Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* |
| 2 | * usb-host.c: ETRAX 100LX USB Host Controller Driver (HCD) |
| 3 | * |
| 4 | * Copyright (c) 2002, 2003 Axis Communications AB. |
| 5 | */ |
| 6 | |
| 7 | #include <linux/config.h> |
| 8 | #include <linux/kernel.h> |
| 9 | #include <linux/delay.h> |
| 10 | #include <linux/ioport.h> |
| 11 | #include <linux/sched.h> |
| 12 | #include <linux/slab.h> |
| 13 | #include <linux/errno.h> |
| 14 | #include <linux/unistd.h> |
| 15 | #include <linux/interrupt.h> |
| 16 | #include <linux/init.h> |
| 17 | #include <linux/version.h> |
| 18 | #include <linux/list.h> |
| 19 | #include <linux/spinlock.h> |
| 20 | |
| 21 | #include <asm/uaccess.h> |
| 22 | #include <asm/io.h> |
| 23 | #include <asm/irq.h> |
| 24 | #include <asm/dma.h> |
| 25 | #include <asm/system.h> |
| 26 | #include <asm/arch/svinto.h> |
| 27 | |
| 28 | #include <linux/usb.h> |
| 29 | /* Ugly include because we don't live with the other host drivers. */ |
| 30 | #include <../drivers/usb/core/hcd.h> |
| 31 | #include <../drivers/usb/core/usb.h> |
| 32 | |
| 33 | #include "hc_crisv10.h" |
| 34 | |
| 35 | #define ETRAX_USB_HC_IRQ USB_HC_IRQ_NBR |
| 36 | #define ETRAX_USB_RX_IRQ USB_DMA_RX_IRQ_NBR |
| 37 | #define ETRAX_USB_TX_IRQ USB_DMA_TX_IRQ_NBR |
| 38 | |
| 39 | static const char *usb_hcd_version = "$Revision: 1.2 $"; |
| 40 | |
| 41 | #undef KERN_DEBUG |
| 42 | #define KERN_DEBUG "" |
| 43 | |
| 44 | |
| 45 | #undef USB_DEBUG_RH |
| 46 | #undef USB_DEBUG_EPID |
| 47 | #undef USB_DEBUG_SB |
| 48 | #undef USB_DEBUG_DESC |
| 49 | #undef USB_DEBUG_URB |
| 50 | #undef USB_DEBUG_TRACE |
| 51 | #undef USB_DEBUG_BULK |
| 52 | #undef USB_DEBUG_CTRL |
| 53 | #undef USB_DEBUG_INTR |
| 54 | #undef USB_DEBUG_ISOC |
| 55 | |
| 56 | #ifdef USB_DEBUG_RH |
| 57 | #define dbg_rh(format, arg...) printk(KERN_DEBUG __FILE__ ": (RH) " format "\n" , ## arg) |
| 58 | #else |
| 59 | #define dbg_rh(format, arg...) do {} while (0) |
| 60 | #endif |
| 61 | |
| 62 | #ifdef USB_DEBUG_EPID |
| 63 | #define dbg_epid(format, arg...) printk(KERN_DEBUG __FILE__ ": (EPID) " format "\n" , ## arg) |
| 64 | #else |
| 65 | #define dbg_epid(format, arg...) do {} while (0) |
| 66 | #endif |
| 67 | |
| 68 | #ifdef USB_DEBUG_SB |
| 69 | #define dbg_sb(format, arg...) printk(KERN_DEBUG __FILE__ ": (SB) " format "\n" , ## arg) |
| 70 | #else |
| 71 | #define dbg_sb(format, arg...) do {} while (0) |
| 72 | #endif |
| 73 | |
| 74 | #ifdef USB_DEBUG_CTRL |
| 75 | #define dbg_ctrl(format, arg...) printk(KERN_DEBUG __FILE__ ": (CTRL) " format "\n" , ## arg) |
| 76 | #else |
| 77 | #define dbg_ctrl(format, arg...) do {} while (0) |
| 78 | #endif |
| 79 | |
| 80 | #ifdef USB_DEBUG_BULK |
| 81 | #define dbg_bulk(format, arg...) printk(KERN_DEBUG __FILE__ ": (BULK) " format "\n" , ## arg) |
| 82 | #else |
| 83 | #define dbg_bulk(format, arg...) do {} while (0) |
| 84 | #endif |
| 85 | |
| 86 | #ifdef USB_DEBUG_INTR |
| 87 | #define dbg_intr(format, arg...) printk(KERN_DEBUG __FILE__ ": (INTR) " format "\n" , ## arg) |
| 88 | #else |
| 89 | #define dbg_intr(format, arg...) do {} while (0) |
| 90 | #endif |
| 91 | |
| 92 | #ifdef USB_DEBUG_ISOC |
| 93 | #define dbg_isoc(format, arg...) printk(KERN_DEBUG __FILE__ ": (ISOC) " format "\n" , ## arg) |
| 94 | #else |
| 95 | #define dbg_isoc(format, arg...) do {} while (0) |
| 96 | #endif |
| 97 | |
| 98 | #ifdef USB_DEBUG_TRACE |
| 99 | #define DBFENTER (printk(": Entering: %s\n", __FUNCTION__)) |
| 100 | #define DBFEXIT (printk(": Exiting: %s\n", __FUNCTION__)) |
| 101 | #else |
| 102 | #define DBFENTER do {} while (0) |
| 103 | #define DBFEXIT do {} while (0) |
| 104 | #endif |
| 105 | |
| 106 | #define usb_pipeslow(pipe) (((pipe) >> 26) & 1) |
| 107 | |
| 108 | /*------------------------------------------------------------------- |
| 109 | Virtual Root Hub |
| 110 | -------------------------------------------------------------------*/ |
| 111 | |
| 112 | static __u8 root_hub_dev_des[] = |
| 113 | { |
| 114 | 0x12, /* __u8 bLength; */ |
| 115 | 0x01, /* __u8 bDescriptorType; Device */ |
| 116 | 0x00, /* __le16 bcdUSB; v1.0 */ |
| 117 | 0x01, |
| 118 | 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ |
| 119 | 0x00, /* __u8 bDeviceSubClass; */ |
| 120 | 0x00, /* __u8 bDeviceProtocol; */ |
| 121 | 0x08, /* __u8 bMaxPacketSize0; 8 Bytes */ |
| 122 | 0x00, /* __le16 idVendor; */ |
| 123 | 0x00, |
| 124 | 0x00, /* __le16 idProduct; */ |
| 125 | 0x00, |
| 126 | 0x00, /* __le16 bcdDevice; */ |
| 127 | 0x00, |
| 128 | 0x00, /* __u8 iManufacturer; */ |
| 129 | 0x02, /* __u8 iProduct; */ |
| 130 | 0x01, /* __u8 iSerialNumber; */ |
| 131 | 0x01 /* __u8 bNumConfigurations; */ |
| 132 | }; |
| 133 | |
| 134 | /* Configuration descriptor */ |
| 135 | static __u8 root_hub_config_des[] = |
| 136 | { |
| 137 | 0x09, /* __u8 bLength; */ |
| 138 | 0x02, /* __u8 bDescriptorType; Configuration */ |
| 139 | 0x19, /* __le16 wTotalLength; */ |
| 140 | 0x00, |
| 141 | 0x01, /* __u8 bNumInterfaces; */ |
| 142 | 0x01, /* __u8 bConfigurationValue; */ |
| 143 | 0x00, /* __u8 iConfiguration; */ |
| 144 | 0x40, /* __u8 bmAttributes; Bit 7: Bus-powered */ |
| 145 | 0x00, /* __u8 MaxPower; */ |
| 146 | |
| 147 | /* interface */ |
| 148 | 0x09, /* __u8 if_bLength; */ |
| 149 | 0x04, /* __u8 if_bDescriptorType; Interface */ |
| 150 | 0x00, /* __u8 if_bInterfaceNumber; */ |
| 151 | 0x00, /* __u8 if_bAlternateSetting; */ |
| 152 | 0x01, /* __u8 if_bNumEndpoints; */ |
| 153 | 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */ |
| 154 | 0x00, /* __u8 if_bInterfaceSubClass; */ |
| 155 | 0x00, /* __u8 if_bInterfaceProtocol; */ |
| 156 | 0x00, /* __u8 if_iInterface; */ |
| 157 | |
| 158 | /* endpoint */ |
| 159 | 0x07, /* __u8 ep_bLength; */ |
| 160 | 0x05, /* __u8 ep_bDescriptorType; Endpoint */ |
| 161 | 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */ |
| 162 | 0x03, /* __u8 ep_bmAttributes; Interrupt */ |
| 163 | 0x08, /* __le16 ep_wMaxPacketSize; 8 Bytes */ |
| 164 | 0x00, |
| 165 | 0xff /* __u8 ep_bInterval; 255 ms */ |
| 166 | }; |
| 167 | |
| 168 | static __u8 root_hub_hub_des[] = |
| 169 | { |
| 170 | 0x09, /* __u8 bLength; */ |
| 171 | 0x29, /* __u8 bDescriptorType; Hub-descriptor */ |
| 172 | 0x02, /* __u8 bNbrPorts; */ |
| 173 | 0x00, /* __u16 wHubCharacteristics; */ |
| 174 | 0x00, |
| 175 | 0x01, /* __u8 bPwrOn2pwrGood; 2ms */ |
| 176 | 0x00, /* __u8 bHubContrCurrent; 0 mA */ |
| 177 | 0x00, /* __u8 DeviceRemovable; *** 7 Ports max *** */ |
| 178 | 0xff /* __u8 PortPwrCtrlMask; *** 7 ports max *** */ |
| 179 | }; |
| 180 | |
| 181 | static struct timer_list bulk_start_timer = TIMER_INITIALIZER(NULL, 0, 0); |
| 182 | static struct timer_list bulk_eot_timer = TIMER_INITIALIZER(NULL, 0, 0); |
| 183 | |
| 184 | /* We want the start timer to expire before the eot timer, because the former might start |
| 185 | traffic, thus making it unnecessary for the latter to time out. */ |
| 186 | #define BULK_START_TIMER_INTERVAL (HZ/10) /* 100 ms */ |
| 187 | #define BULK_EOT_TIMER_INTERVAL (HZ/10+2) /* 120 ms */ |
| 188 | |
| 189 | #define OK(x) len = (x); dbg_rh("OK(%d): line: %d", x, __LINE__); break |
| 190 | #define CHECK_ALIGN(x) if (((__u32)(x)) & 0x00000003) \ |
| 191 | {panic("Alignment check (DWORD) failed at %s:%s:%d\n", __FILE__, __FUNCTION__, __LINE__);} |
| 192 | |
| 193 | #define SLAB_FLAG (in_interrupt() ? SLAB_ATOMIC : SLAB_KERNEL) |
| 194 | #define KMALLOC_FLAG (in_interrupt() ? GFP_ATOMIC : GFP_KERNEL) |
| 195 | |
| 196 | /* Most helpful debugging aid */ |
| 197 | #define assert(expr) ((void) ((expr) ? 0 : (err("assert failed at line %d",__LINE__)))) |
| 198 | |
| 199 | /* Alternative assert define which stops after a failed assert. */ |
| 200 | /* |
| 201 | #define assert(expr) \ |
| 202 | { \ |
| 203 | if (!(expr)) { \ |
| 204 | err("assert failed at line %d",__LINE__); \ |
| 205 | while (1); \ |
| 206 | } \ |
| 207 | } |
| 208 | */ |
| 209 | |
| 210 | |
| 211 | /* FIXME: Should RX_BUF_SIZE be a config option, or maybe we should adjust it dynamically? |
| 212 | To adjust it dynamically we would have to get an interrupt when we reach the end |
| 213 | of the rx descriptor list, or when we get close to the end, and then allocate more |
| 214 | descriptors. */ |
| 215 | |
| 216 | #define NBR_OF_RX_DESC 512 |
| 217 | #define RX_DESC_BUF_SIZE 1024 |
| 218 | #define RX_BUF_SIZE (NBR_OF_RX_DESC * RX_DESC_BUF_SIZE) |
| 219 | |
| 220 | /* The number of epids is, among other things, used for pre-allocating |
| 221 | ctrl, bulk and isoc EP descriptors (one for each epid). |
| 222 | Assumed to be > 1 when initiating the DMA lists. */ |
| 223 | #define NBR_OF_EPIDS 32 |
| 224 | |
| 225 | /* Support interrupt traffic intervals up to 128 ms. */ |
| 226 | #define MAX_INTR_INTERVAL 128 |
| 227 | |
| 228 | /* If periodic traffic (intr or isoc) is to be used, then one entry in the EP table |
| 229 | must be "invalid". By this we mean that we shouldn't care about epid attentions |
| 230 | for this epid, or at least handle them differently from epid attentions for "valid" |
| 231 | epids. This define determines which one to use (don't change it). */ |
| 232 | #define INVALID_EPID 31 |
| 233 | /* A special epid for the bulk dummys. */ |
| 234 | #define DUMMY_EPID 30 |
| 235 | |
| 236 | /* This is just a software cache for the valid entries in R_USB_EPT_DATA. */ |
| 237 | static __u32 epid_usage_bitmask; |
| 238 | |
| 239 | /* A bitfield to keep information on in/out traffic is needed to uniquely identify |
| 240 | an endpoint on a device, since the most significant bit which indicates traffic |
| 241 | direction is lacking in the ep_id field (ETRAX epids can handle both in and |
| 242 | out traffic on endpoints that are otherwise identical). The USB framework, however, |
| 243 | relies on them to be handled separately. For example, bulk IN and OUT urbs cannot |
| 244 | be queued in the same list, since they would block each other. */ |
| 245 | static __u32 epid_out_traffic; |
| 246 | |
| 247 | /* DMA IN cache bug. Align the DMA IN buffers to 32 bytes, i.e. a cache line. |
| 248 | Since RX_DESC_BUF_SIZE is 1024 is a multiple of 32, all rx buffers will be cache aligned. */ |
| 249 | static volatile unsigned char RxBuf[RX_BUF_SIZE] __attribute__ ((aligned (32))); |
| 250 | static volatile USB_IN_Desc_t RxDescList[NBR_OF_RX_DESC] __attribute__ ((aligned (4))); |
| 251 | |
| 252 | /* Pointers into RxDescList. */ |
| 253 | static volatile USB_IN_Desc_t *myNextRxDesc; |
| 254 | static volatile USB_IN_Desc_t *myLastRxDesc; |
| 255 | static volatile USB_IN_Desc_t *myPrevRxDesc; |
| 256 | |
| 257 | /* EP descriptors must be 32-bit aligned. */ |
| 258 | static volatile USB_EP_Desc_t TxCtrlEPList[NBR_OF_EPIDS] __attribute__ ((aligned (4))); |
| 259 | static volatile USB_EP_Desc_t TxBulkEPList[NBR_OF_EPIDS] __attribute__ ((aligned (4))); |
| 260 | /* After each enabled bulk EP (IN or OUT) we put two disabled EP descriptors with the eol flag set, |
| 261 | causing the DMA to stop the DMA channel. The first of these two has the intr flag set, which |
| 262 | gives us a dma8_sub0_descr interrupt. When we receive this, we advance the DMA one step in the |
| 263 | EP list and then restart the bulk channel, thus forcing a switch between bulk EP descriptors |
| 264 | in each frame. */ |
| 265 | static volatile USB_EP_Desc_t TxBulkDummyEPList[NBR_OF_EPIDS][2] __attribute__ ((aligned (4))); |
| 266 | |
| 267 | static volatile USB_EP_Desc_t TxIsocEPList[NBR_OF_EPIDS] __attribute__ ((aligned (4))); |
| 268 | static volatile USB_SB_Desc_t TxIsocSB_zout __attribute__ ((aligned (4))); |
| 269 | |
| 270 | static volatile USB_EP_Desc_t TxIntrEPList[MAX_INTR_INTERVAL] __attribute__ ((aligned (4))); |
| 271 | static volatile USB_SB_Desc_t TxIntrSB_zout __attribute__ ((aligned (4))); |
| 272 | |
| 273 | /* A zout transfer makes a memory access at the address of its buf pointer, which means that setting |
| 274 | this buf pointer to 0 will cause an access to the flash. In addition to this, setting sw_len to 0 |
| 275 | results in a 16/32 bytes (depending on DMA burst size) transfer. Instead, we set it to 1, and point |
| 276 | it to this buffer. */ |
| 277 | static int zout_buffer[4] __attribute__ ((aligned (4))); |
| 278 | |
| 279 | /* Cache for allocating new EP and SB descriptors. */ |
| 280 | static kmem_cache_t *usb_desc_cache; |
| 281 | |
| 282 | /* Cache for the registers allocated in the top half. */ |
| 283 | static kmem_cache_t *top_half_reg_cache; |
| 284 | |
| 285 | /* Cache for the data allocated in the isoc descr top half. */ |
| 286 | static kmem_cache_t *isoc_compl_cache; |
| 287 | |
| 288 | static struct usb_bus *etrax_usb_bus; |
| 289 | |
| 290 | /* This is a circular (double-linked) list of the active urbs for each epid. |
| 291 | The head is never removed, and new urbs are linked onto the list as |
| 292 | urb_entry_t elements. Don't reference urb_list directly; use the wrapper |
| 293 | functions instead. Note that working with these lists might require spinlock |
| 294 | protection. */ |
| 295 | static struct list_head urb_list[NBR_OF_EPIDS]; |
| 296 | |
| 297 | /* Read about the need and usage of this lock in submit_ctrl_urb. */ |
| 298 | static spinlock_t urb_list_lock; |
| 299 | |
| 300 | /* Used when unlinking asynchronously. */ |
| 301 | static struct list_head urb_unlink_list; |
| 302 | |
| 303 | /* for returning string descriptors in UTF-16LE */ |
| 304 | static int ascii2utf (char *ascii, __u8 *utf, int utfmax) |
| 305 | { |
| 306 | int retval; |
| 307 | |
| 308 | for (retval = 0; *ascii && utfmax > 1; utfmax -= 2, retval += 2) { |
| 309 | *utf++ = *ascii++ & 0x7f; |
| 310 | *utf++ = 0; |
| 311 | } |
| 312 | return retval; |
| 313 | } |
| 314 | |
| 315 | static int usb_root_hub_string (int id, int serial, char *type, __u8 *data, int len) |
| 316 | { |
| 317 | char buf [30]; |
| 318 | |
| 319 | // assert (len > (2 * (sizeof (buf) + 1))); |
| 320 | // assert (strlen (type) <= 8); |
| 321 | |
| 322 | // language ids |
| 323 | if (id == 0) { |
| 324 | *data++ = 4; *data++ = 3; /* 4 bytes data */ |
| 325 | *data++ = 0; *data++ = 0; /* some language id */ |
| 326 | return 4; |
| 327 | |
| 328 | // serial number |
| 329 | } else if (id == 1) { |
| 330 | sprintf (buf, "%x", serial); |
| 331 | |
| 332 | // product description |
| 333 | } else if (id == 2) { |
| 334 | sprintf (buf, "USB %s Root Hub", type); |
| 335 | |
| 336 | // id 3 == vendor description |
| 337 | |
| 338 | // unsupported IDs --> "stall" |
| 339 | } else |
| 340 | return 0; |
| 341 | |
| 342 | data [0] = 2 + ascii2utf (buf, data + 2, len - 2); |
| 343 | data [1] = 3; |
| 344 | return data [0]; |
| 345 | } |
| 346 | |
| 347 | /* Wrappers around the list functions (include/linux/list.h). */ |
| 348 | |
| 349 | static inline int urb_list_empty(int epid) |
| 350 | { |
| 351 | return list_empty(&urb_list[epid]); |
| 352 | } |
| 353 | |
| 354 | /* Returns first urb for this epid, or NULL if list is empty. */ |
| 355 | static inline struct urb *urb_list_first(int epid) |
| 356 | { |
| 357 | struct urb *first_urb = 0; |
| 358 | |
| 359 | if (!urb_list_empty(epid)) { |
| 360 | /* Get the first urb (i.e. head->next). */ |
| 361 | urb_entry_t *urb_entry = list_entry((&urb_list[epid])->next, urb_entry_t, list); |
| 362 | first_urb = urb_entry->urb; |
| 363 | } |
| 364 | return first_urb; |
| 365 | } |
| 366 | |
| 367 | /* Adds an urb_entry last in the list for this epid. */ |
| 368 | static inline void urb_list_add(struct urb *urb, int epid) |
| 369 | { |
| 370 | urb_entry_t *urb_entry = (urb_entry_t *)kmalloc(sizeof(urb_entry_t), KMALLOC_FLAG); |
| 371 | assert(urb_entry); |
| 372 | |
| 373 | urb_entry->urb = urb; |
| 374 | list_add_tail(&urb_entry->list, &urb_list[epid]); |
| 375 | } |
| 376 | |
| 377 | /* Search through the list for an element that contains this urb. (The list |
| 378 | is expected to be short and the one we are about to delete will often be |
| 379 | the first in the list.) */ |
| 380 | static inline urb_entry_t *__urb_list_entry(struct urb *urb, int epid) |
| 381 | { |
| 382 | struct list_head *entry; |
| 383 | struct list_head *tmp; |
| 384 | urb_entry_t *urb_entry; |
| 385 | |
| 386 | list_for_each_safe(entry, tmp, &urb_list[epid]) { |
| 387 | urb_entry = list_entry(entry, urb_entry_t, list); |
| 388 | assert(urb_entry); |
| 389 | assert(urb_entry->urb); |
| 390 | |
| 391 | if (urb_entry->urb == urb) { |
| 392 | return urb_entry; |
| 393 | } |
| 394 | } |
| 395 | return 0; |
| 396 | } |
| 397 | |
| 398 | /* Delete an urb from the list. */ |
| 399 | static inline void urb_list_del(struct urb *urb, int epid) |
| 400 | { |
| 401 | urb_entry_t *urb_entry = __urb_list_entry(urb, epid); |
| 402 | assert(urb_entry); |
| 403 | |
| 404 | /* Delete entry and free. */ |
| 405 | list_del(&urb_entry->list); |
| 406 | kfree(urb_entry); |
| 407 | } |
| 408 | |
| 409 | /* Move an urb to the end of the list. */ |
| 410 | static inline void urb_list_move_last(struct urb *urb, int epid) |
| 411 | { |
| 412 | urb_entry_t *urb_entry = __urb_list_entry(urb, epid); |
| 413 | assert(urb_entry); |
| 414 | |
| 415 | list_del(&urb_entry->list); |
| 416 | list_add_tail(&urb_entry->list, &urb_list[epid]); |
| 417 | } |
| 418 | |
| 419 | /* Get the next urb in the list. */ |
| 420 | static inline struct urb *urb_list_next(struct urb *urb, int epid) |
| 421 | { |
| 422 | urb_entry_t *urb_entry = __urb_list_entry(urb, epid); |
| 423 | |
| 424 | assert(urb_entry); |
| 425 | |
| 426 | if (urb_entry->list.next != &urb_list[epid]) { |
| 427 | struct list_head *elem = urb_entry->list.next; |
| 428 | urb_entry = list_entry(elem, urb_entry_t, list); |
| 429 | return urb_entry->urb; |
| 430 | } else { |
| 431 | return NULL; |
| 432 | } |
| 433 | } |
| 434 | |
| 435 | |
| 436 | |
| 437 | /* For debug purposes only. */ |
| 438 | static inline void urb_list_dump(int epid) |
| 439 | { |
| 440 | struct list_head *entry; |
| 441 | struct list_head *tmp; |
| 442 | urb_entry_t *urb_entry; |
| 443 | int i = 0; |
| 444 | |
| 445 | info("Dumping urb list for epid %d", epid); |
| 446 | |
| 447 | list_for_each_safe(entry, tmp, &urb_list[epid]) { |
| 448 | urb_entry = list_entry(entry, urb_entry_t, list); |
| 449 | info(" entry %d, urb = 0x%lx", i, (unsigned long)urb_entry->urb); |
| 450 | } |
| 451 | } |
| 452 | |
| 453 | static void init_rx_buffers(void); |
| 454 | static int etrax_rh_unlink_urb(struct urb *urb); |
| 455 | static void etrax_rh_send_irq(struct urb *urb); |
| 456 | static void etrax_rh_init_int_timer(struct urb *urb); |
| 457 | static void etrax_rh_int_timer_do(unsigned long ptr); |
| 458 | |
| 459 | static int etrax_usb_setup_epid(struct urb *urb); |
| 460 | static int etrax_usb_lookup_epid(struct urb *urb); |
| 461 | static int etrax_usb_allocate_epid(void); |
| 462 | static void etrax_usb_free_epid(int epid); |
| 463 | |
| 464 | static int etrax_remove_from_sb_list(struct urb *urb); |
| 465 | |
| 466 | static void* etrax_usb_buffer_alloc(struct usb_bus* bus, size_t size, int mem_flags, dma_addr_t *dma); |
| 467 | static void etrax_usb_buffer_free(struct usb_bus *bus, size_t size, void *addr, dma_addr_t dma); |
| 468 | |
| 469 | static void etrax_usb_add_to_bulk_sb_list(struct urb *urb, int epid); |
| 470 | static void etrax_usb_add_to_ctrl_sb_list(struct urb *urb, int epid); |
| 471 | static void etrax_usb_add_to_intr_sb_list(struct urb *urb, int epid); |
| 472 | static void etrax_usb_add_to_isoc_sb_list(struct urb *urb, int epid); |
| 473 | |
| 474 | static int etrax_usb_submit_bulk_urb(struct urb *urb); |
| 475 | static int etrax_usb_submit_ctrl_urb(struct urb *urb); |
| 476 | static int etrax_usb_submit_intr_urb(struct urb *urb); |
| 477 | static int etrax_usb_submit_isoc_urb(struct urb *urb); |
| 478 | |
| 479 | static int etrax_usb_submit_urb(struct urb *urb, int mem_flags); |
| 480 | static int etrax_usb_unlink_urb(struct urb *urb, int status); |
| 481 | static int etrax_usb_get_frame_number(struct usb_device *usb_dev); |
| 482 | |
| 483 | static irqreturn_t etrax_usb_tx_interrupt(int irq, void *vhc, struct pt_regs *regs); |
| 484 | static irqreturn_t etrax_usb_rx_interrupt(int irq, void *vhc, struct pt_regs *regs); |
| 485 | static irqreturn_t etrax_usb_hc_interrupt_top_half(int irq, void *vhc, struct pt_regs *regs); |
| 486 | static void etrax_usb_hc_interrupt_bottom_half(void *data); |
| 487 | |
| 488 | static void etrax_usb_isoc_descr_interrupt_bottom_half(void *data); |
| 489 | |
| 490 | |
| 491 | /* The following is a list of interrupt handlers for the host controller interrupts we use. |
| 492 | They are called from etrax_usb_hc_interrupt_bottom_half. */ |
| 493 | static void etrax_usb_hc_isoc_eof_interrupt(void); |
| 494 | static void etrax_usb_hc_bulk_eot_interrupt(int timer_induced); |
| 495 | static void etrax_usb_hc_epid_attn_interrupt(usb_interrupt_registers_t *reg); |
| 496 | static void etrax_usb_hc_port_status_interrupt(usb_interrupt_registers_t *reg); |
| 497 | static void etrax_usb_hc_ctl_status_interrupt(usb_interrupt_registers_t *reg); |
| 498 | |
| 499 | static int etrax_rh_submit_urb (struct urb *urb); |
| 500 | |
| 501 | /* Forward declaration needed because they are used in the rx interrupt routine. */ |
| 502 | static void etrax_usb_complete_urb(struct urb *urb, int status); |
| 503 | static void etrax_usb_complete_bulk_urb(struct urb *urb, int status); |
| 504 | static void etrax_usb_complete_ctrl_urb(struct urb *urb, int status); |
| 505 | static void etrax_usb_complete_intr_urb(struct urb *urb, int status); |
| 506 | static void etrax_usb_complete_isoc_urb(struct urb *urb, int status); |
| 507 | |
| 508 | static int etrax_usb_hc_init(void); |
| 509 | static void etrax_usb_hc_cleanup(void); |
| 510 | |
| 511 | static struct usb_operations etrax_usb_device_operations = |
| 512 | { |
| 513 | .get_frame_number = etrax_usb_get_frame_number, |
| 514 | .submit_urb = etrax_usb_submit_urb, |
| 515 | .unlink_urb = etrax_usb_unlink_urb, |
| 516 | .buffer_alloc = etrax_usb_buffer_alloc, |
| 517 | .buffer_free = etrax_usb_buffer_free |
| 518 | }; |
| 519 | |
| 520 | /* Note that these functions are always available in their "__" variants, for use in |
| 521 | error situations. The "__" missing variants are controlled by the USB_DEBUG_DESC/ |
| 522 | USB_DEBUG_URB macros. */ |
| 523 | static void __dump_urb(struct urb* purb) |
| 524 | { |
| 525 | printk("\nurb :0x%08lx\n", (unsigned long)purb); |
| 526 | printk("dev :0x%08lx\n", (unsigned long)purb->dev); |
| 527 | printk("pipe :0x%08x\n", purb->pipe); |
| 528 | printk("status :%d\n", purb->status); |
| 529 | printk("transfer_flags :0x%08x\n", purb->transfer_flags); |
| 530 | printk("transfer_buffer :0x%08lx\n", (unsigned long)purb->transfer_buffer); |
| 531 | printk("transfer_buffer_length:%d\n", purb->transfer_buffer_length); |
| 532 | printk("actual_length :%d\n", purb->actual_length); |
| 533 | printk("setup_packet :0x%08lx\n", (unsigned long)purb->setup_packet); |
| 534 | printk("start_frame :%d\n", purb->start_frame); |
| 535 | printk("number_of_packets :%d\n", purb->number_of_packets); |
| 536 | printk("interval :%d\n", purb->interval); |
| 537 | printk("error_count :%d\n", purb->error_count); |
| 538 | printk("context :0x%08lx\n", (unsigned long)purb->context); |
| 539 | printk("complete :0x%08lx\n\n", (unsigned long)purb->complete); |
| 540 | } |
| 541 | |
| 542 | static void __dump_in_desc(volatile USB_IN_Desc_t *in) |
| 543 | { |
| 544 | printk("\nUSB_IN_Desc at 0x%08lx\n", (unsigned long)in); |
| 545 | printk(" sw_len : 0x%04x (%d)\n", in->sw_len, in->sw_len); |
| 546 | printk(" command : 0x%04x\n", in->command); |
| 547 | printk(" next : 0x%08lx\n", in->next); |
| 548 | printk(" buf : 0x%08lx\n", in->buf); |
| 549 | printk(" hw_len : 0x%04x (%d)\n", in->hw_len, in->hw_len); |
| 550 | printk(" status : 0x%04x\n\n", in->status); |
| 551 | } |
| 552 | |
| 553 | static void __dump_sb_desc(volatile USB_SB_Desc_t *sb) |
| 554 | { |
| 555 | char tt = (sb->command & 0x30) >> 4; |
| 556 | char *tt_string; |
| 557 | |
| 558 | switch (tt) { |
| 559 | case 0: |
| 560 | tt_string = "zout"; |
| 561 | break; |
| 562 | case 1: |
| 563 | tt_string = "in"; |
| 564 | break; |
| 565 | case 2: |
| 566 | tt_string = "out"; |
| 567 | break; |
| 568 | case 3: |
| 569 | tt_string = "setup"; |
| 570 | break; |
| 571 | default: |
| 572 | tt_string = "unknown (weird)"; |
| 573 | } |
| 574 | |
| 575 | printk("\n USB_SB_Desc at 0x%08lx\n", (unsigned long)sb); |
| 576 | printk(" command : 0x%04x\n", sb->command); |
| 577 | printk(" rem : %d\n", (sb->command & 0x3f00) >> 8); |
| 578 | printk(" full : %d\n", (sb->command & 0x40) >> 6); |
| 579 | printk(" tt : %d (%s)\n", tt, tt_string); |
| 580 | printk(" intr : %d\n", (sb->command & 0x8) >> 3); |
| 581 | printk(" eot : %d\n", (sb->command & 0x2) >> 1); |
| 582 | printk(" eol : %d\n", sb->command & 0x1); |
| 583 | printk(" sw_len : 0x%04x (%d)\n", sb->sw_len, sb->sw_len); |
| 584 | printk(" next : 0x%08lx\n", sb->next); |
| 585 | printk(" buf : 0x%08lx\n\n", sb->buf); |
| 586 | } |
| 587 | |
| 588 | |
| 589 | static void __dump_ep_desc(volatile USB_EP_Desc_t *ep) |
| 590 | { |
| 591 | printk("\nUSB_EP_Desc at 0x%08lx\n", (unsigned long)ep); |
| 592 | printk(" command : 0x%04x\n", ep->command); |
| 593 | printk(" ep_id : %d\n", (ep->command & 0x1f00) >> 8); |
| 594 | printk(" enable : %d\n", (ep->command & 0x10) >> 4); |
| 595 | printk(" intr : %d\n", (ep->command & 0x8) >> 3); |
| 596 | printk(" eof : %d\n", (ep->command & 0x2) >> 1); |
| 597 | printk(" eol : %d\n", ep->command & 0x1); |
| 598 | printk(" hw_len : 0x%04x (%d)\n", ep->hw_len, ep->hw_len); |
| 599 | printk(" next : 0x%08lx\n", ep->next); |
| 600 | printk(" sub : 0x%08lx\n\n", ep->sub); |
| 601 | } |
| 602 | |
| 603 | static inline void __dump_ep_list(int pipe_type) |
| 604 | { |
| 605 | volatile USB_EP_Desc_t *ep; |
| 606 | volatile USB_EP_Desc_t *first_ep; |
| 607 | volatile USB_SB_Desc_t *sb; |
| 608 | |
| 609 | switch (pipe_type) |
| 610 | { |
| 611 | case PIPE_BULK: |
| 612 | first_ep = &TxBulkEPList[0]; |
| 613 | break; |
| 614 | case PIPE_CONTROL: |
| 615 | first_ep = &TxCtrlEPList[0]; |
| 616 | break; |
| 617 | case PIPE_INTERRUPT: |
| 618 | first_ep = &TxIntrEPList[0]; |
| 619 | break; |
| 620 | case PIPE_ISOCHRONOUS: |
| 621 | first_ep = &TxIsocEPList[0]; |
| 622 | break; |
| 623 | default: |
| 624 | warn("Cannot dump unknown traffic type"); |
| 625 | return; |
| 626 | } |
| 627 | ep = first_ep; |
| 628 | |
| 629 | printk("\n\nDumping EP list...\n\n"); |
| 630 | |
| 631 | do { |
| 632 | __dump_ep_desc(ep); |
| 633 | /* Cannot phys_to_virt on 0 as it turns into 80000000, which is != 0. */ |
| 634 | sb = ep->sub ? phys_to_virt(ep->sub) : 0; |
| 635 | while (sb) { |
| 636 | __dump_sb_desc(sb); |
| 637 | sb = sb->next ? phys_to_virt(sb->next) : 0; |
| 638 | } |
| 639 | ep = (volatile USB_EP_Desc_t *)(phys_to_virt(ep->next)); |
| 640 | |
| 641 | } while (ep != first_ep); |
| 642 | } |
| 643 | |
| 644 | static inline void __dump_ept_data(int epid) |
| 645 | { |
| 646 | unsigned long flags; |
| 647 | __u32 r_usb_ept_data; |
| 648 | |
| 649 | if (epid < 0 || epid > 31) { |
| 650 | printk("Cannot dump ept data for invalid epid %d\n", epid); |
| 651 | return; |
| 652 | } |
| 653 | |
| 654 | save_flags(flags); |
| 655 | cli(); |
| 656 | *R_USB_EPT_INDEX = IO_FIELD(R_USB_EPT_INDEX, value, epid); |
| 657 | nop(); |
| 658 | r_usb_ept_data = *R_USB_EPT_DATA; |
| 659 | restore_flags(flags); |
| 660 | |
| 661 | printk("\nR_USB_EPT_DATA = 0x%x for epid %d :\n", r_usb_ept_data, epid); |
| 662 | if (r_usb_ept_data == 0) { |
| 663 | /* No need for more detailed printing. */ |
| 664 | return; |
| 665 | } |
| 666 | printk(" valid : %d\n", (r_usb_ept_data & 0x80000000) >> 31); |
| 667 | printk(" hold : %d\n", (r_usb_ept_data & 0x40000000) >> 30); |
| 668 | printk(" error_count_in : %d\n", (r_usb_ept_data & 0x30000000) >> 28); |
| 669 | printk(" t_in : %d\n", (r_usb_ept_data & 0x08000000) >> 27); |
| 670 | printk(" low_speed : %d\n", (r_usb_ept_data & 0x04000000) >> 26); |
| 671 | printk(" port : %d\n", (r_usb_ept_data & 0x03000000) >> 24); |
| 672 | printk(" error_code : %d\n", (r_usb_ept_data & 0x00c00000) >> 22); |
| 673 | printk(" t_out : %d\n", (r_usb_ept_data & 0x00200000) >> 21); |
| 674 | printk(" error_count_out : %d\n", (r_usb_ept_data & 0x00180000) >> 19); |
| 675 | printk(" max_len : %d\n", (r_usb_ept_data & 0x0003f800) >> 11); |
| 676 | printk(" ep : %d\n", (r_usb_ept_data & 0x00000780) >> 7); |
| 677 | printk(" dev : %d\n", (r_usb_ept_data & 0x0000003f)); |
| 678 | } |
| 679 | |
| 680 | static inline void __dump_ept_data_list(void) |
| 681 | { |
| 682 | int i; |
| 683 | |
| 684 | printk("Dumping the whole R_USB_EPT_DATA list\n"); |
| 685 | |
| 686 | for (i = 0; i < 32; i++) { |
| 687 | __dump_ept_data(i); |
| 688 | } |
| 689 | } |
| 690 | #ifdef USB_DEBUG_DESC |
| 691 | #define dump_in_desc(...) __dump_in_desc(...) |
| 692 | #define dump_sb_desc(...) __dump_sb_desc(...) |
| 693 | #define dump_ep_desc(...) __dump_ep_desc(...) |
| 694 | #else |
| 695 | #define dump_in_desc(...) do {} while (0) |
| 696 | #define dump_sb_desc(...) do {} while (0) |
| 697 | #define dump_ep_desc(...) do {} while (0) |
| 698 | #endif |
| 699 | |
| 700 | #ifdef USB_DEBUG_URB |
| 701 | #define dump_urb(x) __dump_urb(x) |
| 702 | #else |
| 703 | #define dump_urb(x) do {} while (0) |
| 704 | #endif |
| 705 | |
| 706 | static void init_rx_buffers(void) |
| 707 | { |
| 708 | int i; |
| 709 | |
| 710 | DBFENTER; |
| 711 | |
| 712 | for (i = 0; i < (NBR_OF_RX_DESC - 1); i++) { |
| 713 | RxDescList[i].sw_len = RX_DESC_BUF_SIZE; |
| 714 | RxDescList[i].command = 0; |
| 715 | RxDescList[i].next = virt_to_phys(&RxDescList[i + 1]); |
| 716 | RxDescList[i].buf = virt_to_phys(RxBuf + (i * RX_DESC_BUF_SIZE)); |
| 717 | RxDescList[i].hw_len = 0; |
| 718 | RxDescList[i].status = 0; |
| 719 | |
| 720 | /* DMA IN cache bug. (struct etrax_dma_descr has the same layout as USB_IN_Desc |
| 721 | for the relevant fields.) */ |
| 722 | prepare_rx_descriptor((struct etrax_dma_descr*)&RxDescList[i]); |
| 723 | |
| 724 | } |
| 725 | |
| 726 | RxDescList[i].sw_len = RX_DESC_BUF_SIZE; |
| 727 | RxDescList[i].command = IO_STATE(USB_IN_command, eol, yes); |
| 728 | RxDescList[i].next = virt_to_phys(&RxDescList[0]); |
| 729 | RxDescList[i].buf = virt_to_phys(RxBuf + (i * RX_DESC_BUF_SIZE)); |
| 730 | RxDescList[i].hw_len = 0; |
| 731 | RxDescList[i].status = 0; |
| 732 | |
| 733 | myNextRxDesc = &RxDescList[0]; |
| 734 | myLastRxDesc = &RxDescList[NBR_OF_RX_DESC - 1]; |
| 735 | myPrevRxDesc = &RxDescList[NBR_OF_RX_DESC - 1]; |
| 736 | |
| 737 | *R_DMA_CH9_FIRST = virt_to_phys(myNextRxDesc); |
| 738 | *R_DMA_CH9_CMD = IO_STATE(R_DMA_CH9_CMD, cmd, start); |
| 739 | |
| 740 | DBFEXIT; |
| 741 | } |
| 742 | |
| 743 | static void init_tx_bulk_ep(void) |
| 744 | { |
| 745 | int i; |
| 746 | |
| 747 | DBFENTER; |
| 748 | |
| 749 | for (i = 0; i < (NBR_OF_EPIDS - 1); i++) { |
| 750 | CHECK_ALIGN(&TxBulkEPList[i]); |
| 751 | TxBulkEPList[i].hw_len = 0; |
| 752 | TxBulkEPList[i].command = IO_FIELD(USB_EP_command, epid, i); |
| 753 | TxBulkEPList[i].sub = 0; |
| 754 | TxBulkEPList[i].next = virt_to_phys(&TxBulkEPList[i + 1]); |
| 755 | |
| 756 | /* Initiate two EPs, disabled and with the eol flag set. No need for any |
| 757 | preserved epid. */ |
| 758 | |
| 759 | /* The first one has the intr flag set so we get an interrupt when the DMA |
| 760 | channel is about to become disabled. */ |
| 761 | CHECK_ALIGN(&TxBulkDummyEPList[i][0]); |
| 762 | TxBulkDummyEPList[i][0].hw_len = 0; |
| 763 | TxBulkDummyEPList[i][0].command = (IO_FIELD(USB_EP_command, epid, DUMMY_EPID) | |
| 764 | IO_STATE(USB_EP_command, eol, yes) | |
| 765 | IO_STATE(USB_EP_command, intr, yes)); |
| 766 | TxBulkDummyEPList[i][0].sub = 0; |
| 767 | TxBulkDummyEPList[i][0].next = virt_to_phys(&TxBulkDummyEPList[i][1]); |
| 768 | |
| 769 | /* The second one. */ |
| 770 | CHECK_ALIGN(&TxBulkDummyEPList[i][1]); |
| 771 | TxBulkDummyEPList[i][1].hw_len = 0; |
| 772 | TxBulkDummyEPList[i][1].command = (IO_FIELD(USB_EP_command, epid, DUMMY_EPID) | |
| 773 | IO_STATE(USB_EP_command, eol, yes)); |
| 774 | TxBulkDummyEPList[i][1].sub = 0; |
| 775 | /* The last dummy's next pointer is the same as the current EP's next pointer. */ |
| 776 | TxBulkDummyEPList[i][1].next = virt_to_phys(&TxBulkEPList[i + 1]); |
| 777 | } |
| 778 | |
| 779 | /* Configure the last one. */ |
| 780 | CHECK_ALIGN(&TxBulkEPList[i]); |
| 781 | TxBulkEPList[i].hw_len = 0; |
| 782 | TxBulkEPList[i].command = (IO_STATE(USB_EP_command, eol, yes) | |
| 783 | IO_FIELD(USB_EP_command, epid, i)); |
| 784 | TxBulkEPList[i].sub = 0; |
| 785 | TxBulkEPList[i].next = virt_to_phys(&TxBulkEPList[0]); |
| 786 | |
| 787 | /* No need configuring dummy EPs for the last one as it will never be used for |
| 788 | bulk traffic (i == INVALD_EPID at this point). */ |
| 789 | |
| 790 | /* Set up to start on the last EP so we will enable it when inserting traffic |
| 791 | for the first time (imitating the situation where the DMA has stopped |
| 792 | because there was no more traffic). */ |
| 793 | *R_DMA_CH8_SUB0_EP = virt_to_phys(&TxBulkEPList[i]); |
| 794 | /* No point in starting the bulk channel yet. |
| 795 | *R_DMA_CH8_SUB0_CMD = IO_STATE(R_DMA_CH8_SUB0_CMD, cmd, start); */ |
| 796 | DBFEXIT; |
| 797 | } |
| 798 | |
| 799 | static void init_tx_ctrl_ep(void) |
| 800 | { |
| 801 | int i; |
| 802 | |
| 803 | DBFENTER; |
| 804 | |
| 805 | for (i = 0; i < (NBR_OF_EPIDS - 1); i++) { |
| 806 | CHECK_ALIGN(&TxCtrlEPList[i]); |
| 807 | TxCtrlEPList[i].hw_len = 0; |
| 808 | TxCtrlEPList[i].command = IO_FIELD(USB_EP_command, epid, i); |
| 809 | TxCtrlEPList[i].sub = 0; |
| 810 | TxCtrlEPList[i].next = virt_to_phys(&TxCtrlEPList[i + 1]); |
| 811 | } |
| 812 | |
| 813 | CHECK_ALIGN(&TxCtrlEPList[i]); |
| 814 | TxCtrlEPList[i].hw_len = 0; |
| 815 | TxCtrlEPList[i].command = (IO_STATE(USB_EP_command, eol, yes) | |
| 816 | IO_FIELD(USB_EP_command, epid, i)); |
| 817 | |
| 818 | TxCtrlEPList[i].sub = 0; |
| 819 | TxCtrlEPList[i].next = virt_to_phys(&TxCtrlEPList[0]); |
| 820 | |
| 821 | *R_DMA_CH8_SUB1_EP = virt_to_phys(&TxCtrlEPList[0]); |
| 822 | *R_DMA_CH8_SUB1_CMD = IO_STATE(R_DMA_CH8_SUB1_CMD, cmd, start); |
| 823 | |
| 824 | DBFEXIT; |
| 825 | } |
| 826 | |
| 827 | |
| 828 | static void init_tx_intr_ep(void) |
| 829 | { |
| 830 | int i; |
| 831 | |
| 832 | DBFENTER; |
| 833 | |
| 834 | /* Read comment at zout_buffer declaration for an explanation to this. */ |
| 835 | TxIntrSB_zout.sw_len = 1; |
| 836 | TxIntrSB_zout.next = 0; |
| 837 | TxIntrSB_zout.buf = virt_to_phys(&zout_buffer[0]); |
| 838 | TxIntrSB_zout.command = (IO_FIELD(USB_SB_command, rem, 0) | |
| 839 | IO_STATE(USB_SB_command, tt, zout) | |
| 840 | IO_STATE(USB_SB_command, full, yes) | |
| 841 | IO_STATE(USB_SB_command, eot, yes) | |
| 842 | IO_STATE(USB_SB_command, eol, yes)); |
| 843 | |
| 844 | for (i = 0; i < (MAX_INTR_INTERVAL - 1); i++) { |
| 845 | CHECK_ALIGN(&TxIntrEPList[i]); |
| 846 | TxIntrEPList[i].hw_len = 0; |
| 847 | TxIntrEPList[i].command = |
| 848 | (IO_STATE(USB_EP_command, eof, yes) | |
| 849 | IO_STATE(USB_EP_command, enable, yes) | |
| 850 | IO_FIELD(USB_EP_command, epid, INVALID_EPID)); |
| 851 | TxIntrEPList[i].sub = virt_to_phys(&TxIntrSB_zout); |
| 852 | TxIntrEPList[i].next = virt_to_phys(&TxIntrEPList[i + 1]); |
| 853 | } |
| 854 | |
| 855 | CHECK_ALIGN(&TxIntrEPList[i]); |
| 856 | TxIntrEPList[i].hw_len = 0; |
| 857 | TxIntrEPList[i].command = |
| 858 | (IO_STATE(USB_EP_command, eof, yes) | |
| 859 | IO_STATE(USB_EP_command, eol, yes) | |
| 860 | IO_STATE(USB_EP_command, enable, yes) | |
| 861 | IO_FIELD(USB_EP_command, epid, INVALID_EPID)); |
| 862 | TxIntrEPList[i].sub = virt_to_phys(&TxIntrSB_zout); |
| 863 | TxIntrEPList[i].next = virt_to_phys(&TxIntrEPList[0]); |
| 864 | |
| 865 | *R_DMA_CH8_SUB2_EP = virt_to_phys(&TxIntrEPList[0]); |
| 866 | *R_DMA_CH8_SUB2_CMD = IO_STATE(R_DMA_CH8_SUB2_CMD, cmd, start); |
| 867 | DBFEXIT; |
| 868 | } |
| 869 | |
| 870 | static void init_tx_isoc_ep(void) |
| 871 | { |
| 872 | int i; |
| 873 | |
| 874 | DBFENTER; |
| 875 | |
| 876 | /* Read comment at zout_buffer declaration for an explanation to this. */ |
| 877 | TxIsocSB_zout.sw_len = 1; |
| 878 | TxIsocSB_zout.next = 0; |
| 879 | TxIsocSB_zout.buf = virt_to_phys(&zout_buffer[0]); |
| 880 | TxIsocSB_zout.command = (IO_FIELD(USB_SB_command, rem, 0) | |
| 881 | IO_STATE(USB_SB_command, tt, zout) | |
| 882 | IO_STATE(USB_SB_command, full, yes) | |
| 883 | IO_STATE(USB_SB_command, eot, yes) | |
| 884 | IO_STATE(USB_SB_command, eol, yes)); |
| 885 | |
| 886 | /* The last isochronous EP descriptor is a dummy. */ |
| 887 | |
| 888 | for (i = 0; i < (NBR_OF_EPIDS - 1); i++) { |
| 889 | CHECK_ALIGN(&TxIsocEPList[i]); |
| 890 | TxIsocEPList[i].hw_len = 0; |
| 891 | TxIsocEPList[i].command = IO_FIELD(USB_EP_command, epid, i); |
| 892 | TxIsocEPList[i].sub = 0; |
| 893 | TxIsocEPList[i].next = virt_to_phys(&TxIsocEPList[i + 1]); |
| 894 | } |
| 895 | |
| 896 | CHECK_ALIGN(&TxIsocEPList[i]); |
| 897 | TxIsocEPList[i].hw_len = 0; |
| 898 | |
| 899 | /* Must enable the last EP descr to get eof interrupt. */ |
| 900 | TxIsocEPList[i].command = (IO_STATE(USB_EP_command, enable, yes) | |
| 901 | IO_STATE(USB_EP_command, eof, yes) | |
| 902 | IO_STATE(USB_EP_command, eol, yes) | |
| 903 | IO_FIELD(USB_EP_command, epid, INVALID_EPID)); |
| 904 | TxIsocEPList[i].sub = virt_to_phys(&TxIsocSB_zout); |
| 905 | TxIsocEPList[i].next = virt_to_phys(&TxIsocEPList[0]); |
| 906 | |
| 907 | *R_DMA_CH8_SUB3_EP = virt_to_phys(&TxIsocEPList[0]); |
| 908 | *R_DMA_CH8_SUB3_CMD = IO_STATE(R_DMA_CH8_SUB3_CMD, cmd, start); |
| 909 | |
| 910 | DBFEXIT; |
| 911 | } |
| 912 | |
| 913 | static void etrax_usb_unlink_intr_urb(struct urb *urb) |
| 914 | { |
| 915 | volatile USB_EP_Desc_t *first_ep; /* First EP in the list. */ |
| 916 | volatile USB_EP_Desc_t *curr_ep; /* Current EP, the iterator. */ |
| 917 | volatile USB_EP_Desc_t *next_ep; /* The EP after current. */ |
| 918 | volatile USB_EP_Desc_t *unlink_ep; /* The one we should remove from the list. */ |
| 919 | |
| 920 | int epid; |
| 921 | |
| 922 | /* Read 8.8.4 in Designer's Reference, "Removing an EP Descriptor from the List". */ |
| 923 | |
| 924 | DBFENTER; |
| 925 | |
| 926 | epid = ((etrax_urb_priv_t *)urb->hcpriv)->epid; |
| 927 | |
| 928 | first_ep = &TxIntrEPList[0]; |
| 929 | curr_ep = first_ep; |
| 930 | |
| 931 | |
| 932 | /* Note that this loop removes all EP descriptors with this epid. This assumes |
| 933 | that all EP descriptors belong to the one and only urb for this epid. */ |
| 934 | |
| 935 | do { |
| 936 | next_ep = (USB_EP_Desc_t *)phys_to_virt(curr_ep->next); |
| 937 | |
| 938 | if (IO_EXTRACT(USB_EP_command, epid, next_ep->command) == epid) { |
| 939 | |
| 940 | dbg_intr("Found EP to unlink for epid %d", epid); |
| 941 | |
| 942 | /* This is the one we should unlink. */ |
| 943 | unlink_ep = next_ep; |
| 944 | |
| 945 | /* Actually unlink the EP from the DMA list. */ |
| 946 | curr_ep->next = unlink_ep->next; |
| 947 | |
| 948 | /* Wait until the DMA is no longer at this descriptor. */ |
| 949 | while (*R_DMA_CH8_SUB2_EP == virt_to_phys(unlink_ep)); |
| 950 | |
| 951 | /* Now we are free to remove it and its SB descriptor. |
| 952 | Note that it is assumed here that there is only one sb in the |
| 953 | sb list for this ep. */ |
| 954 | kmem_cache_free(usb_desc_cache, phys_to_virt(unlink_ep->sub)); |
| 955 | kmem_cache_free(usb_desc_cache, (USB_EP_Desc_t *)unlink_ep); |
| 956 | } |
| 957 | |
| 958 | curr_ep = phys_to_virt(curr_ep->next); |
| 959 | |
| 960 | } while (curr_ep != first_ep); |
| 961 | urb->hcpriv = NULL; |
| 962 | } |
| 963 | |
| 964 | void etrax_usb_do_intr_recover(int epid) |
| 965 | { |
| 966 | USB_EP_Desc_t *first_ep, *tmp_ep; |
| 967 | |
| 968 | DBFENTER; |
| 969 | |
| 970 | first_ep = (USB_EP_Desc_t *)phys_to_virt(*R_DMA_CH8_SUB2_EP); |
| 971 | tmp_ep = first_ep; |
| 972 | |
| 973 | /* What this does is simply to walk the list of interrupt |
| 974 | ep descriptors and enable those that are disabled. */ |
| 975 | |
| 976 | do { |
| 977 | if (IO_EXTRACT(USB_EP_command, epid, tmp_ep->command) == epid && |
| 978 | !(tmp_ep->command & IO_MASK(USB_EP_command, enable))) { |
| 979 | tmp_ep->command |= IO_STATE(USB_EP_command, enable, yes); |
| 980 | } |
| 981 | |
| 982 | tmp_ep = (USB_EP_Desc_t *)phys_to_virt(tmp_ep->next); |
| 983 | |
| 984 | } while (tmp_ep != first_ep); |
| 985 | |
| 986 | |
| 987 | DBFEXIT; |
| 988 | } |
| 989 | |
| 990 | static int etrax_rh_unlink_urb (struct urb *urb) |
| 991 | { |
| 992 | etrax_hc_t *hc; |
| 993 | |
| 994 | DBFENTER; |
| 995 | |
| 996 | hc = urb->dev->bus->hcpriv; |
| 997 | |
| 998 | if (hc->rh.urb == urb) { |
| 999 | hc->rh.send = 0; |
| 1000 | del_timer(&hc->rh.rh_int_timer); |
| 1001 | } |
| 1002 | |
| 1003 | DBFEXIT; |
| 1004 | return 0; |
| 1005 | } |
| 1006 | |
| 1007 | static void etrax_rh_send_irq(struct urb *urb) |
| 1008 | { |
| 1009 | __u16 data = 0; |
| 1010 | etrax_hc_t *hc = urb->dev->bus->hcpriv; |
| 1011 | DBFENTER; |
| 1012 | |
| 1013 | /* |
| 1014 | dbg_rh("R_USB_FM_NUMBER : 0x%08X", *R_USB_FM_NUMBER); |
| 1015 | dbg_rh("R_USB_FM_REMAINING: 0x%08X", *R_USB_FM_REMAINING); |
| 1016 | */ |
| 1017 | |
| 1018 | data |= (hc->rh.wPortChange_1) ? (1 << 1) : 0; |
| 1019 | data |= (hc->rh.wPortChange_2) ? (1 << 2) : 0; |
| 1020 | |
| 1021 | *((__u16 *)urb->transfer_buffer) = cpu_to_le16(data); |
| 1022 | /* FIXME: Why is actual_length set to 1 when data is 2 bytes? |
| 1023 | Since only 1 byte is used, why not declare data as __u8? */ |
| 1024 | urb->actual_length = 1; |
| 1025 | urb->status = 0; |
| 1026 | |
| 1027 | if (hc->rh.send && urb->complete) { |
| 1028 | dbg_rh("wPortChange_1: 0x%04X", hc->rh.wPortChange_1); |
| 1029 | dbg_rh("wPortChange_2: 0x%04X", hc->rh.wPortChange_2); |
| 1030 | |
| 1031 | urb->complete(urb, NULL); |
| 1032 | } |
| 1033 | |
| 1034 | DBFEXIT; |
| 1035 | } |
| 1036 | |
| 1037 | static void etrax_rh_init_int_timer(struct urb *urb) |
| 1038 | { |
| 1039 | etrax_hc_t *hc; |
| 1040 | |
| 1041 | DBFENTER; |
| 1042 | |
| 1043 | hc = urb->dev->bus->hcpriv; |
| 1044 | hc->rh.interval = urb->interval; |
| 1045 | init_timer(&hc->rh.rh_int_timer); |
| 1046 | hc->rh.rh_int_timer.function = etrax_rh_int_timer_do; |
| 1047 | hc->rh.rh_int_timer.data = (unsigned long)urb; |
| 1048 | /* FIXME: Is the jiffies resolution enough? All intervals < 10 ms will be mapped |
| 1049 | to 0, and the rest to the nearest lower 10 ms. */ |
| 1050 | hc->rh.rh_int_timer.expires = jiffies + ((HZ * hc->rh.interval) / 1000); |
| 1051 | add_timer(&hc->rh.rh_int_timer); |
| 1052 | |
| 1053 | DBFEXIT; |
| 1054 | } |
| 1055 | |
| 1056 | static void etrax_rh_int_timer_do(unsigned long ptr) |
| 1057 | { |
| 1058 | struct urb *urb; |
| 1059 | etrax_hc_t *hc; |
| 1060 | |
| 1061 | DBFENTER; |
| 1062 | |
| 1063 | urb = (struct urb*)ptr; |
| 1064 | hc = urb->dev->bus->hcpriv; |
| 1065 | |
| 1066 | if (hc->rh.send) { |
| 1067 | etrax_rh_send_irq(urb); |
| 1068 | } |
| 1069 | |
| 1070 | DBFEXIT; |
| 1071 | } |
| 1072 | |
| 1073 | static int etrax_usb_setup_epid(struct urb *urb) |
| 1074 | { |
| 1075 | int epid; |
| 1076 | char devnum, endpoint, out_traffic, slow; |
| 1077 | int maxlen; |
| 1078 | unsigned long flags; |
| 1079 | |
| 1080 | DBFENTER; |
| 1081 | |
| 1082 | epid = etrax_usb_lookup_epid(urb); |
| 1083 | if ((epid != -1)){ |
| 1084 | /* An epid that fits this urb has been found. */ |
| 1085 | DBFEXIT; |
| 1086 | return epid; |
| 1087 | } |
| 1088 | |
| 1089 | /* We must find and initiate a new epid for this urb. */ |
| 1090 | epid = etrax_usb_allocate_epid(); |
| 1091 | |
| 1092 | if (epid == -1) { |
| 1093 | /* Failed to allocate a new epid. */ |
| 1094 | DBFEXIT; |
| 1095 | return epid; |
| 1096 | } |
| 1097 | |
| 1098 | /* We now have a new epid to use. Initiate it. */ |
| 1099 | set_bit(epid, (void *)&epid_usage_bitmask); |
| 1100 | |
| 1101 | devnum = usb_pipedevice(urb->pipe); |
| 1102 | endpoint = usb_pipeendpoint(urb->pipe); |
| 1103 | slow = usb_pipeslow(urb->pipe); |
| 1104 | maxlen = usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe)); |
| 1105 | if (usb_pipetype(urb->pipe) == PIPE_CONTROL) { |
| 1106 | /* We want both IN and OUT control traffic to be put on the same EP/SB list. */ |
| 1107 | out_traffic = 1; |
| 1108 | } else { |
| 1109 | out_traffic = usb_pipeout(urb->pipe); |
| 1110 | } |
| 1111 | |
| 1112 | save_flags(flags); |
| 1113 | cli(); |
| 1114 | |
| 1115 | *R_USB_EPT_INDEX = IO_FIELD(R_USB_EPT_INDEX, value, epid); |
| 1116 | nop(); |
| 1117 | |
| 1118 | if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { |
| 1119 | *R_USB_EPT_DATA_ISO = IO_STATE(R_USB_EPT_DATA_ISO, valid, yes) | |
| 1120 | /* FIXME: Change any to the actual port? */ |
| 1121 | IO_STATE(R_USB_EPT_DATA_ISO, port, any) | |
| 1122 | IO_FIELD(R_USB_EPT_DATA_ISO, max_len, maxlen) | |
| 1123 | IO_FIELD(R_USB_EPT_DATA_ISO, ep, endpoint) | |
| 1124 | IO_FIELD(R_USB_EPT_DATA_ISO, dev, devnum); |
| 1125 | } else { |
| 1126 | *R_USB_EPT_DATA = IO_STATE(R_USB_EPT_DATA, valid, yes) | |
| 1127 | IO_FIELD(R_USB_EPT_DATA, low_speed, slow) | |
| 1128 | /* FIXME: Change any to the actual port? */ |
| 1129 | IO_STATE(R_USB_EPT_DATA, port, any) | |
| 1130 | IO_FIELD(R_USB_EPT_DATA, max_len, maxlen) | |
| 1131 | IO_FIELD(R_USB_EPT_DATA, ep, endpoint) | |
| 1132 | IO_FIELD(R_USB_EPT_DATA, dev, devnum); |
| 1133 | } |
| 1134 | |
| 1135 | restore_flags(flags); |
| 1136 | |
| 1137 | if (out_traffic) { |
| 1138 | set_bit(epid, (void *)&epid_out_traffic); |
| 1139 | } else { |
| 1140 | clear_bit(epid, (void *)&epid_out_traffic); |
| 1141 | } |
| 1142 | |
| 1143 | dbg_epid("Setting up epid %d with devnum %d, endpoint %d and max_len %d (%s)", |
| 1144 | epid, devnum, endpoint, maxlen, out_traffic ? "OUT" : "IN"); |
| 1145 | |
| 1146 | DBFEXIT; |
| 1147 | return epid; |
| 1148 | } |
| 1149 | |
| 1150 | static void etrax_usb_free_epid(int epid) |
| 1151 | { |
| 1152 | unsigned long flags; |
| 1153 | |
| 1154 | DBFENTER; |
| 1155 | |
| 1156 | if (!test_bit(epid, (void *)&epid_usage_bitmask)) { |
| 1157 | warn("Trying to free unused epid %d", epid); |
| 1158 | DBFEXIT; |
| 1159 | return; |
| 1160 | } |
| 1161 | |
| 1162 | save_flags(flags); |
| 1163 | cli(); |
| 1164 | |
| 1165 | *R_USB_EPT_INDEX = IO_FIELD(R_USB_EPT_INDEX, value, epid); |
| 1166 | nop(); |
| 1167 | while (*R_USB_EPT_DATA & IO_MASK(R_USB_EPT_DATA, hold)); |
| 1168 | /* This will, among other things, set the valid field to 0. */ |
| 1169 | *R_USB_EPT_DATA = 0; |
| 1170 | restore_flags(flags); |
| 1171 | |
| 1172 | clear_bit(epid, (void *)&epid_usage_bitmask); |
| 1173 | |
| 1174 | |
| 1175 | dbg_epid("Freed epid %d", epid); |
| 1176 | |
| 1177 | DBFEXIT; |
| 1178 | } |
| 1179 | |
| 1180 | static int etrax_usb_lookup_epid(struct urb *urb) |
| 1181 | { |
| 1182 | int i; |
| 1183 | __u32 data; |
| 1184 | char devnum, endpoint, slow, out_traffic; |
| 1185 | int maxlen; |
| 1186 | unsigned long flags; |
| 1187 | |
| 1188 | DBFENTER; |
| 1189 | |
| 1190 | devnum = usb_pipedevice(urb->pipe); |
| 1191 | endpoint = usb_pipeendpoint(urb->pipe); |
| 1192 | slow = usb_pipeslow(urb->pipe); |
| 1193 | maxlen = usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe)); |
| 1194 | if (usb_pipetype(urb->pipe) == PIPE_CONTROL) { |
| 1195 | /* We want both IN and OUT control traffic to be put on the same EP/SB list. */ |
| 1196 | out_traffic = 1; |
| 1197 | } else { |
| 1198 | out_traffic = usb_pipeout(urb->pipe); |
| 1199 | } |
| 1200 | |
| 1201 | /* Step through att epids. */ |
| 1202 | for (i = 0; i < NBR_OF_EPIDS; i++) { |
| 1203 | if (test_bit(i, (void *)&epid_usage_bitmask) && |
| 1204 | test_bit(i, (void *)&epid_out_traffic) == out_traffic) { |
| 1205 | |
| 1206 | save_flags(flags); |
| 1207 | cli(); |
| 1208 | *R_USB_EPT_INDEX = IO_FIELD(R_USB_EPT_INDEX, value, i); |
| 1209 | nop(); |
| 1210 | |
| 1211 | if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { |
| 1212 | data = *R_USB_EPT_DATA_ISO; |
| 1213 | restore_flags(flags); |
| 1214 | |
| 1215 | if ((IO_MASK(R_USB_EPT_DATA_ISO, valid) & data) && |
| 1216 | (IO_EXTRACT(R_USB_EPT_DATA_ISO, dev, data) == devnum) && |
| 1217 | (IO_EXTRACT(R_USB_EPT_DATA_ISO, ep, data) == endpoint) && |
| 1218 | (IO_EXTRACT(R_USB_EPT_DATA_ISO, max_len, data) == maxlen)) { |
| 1219 | dbg_epid("Found epid %d for devnum %d, endpoint %d (%s)", |
| 1220 | i, devnum, endpoint, out_traffic ? "OUT" : "IN"); |
| 1221 | DBFEXIT; |
| 1222 | return i; |
| 1223 | } |
| 1224 | } else { |
| 1225 | data = *R_USB_EPT_DATA; |
| 1226 | restore_flags(flags); |
| 1227 | |
| 1228 | if ((IO_MASK(R_USB_EPT_DATA, valid) & data) && |
| 1229 | (IO_EXTRACT(R_USB_EPT_DATA, dev, data) == devnum) && |
| 1230 | (IO_EXTRACT(R_USB_EPT_DATA, ep, data) == endpoint) && |
| 1231 | (IO_EXTRACT(R_USB_EPT_DATA, low_speed, data) == slow) && |
| 1232 | (IO_EXTRACT(R_USB_EPT_DATA, max_len, data) == maxlen)) { |
| 1233 | dbg_epid("Found epid %d for devnum %d, endpoint %d (%s)", |
| 1234 | i, devnum, endpoint, out_traffic ? "OUT" : "IN"); |
| 1235 | DBFEXIT; |
| 1236 | return i; |
| 1237 | } |
| 1238 | } |
| 1239 | } |
| 1240 | } |
| 1241 | |
| 1242 | DBFEXIT; |
| 1243 | return -1; |
| 1244 | } |
| 1245 | |
| 1246 | static int etrax_usb_allocate_epid(void) |
| 1247 | { |
| 1248 | int i; |
| 1249 | |
| 1250 | DBFENTER; |
| 1251 | |
| 1252 | for (i = 0; i < NBR_OF_EPIDS; i++) { |
| 1253 | if (!test_bit(i, (void *)&epid_usage_bitmask)) { |
| 1254 | dbg_epid("Found free epid %d", i); |
| 1255 | DBFEXIT; |
| 1256 | return i; |
| 1257 | } |
| 1258 | } |
| 1259 | |
| 1260 | dbg_epid("Found no free epids"); |
| 1261 | DBFEXIT; |
| 1262 | return -1; |
| 1263 | } |
| 1264 | |
| 1265 | static int etrax_usb_submit_urb(struct urb *urb, int mem_flags) |
| 1266 | { |
| 1267 | etrax_hc_t *hc; |
| 1268 | int ret = -EINVAL; |
| 1269 | |
| 1270 | DBFENTER; |
| 1271 | |
| 1272 | if (!urb->dev || !urb->dev->bus) { |
| 1273 | return -ENODEV; |
| 1274 | } |
| 1275 | if (usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe)) <= 0) { |
| 1276 | info("Submit urb to pipe with maxpacketlen 0, pipe 0x%X\n", urb->pipe); |
| 1277 | return -EMSGSIZE; |
| 1278 | } |
| 1279 | |
| 1280 | if (urb->timeout) { |
| 1281 | /* FIXME. */ |
| 1282 | warn("urb->timeout specified, ignoring."); |
| 1283 | } |
| 1284 | |
| 1285 | hc = (etrax_hc_t*)urb->dev->bus->hcpriv; |
| 1286 | |
| 1287 | if (usb_pipedevice(urb->pipe) == hc->rh.devnum) { |
| 1288 | /* This request is for the Virtual Root Hub. */ |
| 1289 | ret = etrax_rh_submit_urb(urb); |
| 1290 | |
| 1291 | } else if (usb_pipetype(urb->pipe) == PIPE_BULK) { |
| 1292 | |
| 1293 | ret = etrax_usb_submit_bulk_urb(urb); |
| 1294 | |
| 1295 | } else if (usb_pipetype(urb->pipe) == PIPE_CONTROL) { |
| 1296 | |
| 1297 | ret = etrax_usb_submit_ctrl_urb(urb); |
| 1298 | |
| 1299 | } else if (usb_pipetype(urb->pipe) == PIPE_INTERRUPT) { |
| 1300 | int bustime; |
| 1301 | |
| 1302 | if (urb->bandwidth == 0) { |
| 1303 | bustime = usb_check_bandwidth(urb->dev, urb); |
| 1304 | if (bustime < 0) { |
| 1305 | ret = bustime; |
| 1306 | } else { |
| 1307 | ret = etrax_usb_submit_intr_urb(urb); |
| 1308 | if (ret == 0) |
| 1309 | usb_claim_bandwidth(urb->dev, urb, bustime, 0); |
| 1310 | } |
| 1311 | } else { |
| 1312 | /* Bandwidth already set. */ |
| 1313 | ret = etrax_usb_submit_intr_urb(urb); |
| 1314 | } |
| 1315 | |
| 1316 | } else if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { |
| 1317 | int bustime; |
| 1318 | |
| 1319 | if (urb->bandwidth == 0) { |
| 1320 | bustime = usb_check_bandwidth(urb->dev, urb); |
| 1321 | if (bustime < 0) { |
| 1322 | ret = bustime; |
| 1323 | } else { |
| 1324 | ret = etrax_usb_submit_isoc_urb(urb); |
| 1325 | if (ret == 0) |
| 1326 | usb_claim_bandwidth(urb->dev, urb, bustime, 0); |
| 1327 | } |
| 1328 | } else { |
| 1329 | /* Bandwidth already set. */ |
| 1330 | ret = etrax_usb_submit_isoc_urb(urb); |
| 1331 | } |
| 1332 | } |
| 1333 | |
| 1334 | DBFEXIT; |
| 1335 | |
| 1336 | if (ret != 0) |
| 1337 | printk("Submit URB error %d\n", ret); |
| 1338 | |
| 1339 | return ret; |
| 1340 | } |
| 1341 | |
| 1342 | static int etrax_usb_unlink_urb(struct urb *urb, int status) |
| 1343 | { |
| 1344 | etrax_hc_t *hc; |
| 1345 | etrax_urb_priv_t *urb_priv; |
| 1346 | int epid; |
| 1347 | unsigned int flags; |
| 1348 | |
| 1349 | DBFENTER; |
| 1350 | |
| 1351 | if (!urb) { |
| 1352 | return -EINVAL; |
| 1353 | } |
| 1354 | |
| 1355 | /* Disable interrupts here since a descriptor interrupt for the isoc epid |
| 1356 | will modify the sb list. This could possibly be done more granular, but |
| 1357 | unlink_urb should not be used frequently anyway. |
| 1358 | */ |
| 1359 | |
| 1360 | save_flags(flags); |
| 1361 | cli(); |
| 1362 | |
| 1363 | if (!urb->dev || !urb->dev->bus) { |
| 1364 | restore_flags(flags); |
| 1365 | return -ENODEV; |
| 1366 | } |
| 1367 | if (!urb->hcpriv) { |
| 1368 | /* This happens if a device driver calls unlink on an urb that |
| 1369 | was never submitted (lazy driver) or if the urb was completed |
| 1370 | while unlink was being called. */ |
| 1371 | restore_flags(flags); |
| 1372 | return 0; |
| 1373 | } |
| 1374 | if (urb->transfer_flags & URB_ASYNC_UNLINK) { |
| 1375 | /* FIXME. */ |
| 1376 | /* If URB_ASYNC_UNLINK is set: |
| 1377 | unlink |
| 1378 | move to a separate urb list |
| 1379 | call complete at next sof with ECONNRESET |
| 1380 | |
| 1381 | If not: |
| 1382 | wait 1 ms |
| 1383 | unlink |
| 1384 | call complete with ENOENT |
| 1385 | */ |
| 1386 | warn("URB_ASYNC_UNLINK set, ignoring."); |
| 1387 | } |
| 1388 | |
| 1389 | /* One might think that urb->status = -EINPROGRESS would be a requirement for unlinking, |
| 1390 | but that doesn't work for interrupt and isochronous traffic since they are completed |
| 1391 | repeatedly, and urb->status is set then. That may in itself be a bug though. */ |
| 1392 | |
| 1393 | hc = urb->dev->bus->hcpriv; |
| 1394 | urb_priv = (etrax_urb_priv_t *)urb->hcpriv; |
| 1395 | epid = urb_priv->epid; |
| 1396 | |
| 1397 | /* Set the urb status (synchronous unlink). */ |
| 1398 | urb->status = -ENOENT; |
| 1399 | urb_priv->urb_state = UNLINK; |
| 1400 | |
| 1401 | if (usb_pipedevice(urb->pipe) == hc->rh.devnum) { |
| 1402 | int ret; |
| 1403 | ret = etrax_rh_unlink_urb(urb); |
| 1404 | DBFEXIT; |
| 1405 | restore_flags(flags); |
| 1406 | return ret; |
| 1407 | |
| 1408 | } else if (usb_pipetype(urb->pipe) == PIPE_BULK) { |
| 1409 | |
| 1410 | dbg_bulk("Unlink of bulk urb (0x%lx)", (unsigned long)urb); |
| 1411 | |
| 1412 | if (TxBulkEPList[epid].command & IO_MASK(USB_EP_command, enable)) { |
| 1413 | /* The EP was enabled, disable it and wait. */ |
| 1414 | TxBulkEPList[epid].command &= ~IO_MASK(USB_EP_command, enable); |
| 1415 | |
| 1416 | /* Ah, the luxury of busy-wait. */ |
| 1417 | while (*R_DMA_CH8_SUB0_EP == virt_to_phys(&TxBulkEPList[epid])); |
| 1418 | } |
| 1419 | /* Kicking dummy list out of the party. */ |
| 1420 | TxBulkEPList[epid].next = virt_to_phys(&TxBulkEPList[(epid + 1) % NBR_OF_EPIDS]); |
| 1421 | |
| 1422 | } else if (usb_pipetype(urb->pipe) == PIPE_CONTROL) { |
| 1423 | |
| 1424 | dbg_ctrl("Unlink of ctrl urb (0x%lx)", (unsigned long)urb); |
| 1425 | |
| 1426 | if (TxCtrlEPList[epid].command & IO_MASK(USB_EP_command, enable)) { |
| 1427 | /* The EP was enabled, disable it and wait. */ |
| 1428 | TxCtrlEPList[epid].command &= ~IO_MASK(USB_EP_command, enable); |
| 1429 | |
| 1430 | /* Ah, the luxury of busy-wait. */ |
| 1431 | while (*R_DMA_CH8_SUB1_EP == virt_to_phys(&TxCtrlEPList[epid])); |
| 1432 | } |
| 1433 | |
| 1434 | } else if (usb_pipetype(urb->pipe) == PIPE_INTERRUPT) { |
| 1435 | |
| 1436 | dbg_intr("Unlink of intr urb (0x%lx)", (unsigned long)urb); |
| 1437 | |
| 1438 | /* Separate function because it's a tad more complicated. */ |
| 1439 | etrax_usb_unlink_intr_urb(urb); |
| 1440 | |
| 1441 | } else if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { |
| 1442 | |
| 1443 | dbg_isoc("Unlink of isoc urb (0x%lx)", (unsigned long)urb); |
| 1444 | |
| 1445 | if (TxIsocEPList[epid].command & IO_MASK(USB_EP_command, enable)) { |
| 1446 | /* The EP was enabled, disable it and wait. */ |
| 1447 | TxIsocEPList[epid].command &= ~IO_MASK(USB_EP_command, enable); |
| 1448 | |
| 1449 | /* Ah, the luxury of busy-wait. */ |
| 1450 | while (*R_DMA_CH8_SUB3_EP == virt_to_phys(&TxIsocEPList[epid])); |
| 1451 | } |
| 1452 | } |
| 1453 | |
| 1454 | /* Note that we need to remove the urb from the urb list *before* removing its SB |
| 1455 | descriptors. (This means that the isoc eof handler might get a null urb when we |
| 1456 | are unlinking the last urb.) */ |
| 1457 | |
| 1458 | if (usb_pipetype(urb->pipe) == PIPE_BULK) { |
| 1459 | |
| 1460 | urb_list_del(urb, epid); |
| 1461 | TxBulkEPList[epid].sub = 0; |
| 1462 | etrax_remove_from_sb_list(urb); |
| 1463 | |
| 1464 | } else if (usb_pipetype(urb->pipe) == PIPE_CONTROL) { |
| 1465 | |
| 1466 | urb_list_del(urb, epid); |
| 1467 | TxCtrlEPList[epid].sub = 0; |
| 1468 | etrax_remove_from_sb_list(urb); |
| 1469 | |
| 1470 | } else if (usb_pipetype(urb->pipe) == PIPE_INTERRUPT) { |
| 1471 | |
| 1472 | urb_list_del(urb, epid); |
| 1473 | /* Sanity check (should never happen). */ |
| 1474 | assert(urb_list_empty(epid)); |
| 1475 | |
| 1476 | /* Release allocated bandwidth. */ |
| 1477 | usb_release_bandwidth(urb->dev, urb, 0); |
| 1478 | |
| 1479 | } else if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { |
| 1480 | |
| 1481 | if (usb_pipeout(urb->pipe)) { |
| 1482 | |
| 1483 | USB_SB_Desc_t *iter_sb, *prev_sb, *next_sb; |
| 1484 | |
| 1485 | if (__urb_list_entry(urb, epid)) { |
| 1486 | |
| 1487 | urb_list_del(urb, epid); |
| 1488 | iter_sb = TxIsocEPList[epid].sub ? phys_to_virt(TxIsocEPList[epid].sub) : 0; |
| 1489 | prev_sb = 0; |
| 1490 | while (iter_sb && (iter_sb != urb_priv->first_sb)) { |
| 1491 | prev_sb = iter_sb; |
| 1492 | iter_sb = iter_sb->next ? phys_to_virt(iter_sb->next) : 0; |
| 1493 | } |
| 1494 | |
| 1495 | if (iter_sb == 0) { |
| 1496 | /* Unlink of the URB currently being transmitted. */ |
| 1497 | prev_sb = 0; |
| 1498 | iter_sb = TxIsocEPList[epid].sub ? phys_to_virt(TxIsocEPList[epid].sub) : 0; |
| 1499 | } |
| 1500 | |
| 1501 | while (iter_sb && (iter_sb != urb_priv->last_sb)) { |
| 1502 | iter_sb = iter_sb->next ? phys_to_virt(iter_sb->next) : 0; |
| 1503 | } |
| 1504 | if (iter_sb) { |
| 1505 | next_sb = iter_sb->next ? phys_to_virt(iter_sb->next) : 0; |
| 1506 | } else { |
| 1507 | /* This should only happen if the DMA has completed |
| 1508 | processing the SB list for this EP while interrupts |
| 1509 | are disabled. */ |
| 1510 | dbg_isoc("Isoc urb not found, already sent?"); |
| 1511 | next_sb = 0; |
| 1512 | } |
| 1513 | if (prev_sb) { |
| 1514 | prev_sb->next = next_sb ? virt_to_phys(next_sb) : 0; |
| 1515 | } else { |
| 1516 | TxIsocEPList[epid].sub = next_sb ? virt_to_phys(next_sb) : 0; |
| 1517 | } |
| 1518 | |
| 1519 | etrax_remove_from_sb_list(urb); |
| 1520 | if (urb_list_empty(epid)) { |
| 1521 | TxIsocEPList[epid].sub = 0; |
| 1522 | dbg_isoc("Last isoc out urb epid %d", epid); |
| 1523 | } else if (next_sb || prev_sb) { |
| 1524 | dbg_isoc("Re-enable isoc out epid %d", epid); |
| 1525 | |
| 1526 | TxIsocEPList[epid].hw_len = 0; |
| 1527 | TxIsocEPList[epid].command |= IO_STATE(USB_EP_command, enable, yes); |
| 1528 | } else { |
| 1529 | TxIsocEPList[epid].sub = 0; |
| 1530 | dbg_isoc("URB list non-empty and no SB list, EP disabled"); |
| 1531 | } |
| 1532 | } else { |
| 1533 | dbg_isoc("Urb 0x%p not found, completed already?", urb); |
| 1534 | } |
| 1535 | } else { |
| 1536 | |
| 1537 | urb_list_del(urb, epid); |
| 1538 | |
| 1539 | /* For in traffic there is only one SB descriptor for each EP even |
| 1540 | though there may be several urbs (all urbs point at the same SB). */ |
| 1541 | if (urb_list_empty(epid)) { |
| 1542 | /* No more urbs, remove the SB. */ |
| 1543 | TxIsocEPList[epid].sub = 0; |
| 1544 | etrax_remove_from_sb_list(urb); |
| 1545 | } else { |
| 1546 | TxIsocEPList[epid].hw_len = 0; |
| 1547 | TxIsocEPList[epid].command |= IO_STATE(USB_EP_command, enable, yes); |
| 1548 | } |
| 1549 | } |
| 1550 | /* Release allocated bandwidth. */ |
| 1551 | usb_release_bandwidth(urb->dev, urb, 1); |
| 1552 | } |
| 1553 | /* Free the epid if urb list is empty. */ |
| 1554 | if (urb_list_empty(epid)) { |
| 1555 | etrax_usb_free_epid(epid); |
| 1556 | } |
| 1557 | restore_flags(flags); |
| 1558 | |
| 1559 | /* Must be done before calling completion handler. */ |
| 1560 | kfree(urb_priv); |
| 1561 | urb->hcpriv = 0; |
| 1562 | |
| 1563 | if (urb->complete) { |
| 1564 | urb->complete(urb, NULL); |
| 1565 | } |
| 1566 | |
| 1567 | DBFEXIT; |
| 1568 | return 0; |
| 1569 | } |
| 1570 | |
| 1571 | static int etrax_usb_get_frame_number(struct usb_device *usb_dev) |
| 1572 | { |
| 1573 | DBFENTER; |
| 1574 | DBFEXIT; |
| 1575 | return (*R_USB_FM_NUMBER & 0x7ff); |
| 1576 | } |
| 1577 | |
| 1578 | static irqreturn_t etrax_usb_tx_interrupt(int irq, void *vhc, struct pt_regs *regs) |
| 1579 | { |
| 1580 | DBFENTER; |
| 1581 | |
| 1582 | /* This interrupt handler could be used when unlinking EP descriptors. */ |
| 1583 | |
| 1584 | if (*R_IRQ_READ2 & IO_MASK(R_IRQ_READ2, dma8_sub0_descr)) { |
| 1585 | USB_EP_Desc_t *ep; |
| 1586 | |
| 1587 | //dbg_bulk("dma8_sub0_descr (BULK) intr."); |
| 1588 | |
| 1589 | /* It should be safe clearing the interrupt here, since we don't expect to get a new |
| 1590 | one until we restart the bulk channel. */ |
| 1591 | *R_DMA_CH8_SUB0_CLR_INTR = IO_STATE(R_DMA_CH8_SUB0_CLR_INTR, clr_descr, do); |
| 1592 | |
| 1593 | /* Wait while the DMA is running (though we don't expect it to be). */ |
| 1594 | while (*R_DMA_CH8_SUB0_CMD & IO_MASK(R_DMA_CH8_SUB0_CMD, cmd)); |
| 1595 | |
| 1596 | /* Advance the DMA to the next EP descriptor. */ |
| 1597 | ep = (USB_EP_Desc_t *)phys_to_virt(*R_DMA_CH8_SUB0_EP); |
| 1598 | |
| 1599 | //dbg_bulk("descr intr: DMA is at 0x%lx", (unsigned long)ep); |
| 1600 | |
| 1601 | /* ep->next is already a physical address; no need for a virt_to_phys. */ |
| 1602 | *R_DMA_CH8_SUB0_EP = ep->next; |
| 1603 | |
| 1604 | /* Start the DMA bulk channel again. */ |
| 1605 | *R_DMA_CH8_SUB0_CMD = IO_STATE(R_DMA_CH8_SUB0_CMD, cmd, start); |
| 1606 | } |
| 1607 | if (*R_IRQ_READ2 & IO_MASK(R_IRQ_READ2, dma8_sub1_descr)) { |
| 1608 | struct urb *urb; |
| 1609 | int epid; |
| 1610 | etrax_urb_priv_t *urb_priv; |
| 1611 | unsigned long int flags; |
| 1612 | |
| 1613 | dbg_ctrl("dma8_sub1_descr (CTRL) intr."); |
| 1614 | *R_DMA_CH8_SUB1_CLR_INTR = IO_STATE(R_DMA_CH8_SUB1_CLR_INTR, clr_descr, do); |
| 1615 | |
| 1616 | /* The complete callback gets called so we cli. */ |
| 1617 | save_flags(flags); |
| 1618 | cli(); |
| 1619 | |
| 1620 | for (epid = 0; epid < NBR_OF_EPIDS - 1; epid++) { |
| 1621 | if ((TxCtrlEPList[epid].sub == 0) || |
| 1622 | (epid == DUMMY_EPID) || |
| 1623 | (epid == INVALID_EPID)) { |
| 1624 | /* Nothing here to see. */ |
| 1625 | continue; |
| 1626 | } |
| 1627 | |
| 1628 | /* Get the first urb (if any). */ |
| 1629 | urb = urb_list_first(epid); |
| 1630 | |
| 1631 | if (urb) { |
| 1632 | |
| 1633 | /* Sanity check. */ |
| 1634 | assert(usb_pipetype(urb->pipe) == PIPE_CONTROL); |
| 1635 | |
| 1636 | urb_priv = (etrax_urb_priv_t *)urb->hcpriv; |
| 1637 | assert(urb_priv); |
| 1638 | |
| 1639 | if (urb_priv->urb_state == WAITING_FOR_DESCR_INTR) { |
| 1640 | assert(!(TxCtrlEPList[urb_priv->epid].command & IO_MASK(USB_EP_command, enable))); |
| 1641 | |
| 1642 | etrax_usb_complete_urb(urb, 0); |
| 1643 | } |
| 1644 | } |
| 1645 | } |
| 1646 | restore_flags(flags); |
| 1647 | } |
| 1648 | if (*R_IRQ_READ2 & IO_MASK(R_IRQ_READ2, dma8_sub2_descr)) { |
| 1649 | dbg_intr("dma8_sub2_descr (INTR) intr."); |
| 1650 | *R_DMA_CH8_SUB2_CLR_INTR = IO_STATE(R_DMA_CH8_SUB2_CLR_INTR, clr_descr, do); |
| 1651 | } |
| 1652 | if (*R_IRQ_READ2 & IO_MASK(R_IRQ_READ2, dma8_sub3_descr)) { |
| 1653 | struct urb *urb; |
| 1654 | int epid; |
| 1655 | int epid_done; |
| 1656 | etrax_urb_priv_t *urb_priv; |
| 1657 | USB_SB_Desc_t *sb_desc; |
| 1658 | |
| 1659 | usb_isoc_complete_data_t *comp_data = NULL; |
| 1660 | |
| 1661 | /* One or more isoc out transfers are done. */ |
| 1662 | dbg_isoc("dma8_sub3_descr (ISOC) intr."); |
| 1663 | |
| 1664 | /* For each isoc out EP search for the first sb_desc with the intr flag |
| 1665 | set. This descriptor must be the last packet from an URB. Then |
| 1666 | traverse the URB list for the EP until the URB with urb_priv->last_sb |
| 1667 | matching the intr-marked sb_desc is found. All URBs before this have |
| 1668 | been sent. |
| 1669 | */ |
| 1670 | |
| 1671 | for (epid = 0; epid < NBR_OF_EPIDS - 1; epid++) { |
| 1672 | /* Skip past epids with no SB lists, epids used for in traffic, |
| 1673 | and special (dummy, invalid) epids. */ |
| 1674 | if ((TxIsocEPList[epid].sub == 0) || |
| 1675 | (test_bit(epid, (void *)&epid_out_traffic) == 0) || |
| 1676 | (epid == DUMMY_EPID) || |
| 1677 | (epid == INVALID_EPID)) { |
| 1678 | /* Nothing here to see. */ |
| 1679 | continue; |
| 1680 | } |
| 1681 | sb_desc = phys_to_virt(TxIsocEPList[epid].sub); |
| 1682 | |
| 1683 | /* Find the last descriptor of the currently active URB for this ep. |
| 1684 | This is the first descriptor in the sub list marked for a descriptor |
| 1685 | interrupt. */ |
| 1686 | while (sb_desc && !IO_EXTRACT(USB_SB_command, intr, sb_desc->command)) { |
| 1687 | sb_desc = sb_desc->next ? phys_to_virt(sb_desc->next) : 0; |
| 1688 | } |
| 1689 | assert(sb_desc); |
| 1690 | |
| 1691 | dbg_isoc("Check epid %d, sub 0x%p, SB 0x%p", |
| 1692 | epid, |
| 1693 | phys_to_virt(TxIsocEPList[epid].sub), |
| 1694 | sb_desc); |
| 1695 | |
| 1696 | epid_done = 0; |
| 1697 | |
| 1698 | /* Get the first urb (if any). */ |
| 1699 | urb = urb_list_first(epid); |
| 1700 | assert(urb); |
| 1701 | |
| 1702 | while (urb && !epid_done) { |
| 1703 | |
| 1704 | /* Sanity check. */ |
| 1705 | assert(usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS); |
| 1706 | |
| 1707 | if (!usb_pipeout(urb->pipe)) { |
| 1708 | /* descr interrupts are generated only for out pipes. */ |
| 1709 | epid_done = 1; |
| 1710 | continue; |
| 1711 | } |
| 1712 | |
| 1713 | urb_priv = (etrax_urb_priv_t *)urb->hcpriv; |
| 1714 | assert(urb_priv); |
| 1715 | |
| 1716 | if (sb_desc != urb_priv->last_sb) { |
| 1717 | |
| 1718 | /* This urb has been sent. */ |
| 1719 | dbg_isoc("out URB 0x%p sent", urb); |
| 1720 | |
| 1721 | urb_priv->urb_state = TRANSFER_DONE; |
| 1722 | |
| 1723 | } else if ((sb_desc == urb_priv->last_sb) && |
| 1724 | !(TxIsocEPList[epid].command & IO_MASK(USB_EP_command, enable))) { |
| 1725 | |
| 1726 | assert((sb_desc->command & IO_MASK(USB_SB_command, eol)) == IO_STATE(USB_SB_command, eol, yes)); |
| 1727 | assert(sb_desc->next == 0); |
| 1728 | |
| 1729 | dbg_isoc("out URB 0x%p last in list, epid disabled", urb); |
| 1730 | TxIsocEPList[epid].sub = 0; |
| 1731 | TxIsocEPList[epid].hw_len = 0; |
| 1732 | urb_priv->urb_state = TRANSFER_DONE; |
| 1733 | |
| 1734 | epid_done = 1; |
| 1735 | |
| 1736 | } else { |
| 1737 | epid_done = 1; |
| 1738 | } |
| 1739 | if (!epid_done) { |
| 1740 | urb = urb_list_next(urb, epid); |
| 1741 | } |
| 1742 | } |
| 1743 | |
| 1744 | } |
| 1745 | |
| 1746 | *R_DMA_CH8_SUB3_CLR_INTR = IO_STATE(R_DMA_CH8_SUB3_CLR_INTR, clr_descr, do); |
| 1747 | |
| 1748 | comp_data = (usb_isoc_complete_data_t*)kmem_cache_alloc(isoc_compl_cache, SLAB_ATOMIC); |
| 1749 | assert(comp_data != NULL); |
| 1750 | |
| 1751 | INIT_WORK(&comp_data->usb_bh, etrax_usb_isoc_descr_interrupt_bottom_half, comp_data); |
| 1752 | schedule_work(&comp_data->usb_bh); |
| 1753 | } |
| 1754 | |
| 1755 | DBFEXIT; |
| 1756 | return IRQ_HANDLED; |
| 1757 | } |
| 1758 | |
| 1759 | static void etrax_usb_isoc_descr_interrupt_bottom_half(void *data) |
| 1760 | { |
| 1761 | usb_isoc_complete_data_t *comp_data = (usb_isoc_complete_data_t*)data; |
| 1762 | |
| 1763 | struct urb *urb; |
| 1764 | int epid; |
| 1765 | int epid_done; |
| 1766 | etrax_urb_priv_t *urb_priv; |
| 1767 | |
| 1768 | DBFENTER; |
| 1769 | |
| 1770 | dbg_isoc("dma8_sub3_descr (ISOC) bottom half."); |
| 1771 | |
| 1772 | for (epid = 0; epid < NBR_OF_EPIDS - 1; epid++) { |
| 1773 | unsigned long flags; |
| 1774 | |
| 1775 | save_flags(flags); |
| 1776 | cli(); |
| 1777 | |
| 1778 | epid_done = 0; |
| 1779 | |
| 1780 | /* The descriptor interrupt handler has marked all transmitted isoch. out |
| 1781 | URBs with TRANSFER_DONE. Now we traverse all epids and for all that |
| 1782 | have isoch. out traffic traverse its URB list and complete the |
| 1783 | transmitted URB. |
| 1784 | */ |
| 1785 | |
| 1786 | while (!epid_done) { |
| 1787 | |
| 1788 | /* Get the first urb (if any). */ |
| 1789 | urb = urb_list_first(epid); |
| 1790 | if (urb == 0) { |
| 1791 | epid_done = 1; |
| 1792 | continue; |
| 1793 | } |
| 1794 | |
| 1795 | if (usb_pipetype(urb->pipe) != PIPE_ISOCHRONOUS) { |
| 1796 | epid_done = 1; |
| 1797 | continue; |
| 1798 | } |
| 1799 | |
| 1800 | if (!usb_pipeout(urb->pipe)) { |
| 1801 | /* descr interrupts are generated only for out pipes. */ |
| 1802 | epid_done = 1; |
| 1803 | continue; |
| 1804 | } |
| 1805 | |
| 1806 | dbg_isoc("Check epid %d, SB 0x%p", epid, (char*)TxIsocEPList[epid].sub); |
| 1807 | |
| 1808 | urb_priv = (etrax_urb_priv_t *)urb->hcpriv; |
| 1809 | assert(urb_priv); |
| 1810 | |
| 1811 | if (urb_priv->urb_state == TRANSFER_DONE) { |
| 1812 | int i; |
| 1813 | struct usb_iso_packet_descriptor *packet; |
| 1814 | |
| 1815 | /* This urb has been sent. */ |
| 1816 | dbg_isoc("Completing isoc out URB 0x%p", urb); |
| 1817 | |
| 1818 | for (i = 0; i < urb->number_of_packets; i++) { |
| 1819 | packet = &urb->iso_frame_desc[i]; |
| 1820 | packet->status = 0; |
| 1821 | packet->actual_length = packet->length; |
| 1822 | } |
| 1823 | |
| 1824 | etrax_usb_complete_isoc_urb(urb, 0); |
| 1825 | |
| 1826 | if (urb_list_empty(epid)) { |
| 1827 | etrax_usb_free_epid(epid); |
| 1828 | epid_done = 1; |
| 1829 | } |
| 1830 | } else { |
| 1831 | epid_done = 1; |
| 1832 | } |
| 1833 | } |
| 1834 | restore_flags(flags); |
| 1835 | |
| 1836 | } |
| 1837 | kmem_cache_free(isoc_compl_cache, comp_data); |
| 1838 | |
| 1839 | DBFEXIT; |
| 1840 | } |
| 1841 | |
| 1842 | |
| 1843 | |
| 1844 | static irqreturn_t etrax_usb_rx_interrupt(int irq, void *vhc, struct pt_regs *regs) |
| 1845 | { |
| 1846 | struct urb *urb; |
| 1847 | etrax_urb_priv_t *urb_priv; |
| 1848 | int epid = 0; |
| 1849 | unsigned long flags; |
| 1850 | |
| 1851 | /* Isoc diagnostics. */ |
| 1852 | static int curr_fm = 0; |
| 1853 | static int prev_fm = 0; |
| 1854 | |
| 1855 | DBFENTER; |
| 1856 | |
| 1857 | /* Clear this interrupt. */ |
| 1858 | *R_DMA_CH9_CLR_INTR = IO_STATE(R_DMA_CH9_CLR_INTR, clr_eop, do); |
| 1859 | |
| 1860 | /* Note that this while loop assumes that all packets span only |
| 1861 | one rx descriptor. */ |
| 1862 | |
| 1863 | /* The reason we cli here is that we call the driver's callback functions. */ |
| 1864 | save_flags(flags); |
| 1865 | cli(); |
| 1866 | |
| 1867 | while (myNextRxDesc->status & IO_MASK(USB_IN_status, eop)) { |
| 1868 | |
| 1869 | epid = IO_EXTRACT(USB_IN_status, epid, myNextRxDesc->status); |
| 1870 | urb = urb_list_first(epid); |
| 1871 | |
| 1872 | //printk("eop for epid %d, first urb 0x%lx\n", epid, (unsigned long)urb); |
| 1873 | |
| 1874 | if (!urb) { |
| 1875 | err("No urb for epid %d in rx interrupt", epid); |
| 1876 | __dump_ept_data(epid); |
| 1877 | goto skip_out; |
| 1878 | } |
| 1879 | |
| 1880 | /* Note that we cannot indescriminately assert(usb_pipein(urb->pipe)) since |
| 1881 | ctrl pipes are not. */ |
| 1882 | |
| 1883 | if (myNextRxDesc->status & IO_MASK(USB_IN_status, error)) { |
| 1884 | __u32 r_usb_ept_data; |
| 1885 | int no_error = 0; |
| 1886 | |
| 1887 | assert(test_bit(epid, (void *)&epid_usage_bitmask)); |
| 1888 | |
| 1889 | *R_USB_EPT_INDEX = IO_FIELD(R_USB_EPT_INDEX, value, epid); |
| 1890 | nop(); |
| 1891 | if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { |
| 1892 | r_usb_ept_data = *R_USB_EPT_DATA_ISO; |
| 1893 | |
| 1894 | if ((r_usb_ept_data & IO_MASK(R_USB_EPT_DATA_ISO, valid)) && |
| 1895 | (IO_EXTRACT(R_USB_EPT_DATA_ISO, error_code, r_usb_ept_data) == 0) && |
| 1896 | (myNextRxDesc->status & IO_MASK(USB_IN_status, nodata))) { |
| 1897 | /* Not an error, just a failure to receive an expected iso |
| 1898 | in packet in this frame. This is not documented |
| 1899 | in the designers reference. |
| 1900 | */ |
| 1901 | no_error++; |
| 1902 | } else { |
| 1903 | warn("R_USB_EPT_DATA_ISO for epid %d = 0x%x", epid, r_usb_ept_data); |
| 1904 | } |
| 1905 | } else { |
| 1906 | r_usb_ept_data = *R_USB_EPT_DATA; |
| 1907 | warn("R_USB_EPT_DATA for epid %d = 0x%x", epid, r_usb_ept_data); |
| 1908 | } |
| 1909 | |
| 1910 | if (!no_error){ |
| 1911 | warn("error in rx desc->status, epid %d, first urb = 0x%lx", |
| 1912 | epid, (unsigned long)urb); |
| 1913 | __dump_in_desc(myNextRxDesc); |
| 1914 | |
| 1915 | warn("R_USB_STATUS = 0x%x", *R_USB_STATUS); |
| 1916 | |
| 1917 | /* Check that ept was disabled when error occurred. */ |
| 1918 | switch (usb_pipetype(urb->pipe)) { |
| 1919 | case PIPE_BULK: |
| 1920 | assert(!(TxBulkEPList[epid].command & IO_MASK(USB_EP_command, enable))); |
| 1921 | break; |
| 1922 | case PIPE_CONTROL: |
| 1923 | assert(!(TxCtrlEPList[epid].command & IO_MASK(USB_EP_command, enable))); |
| 1924 | break; |
| 1925 | case PIPE_INTERRUPT: |
| 1926 | assert(!(TxIntrEPList[epid].command & IO_MASK(USB_EP_command, enable))); |
| 1927 | break; |
| 1928 | case PIPE_ISOCHRONOUS: |
| 1929 | assert(!(TxIsocEPList[epid].command & IO_MASK(USB_EP_command, enable))); |
| 1930 | break; |
| 1931 | default: |
| 1932 | warn("etrax_usb_rx_interrupt: bad pipetype %d in urb 0x%p", |
| 1933 | usb_pipetype(urb->pipe), |
| 1934 | urb); |
| 1935 | } |
| 1936 | etrax_usb_complete_urb(urb, -EPROTO); |
| 1937 | goto skip_out; |
| 1938 | } |
| 1939 | } |
| 1940 | |
| 1941 | urb_priv = (etrax_urb_priv_t *)urb->hcpriv; |
| 1942 | assert(urb_priv); |
| 1943 | |
| 1944 | if ((usb_pipetype(urb->pipe) == PIPE_BULK) || |
| 1945 | (usb_pipetype(urb->pipe) == PIPE_CONTROL) || |
| 1946 | (usb_pipetype(urb->pipe) == PIPE_INTERRUPT)) { |
| 1947 | |
| 1948 | if (myNextRxDesc->status & IO_MASK(USB_IN_status, nodata)) { |
| 1949 | /* We get nodata for empty data transactions, and the rx descriptor's |
| 1950 | hw_len field is not valid in that case. No data to copy in other |
| 1951 | words. */ |
| 1952 | } else { |
| 1953 | /* Make sure the data fits in the buffer. */ |
| 1954 | assert(urb_priv->rx_offset + myNextRxDesc->hw_len |
| 1955 | <= urb->transfer_buffer_length); |
| 1956 | |
| 1957 | memcpy(urb->transfer_buffer + urb_priv->rx_offset, |
| 1958 | phys_to_virt(myNextRxDesc->buf), myNextRxDesc->hw_len); |
| 1959 | urb_priv->rx_offset += myNextRxDesc->hw_len; |
| 1960 | } |
| 1961 | |
| 1962 | if (myNextRxDesc->status & IO_MASK(USB_IN_status, eot)) { |
| 1963 | if ((usb_pipetype(urb->pipe) == PIPE_CONTROL) && |
| 1964 | ((TxCtrlEPList[urb_priv->epid].command & IO_MASK(USB_EP_command, enable)) == |
| 1965 | IO_STATE(USB_EP_command, enable, yes))) { |
| 1966 | /* The EP is still enabled, so the OUT packet used to ack |
| 1967 | the in data is probably not processed yet. If the EP |
| 1968 | sub pointer has not moved beyond urb_priv->last_sb mark |
| 1969 | it for a descriptor interrupt and complete the urb in |
| 1970 | the descriptor interrupt handler. |
| 1971 | */ |
| 1972 | USB_SB_Desc_t *sub = TxCtrlEPList[urb_priv->epid].sub ? phys_to_virt(TxCtrlEPList[urb_priv->epid].sub) : 0; |
| 1973 | |
| 1974 | while ((sub != NULL) && (sub != urb_priv->last_sb)) { |
| 1975 | sub = sub->next ? phys_to_virt(sub->next) : 0; |
| 1976 | } |
| 1977 | if (sub != NULL) { |
| 1978 | /* The urb has not been fully processed. */ |
| 1979 | urb_priv->urb_state = WAITING_FOR_DESCR_INTR; |
| 1980 | } else { |
| 1981 | warn("(CTRL) epid enabled and urb (0x%p) processed, ep->sub=0x%p", urb, (char*)TxCtrlEPList[urb_priv->epid].sub); |
| 1982 | etrax_usb_complete_urb(urb, 0); |
| 1983 | } |
| 1984 | } else { |
| 1985 | etrax_usb_complete_urb(urb, 0); |
| 1986 | } |
| 1987 | } |
| 1988 | |
| 1989 | } else if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { |
| 1990 | |
| 1991 | struct usb_iso_packet_descriptor *packet; |
| 1992 | |
| 1993 | if (urb_priv->urb_state == UNLINK) { |
| 1994 | info("Ignoring rx data for urb being unlinked."); |
| 1995 | goto skip_out; |
| 1996 | } else if (urb_priv->urb_state == NOT_STARTED) { |
| 1997 | info("What? Got rx data for urb that isn't started?"); |
| 1998 | goto skip_out; |
| 1999 | } |
| 2000 | |
| 2001 | packet = &urb->iso_frame_desc[urb_priv->isoc_packet_counter]; |
| 2002 | packet->status = 0; |
| 2003 | |
| 2004 | if (myNextRxDesc->status & IO_MASK(USB_IN_status, nodata)) { |
| 2005 | /* We get nodata for empty data transactions, and the rx descriptor's |
| 2006 | hw_len field is not valid in that case. We copy 0 bytes however to |
| 2007 | stay in synch. */ |
| 2008 | packet->actual_length = 0; |
| 2009 | } else { |
| 2010 | packet->actual_length = myNextRxDesc->hw_len; |
| 2011 | /* Make sure the data fits in the buffer. */ |
| 2012 | assert(packet->actual_length <= packet->length); |
| 2013 | memcpy(urb->transfer_buffer + packet->offset, |
| 2014 | phys_to_virt(myNextRxDesc->buf), packet->actual_length); |
| 2015 | } |
| 2016 | |
| 2017 | /* Increment the packet counter. */ |
| 2018 | urb_priv->isoc_packet_counter++; |
| 2019 | |
| 2020 | /* Note that we don't care about the eot field in the rx descriptor's status. |
| 2021 | It will always be set for isoc traffic. */ |
| 2022 | if (urb->number_of_packets == urb_priv->isoc_packet_counter) { |
| 2023 | |
| 2024 | /* Out-of-synch diagnostics. */ |
| 2025 | curr_fm = (*R_USB_FM_NUMBER & 0x7ff); |
| 2026 | if (((prev_fm + urb_priv->isoc_packet_counter) % (0x7ff + 1)) != curr_fm) { |
| 2027 | /* This test is wrong, if there is more than one isoc |
| 2028 | in endpoint active it will always calculate wrong |
| 2029 | since prev_fm is shared by all endpoints. |
| 2030 | |
| 2031 | FIXME Make this check per URB using urb->start_frame. |
| 2032 | */ |
| 2033 | dbg_isoc("Out of synch? Previous frame = %d, current frame = %d", |
| 2034 | prev_fm, curr_fm); |
| 2035 | |
| 2036 | } |
| 2037 | prev_fm = curr_fm; |
| 2038 | |
| 2039 | /* Complete the urb with status OK. */ |
| 2040 | etrax_usb_complete_isoc_urb(urb, 0); |
| 2041 | } |
| 2042 | } |
| 2043 | |
| 2044 | skip_out: |
| 2045 | |
| 2046 | /* DMA IN cache bug. Flush the DMA IN buffer from the cache. (struct etrax_dma_descr |
| 2047 | has the same layout as USB_IN_Desc for the relevant fields.) */ |
| 2048 | prepare_rx_descriptor((struct etrax_dma_descr*)myNextRxDesc); |
| 2049 | |
| 2050 | myPrevRxDesc = myNextRxDesc; |
| 2051 | myPrevRxDesc->command |= IO_MASK(USB_IN_command, eol); |
| 2052 | myLastRxDesc->command &= ~IO_MASK(USB_IN_command, eol); |
| 2053 | myLastRxDesc = myPrevRxDesc; |
| 2054 | |
| 2055 | myNextRxDesc->status = 0; |
| 2056 | myNextRxDesc = phys_to_virt(myNextRxDesc->next); |
| 2057 | } |
| 2058 | |
| 2059 | restore_flags(flags); |
| 2060 | |
| 2061 | DBFEXIT; |
| 2062 | |
| 2063 | return IRQ_HANDLED; |
| 2064 | } |
| 2065 | |
| 2066 | |
| 2067 | /* This function will unlink the SB descriptors associated with this urb. */ |
| 2068 | static int etrax_remove_from_sb_list(struct urb *urb) |
| 2069 | { |
| 2070 | USB_SB_Desc_t *next_sb, *first_sb, *last_sb; |
| 2071 | etrax_urb_priv_t *urb_priv; |
| 2072 | int i = 0; |
| 2073 | |
| 2074 | DBFENTER; |
| 2075 | |
| 2076 | urb_priv = (etrax_urb_priv_t *)urb->hcpriv; |
| 2077 | assert(urb_priv); |
| 2078 | |
| 2079 | /* Just a sanity check. Since we don't fiddle with the DMA list the EP descriptor |
| 2080 | doesn't really need to be disabled, it's just that we expect it to be. */ |
| 2081 | if (usb_pipetype(urb->pipe) == PIPE_BULK) { |
| 2082 | assert(!(TxBulkEPList[urb_priv->epid].command & IO_MASK(USB_EP_command, enable))); |
| 2083 | } else if (usb_pipetype(urb->pipe) == PIPE_CONTROL) { |
| 2084 | assert(!(TxCtrlEPList[urb_priv->epid].command & IO_MASK(USB_EP_command, enable))); |
| 2085 | } |
| 2086 | |
| 2087 | first_sb = urb_priv->first_sb; |
| 2088 | last_sb = urb_priv->last_sb; |
| 2089 | |
| 2090 | assert(first_sb); |
| 2091 | assert(last_sb); |
| 2092 | |
| 2093 | while (first_sb != last_sb) { |
| 2094 | next_sb = (USB_SB_Desc_t *)phys_to_virt(first_sb->next); |
| 2095 | kmem_cache_free(usb_desc_cache, first_sb); |
| 2096 | first_sb = next_sb; |
| 2097 | i++; |
| 2098 | } |
| 2099 | kmem_cache_free(usb_desc_cache, last_sb); |
| 2100 | i++; |
| 2101 | dbg_sb("%d SB descriptors freed", i); |
| 2102 | /* Compare i with urb->number_of_packets for Isoc traffic. |
| 2103 | Should be same when calling unlink_urb */ |
| 2104 | |
| 2105 | DBFEXIT; |
| 2106 | |
| 2107 | return i; |
| 2108 | } |
| 2109 | |
| 2110 | static int etrax_usb_submit_bulk_urb(struct urb *urb) |
| 2111 | { |
| 2112 | int epid; |
| 2113 | int empty; |
| 2114 | unsigned long flags; |
| 2115 | etrax_urb_priv_t *urb_priv; |
| 2116 | |
| 2117 | DBFENTER; |
| 2118 | |
| 2119 | /* Epid allocation, empty check and list add must be protected. |
| 2120 | Read about this in etrax_usb_submit_ctrl_urb. */ |
| 2121 | |
| 2122 | spin_lock_irqsave(&urb_list_lock, flags); |
| 2123 | epid = etrax_usb_setup_epid(urb); |
| 2124 | if (epid == -1) { |
| 2125 | DBFEXIT; |
| 2126 | spin_unlock_irqrestore(&urb_list_lock, flags); |
| 2127 | return -ENOMEM; |
| 2128 | } |
| 2129 | empty = urb_list_empty(epid); |
| 2130 | urb_list_add(urb, epid); |
| 2131 | spin_unlock_irqrestore(&urb_list_lock, flags); |
| 2132 | |
| 2133 | dbg_bulk("Adding bulk %s urb 0x%lx to %s list, epid %d", |
| 2134 | usb_pipein(urb->pipe) ? "IN" : "OUT", (unsigned long)urb, empty ? "empty" : "", epid); |
| 2135 | |
| 2136 | /* Mark the urb as being in progress. */ |
| 2137 | urb->status = -EINPROGRESS; |
| 2138 | |
| 2139 | /* Setup the hcpriv data. */ |
| 2140 | urb_priv = kmalloc(sizeof(etrax_urb_priv_t), KMALLOC_FLAG); |
| 2141 | assert(urb_priv != NULL); |
| 2142 | /* This sets rx_offset to 0. */ |
| 2143 | memset(urb_priv, 0, sizeof(etrax_urb_priv_t)); |
| 2144 | urb_priv->urb_state = NOT_STARTED; |
| 2145 | urb->hcpriv = urb_priv; |
| 2146 | |
| 2147 | if (empty) { |
| 2148 | etrax_usb_add_to_bulk_sb_list(urb, epid); |
| 2149 | } |
| 2150 | |
| 2151 | DBFEXIT; |
| 2152 | |
| 2153 | return 0; |
| 2154 | } |
| 2155 | |
| 2156 | static void etrax_usb_add_to_bulk_sb_list(struct urb *urb, int epid) |
| 2157 | { |
| 2158 | USB_SB_Desc_t *sb_desc; |
| 2159 | etrax_urb_priv_t *urb_priv = (etrax_urb_priv_t *)urb->hcpriv; |
| 2160 | unsigned long flags; |
| 2161 | char maxlen; |
| 2162 | |
| 2163 | DBFENTER; |
| 2164 | |
| 2165 | dbg_bulk("etrax_usb_add_to_bulk_sb_list, urb 0x%lx", (unsigned long)urb); |
| 2166 | |
| 2167 | maxlen = usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe)); |
| 2168 | |
| 2169 | sb_desc = (USB_SB_Desc_t*)kmem_cache_alloc(usb_desc_cache, SLAB_FLAG); |
| 2170 | assert(sb_desc != NULL); |
| 2171 | memset(sb_desc, 0, sizeof(USB_SB_Desc_t)); |
| 2172 | |
| 2173 | |
| 2174 | if (usb_pipeout(urb->pipe)) { |
| 2175 | |
| 2176 | dbg_bulk("Grabbing bulk OUT, urb 0x%lx, epid %d", (unsigned long)urb, epid); |
| 2177 | |
| 2178 | /* This is probably a sanity check of the bulk transaction length |
| 2179 | not being larger than 64 kB. */ |
| 2180 | if (urb->transfer_buffer_length > 0xffff) { |
| 2181 | panic("urb->transfer_buffer_length > 0xffff"); |
| 2182 | } |
| 2183 | |
| 2184 | sb_desc->sw_len = urb->transfer_buffer_length; |
| 2185 | |
| 2186 | /* The rem field is don't care if it's not a full-length transfer, so setting |
| 2187 | it shouldn't hurt. Also, rem isn't used for OUT traffic. */ |
| 2188 | sb_desc->command = (IO_FIELD(USB_SB_command, rem, 0) | |
| 2189 | IO_STATE(USB_SB_command, tt, out) | |
| 2190 | IO_STATE(USB_SB_command, eot, yes) | |
| 2191 | IO_STATE(USB_SB_command, eol, yes)); |
| 2192 | |
| 2193 | /* The full field is set to yes, even if we don't actually check that this is |
| 2194 | a full-length transfer (i.e., that transfer_buffer_length % maxlen = 0). |
| 2195 | Setting full prevents the USB controller from sending an empty packet in |
| 2196 | that case. However, if URB_ZERO_PACKET was set we want that. */ |
| 2197 | if (!(urb->transfer_flags & URB_ZERO_PACKET)) { |
| 2198 | sb_desc->command |= IO_STATE(USB_SB_command, full, yes); |
| 2199 | } |
| 2200 | |
| 2201 | sb_desc->buf = virt_to_phys(urb->transfer_buffer); |
| 2202 | sb_desc->next = 0; |
| 2203 | |
| 2204 | } else if (usb_pipein(urb->pipe)) { |
| 2205 | |
| 2206 | dbg_bulk("Grabbing bulk IN, urb 0x%lx, epid %d", (unsigned long)urb, epid); |
| 2207 | |
| 2208 | sb_desc->sw_len = urb->transfer_buffer_length ? |
| 2209 | (urb->transfer_buffer_length - 1) / maxlen + 1 : 0; |
| 2210 | |
| 2211 | /* The rem field is don't care if it's not a full-length transfer, so setting |
| 2212 | it shouldn't hurt. */ |
| 2213 | sb_desc->command = |
| 2214 | (IO_FIELD(USB_SB_command, rem, |
| 2215 | urb->transfer_buffer_length % maxlen) | |
| 2216 | IO_STATE(USB_SB_command, tt, in) | |
| 2217 | IO_STATE(USB_SB_command, eot, yes) | |
| 2218 | IO_STATE(USB_SB_command, eol, yes)); |
| 2219 | |
| 2220 | sb_desc->buf = 0; |
| 2221 | sb_desc->next = 0; |
| 2222 | } |
| 2223 | |
| 2224 | urb_priv->first_sb = sb_desc; |
| 2225 | urb_priv->last_sb = sb_desc; |
| 2226 | urb_priv->epid = epid; |
| 2227 | |
| 2228 | urb->hcpriv = urb_priv; |
| 2229 | |
| 2230 | /* Reset toggle bits and reset error count. */ |
| 2231 | save_flags(flags); |
| 2232 | cli(); |
| 2233 | |
| 2234 | *R_USB_EPT_INDEX = IO_FIELD(R_USB_EPT_INDEX, value, epid); |
| 2235 | nop(); |
| 2236 | |
| 2237 | /* FIXME: Is this a special case since the hold field is checked, |
| 2238 | or should we check hold in a lot of other cases as well? */ |
| 2239 | if (*R_USB_EPT_DATA & IO_MASK(R_USB_EPT_DATA, hold)) { |
| 2240 | panic("Hold was set in %s", __FUNCTION__); |
| 2241 | } |
| 2242 | |
| 2243 | /* Reset error counters (regardless of which direction this traffic is). */ |
| 2244 | *R_USB_EPT_DATA &= |
| 2245 | ~(IO_MASK(R_USB_EPT_DATA, error_count_in) | |
| 2246 | IO_MASK(R_USB_EPT_DATA, error_count_out)); |
| 2247 | |
| 2248 | /* Software must preset the toggle bits. */ |
| 2249 | if (usb_pipeout(urb->pipe)) { |
| 2250 | char toggle = |
| 2251 | usb_gettoggle(urb->dev, usb_pipeendpoint(urb->pipe), usb_pipeout(urb->pipe)); |
| 2252 | *R_USB_EPT_DATA &= ~IO_MASK(R_USB_EPT_DATA, t_out); |
| 2253 | *R_USB_EPT_DATA |= IO_FIELD(R_USB_EPT_DATA, t_out, toggle); |
| 2254 | } else { |
| 2255 | char toggle = |
| 2256 | usb_gettoggle(urb->dev, usb_pipeendpoint(urb->pipe), usb_pipeout(urb->pipe)); |
| 2257 | *R_USB_EPT_DATA &= ~IO_MASK(R_USB_EPT_DATA, t_in); |
| 2258 | *R_USB_EPT_DATA |= IO_FIELD(R_USB_EPT_DATA, t_in, toggle); |
| 2259 | } |
| 2260 | |
| 2261 | /* Assert that the EP descriptor is disabled. */ |
| 2262 | assert(!(TxBulkEPList[epid].command & IO_MASK(USB_EP_command, enable))); |
| 2263 | |
| 2264 | /* The reason we set the EP's sub pointer directly instead of |
| 2265 | walking the SB list and linking it last in the list is that we only |
| 2266 | have one active urb at a time (the rest are queued). */ |
| 2267 | |
| 2268 | /* Note that we cannot have interrupts running when we have set the SB descriptor |
| 2269 | but the EP is not yet enabled. If a bulk eot happens for another EP, we will |
| 2270 | find this EP disabled and with a SB != 0, which will make us think that it's done. */ |
| 2271 | TxBulkEPList[epid].sub = virt_to_phys(sb_desc); |
| 2272 | TxBulkEPList[epid].hw_len = 0; |
| 2273 | /* Note that we don't have to fill in the ep_id field since this |
| 2274 | was done when we allocated the EP descriptors in init_tx_bulk_ep. */ |
| 2275 | |
| 2276 | /* Check if the dummy list is already with us (if several urbs were queued). */ |
| 2277 | if (TxBulkEPList[epid].next != virt_to_phys(&TxBulkDummyEPList[epid][0])) { |
| 2278 | |
| 2279 | dbg_bulk("Inviting dummy list to the party for urb 0x%lx, epid %d", |
| 2280 | (unsigned long)urb, epid); |
| 2281 | |
| 2282 | /* The last EP in the dummy list already has its next pointer set to |
| 2283 | TxBulkEPList[epid].next. */ |
| 2284 | |
| 2285 | /* We don't need to check if the DMA is at this EP or not before changing the |
| 2286 | next pointer, since we will do it in one 32-bit write (EP descriptors are |
| 2287 | 32-bit aligned). */ |
| 2288 | TxBulkEPList[epid].next = virt_to_phys(&TxBulkDummyEPList[epid][0]); |
| 2289 | } |
| 2290 | /* Enable the EP descr. */ |
| 2291 | dbg_bulk("Enabling bulk EP for urb 0x%lx, epid %d", (unsigned long)urb, epid); |
| 2292 | TxBulkEPList[epid].command |= IO_STATE(USB_EP_command, enable, yes); |
| 2293 | |
| 2294 | /* Everything is set up, safe to enable interrupts again. */ |
| 2295 | restore_flags(flags); |
| 2296 | |
| 2297 | /* If the DMA bulk channel isn't running, we need to restart it if it |
| 2298 | has stopped at the last EP descriptor (DMA stopped because there was |
| 2299 | no more traffic) or if it has stopped at a dummy EP with the intr flag |
| 2300 | set (DMA stopped because we were too slow in inserting new traffic). */ |
| 2301 | if (!(*R_DMA_CH8_SUB0_CMD & IO_MASK(R_DMA_CH8_SUB0_CMD, cmd))) { |
| 2302 | |
| 2303 | USB_EP_Desc_t *ep; |
| 2304 | ep = (USB_EP_Desc_t *)phys_to_virt(*R_DMA_CH8_SUB0_EP); |
| 2305 | dbg_bulk("DMA channel not running in add"); |
| 2306 | dbg_bulk("DMA is at 0x%lx", (unsigned long)ep); |
| 2307 | |
| 2308 | if (*R_DMA_CH8_SUB0_EP == virt_to_phys(&TxBulkEPList[NBR_OF_EPIDS - 1]) || |
| 2309 | (ep->command & 0x8) >> 3) { |
| 2310 | *R_DMA_CH8_SUB0_CMD = IO_STATE(R_DMA_CH8_SUB0_CMD, cmd, start); |
| 2311 | /* Update/restart the bulk start timer since we just started the channel. */ |
| 2312 | mod_timer(&bulk_start_timer, jiffies + BULK_START_TIMER_INTERVAL); |
| 2313 | /* Update/restart the bulk eot timer since we just inserted traffic. */ |
| 2314 | mod_timer(&bulk_eot_timer, jiffies + BULK_EOT_TIMER_INTERVAL); |
| 2315 | } |
| 2316 | } |
| 2317 | |
| 2318 | DBFEXIT; |
| 2319 | } |
| 2320 | |
| 2321 | static void etrax_usb_complete_bulk_urb(struct urb *urb, int status) |
| 2322 | { |
| 2323 | etrax_urb_priv_t *urb_priv = (etrax_urb_priv_t *)urb->hcpriv; |
| 2324 | int epid = urb_priv->epid; |
| 2325 | unsigned long flags; |
| 2326 | |
| 2327 | DBFENTER; |
| 2328 | |
| 2329 | if (status) |
| 2330 | warn("Completing bulk urb with status %d.", status); |
| 2331 | |
| 2332 | dbg_bulk("Completing bulk urb 0x%lx for epid %d", (unsigned long)urb, epid); |
| 2333 | |
| 2334 | /* Update the urb list. */ |
| 2335 | urb_list_del(urb, epid); |
| 2336 | |
| 2337 | /* For an IN pipe, we always set the actual length, regardless of whether there was |
| 2338 | an error or not (which means the device driver can use the data if it wants to). */ |
| 2339 | if (usb_pipein(urb->pipe)) { |
| 2340 | urb->actual_length = urb_priv->rx_offset; |
| 2341 | } else { |
| 2342 | /* Set actual_length for OUT urbs also; the USB mass storage driver seems |
| 2343 | to want that. We wouldn't know of any partial writes if there was an error. */ |
| 2344 | if (status == 0) { |
| 2345 | urb->actual_length = urb->transfer_buffer_length; |
| 2346 | } else { |
| 2347 | urb->actual_length = 0; |
| 2348 | } |
| 2349 | } |
| 2350 | |
| 2351 | /* FIXME: Is there something of the things below we shouldn't do if there was an error? |
| 2352 | Like, maybe we shouldn't toggle the toggle bits, or maybe we shouldn't insert more traffic. */ |
| 2353 | |
| 2354 | save_flags(flags); |
| 2355 | cli(); |
| 2356 | |
| 2357 | *R_USB_EPT_INDEX = IO_FIELD(R_USB_EPT_INDEX, value, epid); |
| 2358 | nop(); |
| 2359 | |
| 2360 | /* We need to fiddle with the toggle bits because the hardware doesn't do it for us. */ |
| 2361 | if (usb_pipeout(urb->pipe)) { |
| 2362 | char toggle = |
| 2363 | IO_EXTRACT(R_USB_EPT_DATA, t_out, *R_USB_EPT_DATA); |
| 2364 | usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe), |
| 2365 | usb_pipeout(urb->pipe), toggle); |
| 2366 | } else { |
| 2367 | char toggle = |
| 2368 | IO_EXTRACT(R_USB_EPT_DATA, t_in, *R_USB_EPT_DATA); |
| 2369 | usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe), |
| 2370 | usb_pipeout(urb->pipe), toggle); |
| 2371 | } |
| 2372 | restore_flags(flags); |
| 2373 | |
| 2374 | /* Remember to free the SBs. */ |
| 2375 | etrax_remove_from_sb_list(urb); |
| 2376 | kfree(urb_priv); |
| 2377 | urb->hcpriv = 0; |
| 2378 | |
| 2379 | /* If there are any more urb's in the list we'd better start sending */ |
| 2380 | if (!urb_list_empty(epid)) { |
| 2381 | |
| 2382 | struct urb *new_urb; |
| 2383 | |
| 2384 | /* Get the first urb. */ |
| 2385 | new_urb = urb_list_first(epid); |
| 2386 | assert(new_urb); |
| 2387 | |
| 2388 | dbg_bulk("More bulk for epid %d", epid); |
| 2389 | |
| 2390 | etrax_usb_add_to_bulk_sb_list(new_urb, epid); |
| 2391 | } |
| 2392 | |
| 2393 | urb->status = status; |
| 2394 | |
| 2395 | /* We let any non-zero status from the layer above have precedence. */ |
| 2396 | if (status == 0) { |
| 2397 | /* URB_SHORT_NOT_OK means that short reads (shorter than the endpoint's max length) |
| 2398 | is to be treated as an error. */ |
| 2399 | if (urb->transfer_flags & URB_SHORT_NOT_OK) { |
| 2400 | if (usb_pipein(urb->pipe) && |
| 2401 | (urb->actual_length != |
| 2402 | usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe)))) { |
| 2403 | urb->status = -EREMOTEIO; |
| 2404 | } |
| 2405 | } |
| 2406 | } |
| 2407 | |
| 2408 | if (urb->complete) { |
| 2409 | urb->complete(urb, NULL); |
| 2410 | } |
| 2411 | |
| 2412 | if (urb_list_empty(epid)) { |
| 2413 | /* This means that this EP is now free, deconfigure it. */ |
| 2414 | etrax_usb_free_epid(epid); |
| 2415 | |
| 2416 | /* No more traffic; time to clean up. |
| 2417 | Must set sub pointer to 0, since we look at the sub pointer when handling |
| 2418 | the bulk eot interrupt. */ |
| 2419 | |
| 2420 | dbg_bulk("No bulk for epid %d", epid); |
| 2421 | |
| 2422 | TxBulkEPList[epid].sub = 0; |
| 2423 | |
| 2424 | /* Unlink the dummy list. */ |
| 2425 | |
| 2426 | dbg_bulk("Kicking dummy list out of party for urb 0x%lx, epid %d", |
| 2427 | (unsigned long)urb, epid); |
| 2428 | |
| 2429 | /* No need to wait for the DMA before changing the next pointer. |
| 2430 | The modulo NBR_OF_EPIDS isn't actually necessary, since we will never use |
| 2431 | the last one (INVALID_EPID) for actual traffic. */ |
| 2432 | TxBulkEPList[epid].next = |
| 2433 | virt_to_phys(&TxBulkEPList[(epid + 1) % NBR_OF_EPIDS]); |
| 2434 | } |
| 2435 | |
| 2436 | DBFEXIT; |
| 2437 | } |
| 2438 | |
| 2439 | static int etrax_usb_submit_ctrl_urb(struct urb *urb) |
| 2440 | { |
| 2441 | int epid; |
| 2442 | int empty; |
| 2443 | unsigned long flags; |
| 2444 | etrax_urb_priv_t *urb_priv; |
| 2445 | |
| 2446 | DBFENTER; |
| 2447 | |
| 2448 | /* FIXME: Return -ENXIO if there is already a queued urb for this endpoint? */ |
| 2449 | |
| 2450 | /* Epid allocation, empty check and list add must be protected. |
| 2451 | |
| 2452 | Epid allocation because if we find an existing epid for this endpoint an urb might be |
| 2453 | completed (emptying the list) before we add the new urb to the list, causing the epid |
| 2454 | to be de-allocated. We would then start the transfer with an invalid epid -> epid attn. |
| 2455 | |
| 2456 | Empty check and add because otherwise we might conclude that the list is not empty, |
| 2457 | after which it becomes empty before we add the new urb to the list, causing us not to |
| 2458 | insert the new traffic into the SB list. */ |
| 2459 | |
| 2460 | spin_lock_irqsave(&urb_list_lock, flags); |
| 2461 | epid = etrax_usb_setup_epid(urb); |
| 2462 | if (epid == -1) { |
| 2463 | spin_unlock_irqrestore(&urb_list_lock, flags); |
| 2464 | DBFEXIT; |
| 2465 | return -ENOMEM; |
| 2466 | } |
| 2467 | empty = urb_list_empty(epid); |
| 2468 | urb_list_add(urb, epid); |
| 2469 | spin_unlock_irqrestore(&urb_list_lock, flags); |
| 2470 | |
| 2471 | dbg_ctrl("Adding ctrl urb 0x%lx to %s list, epid %d", |
| 2472 | (unsigned long)urb, empty ? "empty" : "", epid); |
| 2473 | |
| 2474 | /* Mark the urb as being in progress. */ |
| 2475 | urb->status = -EINPROGRESS; |
| 2476 | |
| 2477 | /* Setup the hcpriv data. */ |
| 2478 | urb_priv = kmalloc(sizeof(etrax_urb_priv_t), KMALLOC_FLAG); |
| 2479 | assert(urb_priv != NULL); |
| 2480 | /* This sets rx_offset to 0. */ |
| 2481 | memset(urb_priv, 0, sizeof(etrax_urb_priv_t)); |
| 2482 | urb_priv->urb_state = NOT_STARTED; |
| 2483 | urb->hcpriv = urb_priv; |
| 2484 | |
| 2485 | if (empty) { |
| 2486 | etrax_usb_add_to_ctrl_sb_list(urb, epid); |
| 2487 | } |
| 2488 | |
| 2489 | DBFEXIT; |
| 2490 | |
| 2491 | return 0; |
| 2492 | } |
| 2493 | |
| 2494 | static void etrax_usb_add_to_ctrl_sb_list(struct urb *urb, int epid) |
| 2495 | { |
| 2496 | USB_SB_Desc_t *sb_desc_setup; |
| 2497 | USB_SB_Desc_t *sb_desc_data; |
| 2498 | USB_SB_Desc_t *sb_desc_status; |
| 2499 | |
| 2500 | etrax_urb_priv_t *urb_priv = (etrax_urb_priv_t *)urb->hcpriv; |
| 2501 | |
| 2502 | unsigned long flags; |
| 2503 | char maxlen; |
| 2504 | |
| 2505 | DBFENTER; |
| 2506 | |
| 2507 | maxlen = usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe)); |
| 2508 | |
| 2509 | sb_desc_setup = (USB_SB_Desc_t*)kmem_cache_alloc(usb_desc_cache, SLAB_FLAG); |
| 2510 | assert(sb_desc_setup != NULL); |
| 2511 | sb_desc_status = (USB_SB_Desc_t*)kmem_cache_alloc(usb_desc_cache, SLAB_FLAG); |
| 2512 | assert(sb_desc_status != NULL); |
| 2513 | |
| 2514 | /* Initialize the mandatory setup SB descriptor (used only in control transfers) */ |
| 2515 | sb_desc_setup->sw_len = 8; |
| 2516 | sb_desc_setup->command = (IO_FIELD(USB_SB_command, rem, 0) | |
| 2517 | IO_STATE(USB_SB_command, tt, setup) | |
| 2518 | IO_STATE(USB_SB_command, full, yes) | |
| 2519 | IO_STATE(USB_SB_command, eot, yes)); |
| 2520 | |
| 2521 | sb_desc_setup->buf = virt_to_phys(urb->setup_packet); |
| 2522 | |
| 2523 | if (usb_pipeout(urb->pipe)) { |
| 2524 | dbg_ctrl("Transfer for epid %d is OUT", epid); |
| 2525 | |
| 2526 | /* If this Control OUT transfer has an optional data stage we add an OUT token |
| 2527 | before the mandatory IN (status) token, hence the reordered SB list */ |
| 2528 | |
| 2529 | sb_desc_setup->next = virt_to_phys(sb_desc_status); |
| 2530 | if (urb->transfer_buffer) { |
| 2531 | |
| 2532 | dbg_ctrl("This OUT transfer has an extra data stage"); |
| 2533 | |
| 2534 | sb_desc_data = (USB_SB_Desc_t*)kmem_cache_alloc(usb_desc_cache, SLAB_FLAG); |
| 2535 | assert(sb_desc_data != NULL); |
| 2536 | |
| 2537 | sb_desc_setup->next = virt_to_phys(sb_desc_data); |
| 2538 | |
| 2539 | sb_desc_data->sw_len = urb->transfer_buffer_length; |
| 2540 | sb_desc_data->command = (IO_STATE(USB_SB_command, tt, out) | |
| 2541 | IO_STATE(USB_SB_command, full, yes) | |
| 2542 | IO_STATE(USB_SB_command, eot, yes)); |
| 2543 | sb_desc_data->buf = virt_to_phys(urb->transfer_buffer); |
| 2544 | sb_desc_data->next = virt_to_phys(sb_desc_status); |
| 2545 | } |
| 2546 | |
| 2547 | sb_desc_status->sw_len = 1; |
| 2548 | sb_desc_status->command = (IO_FIELD(USB_SB_command, rem, 0) | |
| 2549 | IO_STATE(USB_SB_command, tt, in) | |
| 2550 | IO_STATE(USB_SB_command, eot, yes) | |
| 2551 | IO_STATE(USB_SB_command, intr, yes) | |
| 2552 | IO_STATE(USB_SB_command, eol, yes)); |
| 2553 | |
| 2554 | sb_desc_status->buf = 0; |
| 2555 | sb_desc_status->next = 0; |
| 2556 | |
| 2557 | } else if (usb_pipein(urb->pipe)) { |
| 2558 | |
| 2559 | dbg_ctrl("Transfer for epid %d is IN", epid); |
| 2560 | dbg_ctrl("transfer_buffer_length = %d", urb->transfer_buffer_length); |
| 2561 | dbg_ctrl("rem is calculated to %d", urb->transfer_buffer_length % maxlen); |
| 2562 | |
| 2563 | sb_desc_data = (USB_SB_Desc_t*)kmem_cache_alloc(usb_desc_cache, SLAB_FLAG); |
| 2564 | assert(sb_desc_data != NULL); |
| 2565 | |
| 2566 | sb_desc_setup->next = virt_to_phys(sb_desc_data); |
| 2567 | |
| 2568 | sb_desc_data->sw_len = urb->transfer_buffer_length ? |
| 2569 | (urb->transfer_buffer_length - 1) / maxlen + 1 : 0; |
| 2570 | dbg_ctrl("sw_len got %d", sb_desc_data->sw_len); |
| 2571 | |
| 2572 | sb_desc_data->command = |
| 2573 | (IO_FIELD(USB_SB_command, rem, |
| 2574 | urb->transfer_buffer_length % maxlen) | |
| 2575 | IO_STATE(USB_SB_command, tt, in) | |
| 2576 | IO_STATE(USB_SB_command, eot, yes)); |
| 2577 | |
| 2578 | sb_desc_data->buf = 0; |
| 2579 | sb_desc_data->next = virt_to_phys(sb_desc_status); |
| 2580 | |
| 2581 | /* Read comment at zout_buffer declaration for an explanation to this. */ |
| 2582 | sb_desc_status->sw_len = 1; |
| 2583 | sb_desc_status->command = (IO_FIELD(USB_SB_command, rem, 0) | |
| 2584 | IO_STATE(USB_SB_command, tt, zout) | |
| 2585 | IO_STATE(USB_SB_command, full, yes) | |
| 2586 | IO_STATE(USB_SB_command, eot, yes) | |
| 2587 | IO_STATE(USB_SB_command, intr, yes) | |
| 2588 | IO_STATE(USB_SB_command, eol, yes)); |
| 2589 | |
| 2590 | sb_desc_status->buf = virt_to_phys(&zout_buffer[0]); |
| 2591 | sb_desc_status->next = 0; |
| 2592 | } |
| 2593 | |
| 2594 | urb_priv->first_sb = sb_desc_setup; |
| 2595 | urb_priv->last_sb = sb_desc_status; |
| 2596 | urb_priv->epid = epid; |
| 2597 | |
| 2598 | urb_priv->urb_state = STARTED; |
| 2599 | |
| 2600 | /* Reset toggle bits and reset error count, remember to di and ei */ |
| 2601 | /* Warning: it is possible that this locking doesn't work with bottom-halves */ |
| 2602 | |
| 2603 | save_flags(flags); |
| 2604 | cli(); |
| 2605 | |
| 2606 | *R_USB_EPT_INDEX = IO_FIELD(R_USB_EPT_INDEX, value, epid); |
| 2607 | nop(); |
| 2608 | if (*R_USB_EPT_DATA & IO_MASK(R_USB_EPT_DATA, hold)) { |
| 2609 | panic("Hold was set in %s", __FUNCTION__); |
| 2610 | } |
| 2611 | |
| 2612 | |
| 2613 | /* FIXME: Compare with etrax_usb_add_to_bulk_sb_list where the toggle bits |
| 2614 | are set to a specific value. Why the difference? Read "Transfer and Toggle Bits |
| 2615 | in Designer's Reference, p. 8 - 11. */ |
| 2616 | *R_USB_EPT_DATA &= |
| 2617 | ~(IO_MASK(R_USB_EPT_DATA, error_count_in) | |
| 2618 | IO_MASK(R_USB_EPT_DATA, error_count_out) | |
| 2619 | IO_MASK(R_USB_EPT_DATA, t_in) | |
| 2620 | IO_MASK(R_USB_EPT_DATA, t_out)); |
| 2621 | |
| 2622 | /* Since we use the rx interrupt to complete ctrl urbs, we can enable interrupts now |
| 2623 | (i.e. we don't check the sub pointer on an eot interrupt like we do for bulk traffic). */ |
| 2624 | restore_flags(flags); |
| 2625 | |
| 2626 | /* Assert that the EP descriptor is disabled. */ |
| 2627 | assert(!(TxCtrlEPList[epid].command & IO_MASK(USB_EP_command, enable))); |
| 2628 | |
| 2629 | /* Set up and enable the EP descriptor. */ |
| 2630 | TxCtrlEPList[epid].sub = virt_to_phys(sb_desc_setup); |
| 2631 | TxCtrlEPList[epid].hw_len = 0; |
| 2632 | TxCtrlEPList[epid].command |= IO_STATE(USB_EP_command, enable, yes); |
| 2633 | |
| 2634 | /* We start the DMA sub channel without checking if it's running or not, because: |
| 2635 | 1) If it's already running, issuing the start command is a nop. |
| 2636 | 2) We avoid a test-and-set race condition. */ |
| 2637 | *R_DMA_CH8_SUB1_CMD = IO_STATE(R_DMA_CH8_SUB1_CMD, cmd, start); |
| 2638 | |
| 2639 | DBFEXIT; |
| 2640 | } |
| 2641 | |
| 2642 | static void etrax_usb_complete_ctrl_urb(struct urb *urb, int status) |
| 2643 | { |
| 2644 | etrax_urb_priv_t *urb_priv = (etrax_urb_priv_t *)urb->hcpriv; |
| 2645 | int epid = urb_priv->epid; |
| 2646 | |
| 2647 | DBFENTER; |
| 2648 | |
| 2649 | if (status) |
| 2650 | warn("Completing ctrl urb with status %d.", status); |
| 2651 | |
| 2652 | dbg_ctrl("Completing ctrl epid %d, urb 0x%lx", epid, (unsigned long)urb); |
| 2653 | |
| 2654 | /* Remove this urb from the list. */ |
| 2655 | urb_list_del(urb, epid); |
| 2656 | |
| 2657 | /* For an IN pipe, we always set the actual length, regardless of whether there was |
| 2658 | an error or not (which means the device driver can use the data if it wants to). */ |
| 2659 | if (usb_pipein(urb->pipe)) { |
| 2660 | urb->actual_length = urb_priv->rx_offset; |
| 2661 | } |
| 2662 | |
| 2663 | /* FIXME: Is there something of the things below we shouldn't do if there was an error? |
| 2664 | Like, maybe we shouldn't insert more traffic. */ |
| 2665 | |
| 2666 | /* Remember to free the SBs. */ |
| 2667 | etrax_remove_from_sb_list(urb); |
| 2668 | kfree(urb_priv); |
| 2669 | urb->hcpriv = 0; |
| 2670 | |
| 2671 | /* If there are any more urbs in the list we'd better start sending. */ |
| 2672 | if (!urb_list_empty(epid)) { |
| 2673 | struct urb *new_urb; |
| 2674 | |
| 2675 | /* Get the first urb. */ |
| 2676 | new_urb = urb_list_first(epid); |
| 2677 | assert(new_urb); |
| 2678 | |
| 2679 | dbg_ctrl("More ctrl for epid %d, first urb = 0x%lx", epid, (unsigned long)new_urb); |
| 2680 | |
| 2681 | etrax_usb_add_to_ctrl_sb_list(new_urb, epid); |
| 2682 | } |
| 2683 | |
| 2684 | urb->status = status; |
| 2685 | |
| 2686 | /* We let any non-zero status from the layer above have precedence. */ |
| 2687 | if (status == 0) { |
| 2688 | /* URB_SHORT_NOT_OK means that short reads (shorter than the endpoint's max length) |
| 2689 | is to be treated as an error. */ |
| 2690 | if (urb->transfer_flags & URB_SHORT_NOT_OK) { |
| 2691 | if (usb_pipein(urb->pipe) && |
| 2692 | (urb->actual_length != |
| 2693 | usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe)))) { |
| 2694 | urb->status = -EREMOTEIO; |
| 2695 | } |
| 2696 | } |
| 2697 | } |
| 2698 | |
| 2699 | if (urb->complete) { |
| 2700 | urb->complete(urb, NULL); |
| 2701 | } |
| 2702 | |
| 2703 | if (urb_list_empty(epid)) { |
| 2704 | /* No more traffic. Time to clean up. */ |
| 2705 | etrax_usb_free_epid(epid); |
| 2706 | /* Must set sub pointer to 0. */ |
| 2707 | dbg_ctrl("No ctrl for epid %d", epid); |
| 2708 | TxCtrlEPList[epid].sub = 0; |
| 2709 | } |
| 2710 | |
| 2711 | DBFEXIT; |
| 2712 | } |
| 2713 | |
| 2714 | static int etrax_usb_submit_intr_urb(struct urb *urb) |
| 2715 | { |
| 2716 | |
| 2717 | int epid; |
| 2718 | |
| 2719 | DBFENTER; |
| 2720 | |
| 2721 | if (usb_pipeout(urb->pipe)) { |
| 2722 | /* Unsupported transfer type. |
| 2723 | We don't support interrupt out traffic. (If we do, we can't support |
| 2724 | intervals for neither in or out traffic, but are forced to schedule all |
| 2725 | interrupt traffic in one frame.) */ |
| 2726 | return -EINVAL; |
| 2727 | } |
| 2728 | |
| 2729 | epid = etrax_usb_setup_epid(urb); |
| 2730 | if (epid == -1) { |
| 2731 | DBFEXIT; |
| 2732 | return -ENOMEM; |
| 2733 | } |
| 2734 | |
| 2735 | if (!urb_list_empty(epid)) { |
| 2736 | /* There is already a queued urb for this endpoint. */ |
| 2737 | etrax_usb_free_epid(epid); |
| 2738 | return -ENXIO; |
| 2739 | } |
| 2740 | |
| 2741 | urb->status = -EINPROGRESS; |
| 2742 | |
| 2743 | dbg_intr("Add intr urb 0x%lx, to list, epid %d", (unsigned long)urb, epid); |
| 2744 | |
| 2745 | urb_list_add(urb, epid); |
| 2746 | etrax_usb_add_to_intr_sb_list(urb, epid); |
| 2747 | |
| 2748 | return 0; |
| 2749 | |
| 2750 | DBFEXIT; |
| 2751 | } |
| 2752 | |
| 2753 | static void etrax_usb_add_to_intr_sb_list(struct urb *urb, int epid) |
| 2754 | { |
| 2755 | |
| 2756 | volatile USB_EP_Desc_t *tmp_ep; |
| 2757 | volatile USB_EP_Desc_t *first_ep; |
| 2758 | |
| 2759 | char maxlen; |
| 2760 | int interval; |
| 2761 | int i; |
| 2762 | |
| 2763 | etrax_urb_priv_t *urb_priv; |
| 2764 | |
| 2765 | DBFENTER; |
| 2766 | |
| 2767 | maxlen = usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe)); |
| 2768 | interval = urb->interval; |
| 2769 | |
| 2770 | urb_priv = kmalloc(sizeof(etrax_urb_priv_t), KMALLOC_FLAG); |
| 2771 | assert(urb_priv != NULL); |
| 2772 | memset(urb_priv, 0, sizeof(etrax_urb_priv_t)); |
| 2773 | urb->hcpriv = urb_priv; |
| 2774 | |
| 2775 | first_ep = &TxIntrEPList[0]; |
| 2776 | |
| 2777 | /* Round of the interval to 2^n, it is obvious that this code favours |
| 2778 | smaller numbers, but that is actually a good thing */ |
| 2779 | /* FIXME: The "rounding error" for larger intervals will be quite |
| 2780 | large. For in traffic this shouldn't be a problem since it will only |
| 2781 | mean that we "poll" more often. */ |
| 2782 | for (i = 0; interval; i++) { |
| 2783 | interval = interval >> 1; |
| 2784 | } |
| 2785 | interval = 1 << (i - 1); |
| 2786 | |
| 2787 | dbg_intr("Interval rounded to %d", interval); |
| 2788 | |
| 2789 | tmp_ep = first_ep; |
| 2790 | i = 0; |
| 2791 | do { |
| 2792 | if (tmp_ep->command & IO_MASK(USB_EP_command, eof)) { |
| 2793 | if ((i % interval) == 0) { |
| 2794 | /* Insert the traffic ep after tmp_ep */ |
| 2795 | USB_EP_Desc_t *ep_desc; |
| 2796 | USB_SB_Desc_t *sb_desc; |
| 2797 | |
| 2798 | dbg_intr("Inserting EP for epid %d", epid); |
| 2799 | |
| 2800 | ep_desc = (USB_EP_Desc_t *) |
| 2801 | kmem_cache_alloc(usb_desc_cache, SLAB_FLAG); |
| 2802 | sb_desc = (USB_SB_Desc_t *) |
| 2803 | kmem_cache_alloc(usb_desc_cache, SLAB_FLAG); |
| 2804 | assert(ep_desc != NULL); |
| 2805 | CHECK_ALIGN(ep_desc); |
| 2806 | assert(sb_desc != NULL); |
| 2807 | |
| 2808 | ep_desc->sub = virt_to_phys(sb_desc); |
| 2809 | ep_desc->hw_len = 0; |
| 2810 | ep_desc->command = (IO_FIELD(USB_EP_command, epid, epid) | |
| 2811 | IO_STATE(USB_EP_command, enable, yes)); |
| 2812 | |
| 2813 | |
| 2814 | /* Round upwards the number of packets of size maxlen |
| 2815 | that this SB descriptor should receive. */ |
| 2816 | sb_desc->sw_len = urb->transfer_buffer_length ? |
| 2817 | (urb->transfer_buffer_length - 1) / maxlen + 1 : 0; |
| 2818 | sb_desc->next = 0; |
| 2819 | sb_desc->buf = 0; |
| 2820 | sb_desc->command = |
| 2821 | (IO_FIELD(USB_SB_command, rem, urb->transfer_buffer_length % maxlen) | |
| 2822 | IO_STATE(USB_SB_command, tt, in) | |
| 2823 | IO_STATE(USB_SB_command, eot, yes) | |
| 2824 | IO_STATE(USB_SB_command, eol, yes)); |
| 2825 | |
| 2826 | ep_desc->next = tmp_ep->next; |
| 2827 | tmp_ep->next = virt_to_phys(ep_desc); |
| 2828 | } |
| 2829 | i++; |
| 2830 | } |
| 2831 | tmp_ep = (USB_EP_Desc_t *)phys_to_virt(tmp_ep->next); |
| 2832 | } while (tmp_ep != first_ep); |
| 2833 | |
| 2834 | |
| 2835 | /* Note that first_sb/last_sb doesn't apply to interrupt traffic. */ |
| 2836 | urb_priv->epid = epid; |
| 2837 | |
| 2838 | /* We start the DMA sub channel without checking if it's running or not, because: |
| 2839 | 1) If it's already running, issuing the start command is a nop. |
| 2840 | 2) We avoid a test-and-set race condition. */ |
| 2841 | *R_DMA_CH8_SUB2_CMD = IO_STATE(R_DMA_CH8_SUB2_CMD, cmd, start); |
| 2842 | |
| 2843 | DBFEXIT; |
| 2844 | } |
| 2845 | |
| 2846 | |
| 2847 | |
| 2848 | static void etrax_usb_complete_intr_urb(struct urb *urb, int status) |
| 2849 | { |
| 2850 | etrax_urb_priv_t *urb_priv = (etrax_urb_priv_t *)urb->hcpriv; |
| 2851 | int epid = urb_priv->epid; |
| 2852 | |
| 2853 | DBFENTER; |
| 2854 | |
| 2855 | if (status) |
| 2856 | warn("Completing intr urb with status %d.", status); |
| 2857 | |
| 2858 | dbg_intr("Completing intr epid %d, urb 0x%lx", epid, (unsigned long)urb); |
| 2859 | |
| 2860 | urb->status = status; |
| 2861 | urb->actual_length = urb_priv->rx_offset; |
| 2862 | |
| 2863 | dbg_intr("interrupt urb->actual_length = %d", urb->actual_length); |
| 2864 | |
| 2865 | /* We let any non-zero status from the layer above have precedence. */ |
| 2866 | if (status == 0) { |
| 2867 | /* URB_SHORT_NOT_OK means that short reads (shorter than the endpoint's max length) |
| 2868 | is to be treated as an error. */ |
| 2869 | if (urb->transfer_flags & URB_SHORT_NOT_OK) { |
| 2870 | if (urb->actual_length != |
| 2871 | usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe))) { |
| 2872 | urb->status = -EREMOTEIO; |
| 2873 | } |
| 2874 | } |
| 2875 | } |
| 2876 | |
| 2877 | /* The driver will resubmit the URB so we need to remove it first */ |
| 2878 | etrax_usb_unlink_urb(urb, 0); |
| 2879 | if (urb->complete) { |
| 2880 | urb->complete(urb, NULL); |
| 2881 | } |
| 2882 | |
| 2883 | DBFEXIT; |
| 2884 | } |
| 2885 | |
| 2886 | |
| 2887 | static int etrax_usb_submit_isoc_urb(struct urb *urb) |
| 2888 | { |
| 2889 | int epid; |
| 2890 | unsigned long flags; |
| 2891 | |
| 2892 | DBFENTER; |
| 2893 | |
| 2894 | dbg_isoc("Submitting isoc urb = 0x%lx", (unsigned long)urb); |
| 2895 | |
| 2896 | /* Epid allocation, empty check and list add must be protected. |
| 2897 | Read about this in etrax_usb_submit_ctrl_urb. */ |
| 2898 | |
| 2899 | spin_lock_irqsave(&urb_list_lock, flags); |
| 2900 | /* Is there an active epid for this urb ? */ |
| 2901 | epid = etrax_usb_setup_epid(urb); |
| 2902 | if (epid == -1) { |
| 2903 | DBFEXIT; |
| 2904 | spin_unlock_irqrestore(&urb_list_lock, flags); |
| 2905 | return -ENOMEM; |
| 2906 | } |
| 2907 | |
| 2908 | /* Ok, now we got valid endpoint, lets insert some traffic */ |
| 2909 | |
| 2910 | urb->status = -EINPROGRESS; |
| 2911 | |
| 2912 | /* Find the last urb in the URB_List and add this urb after that one. |
| 2913 | Also add the traffic, that is do an etrax_usb_add_to_isoc_sb_list. This |
| 2914 | is important to make this in "real time" since isochronous traffic is |
| 2915 | time sensitive. */ |
| 2916 | |
| 2917 | dbg_isoc("Adding isoc urb to (possibly empty) list"); |
| 2918 | urb_list_add(urb, epid); |
| 2919 | etrax_usb_add_to_isoc_sb_list(urb, epid); |
| 2920 | spin_unlock_irqrestore(&urb_list_lock, flags); |
| 2921 | |
| 2922 | DBFEXIT; |
| 2923 | |
| 2924 | return 0; |
| 2925 | } |
| 2926 | |
| 2927 | static void etrax_usb_check_error_isoc_ep(const int epid) |
| 2928 | { |
| 2929 | unsigned long int flags; |
| 2930 | int error_code; |
| 2931 | __u32 r_usb_ept_data; |
| 2932 | |
| 2933 | /* We can't read R_USB_EPID_ATTN here since it would clear the iso_eof, |
| 2934 | bulk_eot and epid_attn interrupts. So we just check the status of |
| 2935 | the epid without testing if for it in R_USB_EPID_ATTN. */ |
| 2936 | |
| 2937 | |
| 2938 | save_flags(flags); |
| 2939 | cli(); |
| 2940 | *R_USB_EPT_INDEX = IO_FIELD(R_USB_EPT_INDEX, value, epid); |
| 2941 | nop(); |
| 2942 | /* Note that although there are separate R_USB_EPT_DATA and R_USB_EPT_DATA_ISO |
| 2943 | registers, they are located at the same address and are of the same size. |
| 2944 | In other words, this read should be ok for isoc also. */ |
| 2945 | r_usb_ept_data = *R_USB_EPT_DATA; |
| 2946 | restore_flags(flags); |
| 2947 | |
| 2948 | error_code = IO_EXTRACT(R_USB_EPT_DATA_ISO, error_code, r_usb_ept_data); |
| 2949 | |
| 2950 | if (r_usb_ept_data & IO_MASK(R_USB_EPT_DATA, hold)) { |
| 2951 | warn("Hold was set for epid %d.", epid); |
| 2952 | return; |
| 2953 | } |
| 2954 | |
| 2955 | if (error_code == IO_STATE_VALUE(R_USB_EPT_DATA_ISO, error_code, no_error)) { |
| 2956 | |
| 2957 | /* This indicates that the SB list of the ept was completed before |
| 2958 | new data was appended to it. This is not an error, but indicates |
| 2959 | large system or USB load and could possibly cause trouble for |
| 2960 | very timing sensitive USB device drivers so we log it. |
| 2961 | */ |
| 2962 | info("Isoc. epid %d disabled with no error", epid); |
| 2963 | return; |
| 2964 | |
| 2965 | } else if (error_code == IO_STATE_VALUE(R_USB_EPT_DATA_ISO, error_code, stall)) { |
| 2966 | /* Not really a protocol error, just says that the endpoint gave |
| 2967 | a stall response. Note that error_code cannot be stall for isoc. */ |
| 2968 | panic("Isoc traffic cannot stall"); |
| 2969 | |
| 2970 | } else if (error_code == IO_STATE_VALUE(R_USB_EPT_DATA_ISO, error_code, bus_error)) { |
| 2971 | /* Two devices responded to a transaction request. Must be resolved |
| 2972 | by software. FIXME: Reset ports? */ |
| 2973 | panic("Bus error for epid %d." |
| 2974 | " Two devices responded to transaction request", |
| 2975 | epid); |
| 2976 | |
| 2977 | } else if (error_code == IO_STATE_VALUE(R_USB_EPT_DATA, error_code, buffer_error)) { |
| 2978 | /* DMA overrun or underrun. */ |
| 2979 | warn("Buffer overrun/underrun for epid %d. DMA too busy?", epid); |
| 2980 | |
| 2981 | /* It seems that error_code = buffer_error in |
| 2982 | R_USB_EPT_DATA/R_USB_EPT_DATA_ISO and ourun = yes in R_USB_STATUS |
| 2983 | are the same error. */ |
| 2984 | } |
| 2985 | } |
| 2986 | |
| 2987 | |
| 2988 | static void etrax_usb_add_to_isoc_sb_list(struct urb *urb, int epid) |
| 2989 | { |
| 2990 | |
| 2991 | int i = 0; |
| 2992 | |
| 2993 | etrax_urb_priv_t *urb_priv; |
| 2994 | USB_SB_Desc_t *prev_sb_desc, *next_sb_desc, *temp_sb_desc; |
| 2995 | |
| 2996 | DBFENTER; |
| 2997 | |
| 2998 | prev_sb_desc = next_sb_desc = temp_sb_desc = NULL; |
| 2999 | |
| 3000 | urb_priv = kmalloc(sizeof(etrax_urb_priv_t), GFP_ATOMIC); |
| 3001 | assert(urb_priv != NULL); |
| 3002 | memset(urb_priv, 0, sizeof(etrax_urb_priv_t)); |
| 3003 | |
| 3004 | urb->hcpriv = urb_priv; |
| 3005 | urb_priv->epid = epid; |
| 3006 | |
| 3007 | if (usb_pipeout(urb->pipe)) { |
| 3008 | |
| 3009 | if (urb->number_of_packets == 0) panic("etrax_usb_add_to_isoc_sb_list 0 packets\n"); |
| 3010 | |
| 3011 | dbg_isoc("Transfer for epid %d is OUT", epid); |
| 3012 | dbg_isoc("%d packets in URB", urb->number_of_packets); |
| 3013 | |
| 3014 | /* Create one SB descriptor for each packet and link them together. */ |
| 3015 | for (i = 0; i < urb->number_of_packets; i++) { |
| 3016 | if (!urb->iso_frame_desc[i].length) |
| 3017 | continue; |
| 3018 | |
| 3019 | next_sb_desc = (USB_SB_Desc_t*)kmem_cache_alloc(usb_desc_cache, SLAB_ATOMIC); |
| 3020 | assert(next_sb_desc != NULL); |
| 3021 | |
| 3022 | if (urb->iso_frame_desc[i].length > 0) { |
| 3023 | |
| 3024 | next_sb_desc->command = (IO_STATE(USB_SB_command, tt, out) | |
| 3025 | IO_STATE(USB_SB_command, eot, yes)); |
| 3026 | |
| 3027 | next_sb_desc->sw_len = urb->iso_frame_desc[i].length; |
| 3028 | next_sb_desc->buf = virt_to_phys((char*)urb->transfer_buffer + urb->iso_frame_desc[i].offset); |
| 3029 | |
| 3030 | /* Check if full length transfer. */ |
| 3031 | if (urb->iso_frame_desc[i].length == |
| 3032 | usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe))) { |
| 3033 | next_sb_desc->command |= IO_STATE(USB_SB_command, full, yes); |
| 3034 | } |
| 3035 | } else { |
| 3036 | dbg_isoc("zero len packet"); |
| 3037 | next_sb_desc->command = (IO_FIELD(USB_SB_command, rem, 0) | |
| 3038 | IO_STATE(USB_SB_command, tt, zout) | |
| 3039 | IO_STATE(USB_SB_command, eot, yes) | |
| 3040 | IO_STATE(USB_SB_command, full, yes)); |
| 3041 | |
| 3042 | next_sb_desc->sw_len = 1; |
| 3043 | next_sb_desc->buf = virt_to_phys(&zout_buffer[0]); |
| 3044 | } |
| 3045 | |
| 3046 | /* First SB descriptor that belongs to this urb */ |
| 3047 | if (i == 0) |
| 3048 | urb_priv->first_sb = next_sb_desc; |
| 3049 | else |
| 3050 | prev_sb_desc->next = virt_to_phys(next_sb_desc); |
| 3051 | |
| 3052 | prev_sb_desc = next_sb_desc; |
| 3053 | } |
| 3054 | |
| 3055 | next_sb_desc->command |= (IO_STATE(USB_SB_command, intr, yes) | |
| 3056 | IO_STATE(USB_SB_command, eol, yes)); |
| 3057 | next_sb_desc->next = 0; |
| 3058 | urb_priv->last_sb = next_sb_desc; |
| 3059 | |
| 3060 | } else if (usb_pipein(urb->pipe)) { |
| 3061 | |
| 3062 | dbg_isoc("Transfer for epid %d is IN", epid); |
| 3063 | dbg_isoc("transfer_buffer_length = %d", urb->transfer_buffer_length); |
| 3064 | dbg_isoc("rem is calculated to %d", urb->iso_frame_desc[urb->number_of_packets - 1].length); |
| 3065 | |
| 3066 | /* Note that in descriptors for periodic traffic are not consumed. This means that |
| 3067 | the USB controller never propagates in the SB list. In other words, if there already |
| 3068 | is an SB descriptor in the list for this EP we don't have to do anything. */ |
| 3069 | if (TxIsocEPList[epid].sub == 0) { |
| 3070 | dbg_isoc("Isoc traffic not already running, allocating SB"); |
| 3071 | |
| 3072 | next_sb_desc = (USB_SB_Desc_t*)kmem_cache_alloc(usb_desc_cache, SLAB_ATOMIC); |
| 3073 | assert(next_sb_desc != NULL); |
| 3074 | |
| 3075 | next_sb_desc->command = (IO_STATE(USB_SB_command, tt, in) | |
| 3076 | IO_STATE(USB_SB_command, eot, yes) | |
| 3077 | IO_STATE(USB_SB_command, eol, yes)); |
| 3078 | |
| 3079 | next_sb_desc->next = 0; |
| 3080 | next_sb_desc->sw_len = 1; /* Actual number of packets is not relevant |
| 3081 | for periodic in traffic as long as it is more |
| 3082 | than zero. Set to 1 always. */ |
| 3083 | next_sb_desc->buf = 0; |
| 3084 | |
| 3085 | /* The rem field is don't care for isoc traffic, so we don't set it. */ |
| 3086 | |
| 3087 | /* Only one SB descriptor that belongs to this urb. */ |
| 3088 | urb_priv->first_sb = next_sb_desc; |
| 3089 | urb_priv->last_sb = next_sb_desc; |
| 3090 | |
| 3091 | } else { |
| 3092 | |
| 3093 | dbg_isoc("Isoc traffic already running, just setting first/last_sb"); |
| 3094 | |
| 3095 | /* Each EP for isoc in will have only one SB descriptor, setup when submitting the |
| 3096 | already active urb. Note that even though we may have several first_sb/last_sb |
| 3097 | pointing at the same SB descriptor, they are freed only once (when the list has |
| 3098 | become empty). */ |
| 3099 | urb_priv->first_sb = phys_to_virt(TxIsocEPList[epid].sub); |
| 3100 | urb_priv->last_sb = phys_to_virt(TxIsocEPList[epid].sub); |
| 3101 | return; |
| 3102 | } |
| 3103 | |
| 3104 | } |
| 3105 | |
| 3106 | /* Find the spot to insert this urb and add it. */ |
| 3107 | if (TxIsocEPList[epid].sub == 0) { |
| 3108 | /* First SB descriptor inserted in this list (in or out). */ |
| 3109 | dbg_isoc("Inserting SB desc first in list"); |
| 3110 | TxIsocEPList[epid].hw_len = 0; |
| 3111 | TxIsocEPList[epid].sub = virt_to_phys(urb_priv->first_sb); |
| 3112 | |
| 3113 | } else { |
| 3114 | /* Isochronous traffic is already running, insert new traffic last (only out). */ |
| 3115 | dbg_isoc("Inserting SB desc last in list"); |
| 3116 | temp_sb_desc = phys_to_virt(TxIsocEPList[epid].sub); |
| 3117 | while ((temp_sb_desc->command & IO_MASK(USB_SB_command, eol)) != |
| 3118 | IO_STATE(USB_SB_command, eol, yes)) { |
| 3119 | assert(temp_sb_desc->next); |
| 3120 | temp_sb_desc = phys_to_virt(temp_sb_desc->next); |
| 3121 | } |
| 3122 | dbg_isoc("Appending list on desc 0x%p", temp_sb_desc); |
| 3123 | |
| 3124 | /* Next pointer must be set before eol is removed. */ |
| 3125 | temp_sb_desc->next = virt_to_phys(urb_priv->first_sb); |
| 3126 | /* Clear the previous end of list flag since there is a new in the |
| 3127 | added SB descriptor list. */ |
| 3128 | temp_sb_desc->command &= ~IO_MASK(USB_SB_command, eol); |
| 3129 | |
| 3130 | if (!(TxIsocEPList[epid].command & IO_MASK(USB_EP_command, enable))) { |
| 3131 | /* 8.8.5 in Designer's Reference says we should check for and correct |
| 3132 | any errors in the EP here. That should not be necessary if epid_attn |
| 3133 | is handled correctly, so we assume all is ok. */ |
| 3134 | dbg_isoc("EP disabled"); |
| 3135 | etrax_usb_check_error_isoc_ep(epid); |
| 3136 | |
| 3137 | /* The SB list was exhausted. */ |
| 3138 | if (virt_to_phys(urb_priv->last_sb) != TxIsocEPList[epid].sub) { |
| 3139 | /* The new sublist did not get processed before the EP was |
| 3140 | disabled. Setup the EP again. */ |
| 3141 | dbg_isoc("Set EP sub to new list"); |
| 3142 | TxIsocEPList[epid].hw_len = 0; |
| 3143 | TxIsocEPList[epid].sub = virt_to_phys(urb_priv->first_sb); |
| 3144 | } |
| 3145 | } |
| 3146 | } |
| 3147 | |
| 3148 | if (urb->transfer_flags & URB_ISO_ASAP) { |
| 3149 | /* The isoc transfer should be started as soon as possible. The start_frame |
| 3150 | field is a return value if URB_ISO_ASAP was set. Comparing R_USB_FM_NUMBER |
| 3151 | with a USB Chief trace shows that the first isoc IN token is sent 2 frames |
| 3152 | later. I'm not sure how this affects usage of the start_frame field by the |
| 3153 | device driver, or how it affects things when USB_ISO_ASAP is not set, so |
| 3154 | therefore there's no compensation for the 2 frame "lag" here. */ |
| 3155 | urb->start_frame = (*R_USB_FM_NUMBER & 0x7ff); |
| 3156 | TxIsocEPList[epid].command |= IO_STATE(USB_EP_command, enable, yes); |
| 3157 | urb_priv->urb_state = STARTED; |
| 3158 | dbg_isoc("URB_ISO_ASAP set, urb->start_frame set to %d", urb->start_frame); |
| 3159 | } else { |
| 3160 | /* Not started yet. */ |
| 3161 | urb_priv->urb_state = NOT_STARTED; |
| 3162 | dbg_isoc("urb_priv->urb_state set to NOT_STARTED"); |
| 3163 | } |
| 3164 | |
| 3165 | /* We start the DMA sub channel without checking if it's running or not, because: |
| 3166 | 1) If it's already running, issuing the start command is a nop. |
| 3167 | 2) We avoid a test-and-set race condition. */ |
| 3168 | *R_DMA_CH8_SUB3_CMD = IO_STATE(R_DMA_CH8_SUB3_CMD, cmd, start); |
| 3169 | |
| 3170 | DBFEXIT; |
| 3171 | } |
| 3172 | |
| 3173 | static void etrax_usb_complete_isoc_urb(struct urb *urb, int status) |
| 3174 | { |
| 3175 | etrax_urb_priv_t *urb_priv = (etrax_urb_priv_t *)urb->hcpriv; |
| 3176 | int epid = urb_priv->epid; |
| 3177 | int auto_resubmit = 0; |
| 3178 | |
| 3179 | DBFENTER; |
| 3180 | dbg_isoc("complete urb 0x%p, status %d", urb, status); |
| 3181 | |
| 3182 | if (status) |
| 3183 | warn("Completing isoc urb with status %d.", status); |
| 3184 | |
| 3185 | if (usb_pipein(urb->pipe)) { |
| 3186 | int i; |
| 3187 | |
| 3188 | /* Make that all isoc packets have status and length set before |
| 3189 | completing the urb. */ |
| 3190 | for (i = urb_priv->isoc_packet_counter; i < urb->number_of_packets; i++) { |
| 3191 | urb->iso_frame_desc[i].actual_length = 0; |
| 3192 | urb->iso_frame_desc[i].status = -EPROTO; |
| 3193 | } |
| 3194 | |
| 3195 | urb_list_del(urb, epid); |
| 3196 | |
| 3197 | if (!list_empty(&urb_list[epid])) { |
| 3198 | ((etrax_urb_priv_t *)(urb_list_first(epid)->hcpriv))->urb_state = STARTED; |
| 3199 | } else { |
| 3200 | unsigned long int flags; |
| 3201 | if (TxIsocEPList[epid].command & IO_MASK(USB_EP_command, enable)) { |
| 3202 | /* The EP was enabled, disable it and wait. */ |
| 3203 | TxIsocEPList[epid].command &= ~IO_MASK(USB_EP_command, enable); |
| 3204 | |
| 3205 | /* Ah, the luxury of busy-wait. */ |
| 3206 | while (*R_DMA_CH8_SUB3_EP == virt_to_phys(&TxIsocEPList[epid])); |
| 3207 | } |
| 3208 | |
| 3209 | etrax_remove_from_sb_list(urb); |
| 3210 | TxIsocEPList[epid].sub = 0; |
| 3211 | TxIsocEPList[epid].hw_len = 0; |
| 3212 | |
| 3213 | save_flags(flags); |
| 3214 | cli(); |
| 3215 | etrax_usb_free_epid(epid); |
| 3216 | restore_flags(flags); |
| 3217 | } |
| 3218 | |
| 3219 | urb->hcpriv = 0; |
| 3220 | kfree(urb_priv); |
| 3221 | |
| 3222 | /* Release allocated bandwidth. */ |
| 3223 | usb_release_bandwidth(urb->dev, urb, 0); |
| 3224 | } else if (usb_pipeout(urb->pipe)) { |
| 3225 | int freed_descr; |
| 3226 | |
| 3227 | dbg_isoc("Isoc out urb complete 0x%p", urb); |
| 3228 | |
| 3229 | /* Update the urb list. */ |
| 3230 | urb_list_del(urb, epid); |
| 3231 | |
| 3232 | freed_descr = etrax_remove_from_sb_list(urb); |
| 3233 | dbg_isoc("freed %d descriptors of %d packets", freed_descr, urb->number_of_packets); |
| 3234 | assert(freed_descr == urb->number_of_packets); |
| 3235 | urb->hcpriv = 0; |
| 3236 | kfree(urb_priv); |
| 3237 | |
| 3238 | /* Release allocated bandwidth. */ |
| 3239 | usb_release_bandwidth(urb->dev, urb, 0); |
| 3240 | } |
| 3241 | |
| 3242 | urb->status = status; |
| 3243 | if (urb->complete) { |
| 3244 | urb->complete(urb, NULL); |
| 3245 | } |
| 3246 | |
| 3247 | if (auto_resubmit) { |
| 3248 | /* Check that urb was not unlinked by the complete callback. */ |
| 3249 | if (__urb_list_entry(urb, epid)) { |
| 3250 | /* Move this one down the list. */ |
| 3251 | urb_list_move_last(urb, epid); |
| 3252 | |
| 3253 | /* Mark the now first urb as started (may already be). */ |
| 3254 | ((etrax_urb_priv_t *)(urb_list_first(epid)->hcpriv))->urb_state = STARTED; |
| 3255 | |
| 3256 | /* Must set this to 0 since this urb is still active after |
| 3257 | completion. */ |
| 3258 | urb_priv->isoc_packet_counter = 0; |
| 3259 | } else { |
| 3260 | warn("(ISOC) automatic resubmit urb 0x%p removed by complete.", urb); |
| 3261 | } |
| 3262 | } |
| 3263 | |
| 3264 | DBFEXIT; |
| 3265 | } |
| 3266 | |
| 3267 | static void etrax_usb_complete_urb(struct urb *urb, int status) |
| 3268 | { |
| 3269 | switch (usb_pipetype(urb->pipe)) { |
| 3270 | case PIPE_BULK: |
| 3271 | etrax_usb_complete_bulk_urb(urb, status); |
| 3272 | break; |
| 3273 | case PIPE_CONTROL: |
| 3274 | etrax_usb_complete_ctrl_urb(urb, status); |
| 3275 | break; |
| 3276 | case PIPE_INTERRUPT: |
| 3277 | etrax_usb_complete_intr_urb(urb, status); |
| 3278 | break; |
| 3279 | case PIPE_ISOCHRONOUS: |
| 3280 | etrax_usb_complete_isoc_urb(urb, status); |
| 3281 | break; |
| 3282 | default: |
| 3283 | err("Unknown pipetype"); |
| 3284 | } |
| 3285 | } |
| 3286 | |
| 3287 | |
| 3288 | |
| 3289 | static irqreturn_t etrax_usb_hc_interrupt_top_half(int irq, void *vhc, struct pt_regs *regs) |
| 3290 | { |
| 3291 | usb_interrupt_registers_t *reg; |
| 3292 | unsigned long flags; |
| 3293 | __u32 irq_mask; |
| 3294 | __u8 status; |
| 3295 | __u32 epid_attn; |
| 3296 | __u16 port_status_1; |
| 3297 | __u16 port_status_2; |
| 3298 | __u32 fm_number; |
| 3299 | |
| 3300 | DBFENTER; |
| 3301 | |
| 3302 | /* Read critical registers into local variables, do kmalloc afterwards. */ |
| 3303 | save_flags(flags); |
| 3304 | cli(); |
| 3305 | |
| 3306 | irq_mask = *R_USB_IRQ_MASK_READ; |
| 3307 | /* Reading R_USB_STATUS clears the ctl_status interrupt. Note that R_USB_STATUS |
| 3308 | must be read before R_USB_EPID_ATTN since reading the latter clears the |
| 3309 | ourun and perror fields of R_USB_STATUS. */ |
| 3310 | status = *R_USB_STATUS; |
| 3311 | |
| 3312 | /* Reading R_USB_EPID_ATTN clears the iso_eof, bulk_eot and epid_attn interrupts. */ |
| 3313 | epid_attn = *R_USB_EPID_ATTN; |
| 3314 | |
| 3315 | /* Reading R_USB_RH_PORT_STATUS_1 and R_USB_RH_PORT_STATUS_2 clears the |
| 3316 | port_status interrupt. */ |
| 3317 | port_status_1 = *R_USB_RH_PORT_STATUS_1; |
| 3318 | port_status_2 = *R_USB_RH_PORT_STATUS_2; |
| 3319 | |
| 3320 | /* Reading R_USB_FM_NUMBER clears the sof interrupt. */ |
| 3321 | /* Note: the lower 11 bits contain the actual frame number, sent with each sof. */ |
| 3322 | fm_number = *R_USB_FM_NUMBER; |
| 3323 | |
| 3324 | restore_flags(flags); |
| 3325 | |
| 3326 | reg = (usb_interrupt_registers_t *)kmem_cache_alloc(top_half_reg_cache, SLAB_ATOMIC); |
| 3327 | |
| 3328 | assert(reg != NULL); |
| 3329 | |
| 3330 | reg->hc = (etrax_hc_t *)vhc; |
| 3331 | |
| 3332 | /* Now put register values into kmalloc'd area. */ |
| 3333 | reg->r_usb_irq_mask_read = irq_mask; |
| 3334 | reg->r_usb_status = status; |
| 3335 | reg->r_usb_epid_attn = epid_attn; |
| 3336 | reg->r_usb_rh_port_status_1 = port_status_1; |
| 3337 | reg->r_usb_rh_port_status_2 = port_status_2; |
| 3338 | reg->r_usb_fm_number = fm_number; |
| 3339 | |
| 3340 | INIT_WORK(®->usb_bh, etrax_usb_hc_interrupt_bottom_half, reg); |
| 3341 | schedule_work(®->usb_bh); |
| 3342 | |
| 3343 | DBFEXIT; |
| 3344 | |
| 3345 | return IRQ_HANDLED; |
| 3346 | } |
| 3347 | |
| 3348 | static void etrax_usb_hc_interrupt_bottom_half(void *data) |
| 3349 | { |
| 3350 | usb_interrupt_registers_t *reg = (usb_interrupt_registers_t *)data; |
| 3351 | __u32 irq_mask = reg->r_usb_irq_mask_read; |
| 3352 | |
| 3353 | DBFENTER; |
| 3354 | |
| 3355 | /* Interrupts are handled in order of priority. */ |
| 3356 | if (irq_mask & IO_MASK(R_USB_IRQ_MASK_READ, epid_attn)) { |
| 3357 | etrax_usb_hc_epid_attn_interrupt(reg); |
| 3358 | } |
| 3359 | if (irq_mask & IO_MASK(R_USB_IRQ_MASK_READ, port_status)) { |
| 3360 | etrax_usb_hc_port_status_interrupt(reg); |
| 3361 | } |
| 3362 | if (irq_mask & IO_MASK(R_USB_IRQ_MASK_READ, ctl_status)) { |
| 3363 | etrax_usb_hc_ctl_status_interrupt(reg); |
| 3364 | } |
| 3365 | if (irq_mask & IO_MASK(R_USB_IRQ_MASK_READ, iso_eof)) { |
| 3366 | etrax_usb_hc_isoc_eof_interrupt(); |
| 3367 | } |
| 3368 | if (irq_mask & IO_MASK(R_USB_IRQ_MASK_READ, bulk_eot)) { |
| 3369 | /* Update/restart the bulk start timer since obviously the channel is running. */ |
| 3370 | mod_timer(&bulk_start_timer, jiffies + BULK_START_TIMER_INTERVAL); |
| 3371 | /* Update/restart the bulk eot timer since we just received an bulk eot interrupt. */ |
| 3372 | mod_timer(&bulk_eot_timer, jiffies + BULK_EOT_TIMER_INTERVAL); |
| 3373 | |
| 3374 | etrax_usb_hc_bulk_eot_interrupt(0); |
| 3375 | } |
| 3376 | |
| 3377 | kmem_cache_free(top_half_reg_cache, reg); |
| 3378 | |
| 3379 | DBFEXIT; |
| 3380 | } |
| 3381 | |
| 3382 | |
| 3383 | void etrax_usb_hc_isoc_eof_interrupt(void) |
| 3384 | { |
| 3385 | struct urb *urb; |
| 3386 | etrax_urb_priv_t *urb_priv; |
| 3387 | int epid; |
| 3388 | unsigned long flags; |
| 3389 | |
| 3390 | DBFENTER; |
| 3391 | |
| 3392 | /* Do not check the invalid epid (it has a valid sub pointer). */ |
| 3393 | for (epid = 0; epid < NBR_OF_EPIDS - 1; epid++) { |
| 3394 | |
| 3395 | /* Do not check the invalid epid (it has a valid sub pointer). */ |
| 3396 | if ((epid == DUMMY_EPID) || (epid == INVALID_EPID)) |
| 3397 | continue; |
| 3398 | |
| 3399 | /* Disable interrupts to block the isoc out descriptor interrupt handler |
| 3400 | from being called while the isoc EPID list is being checked. |
| 3401 | */ |
| 3402 | save_flags(flags); |
| 3403 | cli(); |
| 3404 | |
| 3405 | if (TxIsocEPList[epid].sub == 0) { |
| 3406 | /* Nothing here to see. */ |
| 3407 | restore_flags(flags); |
| 3408 | continue; |
| 3409 | } |
| 3410 | |
| 3411 | /* Get the first urb (if any). */ |
| 3412 | urb = urb_list_first(epid); |
| 3413 | if (urb == 0) { |
| 3414 | warn("Ignoring NULL urb"); |
| 3415 | restore_flags(flags); |
| 3416 | continue; |
| 3417 | } |
| 3418 | if (usb_pipein(urb->pipe)) { |
| 3419 | |
| 3420 | /* Sanity check. */ |
| 3421 | assert(usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS); |
| 3422 | |
| 3423 | urb_priv = (etrax_urb_priv_t *)urb->hcpriv; |
| 3424 | assert(urb_priv); |
| 3425 | |
| 3426 | if (urb_priv->urb_state == NOT_STARTED) { |
| 3427 | |
| 3428 | /* If ASAP is not set and urb->start_frame is the current frame, |
| 3429 | start the transfer. */ |
| 3430 | if (!(urb->transfer_flags & URB_ISO_ASAP) && |
| 3431 | (urb->start_frame == (*R_USB_FM_NUMBER & 0x7ff))) { |
| 3432 | |
| 3433 | dbg_isoc("Enabling isoc IN EP descr for epid %d", epid); |
| 3434 | TxIsocEPList[epid].command |= IO_STATE(USB_EP_command, enable, yes); |
| 3435 | |
| 3436 | /* This urb is now active. */ |
| 3437 | urb_priv->urb_state = STARTED; |
| 3438 | continue; |
| 3439 | } |
| 3440 | } |
| 3441 | } |
| 3442 | restore_flags(flags); |
| 3443 | } |
| 3444 | |
| 3445 | DBFEXIT; |
| 3446 | |
| 3447 | } |
| 3448 | |
| 3449 | void etrax_usb_hc_bulk_eot_interrupt(int timer_induced) |
| 3450 | { |
| 3451 | int epid; |
| 3452 | |
| 3453 | /* The technique is to run one urb at a time, wait for the eot interrupt at which |
| 3454 | point the EP descriptor has been disabled. */ |
| 3455 | |
| 3456 | DBFENTER; |
| 3457 | dbg_bulk("bulk eot%s", timer_induced ? ", called by timer" : ""); |
| 3458 | |
| 3459 | for (epid = 0; epid < NBR_OF_EPIDS; epid++) { |
| 3460 | |
| 3461 | if (!(TxBulkEPList[epid].command & IO_MASK(USB_EP_command, enable)) && |
| 3462 | (TxBulkEPList[epid].sub != 0)) { |
| 3463 | |
| 3464 | struct urb *urb; |
| 3465 | etrax_urb_priv_t *urb_priv; |
| 3466 | unsigned long flags; |
| 3467 | __u32 r_usb_ept_data; |
| 3468 | |
| 3469 | /* Found a disabled EP descriptor which has a non-null sub pointer. |
| 3470 | Verify that this ctrl EP descriptor got disabled no errors. |
| 3471 | FIXME: Necessary to check error_code? */ |
| 3472 | dbg_bulk("for epid %d?", epid); |
| 3473 | |
| 3474 | /* Get the first urb. */ |
| 3475 | urb = urb_list_first(epid); |
| 3476 | |
| 3477 | /* FIXME: Could this happen for valid reasons? Why did it disappear? Because of |
| 3478 | wrong unlinking? */ |
| 3479 | if (!urb) { |
| 3480 | warn("NULL urb for epid %d", epid); |
| 3481 | continue; |
| 3482 | } |
| 3483 | |
| 3484 | assert(urb); |
| 3485 | urb_priv = (etrax_urb_priv_t *)urb->hcpriv; |
| 3486 | assert(urb_priv); |
| 3487 | |
| 3488 | /* Sanity checks. */ |
| 3489 | assert(usb_pipetype(urb->pipe) == PIPE_BULK); |
| 3490 | if (phys_to_virt(TxBulkEPList[epid].sub) != urb_priv->last_sb) { |
| 3491 | err("bulk endpoint got disabled before reaching last sb"); |
| 3492 | } |
| 3493 | |
| 3494 | /* For bulk IN traffic, there seems to be a race condition between |
| 3495 | between the bulk eot and eop interrupts, or rather an uncertainty regarding |
| 3496 | the order in which they happen. Normally we expect the eop interrupt from |
| 3497 | DMA channel 9 to happen before the eot interrupt. |
| 3498 | |
| 3499 | Therefore, we complete the bulk IN urb in the rx interrupt handler instead. */ |
| 3500 | |
| 3501 | if (usb_pipein(urb->pipe)) { |
| 3502 | dbg_bulk("in urb, continuing"); |
| 3503 | continue; |
| 3504 | } |
| 3505 | |
| 3506 | save_flags(flags); |
| 3507 | cli(); |
| 3508 | *R_USB_EPT_INDEX = IO_FIELD(R_USB_EPT_INDEX, value, epid); |
| 3509 | nop(); |
| 3510 | r_usb_ept_data = *R_USB_EPT_DATA; |
| 3511 | restore_flags(flags); |
| 3512 | |
| 3513 | if (IO_EXTRACT(R_USB_EPT_DATA, error_code, r_usb_ept_data) == |
| 3514 | IO_STATE_VALUE(R_USB_EPT_DATA, error_code, no_error)) { |
| 3515 | /* This means that the endpoint has no error, is disabled |
| 3516 | and had inserted traffic, i.e. transfer successfully completed. */ |
| 3517 | etrax_usb_complete_bulk_urb(urb, 0); |
| 3518 | } else { |
| 3519 | /* Shouldn't happen. We expect errors to be caught by epid attention. */ |
| 3520 | err("Found disabled bulk EP desc, error_code != no_error"); |
| 3521 | } |
| 3522 | } |
| 3523 | } |
| 3524 | |
| 3525 | /* Normally, we should find (at least) one disabled EP descriptor with a valid sub pointer. |
| 3526 | However, because of the uncertainty in the deliverance of the eop/eot interrupts, we may |
| 3527 | not. Also, we might find two disabled EPs when handling an eot interrupt, and then find |
| 3528 | none the next time. */ |
| 3529 | |
| 3530 | DBFEXIT; |
| 3531 | |
| 3532 | } |
| 3533 | |
| 3534 | void etrax_usb_hc_epid_attn_interrupt(usb_interrupt_registers_t *reg) |
| 3535 | { |
| 3536 | /* This function handles the epid attention interrupt. There are a variety of reasons |
| 3537 | for this interrupt to happen (Designer's Reference, p. 8 - 22 for the details): |
| 3538 | |
| 3539 | invalid ep_id - Invalid epid in an EP (EP disabled). |
| 3540 | stall - Not strictly an error condition (EP disabled). |
| 3541 | 3rd error - Three successive transaction errors (EP disabled). |
| 3542 | buffer ourun - Buffer overrun or underrun (EP disabled). |
| 3543 | past eof1 - Intr or isoc transaction proceeds past EOF1. |
| 3544 | near eof - Intr or isoc transaction would not fit inside the frame. |
| 3545 | zout transfer - If zout transfer for a bulk endpoint (EP disabled). |
| 3546 | setup transfer - If setup transfer for a non-ctrl endpoint (EP disabled). */ |
| 3547 | |
| 3548 | int epid; |
| 3549 | |
| 3550 | |
| 3551 | DBFENTER; |
| 3552 | |
| 3553 | assert(reg != NULL); |
| 3554 | |
| 3555 | /* Note that we loop through all epids. We still want to catch errors for |
| 3556 | the invalid one, even though we might handle them differently. */ |
| 3557 | for (epid = 0; epid < NBR_OF_EPIDS; epid++) { |
| 3558 | |
| 3559 | if (test_bit(epid, (void *)®->r_usb_epid_attn)) { |
| 3560 | |
| 3561 | struct urb *urb; |
| 3562 | __u32 r_usb_ept_data; |
| 3563 | unsigned long flags; |
| 3564 | int error_code; |
| 3565 | |
| 3566 | save_flags(flags); |
| 3567 | cli(); |
| 3568 | *R_USB_EPT_INDEX = IO_FIELD(R_USB_EPT_INDEX, value, epid); |
| 3569 | nop(); |
| 3570 | /* Note that although there are separate R_USB_EPT_DATA and R_USB_EPT_DATA_ISO |
| 3571 | registers, they are located at the same address and are of the same size. |
| 3572 | In other words, this read should be ok for isoc also. */ |
| 3573 | r_usb_ept_data = *R_USB_EPT_DATA; |
| 3574 | restore_flags(flags); |
| 3575 | |
| 3576 | /* First some sanity checks. */ |
| 3577 | if (epid == INVALID_EPID) { |
| 3578 | /* FIXME: What if it became disabled? Could seriously hurt interrupt |
| 3579 | traffic. (Use do_intr_recover.) */ |
| 3580 | warn("Got epid_attn for INVALID_EPID (%d).", epid); |
| 3581 | err("R_USB_EPT_DATA = 0x%x", r_usb_ept_data); |
| 3582 | err("R_USB_STATUS = 0x%x", reg->r_usb_status); |
| 3583 | continue; |
| 3584 | } else if (epid == DUMMY_EPID) { |
| 3585 | /* We definitely don't care about these ones. Besides, they are |
| 3586 | always disabled, so any possible disabling caused by the |
| 3587 | epid attention interrupt is irrelevant. */ |
| 3588 | warn("Got epid_attn for DUMMY_EPID (%d).", epid); |
| 3589 | continue; |
| 3590 | } |
| 3591 | |
| 3592 | /* Get the first urb in the urb list for this epid. We blatantly assume |
| 3593 | that only the first urb could have caused the epid attention. |
| 3594 | (For bulk and ctrl, only one urb is active at any one time. For intr |
| 3595 | and isoc we remove them once they are completed.) */ |
| 3596 | urb = urb_list_first(epid); |
| 3597 | |
| 3598 | if (urb == NULL) { |
| 3599 | err("Got epid_attn for epid %i with no urb.", epid); |
| 3600 | err("R_USB_EPT_DATA = 0x%x", r_usb_ept_data); |
| 3601 | err("R_USB_STATUS = 0x%x", reg->r_usb_status); |
| 3602 | continue; |
| 3603 | } |
| 3604 | |
| 3605 | switch (usb_pipetype(urb->pipe)) { |
| 3606 | case PIPE_BULK: |
| 3607 | warn("Got epid attn for bulk endpoint, epid %d", epid); |
| 3608 | break; |
| 3609 | case PIPE_CONTROL: |
| 3610 | warn("Got epid attn for control endpoint, epid %d", epid); |
| 3611 | break; |
| 3612 | case PIPE_INTERRUPT: |
| 3613 | warn("Got epid attn for interrupt endpoint, epid %d", epid); |
| 3614 | break; |
| 3615 | case PIPE_ISOCHRONOUS: |
| 3616 | warn("Got epid attn for isochronous endpoint, epid %d", epid); |
| 3617 | break; |
| 3618 | } |
| 3619 | |
| 3620 | if (usb_pipetype(urb->pipe) != PIPE_ISOCHRONOUS) { |
| 3621 | if (r_usb_ept_data & IO_MASK(R_USB_EPT_DATA, hold)) { |
| 3622 | warn("Hold was set for epid %d.", epid); |
| 3623 | continue; |
| 3624 | } |
| 3625 | } |
| 3626 | |
| 3627 | /* Even though error_code occupies bits 22 - 23 in both R_USB_EPT_DATA and |
| 3628 | R_USB_EPT_DATA_ISOC, we separate them here so we don't forget in other places. */ |
| 3629 | if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { |
| 3630 | error_code = IO_EXTRACT(R_USB_EPT_DATA_ISO, error_code, r_usb_ept_data); |
| 3631 | } else { |
| 3632 | error_code = IO_EXTRACT(R_USB_EPT_DATA, error_code, r_usb_ept_data); |
| 3633 | } |
| 3634 | |
| 3635 | /* Using IO_STATE_VALUE on R_USB_EPT_DATA should be ok for isoc also. */ |
| 3636 | if (error_code == IO_STATE_VALUE(R_USB_EPT_DATA, error_code, no_error)) { |
| 3637 | |
| 3638 | /* Isoc traffic doesn't have error_count_in/error_count_out. */ |
| 3639 | if ((usb_pipetype(urb->pipe) != PIPE_ISOCHRONOUS) && |
| 3640 | (IO_EXTRACT(R_USB_EPT_DATA, error_count_in, r_usb_ept_data) == 3 || |
| 3641 | IO_EXTRACT(R_USB_EPT_DATA, error_count_out, r_usb_ept_data) == 3)) { |
| 3642 | /* 3rd error. */ |
| 3643 | warn("3rd error for epid %i", epid); |
| 3644 | etrax_usb_complete_urb(urb, -EPROTO); |
| 3645 | |
| 3646 | } else if (reg->r_usb_status & IO_MASK(R_USB_STATUS, perror)) { |
| 3647 | |
| 3648 | warn("Perror for epid %d", epid); |
| 3649 | |
| 3650 | if (!(r_usb_ept_data & IO_MASK(R_USB_EPT_DATA, valid))) { |
| 3651 | /* invalid ep_id */ |
| 3652 | panic("Perror because of invalid epid." |
| 3653 | " Deconfigured too early?"); |
| 3654 | } else { |
| 3655 | /* past eof1, near eof, zout transfer, setup transfer */ |
| 3656 | |
| 3657 | /* Dump the urb and the relevant EP descriptor list. */ |
| 3658 | |
| 3659 | __dump_urb(urb); |
| 3660 | __dump_ept_data(epid); |
| 3661 | __dump_ep_list(usb_pipetype(urb->pipe)); |
| 3662 | |
| 3663 | panic("Something wrong with DMA descriptor contents." |
| 3664 | " Too much traffic inserted?"); |
| 3665 | } |
| 3666 | } else if (reg->r_usb_status & IO_MASK(R_USB_STATUS, ourun)) { |
| 3667 | /* buffer ourun */ |
| 3668 | panic("Buffer overrun/underrun for epid %d. DMA too busy?", epid); |
| 3669 | } |
| 3670 | |
| 3671 | } else if (error_code == IO_STATE_VALUE(R_USB_EPT_DATA, error_code, stall)) { |
| 3672 | /* Not really a protocol error, just says that the endpoint gave |
| 3673 | a stall response. Note that error_code cannot be stall for isoc. */ |
| 3674 | if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { |
| 3675 | panic("Isoc traffic cannot stall"); |
| 3676 | } |
| 3677 | |
| 3678 | warn("Stall for epid %d", epid); |
| 3679 | etrax_usb_complete_urb(urb, -EPIPE); |
| 3680 | |
| 3681 | } else if (error_code == IO_STATE_VALUE(R_USB_EPT_DATA, error_code, bus_error)) { |
| 3682 | /* Two devices responded to a transaction request. Must be resolved |
| 3683 | by software. FIXME: Reset ports? */ |
| 3684 | panic("Bus error for epid %d." |
| 3685 | " Two devices responded to transaction request", |
| 3686 | epid); |
| 3687 | |
| 3688 | } else if (error_code == IO_STATE_VALUE(R_USB_EPT_DATA, error_code, buffer_error)) { |
| 3689 | /* DMA overrun or underrun. */ |
| 3690 | warn("Buffer overrun/underrun for epid %d. DMA too busy?", epid); |
| 3691 | |
| 3692 | /* It seems that error_code = buffer_error in |
| 3693 | R_USB_EPT_DATA/R_USB_EPT_DATA_ISO and ourun = yes in R_USB_STATUS |
| 3694 | are the same error. */ |
| 3695 | etrax_usb_complete_urb(urb, -EPROTO); |
| 3696 | } |
| 3697 | } |
| 3698 | } |
| 3699 | |
| 3700 | DBFEXIT; |
| 3701 | |
| 3702 | } |
| 3703 | |
| 3704 | void etrax_usb_bulk_start_timer_func(unsigned long dummy) |
| 3705 | { |
| 3706 | |
| 3707 | /* We might enable an EP descriptor behind the current DMA position when it's about |
| 3708 | to decide that there are no more bulk traffic and it should stop the bulk channel. |
| 3709 | Therefore we periodically check if the bulk channel is stopped and there is an |
| 3710 | enabled bulk EP descriptor, in which case we start the bulk channel. */ |
| 3711 | dbg_bulk("bulk_start_timer timed out."); |
| 3712 | |
| 3713 | if (!(*R_DMA_CH8_SUB0_CMD & IO_MASK(R_DMA_CH8_SUB0_CMD, cmd))) { |
| 3714 | int epid; |
| 3715 | |
| 3716 | dbg_bulk("Bulk DMA channel not running."); |
| 3717 | |
| 3718 | for (epid = 0; epid < NBR_OF_EPIDS; epid++) { |
| 3719 | if (TxBulkEPList[epid].command & IO_MASK(USB_EP_command, enable)) { |
| 3720 | dbg_bulk("Found enabled EP for epid %d, starting bulk channel.\n", |
| 3721 | epid); |
| 3722 | *R_DMA_CH8_SUB0_CMD = IO_STATE(R_DMA_CH8_SUB0_CMD, cmd, start); |
| 3723 | |
| 3724 | /* Restart the bulk eot timer since we just started the bulk channel. */ |
| 3725 | mod_timer(&bulk_eot_timer, jiffies + BULK_EOT_TIMER_INTERVAL); |
| 3726 | |
| 3727 | /* No need to search any further. */ |
| 3728 | break; |
| 3729 | } |
| 3730 | } |
| 3731 | } else { |
| 3732 | dbg_bulk("Bulk DMA channel running."); |
| 3733 | } |
| 3734 | } |
| 3735 | |
| 3736 | void etrax_usb_hc_port_status_interrupt(usb_interrupt_registers_t *reg) |
| 3737 | { |
| 3738 | etrax_hc_t *hc = reg->hc; |
| 3739 | __u16 r_usb_rh_port_status_1 = reg->r_usb_rh_port_status_1; |
| 3740 | __u16 r_usb_rh_port_status_2 = reg->r_usb_rh_port_status_2; |
| 3741 | |
| 3742 | DBFENTER; |
| 3743 | |
| 3744 | /* The Etrax RH does not include a wPortChange register, so this has to be handled in software |
| 3745 | (by saving the old port status value for comparison when the port status interrupt happens). |
| 3746 | See section 11.16.2.6.2 in the USB 1.1 spec for details. */ |
| 3747 | |
| 3748 | dbg_rh("hc->rh.prev_wPortStatus_1 = 0x%x", hc->rh.prev_wPortStatus_1); |
| 3749 | dbg_rh("hc->rh.prev_wPortStatus_2 = 0x%x", hc->rh.prev_wPortStatus_2); |
| 3750 | dbg_rh("r_usb_rh_port_status_1 = 0x%x", r_usb_rh_port_status_1); |
| 3751 | dbg_rh("r_usb_rh_port_status_2 = 0x%x", r_usb_rh_port_status_2); |
| 3752 | |
| 3753 | /* C_PORT_CONNECTION is set on any transition. */ |
| 3754 | hc->rh.wPortChange_1 |= |
| 3755 | ((r_usb_rh_port_status_1 & (1 << RH_PORT_CONNECTION)) != |
| 3756 | (hc->rh.prev_wPortStatus_1 & (1 << RH_PORT_CONNECTION))) ? |
| 3757 | (1 << RH_PORT_CONNECTION) : 0; |
| 3758 | |
| 3759 | hc->rh.wPortChange_2 |= |
| 3760 | ((r_usb_rh_port_status_2 & (1 << RH_PORT_CONNECTION)) != |
| 3761 | (hc->rh.prev_wPortStatus_2 & (1 << RH_PORT_CONNECTION))) ? |
| 3762 | (1 << RH_PORT_CONNECTION) : 0; |
| 3763 | |
| 3764 | /* C_PORT_ENABLE is _only_ set on a one to zero transition, i.e. when |
| 3765 | the port is disabled, not when it's enabled. */ |
| 3766 | hc->rh.wPortChange_1 |= |
| 3767 | ((hc->rh.prev_wPortStatus_1 & (1 << RH_PORT_ENABLE)) |
| 3768 | && !(r_usb_rh_port_status_1 & (1 << RH_PORT_ENABLE))) ? |
| 3769 | (1 << RH_PORT_ENABLE) : 0; |
| 3770 | |
| 3771 | hc->rh.wPortChange_2 |= |
| 3772 | ((hc->rh.prev_wPortStatus_2 & (1 << RH_PORT_ENABLE)) |
| 3773 | && !(r_usb_rh_port_status_2 & (1 << RH_PORT_ENABLE))) ? |
| 3774 | (1 << RH_PORT_ENABLE) : 0; |
| 3775 | |
| 3776 | /* C_PORT_SUSPEND is set to one when the device has transitioned out |
| 3777 | of the suspended state, i.e. when suspend goes from one to zero. */ |
| 3778 | hc->rh.wPortChange_1 |= |
| 3779 | ((hc->rh.prev_wPortStatus_1 & (1 << RH_PORT_SUSPEND)) |
| 3780 | && !(r_usb_rh_port_status_1 & (1 << RH_PORT_SUSPEND))) ? |
| 3781 | (1 << RH_PORT_SUSPEND) : 0; |
| 3782 | |
| 3783 | hc->rh.wPortChange_2 |= |
| 3784 | ((hc->rh.prev_wPortStatus_2 & (1 << RH_PORT_SUSPEND)) |
| 3785 | && !(r_usb_rh_port_status_2 & (1 << RH_PORT_SUSPEND))) ? |
| 3786 | (1 << RH_PORT_SUSPEND) : 0; |
| 3787 | |
| 3788 | |
| 3789 | /* C_PORT_RESET is set when reset processing on this port is complete. */ |
| 3790 | hc->rh.wPortChange_1 |= |
| 3791 | ((hc->rh.prev_wPortStatus_1 & (1 << RH_PORT_RESET)) |
| 3792 | && !(r_usb_rh_port_status_1 & (1 << RH_PORT_RESET))) ? |
| 3793 | (1 << RH_PORT_RESET) : 0; |
| 3794 | |
| 3795 | hc->rh.wPortChange_2 |= |
| 3796 | ((hc->rh.prev_wPortStatus_2 & (1 << RH_PORT_RESET)) |
| 3797 | && !(r_usb_rh_port_status_2 & (1 << RH_PORT_RESET))) ? |
| 3798 | (1 << RH_PORT_RESET) : 0; |
| 3799 | |
| 3800 | /* Save the new values for next port status change. */ |
| 3801 | hc->rh.prev_wPortStatus_1 = r_usb_rh_port_status_1; |
| 3802 | hc->rh.prev_wPortStatus_2 = r_usb_rh_port_status_2; |
| 3803 | |
| 3804 | dbg_rh("hc->rh.wPortChange_1 set to 0x%x", hc->rh.wPortChange_1); |
| 3805 | dbg_rh("hc->rh.wPortChange_2 set to 0x%x", hc->rh.wPortChange_2); |
| 3806 | |
| 3807 | DBFEXIT; |
| 3808 | |
| 3809 | } |
| 3810 | |
| 3811 | void etrax_usb_hc_ctl_status_interrupt(usb_interrupt_registers_t *reg) |
| 3812 | { |
| 3813 | DBFENTER; |
| 3814 | |
| 3815 | /* FIXME: What should we do if we get ourun or perror? Dump the EP and SB |
| 3816 | list for the corresponding epid? */ |
| 3817 | if (reg->r_usb_status & IO_MASK(R_USB_STATUS, ourun)) { |
| 3818 | panic("USB controller got ourun."); |
| 3819 | } |
| 3820 | if (reg->r_usb_status & IO_MASK(R_USB_STATUS, perror)) { |
| 3821 | |
| 3822 | /* Before, etrax_usb_do_intr_recover was called on this epid if it was |
| 3823 | an interrupt pipe. I don't see how re-enabling all EP descriptors |
| 3824 | will help if there was a programming error. */ |
| 3825 | panic("USB controller got perror."); |
| 3826 | } |
| 3827 | |
| 3828 | if (reg->r_usb_status & IO_MASK(R_USB_STATUS, device_mode)) { |
| 3829 | /* We should never operate in device mode. */ |
| 3830 | panic("USB controller in device mode."); |
| 3831 | } |
| 3832 | |
| 3833 | /* These if-statements could probably be nested. */ |
| 3834 | if (reg->r_usb_status & IO_MASK(R_USB_STATUS, host_mode)) { |
| 3835 | info("USB controller in host mode."); |
| 3836 | } |
| 3837 | if (reg->r_usb_status & IO_MASK(R_USB_STATUS, started)) { |
| 3838 | info("USB controller started."); |
| 3839 | } |
| 3840 | if (reg->r_usb_status & IO_MASK(R_USB_STATUS, running)) { |
| 3841 | info("USB controller running."); |
| 3842 | } |
| 3843 | |
| 3844 | DBFEXIT; |
| 3845 | |
| 3846 | } |
| 3847 | |
| 3848 | |
| 3849 | static int etrax_rh_submit_urb(struct urb *urb) |
| 3850 | { |
| 3851 | struct usb_device *usb_dev = urb->dev; |
| 3852 | etrax_hc_t *hc = usb_dev->bus->hcpriv; |
| 3853 | unsigned int pipe = urb->pipe; |
| 3854 | struct usb_ctrlrequest *cmd = (struct usb_ctrlrequest *) urb->setup_packet; |
| 3855 | void *data = urb->transfer_buffer; |
| 3856 | int leni = urb->transfer_buffer_length; |
| 3857 | int len = 0; |
| 3858 | int stat = 0; |
| 3859 | |
| 3860 | __u16 bmRType_bReq; |
| 3861 | __u16 wValue; |
| 3862 | __u16 wIndex; |
| 3863 | __u16 wLength; |
| 3864 | |
| 3865 | DBFENTER; |
| 3866 | |
| 3867 | /* FIXME: What is this interrupt urb that is sent to the root hub? */ |
| 3868 | if (usb_pipetype (pipe) == PIPE_INTERRUPT) { |
| 3869 | dbg_rh("Root-Hub submit IRQ: every %d ms", urb->interval); |
| 3870 | hc->rh.urb = urb; |
| 3871 | hc->rh.send = 1; |
| 3872 | /* FIXME: We could probably remove this line since it's done |
| 3873 | in etrax_rh_init_int_timer. (Don't remove it from |
| 3874 | etrax_rh_init_int_timer though.) */ |
| 3875 | hc->rh.interval = urb->interval; |
| 3876 | etrax_rh_init_int_timer(urb); |
| 3877 | DBFEXIT; |
| 3878 | |
| 3879 | return 0; |
| 3880 | } |
| 3881 | |
| 3882 | bmRType_bReq = cmd->bRequestType | (cmd->bRequest << 8); |
| 3883 | wValue = le16_to_cpu(cmd->wValue); |
| 3884 | wIndex = le16_to_cpu(cmd->wIndex); |
| 3885 | wLength = le16_to_cpu(cmd->wLength); |
| 3886 | |
| 3887 | dbg_rh("bmRType_bReq : 0x%04x (%d)", bmRType_bReq, bmRType_bReq); |
| 3888 | dbg_rh("wValue : 0x%04x (%d)", wValue, wValue); |
| 3889 | dbg_rh("wIndex : 0x%04x (%d)", wIndex, wIndex); |
| 3890 | dbg_rh("wLength : 0x%04x (%d)", wLength, wLength); |
| 3891 | |
| 3892 | switch (bmRType_bReq) { |
| 3893 | |
| 3894 | /* Request Destination: |
| 3895 | without flags: Device, |
| 3896 | RH_INTERFACE: interface, |
| 3897 | RH_ENDPOINT: endpoint, |
| 3898 | RH_CLASS means HUB here, |
| 3899 | RH_OTHER | RH_CLASS almost ever means HUB_PORT here |
| 3900 | */ |
| 3901 | |
| 3902 | case RH_GET_STATUS: |
| 3903 | *(__u16 *) data = cpu_to_le16 (1); |
| 3904 | OK (2); |
| 3905 | |
| 3906 | case RH_GET_STATUS | RH_INTERFACE: |
| 3907 | *(__u16 *) data = cpu_to_le16 (0); |
| 3908 | OK (2); |
| 3909 | |
| 3910 | case RH_GET_STATUS | RH_ENDPOINT: |
| 3911 | *(__u16 *) data = cpu_to_le16 (0); |
| 3912 | OK (2); |
| 3913 | |
| 3914 | case RH_GET_STATUS | RH_CLASS: |
| 3915 | *(__u32 *) data = cpu_to_le32 (0); |
| 3916 | OK (4); /* hub power ** */ |
| 3917 | |
| 3918 | case RH_GET_STATUS | RH_OTHER | RH_CLASS: |
| 3919 | if (wIndex == 1) { |
| 3920 | *((__u16*)data) = cpu_to_le16(hc->rh.prev_wPortStatus_1); |
| 3921 | *((__u16*)data + 1) = cpu_to_le16(hc->rh.wPortChange_1); |
| 3922 | } else if (wIndex == 2) { |
| 3923 | *((__u16*)data) = cpu_to_le16(hc->rh.prev_wPortStatus_2); |
| 3924 | *((__u16*)data + 1) = cpu_to_le16(hc->rh.wPortChange_2); |
| 3925 | } else { |
| 3926 | dbg_rh("RH_GET_STATUS whith invalid wIndex!"); |
| 3927 | OK(0); |
| 3928 | } |
| 3929 | |
| 3930 | OK(4); |
| 3931 | |
| 3932 | case RH_CLEAR_FEATURE | RH_ENDPOINT: |
| 3933 | switch (wValue) { |
| 3934 | case (RH_ENDPOINT_STALL): |
| 3935 | OK (0); |
| 3936 | } |
| 3937 | break; |
| 3938 | |
| 3939 | case RH_CLEAR_FEATURE | RH_CLASS: |
| 3940 | switch (wValue) { |
| 3941 | case (RH_C_HUB_OVER_CURRENT): |
| 3942 | OK (0); /* hub power over current ** */ |
| 3943 | } |
| 3944 | break; |
| 3945 | |
| 3946 | case RH_CLEAR_FEATURE | RH_OTHER | RH_CLASS: |
| 3947 | switch (wValue) { |
| 3948 | case (RH_PORT_ENABLE): |
| 3949 | if (wIndex == 1) { |
| 3950 | |
| 3951 | dbg_rh("trying to do disable port 1"); |
| 3952 | |
| 3953 | *R_USB_PORT1_DISABLE = IO_STATE(R_USB_PORT1_DISABLE, disable, yes); |
| 3954 | |
| 3955 | while (hc->rh.prev_wPortStatus_1 & |
| 3956 | IO_STATE(R_USB_RH_PORT_STATUS_1, enabled, yes)); |
| 3957 | *R_USB_PORT1_DISABLE = IO_STATE(R_USB_PORT1_DISABLE, disable, no); |
| 3958 | dbg_rh("Port 1 is disabled"); |
| 3959 | |
| 3960 | } else if (wIndex == 2) { |
| 3961 | |
| 3962 | dbg_rh("trying to do disable port 2"); |
| 3963 | |
| 3964 | *R_USB_PORT2_DISABLE = IO_STATE(R_USB_PORT2_DISABLE, disable, yes); |
| 3965 | |
| 3966 | while (hc->rh.prev_wPortStatus_2 & |
| 3967 | IO_STATE(R_USB_RH_PORT_STATUS_2, enabled, yes)); |
| 3968 | *R_USB_PORT2_DISABLE = IO_STATE(R_USB_PORT2_DISABLE, disable, no); |
| 3969 | dbg_rh("Port 2 is disabled"); |
| 3970 | |
| 3971 | } else { |
| 3972 | dbg_rh("RH_CLEAR_FEATURE->RH_PORT_ENABLE " |
| 3973 | "with invalid wIndex == %d!", wIndex); |
| 3974 | } |
| 3975 | |
| 3976 | OK (0); |
| 3977 | case (RH_PORT_SUSPEND): |
| 3978 | /* Opposite to suspend should be resume, so we'll do a resume. */ |
| 3979 | /* FIXME: USB 1.1, 11.16.2.2 says: |
| 3980 | "Clearing the PORT_SUSPEND feature causes a host-initiated resume |
| 3981 | on the specified port. If the port is not in the Suspended state, |
| 3982 | the hub should treat this request as a functional no-operation." |
| 3983 | Shouldn't we check if the port is in a suspended state before |
| 3984 | resuming? */ |
| 3985 | |
| 3986 | /* Make sure the controller isn't busy. */ |
| 3987 | while (*R_USB_COMMAND & IO_MASK(R_USB_COMMAND, busy)); |
| 3988 | |
| 3989 | if (wIndex == 1) { |
| 3990 | *R_USB_COMMAND = |
| 3991 | IO_STATE(R_USB_COMMAND, port_sel, port1) | |
| 3992 | IO_STATE(R_USB_COMMAND, port_cmd, resume) | |
| 3993 | IO_STATE(R_USB_COMMAND, ctrl_cmd, nop); |
| 3994 | } else if (wIndex == 2) { |
| 3995 | *R_USB_COMMAND = |
| 3996 | IO_STATE(R_USB_COMMAND, port_sel, port2) | |
| 3997 | IO_STATE(R_USB_COMMAND, port_cmd, resume) | |
| 3998 | IO_STATE(R_USB_COMMAND, ctrl_cmd, nop); |
| 3999 | } else { |
| 4000 | dbg_rh("RH_CLEAR_FEATURE->RH_PORT_SUSPEND " |
| 4001 | "with invalid wIndex == %d!", wIndex); |
| 4002 | } |
| 4003 | |
| 4004 | OK (0); |
| 4005 | case (RH_PORT_POWER): |
| 4006 | OK (0); /* port power ** */ |
| 4007 | case (RH_C_PORT_CONNECTION): |
| 4008 | if (wIndex == 1) { |
| 4009 | hc->rh.wPortChange_1 &= ~(1 << RH_PORT_CONNECTION); |
| 4010 | } else if (wIndex == 2) { |
| 4011 | hc->rh.wPortChange_2 &= ~(1 << RH_PORT_CONNECTION); |
| 4012 | } else { |
| 4013 | dbg_rh("RH_CLEAR_FEATURE->RH_C_PORT_CONNECTION " |
| 4014 | "with invalid wIndex == %d!", wIndex); |
| 4015 | } |
| 4016 | |
| 4017 | OK (0); |
| 4018 | case (RH_C_PORT_ENABLE): |
| 4019 | if (wIndex == 1) { |
| 4020 | hc->rh.wPortChange_1 &= ~(1 << RH_PORT_ENABLE); |
| 4021 | } else if (wIndex == 2) { |
| 4022 | hc->rh.wPortChange_2 &= ~(1 << RH_PORT_ENABLE); |
| 4023 | } else { |
| 4024 | dbg_rh("RH_CLEAR_FEATURE->RH_C_PORT_ENABLE " |
| 4025 | "with invalid wIndex == %d!", wIndex); |
| 4026 | } |
| 4027 | OK (0); |
| 4028 | case (RH_C_PORT_SUSPEND): |
| 4029 | /*** WR_RH_PORTSTAT(RH_PS_PSSC); */ |
| 4030 | OK (0); |
| 4031 | case (RH_C_PORT_OVER_CURRENT): |
| 4032 | OK (0); /* port power over current ** */ |
| 4033 | case (RH_C_PORT_RESET): |
| 4034 | if (wIndex == 1) { |
| 4035 | hc->rh.wPortChange_1 &= ~(1 << RH_PORT_RESET); |
| 4036 | } else if (wIndex == 2) { |
| 4037 | hc->rh.wPortChange_2 &= ~(1 << RH_PORT_RESET); |
| 4038 | } else { |
| 4039 | dbg_rh("RH_CLEAR_FEATURE->RH_C_PORT_RESET " |
| 4040 | "with invalid index == %d!", wIndex); |
| 4041 | } |
| 4042 | |
| 4043 | OK (0); |
| 4044 | |
| 4045 | } |
| 4046 | break; |
| 4047 | |
| 4048 | case RH_SET_FEATURE | RH_OTHER | RH_CLASS: |
| 4049 | switch (wValue) { |
| 4050 | case (RH_PORT_SUSPEND): |
| 4051 | |
| 4052 | /* Make sure the controller isn't busy. */ |
| 4053 | while (*R_USB_COMMAND & IO_MASK(R_USB_COMMAND, busy)); |
| 4054 | |
| 4055 | if (wIndex == 1) { |
| 4056 | *R_USB_COMMAND = |
| 4057 | IO_STATE(R_USB_COMMAND, port_sel, port1) | |
| 4058 | IO_STATE(R_USB_COMMAND, port_cmd, suspend) | |
| 4059 | IO_STATE(R_USB_COMMAND, ctrl_cmd, nop); |
| 4060 | } else if (wIndex == 2) { |
| 4061 | *R_USB_COMMAND = |
| 4062 | IO_STATE(R_USB_COMMAND, port_sel, port2) | |
| 4063 | IO_STATE(R_USB_COMMAND, port_cmd, suspend) | |
| 4064 | IO_STATE(R_USB_COMMAND, ctrl_cmd, nop); |
| 4065 | } else { |
| 4066 | dbg_rh("RH_SET_FEATURE->RH_PORT_SUSPEND " |
| 4067 | "with invalid wIndex == %d!", wIndex); |
| 4068 | } |
| 4069 | |
| 4070 | OK (0); |
| 4071 | case (RH_PORT_RESET): |
| 4072 | if (wIndex == 1) { |
| 4073 | |
| 4074 | port_1_reset: |
| 4075 | dbg_rh("Doing reset of port 1"); |
| 4076 | |
| 4077 | /* Make sure the controller isn't busy. */ |
| 4078 | while (*R_USB_COMMAND & IO_MASK(R_USB_COMMAND, busy)); |
| 4079 | |
| 4080 | *R_USB_COMMAND = |
| 4081 | IO_STATE(R_USB_COMMAND, port_sel, port1) | |
| 4082 | IO_STATE(R_USB_COMMAND, port_cmd, reset) | |
| 4083 | IO_STATE(R_USB_COMMAND, ctrl_cmd, nop); |
| 4084 | |
| 4085 | /* We must wait at least 10 ms for the device to recover. |
| 4086 | 15 ms should be enough. */ |
| 4087 | udelay(15000); |
| 4088 | |
| 4089 | /* Wait for reset bit to go low (should be done by now). */ |
| 4090 | while (hc->rh.prev_wPortStatus_1 & |
| 4091 | IO_STATE(R_USB_RH_PORT_STATUS_1, reset, yes)); |
| 4092 | |
| 4093 | /* If the port status is |
| 4094 | 1) connected and enabled then there is a device and everything is fine |
| 4095 | 2) neither connected nor enabled then there is no device, also fine |
| 4096 | 3) connected and not enabled then we try again |
| 4097 | (Yes, there are other port status combinations besides these.) */ |
| 4098 | |
| 4099 | if ((hc->rh.prev_wPortStatus_1 & |
| 4100 | IO_STATE(R_USB_RH_PORT_STATUS_1, connected, yes)) && |
| 4101 | (hc->rh.prev_wPortStatus_1 & |
| 4102 | IO_STATE(R_USB_RH_PORT_STATUS_1, enabled, no))) { |
| 4103 | dbg_rh("Connected device on port 1, but port not enabled?" |
| 4104 | " Trying reset again."); |
| 4105 | goto port_2_reset; |
| 4106 | } |
| 4107 | |
| 4108 | /* Diagnostic printouts. */ |
| 4109 | if ((hc->rh.prev_wPortStatus_1 & |
| 4110 | IO_STATE(R_USB_RH_PORT_STATUS_1, connected, no)) && |
| 4111 | (hc->rh.prev_wPortStatus_1 & |
| 4112 | IO_STATE(R_USB_RH_PORT_STATUS_1, enabled, no))) { |
| 4113 | dbg_rh("No connected device on port 1"); |
| 4114 | } else if ((hc->rh.prev_wPortStatus_1 & |
| 4115 | IO_STATE(R_USB_RH_PORT_STATUS_1, connected, yes)) && |
| 4116 | (hc->rh.prev_wPortStatus_1 & |
| 4117 | IO_STATE(R_USB_RH_PORT_STATUS_1, enabled, yes))) { |
| 4118 | dbg_rh("Connected device on port 1, port 1 enabled"); |
| 4119 | } |
| 4120 | |
| 4121 | } else if (wIndex == 2) { |
| 4122 | |
| 4123 | port_2_reset: |
| 4124 | dbg_rh("Doing reset of port 2"); |
| 4125 | |
| 4126 | /* Make sure the controller isn't busy. */ |
| 4127 | while (*R_USB_COMMAND & IO_MASK(R_USB_COMMAND, busy)); |
| 4128 | |
| 4129 | /* Issue the reset command. */ |
| 4130 | *R_USB_COMMAND = |
| 4131 | IO_STATE(R_USB_COMMAND, port_sel, port2) | |
| 4132 | IO_STATE(R_USB_COMMAND, port_cmd, reset) | |
| 4133 | IO_STATE(R_USB_COMMAND, ctrl_cmd, nop); |
| 4134 | |
| 4135 | /* We must wait at least 10 ms for the device to recover. |
| 4136 | 15 ms should be enough. */ |
| 4137 | udelay(15000); |
| 4138 | |
| 4139 | /* Wait for reset bit to go low (should be done by now). */ |
| 4140 | while (hc->rh.prev_wPortStatus_2 & |
| 4141 | IO_STATE(R_USB_RH_PORT_STATUS_2, reset, yes)); |
| 4142 | |
| 4143 | /* If the port status is |
| 4144 | 1) connected and enabled then there is a device and everything is fine |
| 4145 | 2) neither connected nor enabled then there is no device, also fine |
| 4146 | 3) connected and not enabled then we try again |
| 4147 | (Yes, there are other port status combinations besides these.) */ |
| 4148 | |
| 4149 | if ((hc->rh.prev_wPortStatus_2 & |
| 4150 | IO_STATE(R_USB_RH_PORT_STATUS_2, connected, yes)) && |
| 4151 | (hc->rh.prev_wPortStatus_2 & |
| 4152 | IO_STATE(R_USB_RH_PORT_STATUS_2, enabled, no))) { |
| 4153 | dbg_rh("Connected device on port 2, but port not enabled?" |
| 4154 | " Trying reset again."); |
| 4155 | goto port_2_reset; |
| 4156 | } |
| 4157 | |
| 4158 | /* Diagnostic printouts. */ |
| 4159 | if ((hc->rh.prev_wPortStatus_2 & |
| 4160 | IO_STATE(R_USB_RH_PORT_STATUS_2, connected, no)) && |
| 4161 | (hc->rh.prev_wPortStatus_2 & |
| 4162 | IO_STATE(R_USB_RH_PORT_STATUS_2, enabled, no))) { |
| 4163 | dbg_rh("No connected device on port 2"); |
| 4164 | } else if ((hc->rh.prev_wPortStatus_2 & |
| 4165 | IO_STATE(R_USB_RH_PORT_STATUS_2, connected, yes)) && |
| 4166 | (hc->rh.prev_wPortStatus_2 & |
| 4167 | IO_STATE(R_USB_RH_PORT_STATUS_2, enabled, yes))) { |
| 4168 | dbg_rh("Connected device on port 2, port 2 enabled"); |
| 4169 | } |
| 4170 | |
| 4171 | } else { |
| 4172 | dbg_rh("RH_SET_FEATURE->RH_PORT_RESET with invalid wIndex = %d", wIndex); |
| 4173 | } |
| 4174 | |
| 4175 | /* Make sure the controller isn't busy. */ |
| 4176 | while (*R_USB_COMMAND & IO_MASK(R_USB_COMMAND, busy)); |
| 4177 | |
| 4178 | /* If all enabled ports were disabled the host controller goes down into |
| 4179 | started mode, so we need to bring it back into the running state. |
| 4180 | (This is safe even if it's already in the running state.) */ |
| 4181 | *R_USB_COMMAND = |
| 4182 | IO_STATE(R_USB_COMMAND, port_sel, nop) | |
| 4183 | IO_STATE(R_USB_COMMAND, port_cmd, reset) | |
| 4184 | IO_STATE(R_USB_COMMAND, ctrl_cmd, host_run); |
| 4185 | |
| 4186 | dbg_rh("...Done"); |
| 4187 | OK(0); |
| 4188 | |
| 4189 | case (RH_PORT_POWER): |
| 4190 | OK (0); /* port power ** */ |
| 4191 | case (RH_PORT_ENABLE): |
| 4192 | /* There is no port enable command in the host controller, so if the |
| 4193 | port is already enabled, we do nothing. If not, we reset the port |
| 4194 | (with an ugly goto). */ |
| 4195 | |
| 4196 | if (wIndex == 1) { |
| 4197 | if (hc->rh.prev_wPortStatus_1 & |
| 4198 | IO_STATE(R_USB_RH_PORT_STATUS_1, enabled, no)) { |
| 4199 | goto port_1_reset; |
| 4200 | } |
| 4201 | } else if (wIndex == 2) { |
| 4202 | if (hc->rh.prev_wPortStatus_2 & |
| 4203 | IO_STATE(R_USB_RH_PORT_STATUS_2, enabled, no)) { |
| 4204 | goto port_2_reset; |
| 4205 | } |
| 4206 | } else { |
| 4207 | dbg_rh("RH_SET_FEATURE->RH_GET_STATUS with invalid wIndex = %d", wIndex); |
| 4208 | } |
| 4209 | OK (0); |
| 4210 | } |
| 4211 | break; |
| 4212 | |
| 4213 | case RH_SET_ADDRESS: |
| 4214 | hc->rh.devnum = wValue; |
| 4215 | dbg_rh("RH address set to: %d", hc->rh.devnum); |
| 4216 | OK (0); |
| 4217 | |
| 4218 | case RH_GET_DESCRIPTOR: |
| 4219 | switch ((wValue & 0xff00) >> 8) { |
| 4220 | case (0x01): /* device descriptor */ |
| 4221 | len = min_t(unsigned int, leni, min_t(unsigned int, sizeof (root_hub_dev_des), wLength)); |
| 4222 | memcpy (data, root_hub_dev_des, len); |
| 4223 | OK (len); |
| 4224 | case (0x02): /* configuration descriptor */ |
| 4225 | len = min_t(unsigned int, leni, min_t(unsigned int, sizeof (root_hub_config_des), wLength)); |
| 4226 | memcpy (data, root_hub_config_des, len); |
| 4227 | OK (len); |
| 4228 | case (0x03): /* string descriptors */ |
| 4229 | len = usb_root_hub_string (wValue & 0xff, |
| 4230 | 0xff, "ETRAX 100LX", |
| 4231 | data, wLength); |
| 4232 | if (len > 0) { |
| 4233 | OK(min(leni, len)); |
| 4234 | } else { |
| 4235 | stat = -EPIPE; |
| 4236 | } |
| 4237 | |
| 4238 | } |
| 4239 | break; |
| 4240 | |
| 4241 | case RH_GET_DESCRIPTOR | RH_CLASS: |
| 4242 | root_hub_hub_des[2] = hc->rh.numports; |
| 4243 | len = min_t(unsigned int, leni, min_t(unsigned int, sizeof (root_hub_hub_des), wLength)); |
| 4244 | memcpy (data, root_hub_hub_des, len); |
| 4245 | OK (len); |
| 4246 | |
| 4247 | case RH_GET_CONFIGURATION: |
| 4248 | *(__u8 *) data = 0x01; |
| 4249 | OK (1); |
| 4250 | |
| 4251 | case RH_SET_CONFIGURATION: |
| 4252 | OK (0); |
| 4253 | |
| 4254 | default: |
| 4255 | stat = -EPIPE; |
| 4256 | } |
| 4257 | |
| 4258 | urb->actual_length = len; |
| 4259 | urb->status = stat; |
| 4260 | urb->dev = NULL; |
| 4261 | if (urb->complete) { |
| 4262 | urb->complete(urb, NULL); |
| 4263 | } |
| 4264 | DBFEXIT; |
| 4265 | |
| 4266 | return 0; |
| 4267 | } |
| 4268 | |
| 4269 | static void |
| 4270 | etrax_usb_bulk_eot_timer_func(unsigned long dummy) |
| 4271 | { |
| 4272 | /* Because of a race condition in the top half, we might miss a bulk eot. |
| 4273 | This timer "simulates" a bulk eot if we don't get one for a while, hopefully |
| 4274 | correcting the situation. */ |
| 4275 | dbg_bulk("bulk_eot_timer timed out."); |
| 4276 | etrax_usb_hc_bulk_eot_interrupt(1); |
| 4277 | } |
| 4278 | |
| 4279 | static void* |
| 4280 | etrax_usb_buffer_alloc(struct usb_bus* bus, size_t size, int mem_flags, dma_addr_t *dma) |
| 4281 | { |
| 4282 | return kmalloc(size, mem_flags); |
| 4283 | } |
| 4284 | |
| 4285 | static void |
| 4286 | etrax_usb_buffer_free(struct usb_bus *bus, size_t size, void *addr, dma_addr_t dma) |
| 4287 | { |
| 4288 | kfree(addr); |
| 4289 | } |
| 4290 | |
| 4291 | |
| 4292 | static struct device fake_device; |
| 4293 | |
| 4294 | static int __init etrax_usb_hc_init(void) |
| 4295 | { |
| 4296 | static etrax_hc_t *hc; |
| 4297 | struct usb_bus *bus; |
| 4298 | struct usb_device *usb_rh; |
| 4299 | int i; |
| 4300 | |
| 4301 | DBFENTER; |
| 4302 | |
| 4303 | info("ETRAX 100LX USB-HCD %s (c) 2001-2003 Axis Communications AB\n", usb_hcd_version); |
| 4304 | |
| 4305 | hc = kmalloc(sizeof(etrax_hc_t), GFP_KERNEL); |
| 4306 | assert(hc != NULL); |
| 4307 | |
| 4308 | /* We use kmem_cache_* to make sure that all DMA desc. are dword aligned */ |
| 4309 | /* Note that we specify sizeof(USB_EP_Desc_t) as the size, but also allocate |
| 4310 | SB descriptors from this cache. This is ok since sizeof(USB_EP_Desc_t) == |
| 4311 | sizeof(USB_SB_Desc_t). */ |
| 4312 | |
| 4313 | usb_desc_cache = kmem_cache_create("usb_desc_cache", sizeof(USB_EP_Desc_t), 0, |
| 4314 | SLAB_HWCACHE_ALIGN, 0, 0); |
| 4315 | assert(usb_desc_cache != NULL); |
| 4316 | |
| 4317 | top_half_reg_cache = kmem_cache_create("top_half_reg_cache", |
| 4318 | sizeof(usb_interrupt_registers_t), |
| 4319 | 0, SLAB_HWCACHE_ALIGN, 0, 0); |
| 4320 | assert(top_half_reg_cache != NULL); |
| 4321 | |
| 4322 | isoc_compl_cache = kmem_cache_create("isoc_compl_cache", |
| 4323 | sizeof(usb_isoc_complete_data_t), |
| 4324 | 0, SLAB_HWCACHE_ALIGN, 0, 0); |
| 4325 | assert(isoc_compl_cache != NULL); |
| 4326 | |
| 4327 | etrax_usb_bus = bus = usb_alloc_bus(&etrax_usb_device_operations); |
| 4328 | hc->bus = bus; |
| 4329 | bus->bus_name="ETRAX 100LX"; |
| 4330 | bus->hcpriv = hc; |
| 4331 | |
Steven Cole | 093cf72 | 2005-05-03 19:07:24 -0600 | [diff] [blame^] | 4332 | /* Initialize RH to the default address. |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4333 | And make sure that we have no status change indication */ |
| 4334 | hc->rh.numports = 2; /* The RH has two ports */ |
| 4335 | hc->rh.devnum = 1; |
| 4336 | hc->rh.wPortChange_1 = 0; |
| 4337 | hc->rh.wPortChange_2 = 0; |
| 4338 | |
| 4339 | /* Also initate the previous values to zero */ |
| 4340 | hc->rh.prev_wPortStatus_1 = 0; |
| 4341 | hc->rh.prev_wPortStatus_2 = 0; |
| 4342 | |
| 4343 | /* Initialize the intr-traffic flags */ |
| 4344 | /* FIXME: This isn't used. (Besides, the error field isn't initialized.) */ |
| 4345 | hc->intr.sleeping = 0; |
| 4346 | hc->intr.wq = NULL; |
| 4347 | |
| 4348 | epid_usage_bitmask = 0; |
| 4349 | epid_out_traffic = 0; |
| 4350 | |
| 4351 | /* Mark the invalid epid as being used. */ |
| 4352 | set_bit(INVALID_EPID, (void *)&epid_usage_bitmask); |
| 4353 | *R_USB_EPT_INDEX = IO_FIELD(R_USB_EPT_INDEX, value, INVALID_EPID); |
| 4354 | nop(); |
| 4355 | /* The valid bit should still be set ('invalid' is in our world; not the hardware's). */ |
| 4356 | *R_USB_EPT_DATA = (IO_STATE(R_USB_EPT_DATA, valid, yes) | |
| 4357 | IO_FIELD(R_USB_EPT_DATA, max_len, 1)); |
| 4358 | |
| 4359 | /* Mark the dummy epid as being used. */ |
| 4360 | set_bit(DUMMY_EPID, (void *)&epid_usage_bitmask); |
| 4361 | *R_USB_EPT_INDEX = IO_FIELD(R_USB_EPT_INDEX, value, DUMMY_EPID); |
| 4362 | nop(); |
| 4363 | *R_USB_EPT_DATA = (IO_STATE(R_USB_EPT_DATA, valid, no) | |
| 4364 | IO_FIELD(R_USB_EPT_DATA, max_len, 1)); |
| 4365 | |
| 4366 | /* Initialize the urb list by initiating a head for each list. */ |
| 4367 | for (i = 0; i < NBR_OF_EPIDS; i++) { |
| 4368 | INIT_LIST_HEAD(&urb_list[i]); |
| 4369 | } |
| 4370 | spin_lock_init(&urb_list_lock); |
| 4371 | |
| 4372 | INIT_LIST_HEAD(&urb_unlink_list); |
| 4373 | |
| 4374 | |
| 4375 | /* Initiate the bulk start timer. */ |
| 4376 | init_timer(&bulk_start_timer); |
| 4377 | bulk_start_timer.expires = jiffies + BULK_START_TIMER_INTERVAL; |
| 4378 | bulk_start_timer.function = etrax_usb_bulk_start_timer_func; |
| 4379 | add_timer(&bulk_start_timer); |
| 4380 | |
| 4381 | |
| 4382 | /* Initiate the bulk eot timer. */ |
| 4383 | init_timer(&bulk_eot_timer); |
| 4384 | bulk_eot_timer.expires = jiffies + BULK_EOT_TIMER_INTERVAL; |
| 4385 | bulk_eot_timer.function = etrax_usb_bulk_eot_timer_func; |
| 4386 | add_timer(&bulk_eot_timer); |
| 4387 | |
| 4388 | /* Set up the data structures for USB traffic. Note that this must be done before |
| 4389 | any interrupt that relies on sane DMA list occurrs. */ |
| 4390 | init_rx_buffers(); |
| 4391 | init_tx_bulk_ep(); |
| 4392 | init_tx_ctrl_ep(); |
| 4393 | init_tx_intr_ep(); |
| 4394 | init_tx_isoc_ep(); |
| 4395 | |
| 4396 | device_initialize(&fake_device); |
| 4397 | kobject_set_name(&fake_device.kobj, "etrax_usb"); |
| 4398 | kobject_add(&fake_device.kobj); |
kay.sievers@vrfy.org | 089d42b | 2005-04-18 21:57:37 -0700 | [diff] [blame] | 4399 | kobject_hotplug(&fake_device.kobj, KOBJ_ADD); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4400 | hc->bus->controller = &fake_device; |
| 4401 | usb_register_bus(hc->bus); |
| 4402 | |
| 4403 | *R_IRQ_MASK2_SET = |
| 4404 | /* Note that these interrupts are not used. */ |
| 4405 | IO_STATE(R_IRQ_MASK2_SET, dma8_sub0_descr, set) | |
| 4406 | /* Sub channel 1 (ctrl) descr. interrupts are used. */ |
| 4407 | IO_STATE(R_IRQ_MASK2_SET, dma8_sub1_descr, set) | |
| 4408 | IO_STATE(R_IRQ_MASK2_SET, dma8_sub2_descr, set) | |
| 4409 | /* Sub channel 3 (isoc) descr. interrupts are used. */ |
| 4410 | IO_STATE(R_IRQ_MASK2_SET, dma8_sub3_descr, set); |
| 4411 | |
| 4412 | /* Note that the dma9_descr interrupt is not used. */ |
| 4413 | *R_IRQ_MASK2_SET = |
| 4414 | IO_STATE(R_IRQ_MASK2_SET, dma9_eop, set) | |
| 4415 | IO_STATE(R_IRQ_MASK2_SET, dma9_descr, set); |
| 4416 | |
| 4417 | /* FIXME: Enable iso_eof only when isoc traffic is running. */ |
| 4418 | *R_USB_IRQ_MASK_SET = |
| 4419 | IO_STATE(R_USB_IRQ_MASK_SET, iso_eof, set) | |
| 4420 | IO_STATE(R_USB_IRQ_MASK_SET, bulk_eot, set) | |
| 4421 | IO_STATE(R_USB_IRQ_MASK_SET, epid_attn, set) | |
| 4422 | IO_STATE(R_USB_IRQ_MASK_SET, port_status, set) | |
| 4423 | IO_STATE(R_USB_IRQ_MASK_SET, ctl_status, set); |
| 4424 | |
| 4425 | |
| 4426 | if (request_irq(ETRAX_USB_HC_IRQ, etrax_usb_hc_interrupt_top_half, 0, |
| 4427 | "ETRAX 100LX built-in USB (HC)", hc)) { |
| 4428 | err("Could not allocate IRQ %d for USB", ETRAX_USB_HC_IRQ); |
| 4429 | etrax_usb_hc_cleanup(); |
| 4430 | DBFEXIT; |
| 4431 | return -1; |
| 4432 | } |
| 4433 | |
| 4434 | if (request_irq(ETRAX_USB_RX_IRQ, etrax_usb_rx_interrupt, 0, |
| 4435 | "ETRAX 100LX built-in USB (Rx)", hc)) { |
| 4436 | err("Could not allocate IRQ %d for USB", ETRAX_USB_RX_IRQ); |
| 4437 | etrax_usb_hc_cleanup(); |
| 4438 | DBFEXIT; |
| 4439 | return -1; |
| 4440 | } |
| 4441 | |
| 4442 | if (request_irq(ETRAX_USB_TX_IRQ, etrax_usb_tx_interrupt, 0, |
| 4443 | "ETRAX 100LX built-in USB (Tx)", hc)) { |
| 4444 | err("Could not allocate IRQ %d for USB", ETRAX_USB_TX_IRQ); |
| 4445 | etrax_usb_hc_cleanup(); |
| 4446 | DBFEXIT; |
| 4447 | return -1; |
| 4448 | } |
| 4449 | |
| 4450 | /* R_USB_COMMAND: |
| 4451 | USB commands in host mode. The fields in this register should all be |
| 4452 | written to in one write. Do not read-modify-write one field at a time. A |
| 4453 | write to this register will trigger events in the USB controller and an |
| 4454 | incomplete command may lead to unpredictable results, and in worst case |
| 4455 | even to a deadlock in the controller. |
| 4456 | (Note however that the busy field is read-only, so no need to write to it.) */ |
| 4457 | |
| 4458 | /* Check the busy bit before writing to R_USB_COMMAND. */ |
| 4459 | |
| 4460 | while (*R_USB_COMMAND & IO_MASK(R_USB_COMMAND, busy)); |
| 4461 | |
| 4462 | /* Reset the USB interface. */ |
| 4463 | *R_USB_COMMAND = |
| 4464 | IO_STATE(R_USB_COMMAND, port_sel, nop) | |
| 4465 | IO_STATE(R_USB_COMMAND, port_cmd, reset) | |
| 4466 | IO_STATE(R_USB_COMMAND, ctrl_cmd, reset); |
| 4467 | |
| 4468 | /* Designer's Reference, p. 8 - 10 says we should Initate R_USB_FM_PSTART to 0x2A30 (10800), |
| 4469 | to guarantee that control traffic gets 10% of the bandwidth, and periodic transfer may |
| 4470 | allocate the rest (90%). This doesn't work though. Read on for a lenghty explanation. |
| 4471 | |
| 4472 | While there is a difference between rev. 2 and rev. 3 of the ETRAX 100LX regarding the NAK |
| 4473 | behaviour, it doesn't solve this problem. What happens is that a control transfer will not |
| 4474 | be interrupted in its data stage when PSTART happens (the point at which periodic traffic |
| 4475 | is started). Thus, if PSTART is set to 10800 and its IN or OUT token is NAKed until just before |
| 4476 | PSTART happens, it will continue the IN/OUT transfer as long as it's ACKed. After it's done, |
| 4477 | there may be too little time left for an isochronous transfer, causing an epid attention |
| 4478 | interrupt due to perror. The work-around for this is to let the control transfers run at the |
| 4479 | end of the frame instead of at the beginning, and will be interrupted just fine if it doesn't |
| 4480 | fit into the frame. However, since there will *always* be a control transfer at the beginning |
| 4481 | of the frame, regardless of what we set PSTART to, that transfer might be a 64-byte transfer |
| 4482 | which consumes up to 15% of the frame, leaving only 85% for periodic traffic. The solution to |
| 4483 | this would be to 'dummy allocate' 5% of the frame with the usb_claim_bandwidth function to make |
| 4484 | sure that the periodic transfers that are inserted will always fit in the frame. |
| 4485 | |
| 4486 | The idea was suggested that a control transfer could be split up into several 8 byte transfers, |
| 4487 | so that it would be interrupted by PSTART, but since this can't be done for an IN transfer this |
| 4488 | hasn't been implemented. |
| 4489 | |
| 4490 | The value 11960 is chosen to be just after the SOF token, with a couple of bit times extra |
| 4491 | for possible bit stuffing. */ |
| 4492 | |
| 4493 | *R_USB_FM_PSTART = IO_FIELD(R_USB_FM_PSTART, value, 11960); |
| 4494 | |
| 4495 | #ifdef CONFIG_ETRAX_USB_HOST_PORT1 |
| 4496 | *R_USB_PORT1_DISABLE = IO_STATE(R_USB_PORT1_DISABLE, disable, no); |
| 4497 | #endif |
| 4498 | |
| 4499 | #ifdef CONFIG_ETRAX_USB_HOST_PORT2 |
| 4500 | *R_USB_PORT2_DISABLE = IO_STATE(R_USB_PORT2_DISABLE, disable, no); |
| 4501 | #endif |
| 4502 | |
| 4503 | while (*R_USB_COMMAND & IO_MASK(R_USB_COMMAND, busy)); |
| 4504 | |
| 4505 | /* Configure the USB interface as a host controller. */ |
| 4506 | *R_USB_COMMAND = |
| 4507 | IO_STATE(R_USB_COMMAND, port_sel, nop) | |
| 4508 | IO_STATE(R_USB_COMMAND, port_cmd, reset) | |
| 4509 | IO_STATE(R_USB_COMMAND, ctrl_cmd, host_config); |
| 4510 | |
| 4511 | /* Note: Do not reset any ports here. Await the port status interrupts, to have a controlled |
| 4512 | sequence of resetting the ports. If we reset both ports now, and there are devices |
| 4513 | on both ports, we will get a bus error because both devices will answer the set address |
| 4514 | request. */ |
| 4515 | |
| 4516 | while (*R_USB_COMMAND & IO_MASK(R_USB_COMMAND, busy)); |
| 4517 | |
| 4518 | /* Start processing of USB traffic. */ |
| 4519 | *R_USB_COMMAND = |
| 4520 | IO_STATE(R_USB_COMMAND, port_sel, nop) | |
| 4521 | IO_STATE(R_USB_COMMAND, port_cmd, reset) | |
| 4522 | IO_STATE(R_USB_COMMAND, ctrl_cmd, host_run); |
| 4523 | |
| 4524 | while (*R_USB_COMMAND & IO_MASK(R_USB_COMMAND, busy)); |
| 4525 | |
| 4526 | usb_rh = usb_alloc_dev(NULL, hc->bus, 0); |
| 4527 | hc->bus->root_hub = usb_rh; |
| 4528 | usb_rh->state = USB_STATE_ADDRESS; |
| 4529 | usb_rh->speed = USB_SPEED_FULL; |
| 4530 | usb_rh->devnum = 1; |
| 4531 | hc->bus->devnum_next = 2; |
| 4532 | usb_rh->ep0.desc.wMaxPacketSize = __const_cpu_to_le16(64); |
| 4533 | usb_get_device_descriptor(usb_rh, USB_DT_DEVICE_SIZE); |
| 4534 | usb_new_device(usb_rh); |
| 4535 | |
| 4536 | DBFEXIT; |
| 4537 | |
| 4538 | return 0; |
| 4539 | } |
| 4540 | |
| 4541 | static void etrax_usb_hc_cleanup(void) |
| 4542 | { |
| 4543 | DBFENTER; |
| 4544 | |
| 4545 | free_irq(ETRAX_USB_HC_IRQ, NULL); |
| 4546 | free_irq(ETRAX_USB_RX_IRQ, NULL); |
| 4547 | free_irq(ETRAX_USB_TX_IRQ, NULL); |
| 4548 | |
| 4549 | usb_deregister_bus(etrax_usb_bus); |
| 4550 | |
| 4551 | /* FIXME: call kmem_cache_destroy here? */ |
| 4552 | |
| 4553 | DBFEXIT; |
| 4554 | } |
| 4555 | |
| 4556 | module_init(etrax_usb_hc_init); |
| 4557 | module_exit(etrax_usb_hc_cleanup); |