blob: 7119cd745ace859935bc97b9079b6e43ad417d54 [file] [log] [blame]
Johannes Weinera5289102014-04-03 14:47:51 -07001/*
2 * Workingset detection
3 *
4 * Copyright (C) 2013 Red Hat, Inc., Johannes Weiner
5 */
6
7#include <linux/memcontrol.h>
8#include <linux/writeback.h>
Hugh Dickins3a4f8a02017-02-24 14:59:36 -08009#include <linux/shmem_fs.h>
Johannes Weinera5289102014-04-03 14:47:51 -070010#include <linux/pagemap.h>
11#include <linux/atomic.h>
12#include <linux/module.h>
13#include <linux/swap.h>
Johannes Weiner14b46872016-12-12 16:43:52 -080014#include <linux/dax.h>
Johannes Weinera5289102014-04-03 14:47:51 -070015#include <linux/fs.h>
16#include <linux/mm.h>
17
18/*
19 * Double CLOCK lists
20 *
Mel Gorman1e6b10852016-07-28 15:46:08 -070021 * Per node, two clock lists are maintained for file pages: the
Johannes Weinera5289102014-04-03 14:47:51 -070022 * inactive and the active list. Freshly faulted pages start out at
23 * the head of the inactive list and page reclaim scans pages from the
24 * tail. Pages that are accessed multiple times on the inactive list
25 * are promoted to the active list, to protect them from reclaim,
26 * whereas active pages are demoted to the inactive list when the
27 * active list grows too big.
28 *
29 * fault ------------------------+
30 * |
31 * +--------------+ | +-------------+
32 * reclaim <- | inactive | <-+-- demotion | active | <--+
33 * +--------------+ +-------------+ |
34 * | |
35 * +-------------- promotion ------------------+
36 *
37 *
38 * Access frequency and refault distance
39 *
40 * A workload is thrashing when its pages are frequently used but they
41 * are evicted from the inactive list every time before another access
42 * would have promoted them to the active list.
43 *
44 * In cases where the average access distance between thrashing pages
45 * is bigger than the size of memory there is nothing that can be
46 * done - the thrashing set could never fit into memory under any
47 * circumstance.
48 *
49 * However, the average access distance could be bigger than the
50 * inactive list, yet smaller than the size of memory. In this case,
51 * the set could fit into memory if it weren't for the currently
52 * active pages - which may be used more, hopefully less frequently:
53 *
54 * +-memory available to cache-+
55 * | |
56 * +-inactive------+-active----+
57 * a b | c d e f g h i | J K L M N |
58 * +---------------+-----------+
59 *
60 * It is prohibitively expensive to accurately track access frequency
61 * of pages. But a reasonable approximation can be made to measure
62 * thrashing on the inactive list, after which refaulting pages can be
63 * activated optimistically to compete with the existing active pages.
64 *
65 * Approximating inactive page access frequency - Observations:
66 *
67 * 1. When a page is accessed for the first time, it is added to the
68 * head of the inactive list, slides every existing inactive page
69 * towards the tail by one slot, and pushes the current tail page
70 * out of memory.
71 *
72 * 2. When a page is accessed for the second time, it is promoted to
73 * the active list, shrinking the inactive list by one slot. This
74 * also slides all inactive pages that were faulted into the cache
75 * more recently than the activated page towards the tail of the
76 * inactive list.
77 *
78 * Thus:
79 *
80 * 1. The sum of evictions and activations between any two points in
81 * time indicate the minimum number of inactive pages accessed in
82 * between.
83 *
84 * 2. Moving one inactive page N page slots towards the tail of the
85 * list requires at least N inactive page accesses.
86 *
87 * Combining these:
88 *
89 * 1. When a page is finally evicted from memory, the number of
90 * inactive pages accessed while the page was in cache is at least
91 * the number of page slots on the inactive list.
92 *
93 * 2. In addition, measuring the sum of evictions and activations (E)
94 * at the time of a page's eviction, and comparing it to another
95 * reading (R) at the time the page faults back into memory tells
96 * the minimum number of accesses while the page was not cached.
97 * This is called the refault distance.
98 *
99 * Because the first access of the page was the fault and the second
100 * access the refault, we combine the in-cache distance with the
101 * out-of-cache distance to get the complete minimum access distance
102 * of this page:
103 *
104 * NR_inactive + (R - E)
105 *
106 * And knowing the minimum access distance of a page, we can easily
107 * tell if the page would be able to stay in cache assuming all page
108 * slots in the cache were available:
109 *
110 * NR_inactive + (R - E) <= NR_inactive + NR_active
111 *
112 * which can be further simplified to
113 *
114 * (R - E) <= NR_active
115 *
116 * Put into words, the refault distance (out-of-cache) can be seen as
117 * a deficit in inactive list space (in-cache). If the inactive list
118 * had (R - E) more page slots, the page would not have been evicted
119 * in between accesses, but activated instead. And on a full system,
120 * the only thing eating into inactive list space is active pages.
121 *
122 *
123 * Activating refaulting pages
124 *
125 * All that is known about the active list is that the pages have been
126 * accessed more than once in the past. This means that at any given
127 * time there is actually a good chance that pages on the active list
128 * are no longer in active use.
129 *
130 * So when a refault distance of (R - E) is observed and there are at
131 * least (R - E) active pages, the refaulting page is activated
132 * optimistically in the hope that (R - E) active pages are actually
133 * used less frequently than the refaulting page - or even not used at
134 * all anymore.
135 *
136 * If this is wrong and demotion kicks in, the pages which are truly
137 * used more frequently will be reactivated while the less frequently
138 * used once will be evicted from memory.
139 *
140 * But if this is right, the stale pages will be pushed out of memory
141 * and the used pages get to stay in cache.
142 *
143 *
144 * Implementation
145 *
Mel Gorman1e6b10852016-07-28 15:46:08 -0700146 * For each node's file LRU lists, a counter for inactive evictions
147 * and activations is maintained (node->inactive_age).
Johannes Weinera5289102014-04-03 14:47:51 -0700148 *
149 * On eviction, a snapshot of this counter (along with some bits to
Mel Gorman1e6b10852016-07-28 15:46:08 -0700150 * identify the node) is stored in the now empty page cache radix tree
Johannes Weinera5289102014-04-03 14:47:51 -0700151 * slot of the evicted page. This is called a shadow entry.
152 *
153 * On cache misses for which there are shadow entries, an eligible
154 * refault distance will immediately activate the refaulting page.
155 */
156
Johannes Weiner689c94f2016-03-15 14:57:07 -0700157#define EVICTION_SHIFT (RADIX_TREE_EXCEPTIONAL_ENTRY + \
Mel Gorman1e6b10852016-07-28 15:46:08 -0700158 NODES_SHIFT + \
Johannes Weiner23047a92016-03-15 14:57:16 -0700159 MEM_CGROUP_ID_SHIFT)
Johannes Weiner689c94f2016-03-15 14:57:07 -0700160#define EVICTION_MASK (~0UL >> EVICTION_SHIFT)
161
Johannes Weiner612e4492016-03-15 14:57:13 -0700162/*
163 * Eviction timestamps need to be able to cover the full range of
164 * actionable refaults. However, bits are tight in the radix tree
165 * entry, and after storing the identifier for the lruvec there might
166 * not be enough left to represent every single actionable refault. In
167 * that case, we have to sacrifice granularity for distance, and group
168 * evictions into coarser buckets by shaving off lower timestamp bits.
169 */
170static unsigned int bucket_order __read_mostly;
171
Mel Gorman1e6b10852016-07-28 15:46:08 -0700172static void *pack_shadow(int memcgid, pg_data_t *pgdat, unsigned long eviction)
Johannes Weinera5289102014-04-03 14:47:51 -0700173{
Johannes Weiner612e4492016-03-15 14:57:13 -0700174 eviction >>= bucket_order;
Johannes Weiner23047a92016-03-15 14:57:16 -0700175 eviction = (eviction << MEM_CGROUP_ID_SHIFT) | memcgid;
Mel Gorman1e6b10852016-07-28 15:46:08 -0700176 eviction = (eviction << NODES_SHIFT) | pgdat->node_id;
Johannes Weinera5289102014-04-03 14:47:51 -0700177 eviction = (eviction << RADIX_TREE_EXCEPTIONAL_SHIFT);
178
179 return (void *)(eviction | RADIX_TREE_EXCEPTIONAL_ENTRY);
180}
181
Mel Gorman1e6b10852016-07-28 15:46:08 -0700182static void unpack_shadow(void *shadow, int *memcgidp, pg_data_t **pgdat,
Johannes Weiner162453b2016-03-15 14:57:10 -0700183 unsigned long *evictionp)
Johannes Weinera5289102014-04-03 14:47:51 -0700184{
185 unsigned long entry = (unsigned long)shadow;
Mel Gorman1e6b10852016-07-28 15:46:08 -0700186 int memcgid, nid;
Johannes Weinera5289102014-04-03 14:47:51 -0700187
188 entry >>= RADIX_TREE_EXCEPTIONAL_SHIFT;
Johannes Weinera5289102014-04-03 14:47:51 -0700189 nid = entry & ((1UL << NODES_SHIFT) - 1);
190 entry >>= NODES_SHIFT;
Johannes Weiner23047a92016-03-15 14:57:16 -0700191 memcgid = entry & ((1UL << MEM_CGROUP_ID_SHIFT) - 1);
192 entry >>= MEM_CGROUP_ID_SHIFT;
Johannes Weinera5289102014-04-03 14:47:51 -0700193
Johannes Weiner23047a92016-03-15 14:57:16 -0700194 *memcgidp = memcgid;
Mel Gorman1e6b10852016-07-28 15:46:08 -0700195 *pgdat = NODE_DATA(nid);
Johannes Weiner612e4492016-03-15 14:57:13 -0700196 *evictionp = entry << bucket_order;
Johannes Weinera5289102014-04-03 14:47:51 -0700197}
198
199/**
200 * workingset_eviction - note the eviction of a page from memory
201 * @mapping: address space the page was backing
202 * @page: the page being evicted
203 *
204 * Returns a shadow entry to be stored in @mapping->page_tree in place
205 * of the evicted @page so that a later refault can be detected.
206 */
207void *workingset_eviction(struct address_space *mapping, struct page *page)
208{
Johannes Weiner23047a92016-03-15 14:57:16 -0700209 struct mem_cgroup *memcg = page_memcg(page);
Mel Gorman1e6b10852016-07-28 15:46:08 -0700210 struct pglist_data *pgdat = page_pgdat(page);
Johannes Weiner23047a92016-03-15 14:57:16 -0700211 int memcgid = mem_cgroup_id(memcg);
Johannes Weinera5289102014-04-03 14:47:51 -0700212 unsigned long eviction;
Johannes Weiner23047a92016-03-15 14:57:16 -0700213 struct lruvec *lruvec;
Johannes Weinera5289102014-04-03 14:47:51 -0700214
Johannes Weiner23047a92016-03-15 14:57:16 -0700215 /* Page is fully exclusive and pins page->mem_cgroup */
216 VM_BUG_ON_PAGE(PageLRU(page), page);
217 VM_BUG_ON_PAGE(page_count(page), page);
218 VM_BUG_ON_PAGE(!PageLocked(page), page);
219
Mel Gorman1e6b10852016-07-28 15:46:08 -0700220 lruvec = mem_cgroup_lruvec(pgdat, memcg);
Johannes Weiner23047a92016-03-15 14:57:16 -0700221 eviction = atomic_long_inc_return(&lruvec->inactive_age);
Mel Gorman1e6b10852016-07-28 15:46:08 -0700222 return pack_shadow(memcgid, pgdat, eviction);
Johannes Weinera5289102014-04-03 14:47:51 -0700223}
224
225/**
226 * workingset_refault - evaluate the refault of a previously evicted page
227 * @shadow: shadow entry of the evicted page
228 *
229 * Calculates and evaluates the refault distance of the previously
Mel Gorman1e6b10852016-07-28 15:46:08 -0700230 * evicted page in the context of the node it was allocated in.
Johannes Weinera5289102014-04-03 14:47:51 -0700231 *
232 * Returns %true if the page should be activated, %false otherwise.
233 */
234bool workingset_refault(void *shadow)
235{
236 unsigned long refault_distance;
Johannes Weiner23047a92016-03-15 14:57:16 -0700237 unsigned long active_file;
238 struct mem_cgroup *memcg;
Johannes Weiner162453b2016-03-15 14:57:10 -0700239 unsigned long eviction;
Johannes Weiner23047a92016-03-15 14:57:16 -0700240 struct lruvec *lruvec;
Johannes Weiner162453b2016-03-15 14:57:10 -0700241 unsigned long refault;
Mel Gorman1e6b10852016-07-28 15:46:08 -0700242 struct pglist_data *pgdat;
Johannes Weiner23047a92016-03-15 14:57:16 -0700243 int memcgid;
Johannes Weinera5289102014-04-03 14:47:51 -0700244
Mel Gorman1e6b10852016-07-28 15:46:08 -0700245 unpack_shadow(shadow, &memcgid, &pgdat, &eviction);
Johannes Weiner162453b2016-03-15 14:57:10 -0700246
Johannes Weiner23047a92016-03-15 14:57:16 -0700247 rcu_read_lock();
248 /*
249 * Look up the memcg associated with the stored ID. It might
250 * have been deleted since the page's eviction.
251 *
252 * Note that in rare events the ID could have been recycled
253 * for a new cgroup that refaults a shared page. This is
254 * impossible to tell from the available data. However, this
255 * should be a rare and limited disturbance, and activations
256 * are always speculative anyway. Ultimately, it's the aging
257 * algorithm's job to shake out the minimum access frequency
258 * for the active cache.
259 *
260 * XXX: On !CONFIG_MEMCG, this will always return NULL; it
261 * would be better if the root_mem_cgroup existed in all
262 * configurations instead.
263 */
264 memcg = mem_cgroup_from_id(memcgid);
265 if (!mem_cgroup_disabled() && !memcg) {
266 rcu_read_unlock();
267 return false;
268 }
Mel Gorman1e6b10852016-07-28 15:46:08 -0700269 lruvec = mem_cgroup_lruvec(pgdat, memcg);
Johannes Weiner23047a92016-03-15 14:57:16 -0700270 refault = atomic_long_read(&lruvec->inactive_age);
Michal Hockofd538802017-02-22 15:45:58 -0800271 active_file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES);
Johannes Weiner162453b2016-03-15 14:57:10 -0700272
273 /*
274 * The unsigned subtraction here gives an accurate distance
275 * across inactive_age overflows in most cases.
276 *
277 * There is a special case: usually, shadow entries have a
278 * short lifetime and are either refaulted or reclaimed along
279 * with the inode before they get too old. But it is not
280 * impossible for the inactive_age to lap a shadow entry in
281 * the field, which can then can result in a false small
282 * refault distance, leading to a false activation should this
283 * old entry actually refault again. However, earlier kernels
284 * used to deactivate unconditionally with *every* reclaim
285 * invocation for the longest time, so the occasional
286 * inappropriate activation leading to pressure on the active
287 * list is not a problem.
288 */
289 refault_distance = (refault - eviction) & EVICTION_MASK;
290
Johannes Weiner00f3ca22017-07-06 15:40:52 -0700291 inc_lruvec_state(lruvec, WORKINGSET_REFAULT);
Johannes Weinera5289102014-04-03 14:47:51 -0700292
Johannes Weiner23047a92016-03-15 14:57:16 -0700293 if (refault_distance <= active_file) {
Johannes Weiner00f3ca22017-07-06 15:40:52 -0700294 inc_lruvec_state(lruvec, WORKINGSET_ACTIVATE);
Johannes Weiner2a2e4882017-05-03 14:55:03 -0700295 rcu_read_unlock();
Johannes Weinera5289102014-04-03 14:47:51 -0700296 return true;
297 }
Johannes Weiner2a2e4882017-05-03 14:55:03 -0700298 rcu_read_unlock();
Johannes Weinera5289102014-04-03 14:47:51 -0700299 return false;
300}
301
302/**
303 * workingset_activation - note a page activation
304 * @page: page that is being activated
305 */
306void workingset_activation(struct page *page)
307{
Johannes Weiner55779ec2016-07-28 15:45:10 -0700308 struct mem_cgroup *memcg;
Johannes Weiner23047a92016-03-15 14:57:16 -0700309 struct lruvec *lruvec;
310
Johannes Weiner55779ec2016-07-28 15:45:10 -0700311 rcu_read_lock();
Johannes Weiner23047a92016-03-15 14:57:16 -0700312 /*
313 * Filter non-memcg pages here, e.g. unmap can call
314 * mark_page_accessed() on VDSO pages.
315 *
316 * XXX: See workingset_refault() - this should return
317 * root_mem_cgroup even for !CONFIG_MEMCG.
318 */
Johannes Weiner55779ec2016-07-28 15:45:10 -0700319 memcg = page_memcg_rcu(page);
320 if (!mem_cgroup_disabled() && !memcg)
Johannes Weiner23047a92016-03-15 14:57:16 -0700321 goto out;
Mel Gormanef8f2322016-07-28 15:46:05 -0700322 lruvec = mem_cgroup_lruvec(page_pgdat(page), memcg);
Johannes Weiner23047a92016-03-15 14:57:16 -0700323 atomic_long_inc(&lruvec->inactive_age);
324out:
Johannes Weiner55779ec2016-07-28 15:45:10 -0700325 rcu_read_unlock();
Johannes Weinera5289102014-04-03 14:47:51 -0700326}
Johannes Weiner449dd692014-04-03 14:47:56 -0700327
328/*
329 * Shadow entries reflect the share of the working set that does not
330 * fit into memory, so their number depends on the access pattern of
331 * the workload. In most cases, they will refault or get reclaimed
332 * along with the inode, but a (malicious) workload that streams
333 * through files with a total size several times that of available
334 * memory, while preventing the inodes from being reclaimed, can
335 * create excessive amounts of shadow nodes. To keep a lid on this,
336 * track shadow nodes and reclaim them when they grow way past the
337 * point where they would still be useful.
338 */
339
Johannes Weiner14b46872016-12-12 16:43:52 -0800340static struct list_lru shadow_nodes;
341
342void workingset_update_node(struct radix_tree_node *node, void *private)
343{
344 struct address_space *mapping = private;
345
346 /* Only regular page cache has shadow entries */
347 if (dax_mapping(mapping) || shmem_mapping(mapping))
348 return;
349
350 /*
351 * Track non-empty nodes that contain only shadow entries;
352 * unlink those that contain pages or are being freed.
353 *
354 * Avoid acquiring the list_lru lock when the nodes are
355 * already where they should be. The list_empty() test is safe
356 * as node->private_list is protected by &mapping->tree_lock.
357 */
358 if (node->count && node->count == node->exceptional) {
Matthew Wilcoxd58275b2017-01-16 17:10:21 -0500359 if (list_empty(&node->private_list))
Johannes Weiner14b46872016-12-12 16:43:52 -0800360 list_lru_add(&shadow_nodes, &node->private_list);
Johannes Weiner14b46872016-12-12 16:43:52 -0800361 } else {
362 if (!list_empty(&node->private_list))
363 list_lru_del(&shadow_nodes, &node->private_list);
364 }
365}
Johannes Weiner449dd692014-04-03 14:47:56 -0700366
367static unsigned long count_shadow_nodes(struct shrinker *shrinker,
368 struct shrink_control *sc)
369{
Johannes Weiner449dd692014-04-03 14:47:56 -0700370 unsigned long max_nodes;
Johannes Weiner14b46872016-12-12 16:43:52 -0800371 unsigned long nodes;
Johannes Weinerb5388992016-12-12 16:43:58 -0800372 unsigned long cache;
Johannes Weiner449dd692014-04-03 14:47:56 -0700373
374 /* list_lru lock nests inside IRQ-safe mapping->tree_lock */
375 local_irq_disable();
Johannes Weiner14b46872016-12-12 16:43:52 -0800376 nodes = list_lru_shrink_count(&shadow_nodes, sc);
Johannes Weiner449dd692014-04-03 14:47:56 -0700377 local_irq_enable();
378
Johannes Weiner449dd692014-04-03 14:47:56 -0700379 /*
Johannes Weinerb5388992016-12-12 16:43:58 -0800380 * Approximate a reasonable limit for the radix tree nodes
381 * containing shadow entries. We don't need to keep more
382 * shadow entries than possible pages on the active list,
383 * since refault distances bigger than that are dismissed.
384 *
385 * The size of the active list converges toward 100% of
386 * overall page cache as memory grows, with only a tiny
387 * inactive list. Assume the total cache size for that.
388 *
389 * Nodes might be sparsely populated, with only one shadow
390 * entry in the extreme case. Obviously, we cannot keep one
391 * node for every eligible shadow entry, so compromise on a
392 * worst-case density of 1/8th. Below that, not all eligible
393 * refaults can be detected anymore.
Johannes Weiner449dd692014-04-03 14:47:56 -0700394 *
395 * On 64-bit with 7 radix_tree_nodes per page and 64 slots
396 * each, this will reclaim shadow entries when they consume
Johannes Weinerb5388992016-12-12 16:43:58 -0800397 * ~1.8% of available memory:
Johannes Weiner449dd692014-04-03 14:47:56 -0700398 *
Johannes Weinerb5388992016-12-12 16:43:58 -0800399 * PAGE_SIZE / radix_tree_nodes / node_entries * 8 / PAGE_SIZE
Johannes Weiner449dd692014-04-03 14:47:56 -0700400 */
Johannes Weinerb5388992016-12-12 16:43:58 -0800401 if (sc->memcg) {
402 cache = mem_cgroup_node_nr_lru_pages(sc->memcg, sc->nid,
403 LRU_ALL_FILE);
404 } else {
405 cache = node_page_state(NODE_DATA(sc->nid), NR_ACTIVE_FILE) +
406 node_page_state(NODE_DATA(sc->nid), NR_INACTIVE_FILE);
407 }
408 max_nodes = cache >> (RADIX_TREE_MAP_SHIFT - 3);
Johannes Weiner449dd692014-04-03 14:47:56 -0700409
Johannes Weiner14b46872016-12-12 16:43:52 -0800410 if (nodes <= max_nodes)
Johannes Weiner449dd692014-04-03 14:47:56 -0700411 return 0;
Johannes Weiner14b46872016-12-12 16:43:52 -0800412 return nodes - max_nodes;
Johannes Weiner449dd692014-04-03 14:47:56 -0700413}
414
415static enum lru_status shadow_lru_isolate(struct list_head *item,
Vladimir Davydov3f97b162015-02-12 14:59:35 -0800416 struct list_lru_one *lru,
Johannes Weiner449dd692014-04-03 14:47:56 -0700417 spinlock_t *lru_lock,
418 void *arg)
419{
420 struct address_space *mapping;
421 struct radix_tree_node *node;
422 unsigned int i;
423 int ret;
424
425 /*
426 * Page cache insertions and deletions synchroneously maintain
427 * the shadow node LRU under the mapping->tree_lock and the
428 * lru_lock. Because the page cache tree is emptied before
429 * the inode can be destroyed, holding the lru_lock pins any
430 * address_space that has radix tree nodes on the LRU.
431 *
432 * We can then safely transition to the mapping->tree_lock to
433 * pin only the address_space of the particular node we want
434 * to reclaim, take the node off-LRU, and drop the lru_lock.
435 */
436
437 node = container_of(item, struct radix_tree_node, private_list);
Matthew Wilcoxd58275b2017-01-16 17:10:21 -0500438 mapping = container_of(node->root, struct address_space, page_tree);
Johannes Weiner449dd692014-04-03 14:47:56 -0700439
440 /* Coming from the list, invert the lock order */
441 if (!spin_trylock(&mapping->tree_lock)) {
442 spin_unlock(lru_lock);
443 ret = LRU_RETRY;
444 goto out;
445 }
446
Vladimir Davydov3f97b162015-02-12 14:59:35 -0800447 list_lru_isolate(lru, item);
Johannes Weiner449dd692014-04-03 14:47:56 -0700448 spin_unlock(lru_lock);
449
450 /*
451 * The nodes should only contain one or more shadow entries,
452 * no pages, so we expect to be able to remove them all and
453 * delete and free the empty node afterwards.
454 */
Johannes Weiner14b46872016-12-12 16:43:52 -0800455 if (WARN_ON_ONCE(!node->exceptional))
Johannes Weinerb9368872016-12-12 16:43:38 -0800456 goto out_invalid;
Johannes Weiner14b46872016-12-12 16:43:52 -0800457 if (WARN_ON_ONCE(node->count != node->exceptional))
Johannes Weinerb9368872016-12-12 16:43:38 -0800458 goto out_invalid;
Johannes Weiner449dd692014-04-03 14:47:56 -0700459 for (i = 0; i < RADIX_TREE_MAP_SIZE; i++) {
460 if (node->slots[i]) {
Johannes Weinerb9368872016-12-12 16:43:38 -0800461 if (WARN_ON_ONCE(!radix_tree_exceptional_entry(node->slots[i])))
462 goto out_invalid;
Johannes Weiner14b46872016-12-12 16:43:52 -0800463 if (WARN_ON_ONCE(!node->exceptional))
464 goto out_invalid;
Johannes Weinerb9368872016-12-12 16:43:38 -0800465 if (WARN_ON_ONCE(!mapping->nrexceptional))
466 goto out_invalid;
Johannes Weiner449dd692014-04-03 14:47:56 -0700467 node->slots[i] = NULL;
Johannes Weiner14b46872016-12-12 16:43:52 -0800468 node->exceptional--;
469 node->count--;
Ross Zwislerf9fe48b2016-01-22 15:10:40 -0800470 mapping->nrexceptional--;
Johannes Weiner449dd692014-04-03 14:47:56 -0700471 }
472 }
Johannes Weiner14b46872016-12-12 16:43:52 -0800473 if (WARN_ON_ONCE(node->exceptional))
Johannes Weinerb9368872016-12-12 16:43:38 -0800474 goto out_invalid;
Johannes Weiner00f3ca22017-07-06 15:40:52 -0700475 inc_lruvec_page_state(virt_to_page(node), WORKINGSET_NODERECLAIM);
Johannes Weinerea07b862017-01-06 19:21:43 -0500476 __radix_tree_delete_node(&mapping->page_tree, node,
477 workingset_update_node, mapping);
Johannes Weiner449dd692014-04-03 14:47:56 -0700478
Johannes Weinerb9368872016-12-12 16:43:38 -0800479out_invalid:
Johannes Weiner449dd692014-04-03 14:47:56 -0700480 spin_unlock(&mapping->tree_lock);
481 ret = LRU_REMOVED_RETRY;
482out:
483 local_irq_enable();
484 cond_resched();
485 local_irq_disable();
486 spin_lock(lru_lock);
487 return ret;
488}
489
490static unsigned long scan_shadow_nodes(struct shrinker *shrinker,
491 struct shrink_control *sc)
492{
493 unsigned long ret;
494
495 /* list_lru lock nests inside IRQ-safe mapping->tree_lock */
496 local_irq_disable();
Johannes Weiner14b46872016-12-12 16:43:52 -0800497 ret = list_lru_shrink_walk(&shadow_nodes, sc, shadow_lru_isolate, NULL);
Johannes Weiner449dd692014-04-03 14:47:56 -0700498 local_irq_enable();
499 return ret;
500}
501
502static struct shrinker workingset_shadow_shrinker = {
503 .count_objects = count_shadow_nodes,
504 .scan_objects = scan_shadow_nodes,
505 .seeks = DEFAULT_SEEKS,
Vladimir Davydov0a6b76d2016-03-17 14:18:42 -0700506 .flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE,
Johannes Weiner449dd692014-04-03 14:47:56 -0700507};
508
509/*
510 * Our list_lru->lock is IRQ-safe as it nests inside the IRQ-safe
511 * mapping->tree_lock.
512 */
513static struct lock_class_key shadow_nodes_key;
514
515static int __init workingset_init(void)
516{
Johannes Weiner612e4492016-03-15 14:57:13 -0700517 unsigned int timestamp_bits;
518 unsigned int max_order;
Johannes Weiner449dd692014-04-03 14:47:56 -0700519 int ret;
520
Johannes Weiner612e4492016-03-15 14:57:13 -0700521 BUILD_BUG_ON(BITS_PER_LONG < EVICTION_SHIFT);
522 /*
523 * Calculate the eviction bucket size to cover the longest
524 * actionable refault distance, which is currently half of
525 * memory (totalram_pages/2). However, memory hotplug may add
526 * some more pages at runtime, so keep working with up to
527 * double the initial memory by using totalram_pages as-is.
528 */
529 timestamp_bits = BITS_PER_LONG - EVICTION_SHIFT;
530 max_order = fls_long(totalram_pages - 1);
531 if (max_order > timestamp_bits)
532 bucket_order = max_order - timestamp_bits;
Anton Blanchardd3d36c42016-07-14 12:07:41 -0700533 pr_info("workingset: timestamp_bits=%d max_order=%d bucket_order=%u\n",
Johannes Weiner612e4492016-03-15 14:57:13 -0700534 timestamp_bits, max_order, bucket_order);
535
Johannes Weiner0cefabd2017-03-31 15:11:52 -0700536 ret = __list_lru_init(&shadow_nodes, true, &shadow_nodes_key);
Johannes Weiner449dd692014-04-03 14:47:56 -0700537 if (ret)
538 goto err;
539 ret = register_shrinker(&workingset_shadow_shrinker);
540 if (ret)
541 goto err_list_lru;
542 return 0;
543err_list_lru:
Johannes Weiner14b46872016-12-12 16:43:52 -0800544 list_lru_destroy(&shadow_nodes);
Johannes Weiner449dd692014-04-03 14:47:56 -0700545err:
546 return ret;
547}
548module_init(workingset_init);