blob: f32dba9e26fe45942fc1334e08410abbc2722b46 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * DECnet An implementation of the DECnet protocol suite for the LINUX
3 * operating system. DECnet is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * DECnet Neighbour Functions (Adjacency Database and
7 * On-Ethernet Cache)
8 *
9 * Author: Steve Whitehouse <SteveW@ACM.org>
10 *
11 *
12 * Changes:
13 * Steve Whitehouse : Fixed router listing routine
14 * Steve Whitehouse : Added error_report functions
15 * Steve Whitehouse : Added default router detection
16 * Steve Whitehouse : Hop counts in outgoing messages
17 * Steve Whitehouse : Fixed src/dst in outgoing messages so
18 * forwarding now stands a good chance of
19 * working.
20 * Steve Whitehouse : Fixed neighbour states (for now anyway).
21 * Steve Whitehouse : Made error_report functions dummies. This
22 * is not the right place to return skbs.
23 * Steve Whitehouse : Convert to seq_file
24 *
25 */
26
27#include <linux/config.h>
28#include <linux/net.h>
29#include <linux/module.h>
30#include <linux/socket.h>
31#include <linux/if_arp.h>
32#include <linux/if_ether.h>
33#include <linux/init.h>
34#include <linux/proc_fs.h>
35#include <linux/string.h>
36#include <linux/netfilter_decnet.h>
37#include <linux/spinlock.h>
38#include <linux/seq_file.h>
39#include <linux/rcupdate.h>
40#include <linux/jhash.h>
41#include <asm/atomic.h>
42#include <net/neighbour.h>
43#include <net/dst.h>
44#include <net/flow.h>
45#include <net/dn.h>
46#include <net/dn_dev.h>
47#include <net/dn_neigh.h>
48#include <net/dn_route.h>
49
50static u32 dn_neigh_hash(const void *pkey, const struct net_device *dev);
51static int dn_neigh_construct(struct neighbour *);
52static void dn_long_error_report(struct neighbour *, struct sk_buff *);
53static void dn_short_error_report(struct neighbour *, struct sk_buff *);
54static int dn_long_output(struct sk_buff *);
55static int dn_short_output(struct sk_buff *);
56static int dn_phase3_output(struct sk_buff *);
57
58
59/*
60 * For talking to broadcast devices: Ethernet & PPP
61 */
62static struct neigh_ops dn_long_ops = {
63 .family = AF_DECnet,
64 .error_report = dn_long_error_report,
65 .output = dn_long_output,
66 .connected_output = dn_long_output,
67 .hh_output = dev_queue_xmit,
68 .queue_xmit = dev_queue_xmit,
69};
70
71/*
72 * For talking to pointopoint and multidrop devices: DDCMP and X.25
73 */
74static struct neigh_ops dn_short_ops = {
75 .family = AF_DECnet,
76 .error_report = dn_short_error_report,
77 .output = dn_short_output,
78 .connected_output = dn_short_output,
79 .hh_output = dev_queue_xmit,
80 .queue_xmit = dev_queue_xmit,
81};
82
83/*
84 * For talking to DECnet phase III nodes
85 */
86static struct neigh_ops dn_phase3_ops = {
87 .family = AF_DECnet,
88 .error_report = dn_short_error_report, /* Can use short version here */
89 .output = dn_phase3_output,
90 .connected_output = dn_phase3_output,
91 .hh_output = dev_queue_xmit,
92 .queue_xmit = dev_queue_xmit
93};
94
95struct neigh_table dn_neigh_table = {
96 .family = PF_DECnet,
97 .entry_size = sizeof(struct dn_neigh),
98 .key_len = sizeof(dn_address),
99 .hash = dn_neigh_hash,
100 .constructor = dn_neigh_construct,
101 .id = "dn_neigh_cache",
102 .parms ={
103 .tbl = &dn_neigh_table,
Linus Torvalds1da177e2005-04-16 15:20:36 -0700104 .base_reachable_time = 30 * HZ,
105 .retrans_time = 1 * HZ,
106 .gc_staletime = 60 * HZ,
107 .reachable_time = 30 * HZ,
108 .delay_probe_time = 5 * HZ,
109 .queue_len = 3,
110 .ucast_probes = 0,
111 .app_probes = 0,
112 .mcast_probes = 0,
113 .anycast_delay = 0,
114 .proxy_delay = 0,
115 .proxy_qlen = 0,
116 .locktime = 1 * HZ,
117 },
118 .gc_interval = 30 * HZ,
119 .gc_thresh1 = 128,
120 .gc_thresh2 = 512,
121 .gc_thresh3 = 1024,
122};
123
124static u32 dn_neigh_hash(const void *pkey, const struct net_device *dev)
125{
126 return jhash_2words(*(dn_address *)pkey, 0, dn_neigh_table.hash_rnd);
127}
128
129static int dn_neigh_construct(struct neighbour *neigh)
130{
131 struct net_device *dev = neigh->dev;
132 struct dn_neigh *dn = (struct dn_neigh *)neigh;
133 struct dn_dev *dn_db;
134 struct neigh_parms *parms;
135
136 rcu_read_lock();
137 dn_db = rcu_dereference(dev->dn_ptr);
138 if (dn_db == NULL) {
139 rcu_read_unlock();
140 return -EINVAL;
141 }
142
143 parms = dn_db->neigh_parms;
144 if (!parms) {
145 rcu_read_unlock();
146 return -EINVAL;
147 }
148
149 __neigh_parms_put(neigh->parms);
150 neigh->parms = neigh_parms_clone(parms);
151 rcu_read_unlock();
152
153 if (dn_db->use_long)
154 neigh->ops = &dn_long_ops;
155 else
156 neigh->ops = &dn_short_ops;
157
158 if (dn->flags & DN_NDFLAG_P3)
159 neigh->ops = &dn_phase3_ops;
160
161 neigh->nud_state = NUD_NOARP;
162 neigh->output = neigh->ops->connected_output;
163
164 if ((dev->type == ARPHRD_IPGRE) || (dev->flags & IFF_POINTOPOINT))
165 memcpy(neigh->ha, dev->broadcast, dev->addr_len);
166 else if ((dev->type == ARPHRD_ETHER) || (dev->type == ARPHRD_LOOPBACK))
167 dn_dn2eth(neigh->ha, dn->addr);
168 else {
169 if (net_ratelimit())
170 printk(KERN_DEBUG "Trying to create neigh for hw %d\n", dev->type);
171 return -EINVAL;
172 }
173
174 /*
175 * Make an estimate of the remote block size by assuming that its
176 * two less then the device mtu, which it true for ethernet (and
177 * other things which support long format headers) since there is
178 * an extra length field (of 16 bits) which isn't part of the
179 * ethernet headers and which the DECnet specs won't admit is part
180 * of the DECnet routing headers either.
181 *
182 * If we over estimate here its no big deal, the NSP negotiations
183 * will prevent us from sending packets which are too large for the
184 * remote node to handle. In any case this figure is normally updated
185 * by a hello message in most cases.
186 */
187 dn->blksize = dev->mtu - 2;
188
189 return 0;
190}
191
192static void dn_long_error_report(struct neighbour *neigh, struct sk_buff *skb)
193{
194 printk(KERN_DEBUG "dn_long_error_report: called\n");
195 kfree_skb(skb);
196}
197
198
199static void dn_short_error_report(struct neighbour *neigh, struct sk_buff *skb)
200{
201 printk(KERN_DEBUG "dn_short_error_report: called\n");
202 kfree_skb(skb);
203}
204
205static int dn_neigh_output_packet(struct sk_buff *skb)
206{
207 struct dst_entry *dst = skb->dst;
208 struct dn_route *rt = (struct dn_route *)dst;
209 struct neighbour *neigh = dst->neighbour;
210 struct net_device *dev = neigh->dev;
211 char mac_addr[ETH_ALEN];
212
213 dn_dn2eth(mac_addr, rt->rt_local_src);
214 if (!dev->hard_header || dev->hard_header(skb, dev, ntohs(skb->protocol), neigh->ha, mac_addr, skb->len) >= 0)
215 return neigh->ops->queue_xmit(skb);
216
217 if (net_ratelimit())
218 printk(KERN_DEBUG "dn_neigh_output_packet: oops, can't send packet\n");
219
220 kfree_skb(skb);
221 return -EINVAL;
222}
223
224static int dn_long_output(struct sk_buff *skb)
225{
226 struct dst_entry *dst = skb->dst;
227 struct neighbour *neigh = dst->neighbour;
228 struct net_device *dev = neigh->dev;
229 int headroom = dev->hard_header_len + sizeof(struct dn_long_packet) + 3;
230 unsigned char *data;
231 struct dn_long_packet *lp;
232 struct dn_skb_cb *cb = DN_SKB_CB(skb);
233
234
235 if (skb_headroom(skb) < headroom) {
236 struct sk_buff *skb2 = skb_realloc_headroom(skb, headroom);
237 if (skb2 == NULL) {
238 if (net_ratelimit())
239 printk(KERN_CRIT "dn_long_output: no memory\n");
240 kfree_skb(skb);
241 return -ENOBUFS;
242 }
243 kfree_skb(skb);
244 skb = skb2;
245 if (net_ratelimit())
246 printk(KERN_INFO "dn_long_output: Increasing headroom\n");
247 }
248
249 data = skb_push(skb, sizeof(struct dn_long_packet) + 3);
250 lp = (struct dn_long_packet *)(data+3);
251
252 *((unsigned short *)data) = dn_htons(skb->len - 2);
253 *(data + 2) = 1 | DN_RT_F_PF; /* Padding */
254
255 lp->msgflg = DN_RT_PKT_LONG|(cb->rt_flags&(DN_RT_F_IE|DN_RT_F_RQR|DN_RT_F_RTS));
256 lp->d_area = lp->d_subarea = 0;
257 dn_dn2eth(lp->d_id, dn_ntohs(cb->dst));
258 lp->s_area = lp->s_subarea = 0;
259 dn_dn2eth(lp->s_id, dn_ntohs(cb->src));
260 lp->nl2 = 0;
261 lp->visit_ct = cb->hops & 0x3f;
262 lp->s_class = 0;
263 lp->pt = 0;
264
265 skb->nh.raw = skb->data;
266
267 return NF_HOOK(PF_DECnet, NF_DN_POST_ROUTING, skb, NULL, neigh->dev, dn_neigh_output_packet);
268}
269
270static int dn_short_output(struct sk_buff *skb)
271{
272 struct dst_entry *dst = skb->dst;
273 struct neighbour *neigh = dst->neighbour;
274 struct net_device *dev = neigh->dev;
275 int headroom = dev->hard_header_len + sizeof(struct dn_short_packet) + 2;
276 struct dn_short_packet *sp;
277 unsigned char *data;
278 struct dn_skb_cb *cb = DN_SKB_CB(skb);
279
280
281 if (skb_headroom(skb) < headroom) {
282 struct sk_buff *skb2 = skb_realloc_headroom(skb, headroom);
283 if (skb2 == NULL) {
284 if (net_ratelimit())
285 printk(KERN_CRIT "dn_short_output: no memory\n");
286 kfree_skb(skb);
287 return -ENOBUFS;
288 }
289 kfree_skb(skb);
290 skb = skb2;
291 if (net_ratelimit())
292 printk(KERN_INFO "dn_short_output: Increasing headroom\n");
293 }
294
295 data = skb_push(skb, sizeof(struct dn_short_packet) + 2);
296 *((unsigned short *)data) = dn_htons(skb->len - 2);
297 sp = (struct dn_short_packet *)(data+2);
298
299 sp->msgflg = DN_RT_PKT_SHORT|(cb->rt_flags&(DN_RT_F_RQR|DN_RT_F_RTS));
300 sp->dstnode = cb->dst;
301 sp->srcnode = cb->src;
302 sp->forward = cb->hops & 0x3f;
303
304 skb->nh.raw = skb->data;
305
306 return NF_HOOK(PF_DECnet, NF_DN_POST_ROUTING, skb, NULL, neigh->dev, dn_neigh_output_packet);
307}
308
309/*
310 * Phase 3 output is the same is short output, execpt that
311 * it clears the area bits before transmission.
312 */
313static int dn_phase3_output(struct sk_buff *skb)
314{
315 struct dst_entry *dst = skb->dst;
316 struct neighbour *neigh = dst->neighbour;
317 struct net_device *dev = neigh->dev;
318 int headroom = dev->hard_header_len + sizeof(struct dn_short_packet) + 2;
319 struct dn_short_packet *sp;
320 unsigned char *data;
321 struct dn_skb_cb *cb = DN_SKB_CB(skb);
322
323 if (skb_headroom(skb) < headroom) {
324 struct sk_buff *skb2 = skb_realloc_headroom(skb, headroom);
325 if (skb2 == NULL) {
326 if (net_ratelimit())
327 printk(KERN_CRIT "dn_phase3_output: no memory\n");
328 kfree_skb(skb);
329 return -ENOBUFS;
330 }
331 kfree_skb(skb);
332 skb = skb2;
333 if (net_ratelimit())
334 printk(KERN_INFO "dn_phase3_output: Increasing headroom\n");
335 }
336
337 data = skb_push(skb, sizeof(struct dn_short_packet) + 2);
338 *((unsigned short *)data) = dn_htons(skb->len - 2);
339 sp = (struct dn_short_packet *)(data + 2);
340
341 sp->msgflg = DN_RT_PKT_SHORT|(cb->rt_flags&(DN_RT_F_RQR|DN_RT_F_RTS));
342 sp->dstnode = cb->dst & dn_htons(0x03ff);
343 sp->srcnode = cb->src & dn_htons(0x03ff);
344 sp->forward = cb->hops & 0x3f;
345
346 skb->nh.raw = skb->data;
347
348 return NF_HOOK(PF_DECnet, NF_DN_POST_ROUTING, skb, NULL, neigh->dev, dn_neigh_output_packet);
349}
350
351/*
352 * Unfortunately, the neighbour code uses the device in its hash
353 * function, so we don't get any advantage from it. This function
354 * basically does a neigh_lookup(), but without comparing the device
355 * field. This is required for the On-Ethernet cache
356 */
357
358/*
359 * Pointopoint link receives a hello message
360 */
361void dn_neigh_pointopoint_hello(struct sk_buff *skb)
362{
363 kfree_skb(skb);
364}
365
366/*
367 * Ethernet router hello message received
368 */
369int dn_neigh_router_hello(struct sk_buff *skb)
370{
371 struct rtnode_hello_message *msg = (struct rtnode_hello_message *)skb->data;
372
373 struct neighbour *neigh;
374 struct dn_neigh *dn;
375 struct dn_dev *dn_db;
376 dn_address src;
377
378 src = dn_htons(dn_eth2dn(msg->id));
379
380 neigh = __neigh_lookup(&dn_neigh_table, &src, skb->dev, 1);
381
382 dn = (struct dn_neigh *)neigh;
383
384 if (neigh) {
385 write_lock(&neigh->lock);
386
387 neigh->used = jiffies;
388 dn_db = (struct dn_dev *)neigh->dev->dn_ptr;
389
390 if (!(neigh->nud_state & NUD_PERMANENT)) {
391 neigh->updated = jiffies;
392
393 if (neigh->dev->type == ARPHRD_ETHER)
394 memcpy(neigh->ha, &eth_hdr(skb)->h_source, ETH_ALEN);
395
396 dn->blksize = dn_ntohs(msg->blksize);
397 dn->priority = msg->priority;
398
399 dn->flags &= ~DN_NDFLAG_P3;
400
401 switch(msg->iinfo & DN_RT_INFO_TYPE) {
402 case DN_RT_INFO_L1RT:
403 dn->flags &=~DN_NDFLAG_R2;
404 dn->flags |= DN_NDFLAG_R1;
405 break;
406 case DN_RT_INFO_L2RT:
407 dn->flags |= DN_NDFLAG_R2;
408 }
409 }
410
411 if (!dn_db->router) {
412 dn_db->router = neigh_clone(neigh);
413 } else {
414 if (msg->priority > ((struct dn_neigh *)dn_db->router)->priority)
415 neigh_release(xchg(&dn_db->router, neigh_clone(neigh)));
416 }
417 write_unlock(&neigh->lock);
418 neigh_release(neigh);
419 }
420
421 kfree_skb(skb);
422 return 0;
423}
424
425/*
426 * Endnode hello message received
427 */
428int dn_neigh_endnode_hello(struct sk_buff *skb)
429{
430 struct endnode_hello_message *msg = (struct endnode_hello_message *)skb->data;
431 struct neighbour *neigh;
432 struct dn_neigh *dn;
433 dn_address src;
434
435 src = dn_htons(dn_eth2dn(msg->id));
436
437 neigh = __neigh_lookup(&dn_neigh_table, &src, skb->dev, 1);
438
439 dn = (struct dn_neigh *)neigh;
440
441 if (neigh) {
442 write_lock(&neigh->lock);
443
444 neigh->used = jiffies;
445
446 if (!(neigh->nud_state & NUD_PERMANENT)) {
447 neigh->updated = jiffies;
448
449 if (neigh->dev->type == ARPHRD_ETHER)
450 memcpy(neigh->ha, &eth_hdr(skb)->h_source, ETH_ALEN);
451 dn->flags &= ~(DN_NDFLAG_R1 | DN_NDFLAG_R2);
452 dn->blksize = dn_ntohs(msg->blksize);
453 dn->priority = 0;
454 }
455
456 write_unlock(&neigh->lock);
457 neigh_release(neigh);
458 }
459
460 kfree_skb(skb);
461 return 0;
462}
463
464static char *dn_find_slot(char *base, int max, int priority)
465{
466 int i;
467 unsigned char *min = NULL;
468
469 base += 6; /* skip first id */
470
471 for(i = 0; i < max; i++) {
472 if (!min || (*base < *min))
473 min = base;
474 base += 7; /* find next priority */
475 }
476
477 if (!min)
478 return NULL;
479
480 return (*min < priority) ? (min - 6) : NULL;
481}
482
483struct elist_cb_state {
484 struct net_device *dev;
485 unsigned char *ptr;
486 unsigned char *rs;
487 int t, n;
488};
489
490static void neigh_elist_cb(struct neighbour *neigh, void *_info)
491{
492 struct elist_cb_state *s = _info;
493 struct dn_dev *dn_db;
494 struct dn_neigh *dn;
495
496 if (neigh->dev != s->dev)
497 return;
498
499 dn = (struct dn_neigh *) neigh;
500 if (!(dn->flags & (DN_NDFLAG_R1|DN_NDFLAG_R2)))
501 return;
502
503 dn_db = (struct dn_dev *) s->dev->dn_ptr;
504 if (dn_db->parms.forwarding == 1 && (dn->flags & DN_NDFLAG_R2))
505 return;
506
507 if (s->t == s->n)
508 s->rs = dn_find_slot(s->ptr, s->n, dn->priority);
509 else
510 s->t++;
511 if (s->rs == NULL)
512 return;
513
514 dn_dn2eth(s->rs, dn->addr);
515 s->rs += 6;
516 *(s->rs) = neigh->nud_state & NUD_CONNECTED ? 0x80 : 0x0;
517 *(s->rs) |= dn->priority;
518 s->rs++;
519}
520
521int dn_neigh_elist(struct net_device *dev, unsigned char *ptr, int n)
522{
523 struct elist_cb_state state;
524
525 state.dev = dev;
526 state.t = 0;
527 state.n = n;
528 state.ptr = ptr;
529 state.rs = ptr;
530
531 neigh_for_each(&dn_neigh_table, neigh_elist_cb, &state);
532
533 return state.t;
534}
535
536
537#ifdef CONFIG_PROC_FS
538
539static inline void dn_neigh_format_entry(struct seq_file *seq,
540 struct neighbour *n)
541{
542 struct dn_neigh *dn = (struct dn_neigh *) n;
543 char buf[DN_ASCBUF_LEN];
544
545 read_lock(&n->lock);
546 seq_printf(seq, "%-7s %s%s%s %02x %02d %07ld %-8s\n",
547 dn_addr2asc(dn_ntohs(dn->addr), buf),
548 (dn->flags&DN_NDFLAG_R1) ? "1" : "-",
549 (dn->flags&DN_NDFLAG_R2) ? "2" : "-",
550 (dn->flags&DN_NDFLAG_P3) ? "3" : "-",
551 dn->n.nud_state,
552 atomic_read(&dn->n.refcnt),
553 dn->blksize,
554 (dn->n.dev) ? dn->n.dev->name : "?");
555 read_unlock(&n->lock);
556}
557
558static int dn_neigh_seq_show(struct seq_file *seq, void *v)
559{
560 if (v == SEQ_START_TOKEN) {
561 seq_puts(seq, "Addr Flags State Use Blksize Dev\n");
562 } else {
563 dn_neigh_format_entry(seq, v);
564 }
565
566 return 0;
567}
568
569static void *dn_neigh_seq_start(struct seq_file *seq, loff_t *pos)
570{
571 return neigh_seq_start(seq, pos, &dn_neigh_table,
572 NEIGH_SEQ_NEIGH_ONLY);
573}
574
575static struct seq_operations dn_neigh_seq_ops = {
576 .start = dn_neigh_seq_start,
577 .next = neigh_seq_next,
578 .stop = neigh_seq_stop,
579 .show = dn_neigh_seq_show,
580};
581
582static int dn_neigh_seq_open(struct inode *inode, struct file *file)
583{
584 struct seq_file *seq;
585 int rc = -ENOMEM;
586 struct neigh_seq_state *s = kmalloc(sizeof(*s), GFP_KERNEL);
587
588 if (!s)
589 goto out;
590
591 memset(s, 0, sizeof(*s));
592 rc = seq_open(file, &dn_neigh_seq_ops);
593 if (rc)
594 goto out_kfree;
595
596 seq = file->private_data;
597 seq->private = s;
598 memset(s, 0, sizeof(*s));
599out:
600 return rc;
601out_kfree:
602 kfree(s);
603 goto out;
604}
605
606static struct file_operations dn_neigh_seq_fops = {
607 .owner = THIS_MODULE,
608 .open = dn_neigh_seq_open,
609 .read = seq_read,
610 .llseek = seq_lseek,
611 .release = seq_release_private,
612};
613
614#endif
615
616void __init dn_neigh_init(void)
617{
618 neigh_table_init(&dn_neigh_table);
619 proc_net_fops_create("decnet_neigh", S_IRUGO, &dn_neigh_seq_fops);
620}
621
622void __exit dn_neigh_cleanup(void)
623{
624 proc_net_remove("decnet_neigh");
625 neigh_table_clear(&dn_neigh_table);
626}