 return ret;
Christoffer Dall11382452013-01-20 18:28:10 -05001105}
1106
1107int kvm_arm_coproc_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
1108{
1109 const struct coproc_reg *r;
1110 void __user *uaddr = (void __user *)(long)reg->addr;
Victor Kamensky73891f72014-06-12 09:30:06 -07001111 int ret;
Christoffer Dall11382452013-01-20 18:28:10 -05001112
Christoffer Dallc27581e2013-01-20 18:28:10 -05001113 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
1114 return demux_c15_set(reg->id, uaddr);
1115
Rusty Russell4fe21e42013-01-20 18:28:11 -05001116 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_VFP)
1117 return vfp_set_reg(vcpu, reg->id, uaddr);
1118
Christoffer Dall11382452013-01-20 18:28:10 -05001119 r = index_to_coproc_reg(vcpu, reg->id);
1120 if (!r)
1121 return set_invariant_cp15(reg->id, uaddr);
1122
Victor Kamensky73891f72014-06-12 09:30:06 -07001123 ret = -ENOENT;
1124 if (KVM_REG_SIZE(reg->id) == 8) {
1125 u64 val;
1126
1127 ret = reg_from_user(&val, uaddr, reg->id);
1128 if (!ret)
1129 vcpu_cp15_reg64_set(vcpu, r, val);
1130 } else if (KVM_REG_SIZE(reg->id) == 4) {
Marc Zyngierfb32a522016-01-03 11:26:01 +00001131 ret = reg_from_user(&vcpu_cp15(vcpu, r->reg), uaddr, reg->id);
Victor Kamensky73891f72014-06-12 09:30:06 -07001132 }
1133
1134 return ret;
Christoffer Dall11382452013-01-20 18:28:10 -05001135}
1136
Christoffer Dallc27581e2013-01-20 18:28:10 -05001137static unsigned int num_demux_regs(void)
1138{
1139 unsigned int i, count = 0;
1140
1141 for (i = 0; i < CSSELR_MAX; i++)
1142 if (is_valid_cache(i))
1143 count++;
1144
1145 return count;
1146}
1147
1148static int write_demux_regids(u64 __user *uindices)
1149{
1150 u64 val = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
1151 unsigned int i;
1152
1153 val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
1154 for (i = 0; i < CSSELR_MAX; i++) {
1155 if (!is_valid_cache(i))
1156 continue;
1157 if (put_user(val | i, uindices))
1158 return -EFAULT;
1159 uindices++;
1160 }
1161 return 0;
1162}
1163
Christoffer Dall11382452013-01-20 18:28:10 -05001164static u64 cp15_to_index(const struct coproc_reg *reg)
1165{
1166 u64 val = KVM_REG_ARM | (15 << KVM_REG_ARM_COPROC_SHIFT);
Marc Zyngierf1d67d42016-01-21 17:04:52 +00001167 if (reg->is_64bit) {
Christoffer Dall11382452013-01-20 18:28:10 -05001168 val |= KVM_REG_SIZE_U64;
1169 val |= (reg->Op1 << KVM_REG_ARM_OPC1_SHIFT);
Christoffer Dall240e99c2013-08-05 18:08:41 -07001170 /*
1171 * CRn always denotes the primary coproc. reg. nr. for the
1172 * in-kernel representation, but the user space API uses the
1173 * CRm for the encoding, because it is modelled after the
1174 * MRRC/MCRR instructions: see the ARM ARM rev. c page
1175 * B3-1445
1176 */
1177 val |= (reg->CRn << KVM_REG_ARM_CRM_SHIFT);
Christoffer Dall11382452013-01-20 18:28:10 -05001178 } else {
1179 val |= KVM_REG_SIZE_U32;
1180 val |= (reg->Op1 << KVM_REG_ARM_OPC1_SHIFT);
1181 val |= (reg->Op2 << KVM_REG_ARM_32_OPC2_SHIFT);
1182 val |= (reg->CRm << KVM_REG_ARM_CRM_SHIFT);
1183 val |= (reg->CRn << KVM_REG_ARM_32_CRN_SHIFT);
1184 }
1185 return val;
1186}
1187
1188static bool copy_reg_to_user(const struct coproc_reg *reg, u64 __user **uind)
1189{
1190 if (!*uind)
1191 return true;
1192
1193 if (put_user(cp15_to_index(reg), *uind))
1194 return false;
1195
1196 (*uind)++;
1197 return true;
1198}
1199
1200/* Assumed ordered tables, see kvm_coproc_table_init. */
1201static int walk_cp15(struct kvm_vcpu *vcpu, u64 __user *uind)
1202{
1203 const struct coproc_reg *i1, *i2, *end1, *end2;
1204 unsigned int total = 0;
1205 size_t num;
1206
1207 /* We check for duplicates here, to allow arch-specific overrides. */
1208 i1 = get_target_table(vcpu->arch.target, &num);
1209 end1 = i1 + num;
1210 i2 = cp15_regs;
1211 end2 = cp15_regs + ARRAY_SIZE(cp15_regs);
1212
1213 BUG_ON(i1 == end1 || i2 == end2);
1214
1215 /* Walk carefully, as both tables may refer to the same register. */
1216 while (i1 || i2) {
1217 int cmp = cmp_reg(i1, i2);
1218 /* target-specific overrides generic entry. */
1219 if (cmp <= 0) {
1220 /* Ignore registers we trap but don't save. */
1221 if (i1->reg) {
1222 if (!copy_reg_to_user(i1, &uind))
1223 return -EFAULT;
1224 total++;
1225 }
1226 } else {
1227 /* Ignore registers we trap but don't save. */
1228 if (i2->reg) {
1229 if (!copy_reg_to_user(i2, &uind))
1230 return -EFAULT;
1231 total++;
1232 }
1233 }
1234
1235 if (cmp <= 0 && ++i1 == end1)
1236 i1 = NULL;
1237 if (cmp >= 0 && ++i2 == end2)
1238 i2 = NULL;
1239 }
1240 return total;
1241}
1242
1243unsigned long kvm_arm_num_coproc_regs(struct kvm_vcpu *vcpu)
1244{
1245 return ARRAY_SIZE(invariant_cp15)
Christoffer Dallc27581e2013-01-20 18:28:10 -05001246 + num_demux_regs()
Rusty Russell4fe21e42013-01-20 18:28:11 -05001247 + num_vfp_regs()
Christoffer Dall11382452013-01-20 18:28:10 -05001248 + walk_cp15(vcpu, (u64 __user *)NULL);
1249}
1250
1251int kvm_arm_copy_coproc_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
1252{
1253 unsigned int i;
1254 int err;
1255
1256 /* Then give them all the invariant registers' indices. */
1257 for (i = 0; i < ARRAY_SIZE(invariant_cp15); i++) {
1258 if (put_user(cp15_to_index(&invariant_cp15[i]), uindices))
1259 return -EFAULT;
1260 uindices++;
1261 }
1262
1263 err = walk_cp15(vcpu, uindices);
Christoffer Dallc27581e2013-01-20 18:28:10 -05001264 if (err < 0)
1265 return err;
1266 uindices += err;
1267
Rusty Russell4fe21e42013-01-20 18:28:11 -05001268 err = copy_vfp_regids(uindices);
1269 if (err < 0)
1270 return err;
1271 uindices += err;
1272
Christoffer Dallc27581e2013-01-20 18:28:10 -05001273 return write_demux_regids(uindices);
Christoffer Dall11382452013-01-20 18:28:10 -05001274}
1275
Christoffer Dall5b3e5e52013-01-20 18:28:09 -05001276void kvm_coproc_table_init(void)
1277{
1278 unsigned int i;
1279
1280 /* Make sure tables are unique and in order. */
Marc Zyngierb613f592016-01-21 15:34:35 +00001281 BUG_ON(check_reg_table(cp15_regs, ARRAY_SIZE(cp15_regs)));
1282 BUG_ON(check_reg_table(invariant_cp15, ARRAY_SIZE(invariant_cp15)));
Christoffer Dall11382452013-01-20 18:28:10 -05001283
1284 /* We abuse the reset function to overwrite the table itself. */
1285 for (i = 0; i < ARRAY_SIZE(invariant_cp15); i++)
1286 invariant_cp15[i].reset(NULL, &invariant_cp15[i]);
Christoffer Dallc27581e2013-01-20 18:28:10 -05001287
1288 /*
1289 * CLIDR format is awkward, so clean it up. See ARM B4.1.20:
1290 *
1291 * If software reads the Cache Type fields from Ctype1
1292 * upwards, once it has seen a value of 0b000, no caches
1293 * exist at further-out levels of the hierarchy. So, for
1294 * example, if Ctype3 is the first Cache Type field with a
1295 * value of 0b000, the values of Ctype4 to Ctype7 must be
1296 * ignored.
1297 */
1298 asm volatile("mrc p15, 1, %0, c0, c0, 1" : "=r" (cache_levels));
1299 for (i = 0; i < 7; i++)
1300 if (((cache_levels >> (i*3)) & 7) == 0)
1301 break;
1302 /* Clear all higher bits. */
1303 cache_levels &= (1 << (i*3))-1;
Christoffer Dall5b3e5e52013-01-20 18:28:09 -05001304}
1305
1306/**
1307 * kvm_reset_coprocs - sets cp15 registers to reset value
1308 * @vcpu: The VCPU pointer
1309 *
1310 * This function finds the right table above and sets the registers on the
1311 * virtual CPU struct to their architecturally defined reset values.
1312 */
Christoffer Dall749cf76c2013-01-20 18:28:06 -05001313void kvm_reset_coprocs(struct kvm_vcpu *vcpu)
1314{
Christoffer Dall5b3e5e52013-01-20 18:28:09 -05001315 size_t num;
1316 const struct coproc_reg *table;
1317
1318 /* Catch someone adding a register without putting in reset entry. */
Marc Zyngierfb32a522016-01-03 11:26:01 +00001319 memset(vcpu->arch.ctxt.cp15, 0x42, sizeof(vcpu->arch.ctxt.cp15));
Christoffer Dall5b3e5e52013-01-20 18:28:09 -05001320
1321 /* Generic chip reset first (so target could override). */
1322 reset_coproc_regs(vcpu, cp15_regs, ARRAY_SIZE(cp15_regs));
1323
1324 table = get_target_table(vcpu->arch.target, &num);
1325 reset_coproc_regs(vcpu, table, num);
1326
1327 for (num = 1; num < NR_CP15_REGS; num++)
Marc Zyngierfb32a522016-01-03 11:26:01 +00001328 if (vcpu_cp15(vcpu, num) == 0x42424242)
1329 panic("Didn't reset vcpu_cp15(vcpu, %zi)", num);
Christoffer Dall749cf76c2013-01-20 18:28:06 -05001330}