Vitaly Kuznetsov | e1dab14 | 2017-03-14 18:35:41 +0100 | [diff] [blame] | 1 | /* |
| 2 | * Core of Xen paravirt_ops implementation. |
| 3 | * |
| 4 | * This file contains the xen_paravirt_ops structure itself, and the |
| 5 | * implementations for: |
| 6 | * - privileged instructions |
| 7 | * - interrupt flags |
| 8 | * - segment operations |
| 9 | * - booting and setup |
| 10 | * |
| 11 | * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007 |
| 12 | */ |
| 13 | |
| 14 | #include <linux/cpu.h> |
| 15 | #include <linux/kernel.h> |
| 16 | #include <linux/init.h> |
| 17 | #include <linux/smp.h> |
| 18 | #include <linux/preempt.h> |
| 19 | #include <linux/hardirq.h> |
| 20 | #include <linux/percpu.h> |
| 21 | #include <linux/delay.h> |
| 22 | #include <linux/start_kernel.h> |
| 23 | #include <linux/sched.h> |
| 24 | #include <linux/kprobes.h> |
| 25 | #include <linux/bootmem.h> |
| 26 | #include <linux/export.h> |
| 27 | #include <linux/mm.h> |
| 28 | #include <linux/page-flags.h> |
| 29 | #include <linux/highmem.h> |
| 30 | #include <linux/console.h> |
| 31 | #include <linux/pci.h> |
| 32 | #include <linux/gfp.h> |
| 33 | #include <linux/memblock.h> |
| 34 | #include <linux/edd.h> |
| 35 | #include <linux/frame.h> |
| 36 | |
| 37 | #include <xen/xen.h> |
| 38 | #include <xen/events.h> |
| 39 | #include <xen/interface/xen.h> |
| 40 | #include <xen/interface/version.h> |
| 41 | #include <xen/interface/physdev.h> |
| 42 | #include <xen/interface/vcpu.h> |
| 43 | #include <xen/interface/memory.h> |
| 44 | #include <xen/interface/nmi.h> |
| 45 | #include <xen/interface/xen-mca.h> |
| 46 | #include <xen/features.h> |
| 47 | #include <xen/page.h> |
| 48 | #include <xen/hvc-console.h> |
| 49 | #include <xen/acpi.h> |
| 50 | |
| 51 | #include <asm/paravirt.h> |
| 52 | #include <asm/apic.h> |
| 53 | #include <asm/page.h> |
| 54 | #include <asm/xen/pci.h> |
| 55 | #include <asm/xen/hypercall.h> |
| 56 | #include <asm/xen/hypervisor.h> |
| 57 | #include <asm/xen/cpuid.h> |
| 58 | #include <asm/fixmap.h> |
| 59 | #include <asm/processor.h> |
| 60 | #include <asm/proto.h> |
| 61 | #include <asm/msr-index.h> |
| 62 | #include <asm/traps.h> |
| 63 | #include <asm/setup.h> |
| 64 | #include <asm/desc.h> |
| 65 | #include <asm/pgalloc.h> |
| 66 | #include <asm/pgtable.h> |
| 67 | #include <asm/tlbflush.h> |
| 68 | #include <asm/reboot.h> |
| 69 | #include <asm/stackprotector.h> |
| 70 | #include <asm/hypervisor.h> |
| 71 | #include <asm/mach_traps.h> |
| 72 | #include <asm/mwait.h> |
| 73 | #include <asm/pci_x86.h> |
| 74 | #include <asm/cpu.h> |
| 75 | |
| 76 | #ifdef CONFIG_ACPI |
| 77 | #include <linux/acpi.h> |
| 78 | #include <asm/acpi.h> |
| 79 | #include <acpi/pdc_intel.h> |
| 80 | #include <acpi/processor.h> |
| 81 | #include <xen/interface/platform.h> |
| 82 | #endif |
| 83 | |
| 84 | #include "xen-ops.h" |
| 85 | #include "mmu.h" |
| 86 | #include "smp.h" |
| 87 | #include "multicalls.h" |
| 88 | #include "pmu.h" |
| 89 | |
| 90 | void *xen_initial_gdt; |
| 91 | |
| 92 | RESERVE_BRK(shared_info_page_brk, PAGE_SIZE); |
| 93 | |
| 94 | static int xen_cpu_up_prepare_pv(unsigned int cpu); |
| 95 | static int xen_cpu_dead_pv(unsigned int cpu); |
| 96 | |
| 97 | struct tls_descs { |
| 98 | struct desc_struct desc[3]; |
| 99 | }; |
| 100 | |
| 101 | /* |
| 102 | * Updating the 3 TLS descriptors in the GDT on every task switch is |
| 103 | * surprisingly expensive so we avoid updating them if they haven't |
| 104 | * changed. Since Xen writes different descriptors than the one |
| 105 | * passed in the update_descriptor hypercall we keep shadow copies to |
| 106 | * compare against. |
| 107 | */ |
| 108 | static DEFINE_PER_CPU(struct tls_descs, shadow_tls_desc); |
| 109 | |
| 110 | /* |
| 111 | * On restore, set the vcpu placement up again. |
| 112 | * If it fails, then we're in a bad state, since |
| 113 | * we can't back out from using it... |
| 114 | */ |
| 115 | void xen_vcpu_restore(void) |
| 116 | { |
| 117 | int cpu; |
| 118 | |
| 119 | for_each_possible_cpu(cpu) { |
| 120 | bool other_cpu = (cpu != smp_processor_id()); |
| 121 | bool is_up = HYPERVISOR_vcpu_op(VCPUOP_is_up, xen_vcpu_nr(cpu), |
| 122 | NULL); |
| 123 | |
| 124 | if (other_cpu && is_up && |
| 125 | HYPERVISOR_vcpu_op(VCPUOP_down, xen_vcpu_nr(cpu), NULL)) |
| 126 | BUG(); |
| 127 | |
| 128 | xen_setup_runstate_info(cpu); |
| 129 | |
| 130 | if (xen_have_vcpu_info_placement) |
| 131 | xen_vcpu_setup(cpu); |
| 132 | |
| 133 | if (other_cpu && is_up && |
| 134 | HYPERVISOR_vcpu_op(VCPUOP_up, xen_vcpu_nr(cpu), NULL)) |
| 135 | BUG(); |
| 136 | } |
| 137 | } |
| 138 | |
| 139 | static void __init xen_banner(void) |
| 140 | { |
| 141 | unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL); |
| 142 | struct xen_extraversion extra; |
| 143 | HYPERVISOR_xen_version(XENVER_extraversion, &extra); |
| 144 | |
| 145 | pr_info("Booting paravirtualized kernel %son %s\n", |
| 146 | xen_feature(XENFEAT_auto_translated_physmap) ? |
| 147 | "with PVH extensions " : "", pv_info.name); |
| 148 | printk(KERN_INFO "Xen version: %d.%d%s%s\n", |
| 149 | version >> 16, version & 0xffff, extra.extraversion, |
| 150 | xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : ""); |
| 151 | } |
| 152 | /* Check if running on Xen version (major, minor) or later */ |
| 153 | bool |
| 154 | xen_running_on_version_or_later(unsigned int major, unsigned int minor) |
| 155 | { |
| 156 | unsigned int version; |
| 157 | |
| 158 | if (!xen_domain()) |
| 159 | return false; |
| 160 | |
| 161 | version = HYPERVISOR_xen_version(XENVER_version, NULL); |
| 162 | if ((((version >> 16) == major) && ((version & 0xffff) >= minor)) || |
| 163 | ((version >> 16) > major)) |
| 164 | return true; |
| 165 | return false; |
| 166 | } |
| 167 | |
| 168 | #define CPUID_THERM_POWER_LEAF 6 |
| 169 | #define APERFMPERF_PRESENT 0 |
| 170 | |
| 171 | static __read_mostly unsigned int cpuid_leaf1_edx_mask = ~0; |
| 172 | static __read_mostly unsigned int cpuid_leaf1_ecx_mask = ~0; |
| 173 | |
| 174 | static __read_mostly unsigned int cpuid_leaf1_ecx_set_mask; |
| 175 | static __read_mostly unsigned int cpuid_leaf5_ecx_val; |
| 176 | static __read_mostly unsigned int cpuid_leaf5_edx_val; |
| 177 | |
| 178 | static void xen_cpuid(unsigned int *ax, unsigned int *bx, |
| 179 | unsigned int *cx, unsigned int *dx) |
| 180 | { |
| 181 | unsigned maskebx = ~0; |
| 182 | unsigned maskecx = ~0; |
| 183 | unsigned maskedx = ~0; |
| 184 | unsigned setecx = 0; |
| 185 | /* |
| 186 | * Mask out inconvenient features, to try and disable as many |
| 187 | * unsupported kernel subsystems as possible. |
| 188 | */ |
| 189 | switch (*ax) { |
| 190 | case 1: |
| 191 | maskecx = cpuid_leaf1_ecx_mask; |
| 192 | setecx = cpuid_leaf1_ecx_set_mask; |
| 193 | maskedx = cpuid_leaf1_edx_mask; |
| 194 | break; |
| 195 | |
| 196 | case CPUID_MWAIT_LEAF: |
| 197 | /* Synthesize the values.. */ |
| 198 | *ax = 0; |
| 199 | *bx = 0; |
| 200 | *cx = cpuid_leaf5_ecx_val; |
| 201 | *dx = cpuid_leaf5_edx_val; |
| 202 | return; |
| 203 | |
| 204 | case CPUID_THERM_POWER_LEAF: |
| 205 | /* Disabling APERFMPERF for kernel usage */ |
| 206 | maskecx = ~(1 << APERFMPERF_PRESENT); |
| 207 | break; |
| 208 | |
| 209 | case 0xb: |
| 210 | /* Suppress extended topology stuff */ |
| 211 | maskebx = 0; |
| 212 | break; |
| 213 | } |
| 214 | |
| 215 | asm(XEN_EMULATE_PREFIX "cpuid" |
| 216 | : "=a" (*ax), |
| 217 | "=b" (*bx), |
| 218 | "=c" (*cx), |
| 219 | "=d" (*dx) |
| 220 | : "0" (*ax), "2" (*cx)); |
| 221 | |
| 222 | *bx &= maskebx; |
| 223 | *cx &= maskecx; |
| 224 | *cx |= setecx; |
| 225 | *dx &= maskedx; |
| 226 | } |
| 227 | STACK_FRAME_NON_STANDARD(xen_cpuid); /* XEN_EMULATE_PREFIX */ |
| 228 | |
| 229 | static bool __init xen_check_mwait(void) |
| 230 | { |
| 231 | #ifdef CONFIG_ACPI |
| 232 | struct xen_platform_op op = { |
| 233 | .cmd = XENPF_set_processor_pminfo, |
| 234 | .u.set_pminfo.id = -1, |
| 235 | .u.set_pminfo.type = XEN_PM_PDC, |
| 236 | }; |
| 237 | uint32_t buf[3]; |
| 238 | unsigned int ax, bx, cx, dx; |
| 239 | unsigned int mwait_mask; |
| 240 | |
| 241 | /* We need to determine whether it is OK to expose the MWAIT |
| 242 | * capability to the kernel to harvest deeper than C3 states from ACPI |
| 243 | * _CST using the processor_harvest_xen.c module. For this to work, we |
| 244 | * need to gather the MWAIT_LEAF values (which the cstate.c code |
| 245 | * checks against). The hypervisor won't expose the MWAIT flag because |
| 246 | * it would break backwards compatibility; so we will find out directly |
| 247 | * from the hardware and hypercall. |
| 248 | */ |
| 249 | if (!xen_initial_domain()) |
| 250 | return false; |
| 251 | |
| 252 | /* |
| 253 | * When running under platform earlier than Xen4.2, do not expose |
| 254 | * mwait, to avoid the risk of loading native acpi pad driver |
| 255 | */ |
| 256 | if (!xen_running_on_version_or_later(4, 2)) |
| 257 | return false; |
| 258 | |
| 259 | ax = 1; |
| 260 | cx = 0; |
| 261 | |
| 262 | native_cpuid(&ax, &bx, &cx, &dx); |
| 263 | |
| 264 | mwait_mask = (1 << (X86_FEATURE_EST % 32)) | |
| 265 | (1 << (X86_FEATURE_MWAIT % 32)); |
| 266 | |
| 267 | if ((cx & mwait_mask) != mwait_mask) |
| 268 | return false; |
| 269 | |
| 270 | /* We need to emulate the MWAIT_LEAF and for that we need both |
| 271 | * ecx and edx. The hypercall provides only partial information. |
| 272 | */ |
| 273 | |
| 274 | ax = CPUID_MWAIT_LEAF; |
| 275 | bx = 0; |
| 276 | cx = 0; |
| 277 | dx = 0; |
| 278 | |
| 279 | native_cpuid(&ax, &bx, &cx, &dx); |
| 280 | |
| 281 | /* Ask the Hypervisor whether to clear ACPI_PDC_C_C2C3_FFH. If so, |
| 282 | * don't expose MWAIT_LEAF and let ACPI pick the IOPORT version of C3. |
| 283 | */ |
| 284 | buf[0] = ACPI_PDC_REVISION_ID; |
| 285 | buf[1] = 1; |
| 286 | buf[2] = (ACPI_PDC_C_CAPABILITY_SMP | ACPI_PDC_EST_CAPABILITY_SWSMP); |
| 287 | |
| 288 | set_xen_guest_handle(op.u.set_pminfo.pdc, buf); |
| 289 | |
| 290 | if ((HYPERVISOR_platform_op(&op) == 0) && |
| 291 | (buf[2] & (ACPI_PDC_C_C1_FFH | ACPI_PDC_C_C2C3_FFH))) { |
| 292 | cpuid_leaf5_ecx_val = cx; |
| 293 | cpuid_leaf5_edx_val = dx; |
| 294 | } |
| 295 | return true; |
| 296 | #else |
| 297 | return false; |
| 298 | #endif |
| 299 | } |
| 300 | static void __init xen_init_cpuid_mask(void) |
| 301 | { |
| 302 | unsigned int ax, bx, cx, dx; |
| 303 | unsigned int xsave_mask; |
| 304 | |
| 305 | cpuid_leaf1_edx_mask = |
| 306 | ~((1 << X86_FEATURE_MTRR) | /* disable MTRR */ |
| 307 | (1 << X86_FEATURE_ACC)); /* thermal monitoring */ |
| 308 | |
| 309 | if (!xen_initial_domain()) |
| 310 | cpuid_leaf1_edx_mask &= |
| 311 | ~((1 << X86_FEATURE_ACPI)); /* disable ACPI */ |
| 312 | |
| 313 | cpuid_leaf1_ecx_mask &= ~(1 << (X86_FEATURE_X2APIC % 32)); |
| 314 | |
| 315 | ax = 1; |
| 316 | cx = 0; |
| 317 | cpuid(1, &ax, &bx, &cx, &dx); |
| 318 | |
| 319 | xsave_mask = |
| 320 | (1 << (X86_FEATURE_XSAVE % 32)) | |
| 321 | (1 << (X86_FEATURE_OSXSAVE % 32)); |
| 322 | |
| 323 | /* Xen will set CR4.OSXSAVE if supported and not disabled by force */ |
| 324 | if ((cx & xsave_mask) != xsave_mask) |
| 325 | cpuid_leaf1_ecx_mask &= ~xsave_mask; /* disable XSAVE & OSXSAVE */ |
| 326 | if (xen_check_mwait()) |
| 327 | cpuid_leaf1_ecx_set_mask = (1 << (X86_FEATURE_MWAIT % 32)); |
| 328 | } |
| 329 | |
| 330 | static void xen_set_debugreg(int reg, unsigned long val) |
| 331 | { |
| 332 | HYPERVISOR_set_debugreg(reg, val); |
| 333 | } |
| 334 | |
| 335 | static unsigned long xen_get_debugreg(int reg) |
| 336 | { |
| 337 | return HYPERVISOR_get_debugreg(reg); |
| 338 | } |
| 339 | |
| 340 | static void xen_end_context_switch(struct task_struct *next) |
| 341 | { |
| 342 | xen_mc_flush(); |
| 343 | paravirt_end_context_switch(next); |
| 344 | } |
| 345 | |
| 346 | static unsigned long xen_store_tr(void) |
| 347 | { |
| 348 | return 0; |
| 349 | } |
| 350 | |
| 351 | /* |
| 352 | * Set the page permissions for a particular virtual address. If the |
| 353 | * address is a vmalloc mapping (or other non-linear mapping), then |
| 354 | * find the linear mapping of the page and also set its protections to |
| 355 | * match. |
| 356 | */ |
| 357 | static void set_aliased_prot(void *v, pgprot_t prot) |
| 358 | { |
| 359 | int level; |
| 360 | pte_t *ptep; |
| 361 | pte_t pte; |
| 362 | unsigned long pfn; |
| 363 | struct page *page; |
| 364 | unsigned char dummy; |
| 365 | |
| 366 | ptep = lookup_address((unsigned long)v, &level); |
| 367 | BUG_ON(ptep == NULL); |
| 368 | |
| 369 | pfn = pte_pfn(*ptep); |
| 370 | page = pfn_to_page(pfn); |
| 371 | |
| 372 | pte = pfn_pte(pfn, prot); |
| 373 | |
| 374 | /* |
| 375 | * Careful: update_va_mapping() will fail if the virtual address |
| 376 | * we're poking isn't populated in the page tables. We don't |
| 377 | * need to worry about the direct map (that's always in the page |
| 378 | * tables), but we need to be careful about vmap space. In |
| 379 | * particular, the top level page table can lazily propagate |
| 380 | * entries between processes, so if we've switched mms since we |
| 381 | * vmapped the target in the first place, we might not have the |
| 382 | * top-level page table entry populated. |
| 383 | * |
| 384 | * We disable preemption because we want the same mm active when |
| 385 | * we probe the target and when we issue the hypercall. We'll |
| 386 | * have the same nominal mm, but if we're a kernel thread, lazy |
| 387 | * mm dropping could change our pgd. |
| 388 | * |
| 389 | * Out of an abundance of caution, this uses __get_user() to fault |
| 390 | * in the target address just in case there's some obscure case |
| 391 | * in which the target address isn't readable. |
| 392 | */ |
| 393 | |
| 394 | preempt_disable(); |
| 395 | |
| 396 | probe_kernel_read(&dummy, v, 1); |
| 397 | |
| 398 | if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0)) |
| 399 | BUG(); |
| 400 | |
| 401 | if (!PageHighMem(page)) { |
| 402 | void *av = __va(PFN_PHYS(pfn)); |
| 403 | |
| 404 | if (av != v) |
| 405 | if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0)) |
| 406 | BUG(); |
| 407 | } else |
| 408 | kmap_flush_unused(); |
| 409 | |
| 410 | preempt_enable(); |
| 411 | } |
| 412 | |
| 413 | static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries) |
| 414 | { |
| 415 | const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE; |
| 416 | int i; |
| 417 | |
| 418 | /* |
| 419 | * We need to mark the all aliases of the LDT pages RO. We |
| 420 | * don't need to call vm_flush_aliases(), though, since that's |
| 421 | * only responsible for flushing aliases out the TLBs, not the |
| 422 | * page tables, and Xen will flush the TLB for us if needed. |
| 423 | * |
| 424 | * To avoid confusing future readers: none of this is necessary |
| 425 | * to load the LDT. The hypervisor only checks this when the |
| 426 | * LDT is faulted in due to subsequent descriptor access. |
| 427 | */ |
| 428 | |
| 429 | for (i = 0; i < entries; i += entries_per_page) |
| 430 | set_aliased_prot(ldt + i, PAGE_KERNEL_RO); |
| 431 | } |
| 432 | |
| 433 | static void xen_free_ldt(struct desc_struct *ldt, unsigned entries) |
| 434 | { |
| 435 | const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE; |
| 436 | int i; |
| 437 | |
| 438 | for (i = 0; i < entries; i += entries_per_page) |
| 439 | set_aliased_prot(ldt + i, PAGE_KERNEL); |
| 440 | } |
| 441 | |
| 442 | static void xen_set_ldt(const void *addr, unsigned entries) |
| 443 | { |
| 444 | struct mmuext_op *op; |
| 445 | struct multicall_space mcs = xen_mc_entry(sizeof(*op)); |
| 446 | |
| 447 | trace_xen_cpu_set_ldt(addr, entries); |
| 448 | |
| 449 | op = mcs.args; |
| 450 | op->cmd = MMUEXT_SET_LDT; |
| 451 | op->arg1.linear_addr = (unsigned long)addr; |
| 452 | op->arg2.nr_ents = entries; |
| 453 | |
| 454 | MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF); |
| 455 | |
| 456 | xen_mc_issue(PARAVIRT_LAZY_CPU); |
| 457 | } |
| 458 | |
| 459 | static void xen_load_gdt(const struct desc_ptr *dtr) |
| 460 | { |
| 461 | unsigned long va = dtr->address; |
| 462 | unsigned int size = dtr->size + 1; |
| 463 | unsigned pages = DIV_ROUND_UP(size, PAGE_SIZE); |
| 464 | unsigned long frames[pages]; |
| 465 | int f; |
| 466 | |
| 467 | /* |
| 468 | * A GDT can be up to 64k in size, which corresponds to 8192 |
| 469 | * 8-byte entries, or 16 4k pages.. |
| 470 | */ |
| 471 | |
| 472 | BUG_ON(size > 65536); |
| 473 | BUG_ON(va & ~PAGE_MASK); |
| 474 | |
| 475 | for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) { |
| 476 | int level; |
| 477 | pte_t *ptep; |
| 478 | unsigned long pfn, mfn; |
| 479 | void *virt; |
| 480 | |
| 481 | /* |
| 482 | * The GDT is per-cpu and is in the percpu data area. |
| 483 | * That can be virtually mapped, so we need to do a |
| 484 | * page-walk to get the underlying MFN for the |
| 485 | * hypercall. The page can also be in the kernel's |
| 486 | * linear range, so we need to RO that mapping too. |
| 487 | */ |
| 488 | ptep = lookup_address(va, &level); |
| 489 | BUG_ON(ptep == NULL); |
| 490 | |
| 491 | pfn = pte_pfn(*ptep); |
| 492 | mfn = pfn_to_mfn(pfn); |
| 493 | virt = __va(PFN_PHYS(pfn)); |
| 494 | |
| 495 | frames[f] = mfn; |
| 496 | |
| 497 | make_lowmem_page_readonly((void *)va); |
| 498 | make_lowmem_page_readonly(virt); |
| 499 | } |
| 500 | |
| 501 | if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct))) |
| 502 | BUG(); |
| 503 | } |
| 504 | |
| 505 | /* |
| 506 | * load_gdt for early boot, when the gdt is only mapped once |
| 507 | */ |
| 508 | static void __init xen_load_gdt_boot(const struct desc_ptr *dtr) |
| 509 | { |
| 510 | unsigned long va = dtr->address; |
| 511 | unsigned int size = dtr->size + 1; |
| 512 | unsigned pages = DIV_ROUND_UP(size, PAGE_SIZE); |
| 513 | unsigned long frames[pages]; |
| 514 | int f; |
| 515 | |
| 516 | /* |
| 517 | * A GDT can be up to 64k in size, which corresponds to 8192 |
| 518 | * 8-byte entries, or 16 4k pages.. |
| 519 | */ |
| 520 | |
| 521 | BUG_ON(size > 65536); |
| 522 | BUG_ON(va & ~PAGE_MASK); |
| 523 | |
| 524 | for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) { |
| 525 | pte_t pte; |
| 526 | unsigned long pfn, mfn; |
| 527 | |
| 528 | pfn = virt_to_pfn(va); |
| 529 | mfn = pfn_to_mfn(pfn); |
| 530 | |
| 531 | pte = pfn_pte(pfn, PAGE_KERNEL_RO); |
| 532 | |
| 533 | if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0)) |
| 534 | BUG(); |
| 535 | |
| 536 | frames[f] = mfn; |
| 537 | } |
| 538 | |
| 539 | if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct))) |
| 540 | BUG(); |
| 541 | } |
| 542 | |
| 543 | static inline bool desc_equal(const struct desc_struct *d1, |
| 544 | const struct desc_struct *d2) |
| 545 | { |
| 546 | return d1->a == d2->a && d1->b == d2->b; |
| 547 | } |
| 548 | |
| 549 | static void load_TLS_descriptor(struct thread_struct *t, |
| 550 | unsigned int cpu, unsigned int i) |
| 551 | { |
| 552 | struct desc_struct *shadow = &per_cpu(shadow_tls_desc, cpu).desc[i]; |
| 553 | struct desc_struct *gdt; |
| 554 | xmaddr_t maddr; |
| 555 | struct multicall_space mc; |
| 556 | |
| 557 | if (desc_equal(shadow, &t->tls_array[i])) |
| 558 | return; |
| 559 | |
| 560 | *shadow = t->tls_array[i]; |
| 561 | |
| 562 | gdt = get_cpu_gdt_rw(cpu); |
| 563 | maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]); |
| 564 | mc = __xen_mc_entry(0); |
| 565 | |
| 566 | MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]); |
| 567 | } |
| 568 | |
| 569 | static void xen_load_tls(struct thread_struct *t, unsigned int cpu) |
| 570 | { |
| 571 | /* |
| 572 | * XXX sleazy hack: If we're being called in a lazy-cpu zone |
| 573 | * and lazy gs handling is enabled, it means we're in a |
| 574 | * context switch, and %gs has just been saved. This means we |
| 575 | * can zero it out to prevent faults on exit from the |
| 576 | * hypervisor if the next process has no %gs. Either way, it |
| 577 | * has been saved, and the new value will get loaded properly. |
| 578 | * This will go away as soon as Xen has been modified to not |
| 579 | * save/restore %gs for normal hypercalls. |
| 580 | * |
| 581 | * On x86_64, this hack is not used for %gs, because gs points |
| 582 | * to KERNEL_GS_BASE (and uses it for PDA references), so we |
| 583 | * must not zero %gs on x86_64 |
| 584 | * |
| 585 | * For x86_64, we need to zero %fs, otherwise we may get an |
| 586 | * exception between the new %fs descriptor being loaded and |
| 587 | * %fs being effectively cleared at __switch_to(). |
| 588 | */ |
| 589 | if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) { |
| 590 | #ifdef CONFIG_X86_32 |
| 591 | lazy_load_gs(0); |
| 592 | #else |
| 593 | loadsegment(fs, 0); |
| 594 | #endif |
| 595 | } |
| 596 | |
| 597 | xen_mc_batch(); |
| 598 | |
| 599 | load_TLS_descriptor(t, cpu, 0); |
| 600 | load_TLS_descriptor(t, cpu, 1); |
| 601 | load_TLS_descriptor(t, cpu, 2); |
| 602 | |
| 603 | xen_mc_issue(PARAVIRT_LAZY_CPU); |
| 604 | } |
| 605 | |
| 606 | #ifdef CONFIG_X86_64 |
| 607 | static void xen_load_gs_index(unsigned int idx) |
| 608 | { |
| 609 | if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx)) |
| 610 | BUG(); |
| 611 | } |
| 612 | #endif |
| 613 | |
| 614 | static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum, |
| 615 | const void *ptr) |
| 616 | { |
| 617 | xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]); |
| 618 | u64 entry = *(u64 *)ptr; |
| 619 | |
| 620 | trace_xen_cpu_write_ldt_entry(dt, entrynum, entry); |
| 621 | |
| 622 | preempt_disable(); |
| 623 | |
| 624 | xen_mc_flush(); |
| 625 | if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry)) |
| 626 | BUG(); |
| 627 | |
| 628 | preempt_enable(); |
| 629 | } |
| 630 | |
| 631 | static int cvt_gate_to_trap(int vector, const gate_desc *val, |
| 632 | struct trap_info *info) |
| 633 | { |
| 634 | unsigned long addr; |
| 635 | |
| 636 | if (val->type != GATE_TRAP && val->type != GATE_INTERRUPT) |
| 637 | return 0; |
| 638 | |
| 639 | info->vector = vector; |
| 640 | |
| 641 | addr = gate_offset(*val); |
| 642 | #ifdef CONFIG_X86_64 |
| 643 | /* |
| 644 | * Look for known traps using IST, and substitute them |
| 645 | * appropriately. The debugger ones are the only ones we care |
| 646 | * about. Xen will handle faults like double_fault, |
| 647 | * so we should never see them. Warn if |
| 648 | * there's an unexpected IST-using fault handler. |
| 649 | */ |
| 650 | if (addr == (unsigned long)debug) |
| 651 | addr = (unsigned long)xen_debug; |
| 652 | else if (addr == (unsigned long)int3) |
| 653 | addr = (unsigned long)xen_int3; |
| 654 | else if (addr == (unsigned long)stack_segment) |
| 655 | addr = (unsigned long)xen_stack_segment; |
| 656 | else if (addr == (unsigned long)double_fault) { |
| 657 | /* Don't need to handle these */ |
| 658 | return 0; |
| 659 | #ifdef CONFIG_X86_MCE |
| 660 | } else if (addr == (unsigned long)machine_check) { |
| 661 | /* |
| 662 | * when xen hypervisor inject vMCE to guest, |
| 663 | * use native mce handler to handle it |
| 664 | */ |
| 665 | ; |
| 666 | #endif |
| 667 | } else if (addr == (unsigned long)nmi) |
| 668 | /* |
| 669 | * Use the native version as well. |
| 670 | */ |
| 671 | ; |
| 672 | else { |
| 673 | /* Some other trap using IST? */ |
| 674 | if (WARN_ON(val->ist != 0)) |
| 675 | return 0; |
| 676 | } |
| 677 | #endif /* CONFIG_X86_64 */ |
| 678 | info->address = addr; |
| 679 | |
| 680 | info->cs = gate_segment(*val); |
| 681 | info->flags = val->dpl; |
| 682 | /* interrupt gates clear IF */ |
| 683 | if (val->type == GATE_INTERRUPT) |
| 684 | info->flags |= 1 << 2; |
| 685 | |
| 686 | return 1; |
| 687 | } |
| 688 | |
| 689 | /* Locations of each CPU's IDT */ |
| 690 | static DEFINE_PER_CPU(struct desc_ptr, idt_desc); |
| 691 | |
| 692 | /* Set an IDT entry. If the entry is part of the current IDT, then |
| 693 | also update Xen. */ |
| 694 | static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g) |
| 695 | { |
| 696 | unsigned long p = (unsigned long)&dt[entrynum]; |
| 697 | unsigned long start, end; |
| 698 | |
| 699 | trace_xen_cpu_write_idt_entry(dt, entrynum, g); |
| 700 | |
| 701 | preempt_disable(); |
| 702 | |
| 703 | start = __this_cpu_read(idt_desc.address); |
| 704 | end = start + __this_cpu_read(idt_desc.size) + 1; |
| 705 | |
| 706 | xen_mc_flush(); |
| 707 | |
| 708 | native_write_idt_entry(dt, entrynum, g); |
| 709 | |
| 710 | if (p >= start && (p + 8) <= end) { |
| 711 | struct trap_info info[2]; |
| 712 | |
| 713 | info[1].address = 0; |
| 714 | |
| 715 | if (cvt_gate_to_trap(entrynum, g, &info[0])) |
| 716 | if (HYPERVISOR_set_trap_table(info)) |
| 717 | BUG(); |
| 718 | } |
| 719 | |
| 720 | preempt_enable(); |
| 721 | } |
| 722 | |
| 723 | static void xen_convert_trap_info(const struct desc_ptr *desc, |
| 724 | struct trap_info *traps) |
| 725 | { |
| 726 | unsigned in, out, count; |
| 727 | |
| 728 | count = (desc->size+1) / sizeof(gate_desc); |
| 729 | BUG_ON(count > 256); |
| 730 | |
| 731 | for (in = out = 0; in < count; in++) { |
| 732 | gate_desc *entry = (gate_desc *)(desc->address) + in; |
| 733 | |
| 734 | if (cvt_gate_to_trap(in, entry, &traps[out])) |
| 735 | out++; |
| 736 | } |
| 737 | traps[out].address = 0; |
| 738 | } |
| 739 | |
| 740 | void xen_copy_trap_info(struct trap_info *traps) |
| 741 | { |
| 742 | const struct desc_ptr *desc = this_cpu_ptr(&idt_desc); |
| 743 | |
| 744 | xen_convert_trap_info(desc, traps); |
| 745 | } |
| 746 | |
| 747 | /* Load a new IDT into Xen. In principle this can be per-CPU, so we |
| 748 | hold a spinlock to protect the static traps[] array (static because |
| 749 | it avoids allocation, and saves stack space). */ |
| 750 | static void xen_load_idt(const struct desc_ptr *desc) |
| 751 | { |
| 752 | static DEFINE_SPINLOCK(lock); |
| 753 | static struct trap_info traps[257]; |
| 754 | |
| 755 | trace_xen_cpu_load_idt(desc); |
| 756 | |
| 757 | spin_lock(&lock); |
| 758 | |
| 759 | memcpy(this_cpu_ptr(&idt_desc), desc, sizeof(idt_desc)); |
| 760 | |
| 761 | xen_convert_trap_info(desc, traps); |
| 762 | |
| 763 | xen_mc_flush(); |
| 764 | if (HYPERVISOR_set_trap_table(traps)) |
| 765 | BUG(); |
| 766 | |
| 767 | spin_unlock(&lock); |
| 768 | } |
| 769 | |
| 770 | /* Write a GDT descriptor entry. Ignore LDT descriptors, since |
| 771 | they're handled differently. */ |
| 772 | static void xen_write_gdt_entry(struct desc_struct *dt, int entry, |
| 773 | const void *desc, int type) |
| 774 | { |
| 775 | trace_xen_cpu_write_gdt_entry(dt, entry, desc, type); |
| 776 | |
| 777 | preempt_disable(); |
| 778 | |
| 779 | switch (type) { |
| 780 | case DESC_LDT: |
| 781 | case DESC_TSS: |
| 782 | /* ignore */ |
| 783 | break; |
| 784 | |
| 785 | default: { |
| 786 | xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]); |
| 787 | |
| 788 | xen_mc_flush(); |
| 789 | if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc)) |
| 790 | BUG(); |
| 791 | } |
| 792 | |
| 793 | } |
| 794 | |
| 795 | preempt_enable(); |
| 796 | } |
| 797 | |
| 798 | /* |
| 799 | * Version of write_gdt_entry for use at early boot-time needed to |
| 800 | * update an entry as simply as possible. |
| 801 | */ |
| 802 | static void __init xen_write_gdt_entry_boot(struct desc_struct *dt, int entry, |
| 803 | const void *desc, int type) |
| 804 | { |
| 805 | trace_xen_cpu_write_gdt_entry(dt, entry, desc, type); |
| 806 | |
| 807 | switch (type) { |
| 808 | case DESC_LDT: |
| 809 | case DESC_TSS: |
| 810 | /* ignore */ |
| 811 | break; |
| 812 | |
| 813 | default: { |
| 814 | xmaddr_t maddr = virt_to_machine(&dt[entry]); |
| 815 | |
| 816 | if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc)) |
| 817 | dt[entry] = *(struct desc_struct *)desc; |
| 818 | } |
| 819 | |
| 820 | } |
| 821 | } |
| 822 | |
| 823 | static void xen_load_sp0(struct tss_struct *tss, |
| 824 | struct thread_struct *thread) |
| 825 | { |
| 826 | struct multicall_space mcs; |
| 827 | |
| 828 | mcs = xen_mc_entry(0); |
| 829 | MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0); |
| 830 | xen_mc_issue(PARAVIRT_LAZY_CPU); |
| 831 | tss->x86_tss.sp0 = thread->sp0; |
| 832 | } |
| 833 | |
| 834 | void xen_set_iopl_mask(unsigned mask) |
| 835 | { |
| 836 | struct physdev_set_iopl set_iopl; |
| 837 | |
| 838 | /* Force the change at ring 0. */ |
| 839 | set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3; |
| 840 | HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl); |
| 841 | } |
| 842 | |
| 843 | static void xen_io_delay(void) |
| 844 | { |
| 845 | } |
| 846 | |
| 847 | static DEFINE_PER_CPU(unsigned long, xen_cr0_value); |
| 848 | |
| 849 | static unsigned long xen_read_cr0(void) |
| 850 | { |
| 851 | unsigned long cr0 = this_cpu_read(xen_cr0_value); |
| 852 | |
| 853 | if (unlikely(cr0 == 0)) { |
| 854 | cr0 = native_read_cr0(); |
| 855 | this_cpu_write(xen_cr0_value, cr0); |
| 856 | } |
| 857 | |
| 858 | return cr0; |
| 859 | } |
| 860 | |
| 861 | static void xen_write_cr0(unsigned long cr0) |
| 862 | { |
| 863 | struct multicall_space mcs; |
| 864 | |
| 865 | this_cpu_write(xen_cr0_value, cr0); |
| 866 | |
| 867 | /* Only pay attention to cr0.TS; everything else is |
| 868 | ignored. */ |
| 869 | mcs = xen_mc_entry(0); |
| 870 | |
| 871 | MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0); |
| 872 | |
| 873 | xen_mc_issue(PARAVIRT_LAZY_CPU); |
| 874 | } |
| 875 | |
| 876 | static void xen_write_cr4(unsigned long cr4) |
| 877 | { |
| 878 | cr4 &= ~(X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PCE); |
| 879 | |
| 880 | native_write_cr4(cr4); |
| 881 | } |
| 882 | #ifdef CONFIG_X86_64 |
| 883 | static inline unsigned long xen_read_cr8(void) |
| 884 | { |
| 885 | return 0; |
| 886 | } |
| 887 | static inline void xen_write_cr8(unsigned long val) |
| 888 | { |
| 889 | BUG_ON(val); |
| 890 | } |
| 891 | #endif |
| 892 | |
| 893 | static u64 xen_read_msr_safe(unsigned int msr, int *err) |
| 894 | { |
| 895 | u64 val; |
| 896 | |
| 897 | if (pmu_msr_read(msr, &val, err)) |
| 898 | return val; |
| 899 | |
| 900 | val = native_read_msr_safe(msr, err); |
| 901 | switch (msr) { |
| 902 | case MSR_IA32_APICBASE: |
| 903 | #ifdef CONFIG_X86_X2APIC |
| 904 | if (!(cpuid_ecx(1) & (1 << (X86_FEATURE_X2APIC & 31)))) |
| 905 | #endif |
| 906 | val &= ~X2APIC_ENABLE; |
| 907 | break; |
| 908 | } |
| 909 | return val; |
| 910 | } |
| 911 | |
| 912 | static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high) |
| 913 | { |
| 914 | int ret; |
| 915 | |
| 916 | ret = 0; |
| 917 | |
| 918 | switch (msr) { |
| 919 | #ifdef CONFIG_X86_64 |
| 920 | unsigned which; |
| 921 | u64 base; |
| 922 | |
| 923 | case MSR_FS_BASE: which = SEGBASE_FS; goto set; |
| 924 | case MSR_KERNEL_GS_BASE: which = SEGBASE_GS_USER; goto set; |
| 925 | case MSR_GS_BASE: which = SEGBASE_GS_KERNEL; goto set; |
| 926 | |
| 927 | set: |
| 928 | base = ((u64)high << 32) | low; |
| 929 | if (HYPERVISOR_set_segment_base(which, base) != 0) |
| 930 | ret = -EIO; |
| 931 | break; |
| 932 | #endif |
| 933 | |
| 934 | case MSR_STAR: |
| 935 | case MSR_CSTAR: |
| 936 | case MSR_LSTAR: |
| 937 | case MSR_SYSCALL_MASK: |
| 938 | case MSR_IA32_SYSENTER_CS: |
| 939 | case MSR_IA32_SYSENTER_ESP: |
| 940 | case MSR_IA32_SYSENTER_EIP: |
| 941 | /* Fast syscall setup is all done in hypercalls, so |
| 942 | these are all ignored. Stub them out here to stop |
| 943 | Xen console noise. */ |
| 944 | break; |
| 945 | |
| 946 | default: |
| 947 | if (!pmu_msr_write(msr, low, high, &ret)) |
| 948 | ret = native_write_msr_safe(msr, low, high); |
| 949 | } |
| 950 | |
| 951 | return ret; |
| 952 | } |
| 953 | |
| 954 | static u64 xen_read_msr(unsigned int msr) |
| 955 | { |
| 956 | /* |
| 957 | * This will silently swallow a #GP from RDMSR. It may be worth |
| 958 | * changing that. |
| 959 | */ |
| 960 | int err; |
| 961 | |
| 962 | return xen_read_msr_safe(msr, &err); |
| 963 | } |
| 964 | |
| 965 | static void xen_write_msr(unsigned int msr, unsigned low, unsigned high) |
| 966 | { |
| 967 | /* |
| 968 | * This will silently swallow a #GP from WRMSR. It may be worth |
| 969 | * changing that. |
| 970 | */ |
| 971 | xen_write_msr_safe(msr, low, high); |
| 972 | } |
| 973 | |
| 974 | void xen_setup_shared_info(void) |
| 975 | { |
| 976 | if (!xen_feature(XENFEAT_auto_translated_physmap)) { |
| 977 | set_fixmap(FIX_PARAVIRT_BOOTMAP, |
| 978 | xen_start_info->shared_info); |
| 979 | |
| 980 | HYPERVISOR_shared_info = |
| 981 | (struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP); |
| 982 | } else |
| 983 | HYPERVISOR_shared_info = |
| 984 | (struct shared_info *)__va(xen_start_info->shared_info); |
| 985 | |
| 986 | #ifndef CONFIG_SMP |
| 987 | /* In UP this is as good a place as any to set up shared info */ |
| 988 | xen_setup_vcpu_info_placement(); |
| 989 | #endif |
| 990 | |
| 991 | xen_setup_mfn_list_list(); |
| 992 | } |
| 993 | |
| 994 | /* This is called once we have the cpu_possible_mask */ |
| 995 | void xen_setup_vcpu_info_placement(void) |
| 996 | { |
| 997 | int cpu; |
| 998 | |
| 999 | for_each_possible_cpu(cpu) { |
| 1000 | /* Set up direct vCPU id mapping for PV guests. */ |
| 1001 | per_cpu(xen_vcpu_id, cpu) = cpu; |
| 1002 | xen_vcpu_setup(cpu); |
| 1003 | } |
| 1004 | |
| 1005 | /* |
| 1006 | * xen_vcpu_setup managed to place the vcpu_info within the |
| 1007 | * percpu area for all cpus, so make use of it. |
| 1008 | */ |
| 1009 | if (xen_have_vcpu_info_placement) { |
| 1010 | pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct); |
| 1011 | pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct); |
| 1012 | pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct); |
| 1013 | pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct); |
| 1014 | pv_mmu_ops.read_cr2 = xen_read_cr2_direct; |
| 1015 | } |
| 1016 | } |
| 1017 | |
| 1018 | static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf, |
| 1019 | unsigned long addr, unsigned len) |
| 1020 | { |
| 1021 | char *start, *end, *reloc; |
| 1022 | unsigned ret; |
| 1023 | |
| 1024 | start = end = reloc = NULL; |
| 1025 | |
| 1026 | #define SITE(op, x) \ |
| 1027 | case PARAVIRT_PATCH(op.x): \ |
| 1028 | if (xen_have_vcpu_info_placement) { \ |
| 1029 | start = (char *)xen_##x##_direct; \ |
| 1030 | end = xen_##x##_direct_end; \ |
| 1031 | reloc = xen_##x##_direct_reloc; \ |
| 1032 | } \ |
| 1033 | goto patch_site |
| 1034 | |
| 1035 | switch (type) { |
| 1036 | SITE(pv_irq_ops, irq_enable); |
| 1037 | SITE(pv_irq_ops, irq_disable); |
| 1038 | SITE(pv_irq_ops, save_fl); |
| 1039 | SITE(pv_irq_ops, restore_fl); |
| 1040 | #undef SITE |
| 1041 | |
| 1042 | patch_site: |
| 1043 | if (start == NULL || (end-start) > len) |
| 1044 | goto default_patch; |
| 1045 | |
| 1046 | ret = paravirt_patch_insns(insnbuf, len, start, end); |
| 1047 | |
| 1048 | /* Note: because reloc is assigned from something that |
| 1049 | appears to be an array, gcc assumes it's non-null, |
| 1050 | but doesn't know its relationship with start and |
| 1051 | end. */ |
| 1052 | if (reloc > start && reloc < end) { |
| 1053 | int reloc_off = reloc - start; |
| 1054 | long *relocp = (long *)(insnbuf + reloc_off); |
| 1055 | long delta = start - (char *)addr; |
| 1056 | |
| 1057 | *relocp += delta; |
| 1058 | } |
| 1059 | break; |
| 1060 | |
| 1061 | default_patch: |
| 1062 | default: |
| 1063 | ret = paravirt_patch_default(type, clobbers, insnbuf, |
| 1064 | addr, len); |
| 1065 | break; |
| 1066 | } |
| 1067 | |
| 1068 | return ret; |
| 1069 | } |
| 1070 | |
| 1071 | static const struct pv_info xen_info __initconst = { |
| 1072 | .shared_kernel_pmd = 0, |
| 1073 | |
| 1074 | #ifdef CONFIG_X86_64 |
| 1075 | .extra_user_64bit_cs = FLAT_USER_CS64, |
| 1076 | #endif |
| 1077 | .name = "Xen", |
| 1078 | }; |
| 1079 | |
| 1080 | static const struct pv_init_ops xen_init_ops __initconst = { |
| 1081 | .patch = xen_patch, |
| 1082 | }; |
| 1083 | |
| 1084 | static const struct pv_cpu_ops xen_cpu_ops __initconst = { |
| 1085 | .cpuid = xen_cpuid, |
| 1086 | |
| 1087 | .set_debugreg = xen_set_debugreg, |
| 1088 | .get_debugreg = xen_get_debugreg, |
| 1089 | |
| 1090 | .read_cr0 = xen_read_cr0, |
| 1091 | .write_cr0 = xen_write_cr0, |
| 1092 | |
| 1093 | .read_cr4 = native_read_cr4, |
| 1094 | .write_cr4 = xen_write_cr4, |
| 1095 | |
| 1096 | #ifdef CONFIG_X86_64 |
| 1097 | .read_cr8 = xen_read_cr8, |
| 1098 | .write_cr8 = xen_write_cr8, |
| 1099 | #endif |
| 1100 | |
| 1101 | .wbinvd = native_wbinvd, |
| 1102 | |
| 1103 | .read_msr = xen_read_msr, |
| 1104 | .write_msr = xen_write_msr, |
| 1105 | |
| 1106 | .read_msr_safe = xen_read_msr_safe, |
| 1107 | .write_msr_safe = xen_write_msr_safe, |
| 1108 | |
| 1109 | .read_pmc = xen_read_pmc, |
| 1110 | |
| 1111 | .iret = xen_iret, |
| 1112 | #ifdef CONFIG_X86_64 |
| 1113 | .usergs_sysret64 = xen_sysret64, |
| 1114 | #endif |
| 1115 | |
| 1116 | .load_tr_desc = paravirt_nop, |
| 1117 | .set_ldt = xen_set_ldt, |
| 1118 | .load_gdt = xen_load_gdt, |
| 1119 | .load_idt = xen_load_idt, |
| 1120 | .load_tls = xen_load_tls, |
| 1121 | #ifdef CONFIG_X86_64 |
| 1122 | .load_gs_index = xen_load_gs_index, |
| 1123 | #endif |
| 1124 | |
| 1125 | .alloc_ldt = xen_alloc_ldt, |
| 1126 | .free_ldt = xen_free_ldt, |
| 1127 | |
| 1128 | .store_idt = native_store_idt, |
| 1129 | .store_tr = xen_store_tr, |
| 1130 | |
| 1131 | .write_ldt_entry = xen_write_ldt_entry, |
| 1132 | .write_gdt_entry = xen_write_gdt_entry, |
| 1133 | .write_idt_entry = xen_write_idt_entry, |
| 1134 | .load_sp0 = xen_load_sp0, |
| 1135 | |
| 1136 | .set_iopl_mask = xen_set_iopl_mask, |
| 1137 | .io_delay = xen_io_delay, |
| 1138 | |
| 1139 | /* Xen takes care of %gs when switching to usermode for us */ |
| 1140 | .swapgs = paravirt_nop, |
| 1141 | |
| 1142 | .start_context_switch = paravirt_start_context_switch, |
| 1143 | .end_context_switch = xen_end_context_switch, |
| 1144 | }; |
| 1145 | |
| 1146 | static void xen_restart(char *msg) |
| 1147 | { |
| 1148 | xen_reboot(SHUTDOWN_reboot); |
| 1149 | } |
| 1150 | |
| 1151 | static void xen_machine_halt(void) |
| 1152 | { |
| 1153 | xen_reboot(SHUTDOWN_poweroff); |
| 1154 | } |
| 1155 | |
| 1156 | static void xen_machine_power_off(void) |
| 1157 | { |
| 1158 | if (pm_power_off) |
| 1159 | pm_power_off(); |
| 1160 | xen_reboot(SHUTDOWN_poweroff); |
| 1161 | } |
| 1162 | |
| 1163 | static void xen_crash_shutdown(struct pt_regs *regs) |
| 1164 | { |
| 1165 | xen_reboot(SHUTDOWN_crash); |
| 1166 | } |
| 1167 | |
| 1168 | static const struct machine_ops xen_machine_ops __initconst = { |
| 1169 | .restart = xen_restart, |
| 1170 | .halt = xen_machine_halt, |
| 1171 | .power_off = xen_machine_power_off, |
| 1172 | .shutdown = xen_machine_halt, |
| 1173 | .crash_shutdown = xen_crash_shutdown, |
| 1174 | .emergency_restart = xen_emergency_restart, |
| 1175 | }; |
| 1176 | |
| 1177 | static unsigned char xen_get_nmi_reason(void) |
| 1178 | { |
| 1179 | unsigned char reason = 0; |
| 1180 | |
| 1181 | /* Construct a value which looks like it came from port 0x61. */ |
| 1182 | if (test_bit(_XEN_NMIREASON_io_error, |
| 1183 | &HYPERVISOR_shared_info->arch.nmi_reason)) |
| 1184 | reason |= NMI_REASON_IOCHK; |
| 1185 | if (test_bit(_XEN_NMIREASON_pci_serr, |
| 1186 | &HYPERVISOR_shared_info->arch.nmi_reason)) |
| 1187 | reason |= NMI_REASON_SERR; |
| 1188 | |
| 1189 | return reason; |
| 1190 | } |
| 1191 | |
| 1192 | static void __init xen_boot_params_init_edd(void) |
| 1193 | { |
| 1194 | #if IS_ENABLED(CONFIG_EDD) |
| 1195 | struct xen_platform_op op; |
| 1196 | struct edd_info *edd_info; |
| 1197 | u32 *mbr_signature; |
| 1198 | unsigned nr; |
| 1199 | int ret; |
| 1200 | |
| 1201 | edd_info = boot_params.eddbuf; |
| 1202 | mbr_signature = boot_params.edd_mbr_sig_buffer; |
| 1203 | |
| 1204 | op.cmd = XENPF_firmware_info; |
| 1205 | |
| 1206 | op.u.firmware_info.type = XEN_FW_DISK_INFO; |
| 1207 | for (nr = 0; nr < EDDMAXNR; nr++) { |
| 1208 | struct edd_info *info = edd_info + nr; |
| 1209 | |
| 1210 | op.u.firmware_info.index = nr; |
| 1211 | info->params.length = sizeof(info->params); |
| 1212 | set_xen_guest_handle(op.u.firmware_info.u.disk_info.edd_params, |
| 1213 | &info->params); |
| 1214 | ret = HYPERVISOR_platform_op(&op); |
| 1215 | if (ret) |
| 1216 | break; |
| 1217 | |
| 1218 | #define C(x) info->x = op.u.firmware_info.u.disk_info.x |
| 1219 | C(device); |
| 1220 | C(version); |
| 1221 | C(interface_support); |
| 1222 | C(legacy_max_cylinder); |
| 1223 | C(legacy_max_head); |
| 1224 | C(legacy_sectors_per_track); |
| 1225 | #undef C |
| 1226 | } |
| 1227 | boot_params.eddbuf_entries = nr; |
| 1228 | |
| 1229 | op.u.firmware_info.type = XEN_FW_DISK_MBR_SIGNATURE; |
| 1230 | for (nr = 0; nr < EDD_MBR_SIG_MAX; nr++) { |
| 1231 | op.u.firmware_info.index = nr; |
| 1232 | ret = HYPERVISOR_platform_op(&op); |
| 1233 | if (ret) |
| 1234 | break; |
| 1235 | mbr_signature[nr] = op.u.firmware_info.u.disk_mbr_signature.mbr_signature; |
| 1236 | } |
| 1237 | boot_params.edd_mbr_sig_buf_entries = nr; |
| 1238 | #endif |
| 1239 | } |
| 1240 | |
| 1241 | /* |
| 1242 | * Set up the GDT and segment registers for -fstack-protector. Until |
| 1243 | * we do this, we have to be careful not to call any stack-protected |
| 1244 | * function, which is most of the kernel. |
| 1245 | */ |
| 1246 | static void xen_setup_gdt(int cpu) |
| 1247 | { |
| 1248 | pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry_boot; |
| 1249 | pv_cpu_ops.load_gdt = xen_load_gdt_boot; |
| 1250 | |
| 1251 | setup_stack_canary_segment(0); |
| 1252 | switch_to_new_gdt(0); |
| 1253 | |
| 1254 | pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry; |
| 1255 | pv_cpu_ops.load_gdt = xen_load_gdt; |
| 1256 | } |
| 1257 | |
| 1258 | static void __init xen_dom0_set_legacy_features(void) |
| 1259 | { |
| 1260 | x86_platform.legacy.rtc = 1; |
| 1261 | } |
| 1262 | |
| 1263 | /* First C function to be called on Xen boot */ |
| 1264 | asmlinkage __visible void __init xen_start_kernel(void) |
| 1265 | { |
| 1266 | struct physdev_set_iopl set_iopl; |
| 1267 | unsigned long initrd_start = 0; |
| 1268 | int rc; |
| 1269 | |
| 1270 | if (!xen_start_info) |
| 1271 | return; |
| 1272 | |
| 1273 | xen_domain_type = XEN_PV_DOMAIN; |
| 1274 | |
| 1275 | xen_setup_features(); |
| 1276 | |
| 1277 | xen_setup_machphys_mapping(); |
| 1278 | |
| 1279 | /* Install Xen paravirt ops */ |
| 1280 | pv_info = xen_info; |
| 1281 | pv_init_ops = xen_init_ops; |
| 1282 | pv_cpu_ops = xen_cpu_ops; |
| 1283 | |
| 1284 | x86_platform.get_nmi_reason = xen_get_nmi_reason; |
| 1285 | |
| 1286 | x86_init.resources.memory_setup = xen_memory_setup; |
| 1287 | x86_init.oem.arch_setup = xen_arch_setup; |
| 1288 | x86_init.oem.banner = xen_banner; |
| 1289 | |
| 1290 | xen_init_time_ops(); |
| 1291 | |
| 1292 | /* |
| 1293 | * Set up some pagetable state before starting to set any ptes. |
| 1294 | */ |
| 1295 | |
| 1296 | xen_init_mmu_ops(); |
| 1297 | |
| 1298 | /* Prevent unwanted bits from being set in PTEs. */ |
| 1299 | __supported_pte_mask &= ~_PAGE_GLOBAL; |
| 1300 | |
| 1301 | /* |
| 1302 | * Prevent page tables from being allocated in highmem, even |
| 1303 | * if CONFIG_HIGHPTE is enabled. |
| 1304 | */ |
| 1305 | __userpte_alloc_gfp &= ~__GFP_HIGHMEM; |
| 1306 | |
| 1307 | /* Work out if we support NX */ |
| 1308 | x86_configure_nx(); |
| 1309 | |
| 1310 | /* Get mfn list */ |
| 1311 | xen_build_dynamic_phys_to_machine(); |
| 1312 | |
| 1313 | /* |
| 1314 | * Set up kernel GDT and segment registers, mainly so that |
| 1315 | * -fstack-protector code can be executed. |
| 1316 | */ |
| 1317 | xen_setup_gdt(0); |
| 1318 | |
| 1319 | xen_init_irq_ops(); |
| 1320 | xen_init_cpuid_mask(); |
| 1321 | |
| 1322 | #ifdef CONFIG_X86_LOCAL_APIC |
| 1323 | /* |
| 1324 | * set up the basic apic ops. |
| 1325 | */ |
| 1326 | xen_init_apic(); |
| 1327 | #endif |
| 1328 | |
| 1329 | if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) { |
| 1330 | pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start; |
| 1331 | pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit; |
| 1332 | } |
| 1333 | |
| 1334 | machine_ops = xen_machine_ops; |
| 1335 | |
| 1336 | /* |
| 1337 | * The only reliable way to retain the initial address of the |
| 1338 | * percpu gdt_page is to remember it here, so we can go and |
| 1339 | * mark it RW later, when the initial percpu area is freed. |
| 1340 | */ |
| 1341 | xen_initial_gdt = &per_cpu(gdt_page, 0); |
| 1342 | |
| 1343 | xen_smp_init(); |
| 1344 | |
| 1345 | #ifdef CONFIG_ACPI_NUMA |
| 1346 | /* |
| 1347 | * The pages we from Xen are not related to machine pages, so |
| 1348 | * any NUMA information the kernel tries to get from ACPI will |
| 1349 | * be meaningless. Prevent it from trying. |
| 1350 | */ |
| 1351 | acpi_numa = -1; |
| 1352 | #endif |
| 1353 | /* Don't do the full vcpu_info placement stuff until we have a |
| 1354 | possible map and a non-dummy shared_info. */ |
| 1355 | per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0]; |
| 1356 | |
| 1357 | WARN_ON(xen_cpuhp_setup(xen_cpu_up_prepare_pv, xen_cpu_dead_pv)); |
| 1358 | |
| 1359 | local_irq_disable(); |
| 1360 | early_boot_irqs_disabled = true; |
| 1361 | |
| 1362 | xen_raw_console_write("mapping kernel into physical memory\n"); |
| 1363 | xen_setup_kernel_pagetable((pgd_t *)xen_start_info->pt_base, |
| 1364 | xen_start_info->nr_pages); |
| 1365 | xen_reserve_special_pages(); |
| 1366 | |
| 1367 | /* keep using Xen gdt for now; no urgent need to change it */ |
| 1368 | |
| 1369 | #ifdef CONFIG_X86_32 |
| 1370 | pv_info.kernel_rpl = 1; |
| 1371 | if (xen_feature(XENFEAT_supervisor_mode_kernel)) |
| 1372 | pv_info.kernel_rpl = 0; |
| 1373 | #else |
| 1374 | pv_info.kernel_rpl = 0; |
| 1375 | #endif |
| 1376 | /* set the limit of our address space */ |
| 1377 | xen_reserve_top(); |
| 1378 | |
| 1379 | /* |
| 1380 | * We used to do this in xen_arch_setup, but that is too late |
| 1381 | * on AMD were early_cpu_init (run before ->arch_setup()) calls |
| 1382 | * early_amd_init which pokes 0xcf8 port. |
| 1383 | */ |
| 1384 | set_iopl.iopl = 1; |
| 1385 | rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl); |
| 1386 | if (rc != 0) |
| 1387 | xen_raw_printk("physdev_op failed %d\n", rc); |
| 1388 | |
| 1389 | #ifdef CONFIG_X86_32 |
| 1390 | /* set up basic CPUID stuff */ |
| 1391 | cpu_detect(&new_cpu_data); |
| 1392 | set_cpu_cap(&new_cpu_data, X86_FEATURE_FPU); |
| 1393 | new_cpu_data.x86_capability[CPUID_1_EDX] = cpuid_edx(1); |
| 1394 | #endif |
| 1395 | |
| 1396 | if (xen_start_info->mod_start) { |
| 1397 | if (xen_start_info->flags & SIF_MOD_START_PFN) |
| 1398 | initrd_start = PFN_PHYS(xen_start_info->mod_start); |
| 1399 | else |
| 1400 | initrd_start = __pa(xen_start_info->mod_start); |
| 1401 | } |
| 1402 | |
| 1403 | /* Poke various useful things into boot_params */ |
| 1404 | boot_params.hdr.type_of_loader = (9 << 4) | 0; |
| 1405 | boot_params.hdr.ramdisk_image = initrd_start; |
| 1406 | boot_params.hdr.ramdisk_size = xen_start_info->mod_len; |
| 1407 | boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line); |
| 1408 | boot_params.hdr.hardware_subarch = X86_SUBARCH_XEN; |
| 1409 | |
| 1410 | if (!xen_initial_domain()) { |
| 1411 | add_preferred_console("xenboot", 0, NULL); |
| 1412 | add_preferred_console("tty", 0, NULL); |
| 1413 | add_preferred_console("hvc", 0, NULL); |
| 1414 | if (pci_xen) |
| 1415 | x86_init.pci.arch_init = pci_xen_init; |
| 1416 | } else { |
| 1417 | const struct dom0_vga_console_info *info = |
| 1418 | (void *)((char *)xen_start_info + |
| 1419 | xen_start_info->console.dom0.info_off); |
| 1420 | struct xen_platform_op op = { |
| 1421 | .cmd = XENPF_firmware_info, |
| 1422 | .interface_version = XENPF_INTERFACE_VERSION, |
| 1423 | .u.firmware_info.type = XEN_FW_KBD_SHIFT_FLAGS, |
| 1424 | }; |
| 1425 | |
| 1426 | x86_platform.set_legacy_features = |
| 1427 | xen_dom0_set_legacy_features; |
| 1428 | xen_init_vga(info, xen_start_info->console.dom0.info_size); |
| 1429 | xen_start_info->console.domU.mfn = 0; |
| 1430 | xen_start_info->console.domU.evtchn = 0; |
| 1431 | |
| 1432 | if (HYPERVISOR_platform_op(&op) == 0) |
| 1433 | boot_params.kbd_status = op.u.firmware_info.u.kbd_shift_flags; |
| 1434 | |
| 1435 | /* Make sure ACS will be enabled */ |
| 1436 | pci_request_acs(); |
| 1437 | |
| 1438 | xen_acpi_sleep_register(); |
| 1439 | |
| 1440 | /* Avoid searching for BIOS MP tables */ |
| 1441 | x86_init.mpparse.find_smp_config = x86_init_noop; |
| 1442 | x86_init.mpparse.get_smp_config = x86_init_uint_noop; |
| 1443 | |
| 1444 | xen_boot_params_init_edd(); |
| 1445 | } |
| 1446 | #ifdef CONFIG_PCI |
| 1447 | /* PCI BIOS service won't work from a PV guest. */ |
| 1448 | pci_probe &= ~PCI_PROBE_BIOS; |
| 1449 | #endif |
| 1450 | xen_raw_console_write("about to get started...\n"); |
| 1451 | |
| 1452 | /* Let's presume PV guests always boot on vCPU with id 0. */ |
| 1453 | per_cpu(xen_vcpu_id, 0) = 0; |
| 1454 | |
| 1455 | xen_setup_runstate_info(0); |
| 1456 | |
| 1457 | xen_efi_init(); |
| 1458 | |
| 1459 | /* Start the world */ |
| 1460 | #ifdef CONFIG_X86_32 |
| 1461 | i386_start_kernel(); |
| 1462 | #else |
| 1463 | cr4_init_shadow(); /* 32b kernel does this in i386_start_kernel() */ |
| 1464 | x86_64_start_reservations((char *)__pa_symbol(&boot_params)); |
| 1465 | #endif |
| 1466 | } |
| 1467 | |
| 1468 | static int xen_cpu_up_prepare_pv(unsigned int cpu) |
| 1469 | { |
| 1470 | int rc; |
| 1471 | |
| 1472 | xen_setup_timer(cpu); |
| 1473 | |
| 1474 | rc = xen_smp_intr_init(cpu); |
| 1475 | if (rc) { |
| 1476 | WARN(1, "xen_smp_intr_init() for CPU %d failed: %d\n", |
| 1477 | cpu, rc); |
| 1478 | return rc; |
| 1479 | } |
Vitaly Kuznetsov | 04e9576 | 2017-03-14 18:35:42 +0100 | [diff] [blame^] | 1480 | |
| 1481 | rc = xen_smp_intr_init_pv(cpu); |
| 1482 | if (rc) { |
| 1483 | WARN(1, "xen_smp_intr_init_pv() for CPU %d failed: %d\n", |
| 1484 | cpu, rc); |
| 1485 | return rc; |
| 1486 | } |
| 1487 | |
Vitaly Kuznetsov | e1dab14 | 2017-03-14 18:35:41 +0100 | [diff] [blame] | 1488 | return 0; |
| 1489 | } |
| 1490 | |
| 1491 | static int xen_cpu_dead_pv(unsigned int cpu) |
| 1492 | { |
| 1493 | xen_smp_intr_free(cpu); |
Vitaly Kuznetsov | 04e9576 | 2017-03-14 18:35:42 +0100 | [diff] [blame^] | 1494 | xen_smp_intr_free_pv(cpu); |
Vitaly Kuznetsov | e1dab14 | 2017-03-14 18:35:41 +0100 | [diff] [blame] | 1495 | |
| 1496 | xen_teardown_timer(cpu); |
| 1497 | |
| 1498 | return 0; |
| 1499 | } |
| 1500 | |
| 1501 | static uint32_t __init xen_platform_pv(void) |
| 1502 | { |
| 1503 | if (xen_pv_domain()) |
| 1504 | return xen_cpuid_base(); |
| 1505 | |
| 1506 | return 0; |
| 1507 | } |
| 1508 | |
| 1509 | static void xen_set_cpu_features(struct cpuinfo_x86 *c) |
| 1510 | { |
| 1511 | clear_cpu_bug(c, X86_BUG_SYSRET_SS_ATTRS); |
| 1512 | set_cpu_cap(c, X86_FEATURE_XENPV); |
| 1513 | } |
| 1514 | |
| 1515 | const struct hypervisor_x86 x86_hyper_xen_pv = { |
| 1516 | .name = "Xen PV", |
| 1517 | .detect = xen_platform_pv, |
| 1518 | .set_cpu_features = xen_set_cpu_features, |
| 1519 | .pin_vcpu = xen_pin_vcpu, |
| 1520 | }; |
| 1521 | EXPORT_SYMBOL(x86_hyper_xen_pv); |