Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* |
| 2 | * DECnet An implementation of the DECnet protocol suite for the LINUX |
| 3 | * operating system. DECnet is implemented using the BSD Socket |
| 4 | * interface as the means of communication with the user level. |
| 5 | * |
| 6 | * DECnet Neighbour Functions (Adjacency Database and |
| 7 | * On-Ethernet Cache) |
| 8 | * |
| 9 | * Author: Steve Whitehouse <SteveW@ACM.org> |
| 10 | * |
| 11 | * |
| 12 | * Changes: |
| 13 | * Steve Whitehouse : Fixed router listing routine |
| 14 | * Steve Whitehouse : Added error_report functions |
| 15 | * Steve Whitehouse : Added default router detection |
| 16 | * Steve Whitehouse : Hop counts in outgoing messages |
| 17 | * Steve Whitehouse : Fixed src/dst in outgoing messages so |
| 18 | * forwarding now stands a good chance of |
| 19 | * working. |
| 20 | * Steve Whitehouse : Fixed neighbour states (for now anyway). |
| 21 | * Steve Whitehouse : Made error_report functions dummies. This |
| 22 | * is not the right place to return skbs. |
| 23 | * Steve Whitehouse : Convert to seq_file |
| 24 | * |
| 25 | */ |
| 26 | |
| 27 | #include <linux/config.h> |
| 28 | #include <linux/net.h> |
| 29 | #include <linux/module.h> |
| 30 | #include <linux/socket.h> |
| 31 | #include <linux/if_arp.h> |
| 32 | #include <linux/if_ether.h> |
| 33 | #include <linux/init.h> |
| 34 | #include <linux/proc_fs.h> |
| 35 | #include <linux/string.h> |
| 36 | #include <linux/netfilter_decnet.h> |
| 37 | #include <linux/spinlock.h> |
| 38 | #include <linux/seq_file.h> |
| 39 | #include <linux/rcupdate.h> |
| 40 | #include <linux/jhash.h> |
| 41 | #include <asm/atomic.h> |
| 42 | #include <net/neighbour.h> |
| 43 | #include <net/dst.h> |
| 44 | #include <net/flow.h> |
| 45 | #include <net/dn.h> |
| 46 | #include <net/dn_dev.h> |
| 47 | #include <net/dn_neigh.h> |
| 48 | #include <net/dn_route.h> |
| 49 | |
| 50 | static u32 dn_neigh_hash(const void *pkey, const struct net_device *dev); |
| 51 | static int dn_neigh_construct(struct neighbour *); |
| 52 | static void dn_long_error_report(struct neighbour *, struct sk_buff *); |
| 53 | static void dn_short_error_report(struct neighbour *, struct sk_buff *); |
| 54 | static int dn_long_output(struct sk_buff *); |
| 55 | static int dn_short_output(struct sk_buff *); |
| 56 | static int dn_phase3_output(struct sk_buff *); |
| 57 | |
| 58 | |
| 59 | /* |
| 60 | * For talking to broadcast devices: Ethernet & PPP |
| 61 | */ |
| 62 | static struct neigh_ops dn_long_ops = { |
| 63 | .family = AF_DECnet, |
| 64 | .error_report = dn_long_error_report, |
| 65 | .output = dn_long_output, |
| 66 | .connected_output = dn_long_output, |
| 67 | .hh_output = dev_queue_xmit, |
| 68 | .queue_xmit = dev_queue_xmit, |
| 69 | }; |
| 70 | |
| 71 | /* |
| 72 | * For talking to pointopoint and multidrop devices: DDCMP and X.25 |
| 73 | */ |
| 74 | static struct neigh_ops dn_short_ops = { |
| 75 | .family = AF_DECnet, |
| 76 | .error_report = dn_short_error_report, |
| 77 | .output = dn_short_output, |
| 78 | .connected_output = dn_short_output, |
| 79 | .hh_output = dev_queue_xmit, |
| 80 | .queue_xmit = dev_queue_xmit, |
| 81 | }; |
| 82 | |
| 83 | /* |
| 84 | * For talking to DECnet phase III nodes |
| 85 | */ |
| 86 | static struct neigh_ops dn_phase3_ops = { |
| 87 | .family = AF_DECnet, |
| 88 | .error_report = dn_short_error_report, /* Can use short version here */ |
| 89 | .output = dn_phase3_output, |
| 90 | .connected_output = dn_phase3_output, |
| 91 | .hh_output = dev_queue_xmit, |
| 92 | .queue_xmit = dev_queue_xmit |
| 93 | }; |
| 94 | |
| 95 | struct neigh_table dn_neigh_table = { |
| 96 | .family = PF_DECnet, |
| 97 | .entry_size = sizeof(struct dn_neigh), |
| 98 | .key_len = sizeof(dn_address), |
| 99 | .hash = dn_neigh_hash, |
| 100 | .constructor = dn_neigh_construct, |
| 101 | .id = "dn_neigh_cache", |
| 102 | .parms ={ |
| 103 | .tbl = &dn_neigh_table, |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 104 | .base_reachable_time = 30 * HZ, |
| 105 | .retrans_time = 1 * HZ, |
| 106 | .gc_staletime = 60 * HZ, |
| 107 | .reachable_time = 30 * HZ, |
| 108 | .delay_probe_time = 5 * HZ, |
| 109 | .queue_len = 3, |
| 110 | .ucast_probes = 0, |
| 111 | .app_probes = 0, |
| 112 | .mcast_probes = 0, |
| 113 | .anycast_delay = 0, |
| 114 | .proxy_delay = 0, |
| 115 | .proxy_qlen = 0, |
| 116 | .locktime = 1 * HZ, |
| 117 | }, |
| 118 | .gc_interval = 30 * HZ, |
| 119 | .gc_thresh1 = 128, |
| 120 | .gc_thresh2 = 512, |
| 121 | .gc_thresh3 = 1024, |
| 122 | }; |
| 123 | |
| 124 | static u32 dn_neigh_hash(const void *pkey, const struct net_device *dev) |
| 125 | { |
| 126 | return jhash_2words(*(dn_address *)pkey, 0, dn_neigh_table.hash_rnd); |
| 127 | } |
| 128 | |
| 129 | static int dn_neigh_construct(struct neighbour *neigh) |
| 130 | { |
| 131 | struct net_device *dev = neigh->dev; |
| 132 | struct dn_neigh *dn = (struct dn_neigh *)neigh; |
| 133 | struct dn_dev *dn_db; |
| 134 | struct neigh_parms *parms; |
| 135 | |
| 136 | rcu_read_lock(); |
| 137 | dn_db = rcu_dereference(dev->dn_ptr); |
| 138 | if (dn_db == NULL) { |
| 139 | rcu_read_unlock(); |
| 140 | return -EINVAL; |
| 141 | } |
| 142 | |
| 143 | parms = dn_db->neigh_parms; |
| 144 | if (!parms) { |
| 145 | rcu_read_unlock(); |
| 146 | return -EINVAL; |
| 147 | } |
| 148 | |
| 149 | __neigh_parms_put(neigh->parms); |
| 150 | neigh->parms = neigh_parms_clone(parms); |
| 151 | rcu_read_unlock(); |
| 152 | |
| 153 | if (dn_db->use_long) |
| 154 | neigh->ops = &dn_long_ops; |
| 155 | else |
| 156 | neigh->ops = &dn_short_ops; |
| 157 | |
| 158 | if (dn->flags & DN_NDFLAG_P3) |
| 159 | neigh->ops = &dn_phase3_ops; |
| 160 | |
| 161 | neigh->nud_state = NUD_NOARP; |
| 162 | neigh->output = neigh->ops->connected_output; |
| 163 | |
| 164 | if ((dev->type == ARPHRD_IPGRE) || (dev->flags & IFF_POINTOPOINT)) |
| 165 | memcpy(neigh->ha, dev->broadcast, dev->addr_len); |
| 166 | else if ((dev->type == ARPHRD_ETHER) || (dev->type == ARPHRD_LOOPBACK)) |
| 167 | dn_dn2eth(neigh->ha, dn->addr); |
| 168 | else { |
| 169 | if (net_ratelimit()) |
| 170 | printk(KERN_DEBUG "Trying to create neigh for hw %d\n", dev->type); |
| 171 | return -EINVAL; |
| 172 | } |
| 173 | |
| 174 | /* |
| 175 | * Make an estimate of the remote block size by assuming that its |
| 176 | * two less then the device mtu, which it true for ethernet (and |
| 177 | * other things which support long format headers) since there is |
| 178 | * an extra length field (of 16 bits) which isn't part of the |
| 179 | * ethernet headers and which the DECnet specs won't admit is part |
| 180 | * of the DECnet routing headers either. |
| 181 | * |
| 182 | * If we over estimate here its no big deal, the NSP negotiations |
| 183 | * will prevent us from sending packets which are too large for the |
| 184 | * remote node to handle. In any case this figure is normally updated |
| 185 | * by a hello message in most cases. |
| 186 | */ |
| 187 | dn->blksize = dev->mtu - 2; |
| 188 | |
| 189 | return 0; |
| 190 | } |
| 191 | |
| 192 | static void dn_long_error_report(struct neighbour *neigh, struct sk_buff *skb) |
| 193 | { |
| 194 | printk(KERN_DEBUG "dn_long_error_report: called\n"); |
| 195 | kfree_skb(skb); |
| 196 | } |
| 197 | |
| 198 | |
| 199 | static void dn_short_error_report(struct neighbour *neigh, struct sk_buff *skb) |
| 200 | { |
| 201 | printk(KERN_DEBUG "dn_short_error_report: called\n"); |
| 202 | kfree_skb(skb); |
| 203 | } |
| 204 | |
| 205 | static int dn_neigh_output_packet(struct sk_buff *skb) |
| 206 | { |
| 207 | struct dst_entry *dst = skb->dst; |
| 208 | struct dn_route *rt = (struct dn_route *)dst; |
| 209 | struct neighbour *neigh = dst->neighbour; |
| 210 | struct net_device *dev = neigh->dev; |
| 211 | char mac_addr[ETH_ALEN]; |
| 212 | |
| 213 | dn_dn2eth(mac_addr, rt->rt_local_src); |
| 214 | if (!dev->hard_header || dev->hard_header(skb, dev, ntohs(skb->protocol), neigh->ha, mac_addr, skb->len) >= 0) |
| 215 | return neigh->ops->queue_xmit(skb); |
| 216 | |
| 217 | if (net_ratelimit()) |
| 218 | printk(KERN_DEBUG "dn_neigh_output_packet: oops, can't send packet\n"); |
| 219 | |
| 220 | kfree_skb(skb); |
| 221 | return -EINVAL; |
| 222 | } |
| 223 | |
| 224 | static int dn_long_output(struct sk_buff *skb) |
| 225 | { |
| 226 | struct dst_entry *dst = skb->dst; |
| 227 | struct neighbour *neigh = dst->neighbour; |
| 228 | struct net_device *dev = neigh->dev; |
| 229 | int headroom = dev->hard_header_len + sizeof(struct dn_long_packet) + 3; |
| 230 | unsigned char *data; |
| 231 | struct dn_long_packet *lp; |
| 232 | struct dn_skb_cb *cb = DN_SKB_CB(skb); |
| 233 | |
| 234 | |
| 235 | if (skb_headroom(skb) < headroom) { |
| 236 | struct sk_buff *skb2 = skb_realloc_headroom(skb, headroom); |
| 237 | if (skb2 == NULL) { |
| 238 | if (net_ratelimit()) |
| 239 | printk(KERN_CRIT "dn_long_output: no memory\n"); |
| 240 | kfree_skb(skb); |
| 241 | return -ENOBUFS; |
| 242 | } |
| 243 | kfree_skb(skb); |
| 244 | skb = skb2; |
| 245 | if (net_ratelimit()) |
| 246 | printk(KERN_INFO "dn_long_output: Increasing headroom\n"); |
| 247 | } |
| 248 | |
| 249 | data = skb_push(skb, sizeof(struct dn_long_packet) + 3); |
| 250 | lp = (struct dn_long_packet *)(data+3); |
| 251 | |
| 252 | *((unsigned short *)data) = dn_htons(skb->len - 2); |
| 253 | *(data + 2) = 1 | DN_RT_F_PF; /* Padding */ |
| 254 | |
| 255 | lp->msgflg = DN_RT_PKT_LONG|(cb->rt_flags&(DN_RT_F_IE|DN_RT_F_RQR|DN_RT_F_RTS)); |
| 256 | lp->d_area = lp->d_subarea = 0; |
| 257 | dn_dn2eth(lp->d_id, dn_ntohs(cb->dst)); |
| 258 | lp->s_area = lp->s_subarea = 0; |
| 259 | dn_dn2eth(lp->s_id, dn_ntohs(cb->src)); |
| 260 | lp->nl2 = 0; |
| 261 | lp->visit_ct = cb->hops & 0x3f; |
| 262 | lp->s_class = 0; |
| 263 | lp->pt = 0; |
| 264 | |
| 265 | skb->nh.raw = skb->data; |
| 266 | |
| 267 | return NF_HOOK(PF_DECnet, NF_DN_POST_ROUTING, skb, NULL, neigh->dev, dn_neigh_output_packet); |
| 268 | } |
| 269 | |
| 270 | static int dn_short_output(struct sk_buff *skb) |
| 271 | { |
| 272 | struct dst_entry *dst = skb->dst; |
| 273 | struct neighbour *neigh = dst->neighbour; |
| 274 | struct net_device *dev = neigh->dev; |
| 275 | int headroom = dev->hard_header_len + sizeof(struct dn_short_packet) + 2; |
| 276 | struct dn_short_packet *sp; |
| 277 | unsigned char *data; |
| 278 | struct dn_skb_cb *cb = DN_SKB_CB(skb); |
| 279 | |
| 280 | |
| 281 | if (skb_headroom(skb) < headroom) { |
| 282 | struct sk_buff *skb2 = skb_realloc_headroom(skb, headroom); |
| 283 | if (skb2 == NULL) { |
| 284 | if (net_ratelimit()) |
| 285 | printk(KERN_CRIT "dn_short_output: no memory\n"); |
| 286 | kfree_skb(skb); |
| 287 | return -ENOBUFS; |
| 288 | } |
| 289 | kfree_skb(skb); |
| 290 | skb = skb2; |
| 291 | if (net_ratelimit()) |
| 292 | printk(KERN_INFO "dn_short_output: Increasing headroom\n"); |
| 293 | } |
| 294 | |
| 295 | data = skb_push(skb, sizeof(struct dn_short_packet) + 2); |
| 296 | *((unsigned short *)data) = dn_htons(skb->len - 2); |
| 297 | sp = (struct dn_short_packet *)(data+2); |
| 298 | |
| 299 | sp->msgflg = DN_RT_PKT_SHORT|(cb->rt_flags&(DN_RT_F_RQR|DN_RT_F_RTS)); |
| 300 | sp->dstnode = cb->dst; |
| 301 | sp->srcnode = cb->src; |
| 302 | sp->forward = cb->hops & 0x3f; |
| 303 | |
| 304 | skb->nh.raw = skb->data; |
| 305 | |
| 306 | return NF_HOOK(PF_DECnet, NF_DN_POST_ROUTING, skb, NULL, neigh->dev, dn_neigh_output_packet); |
| 307 | } |
| 308 | |
| 309 | /* |
| 310 | * Phase 3 output is the same is short output, execpt that |
| 311 | * it clears the area bits before transmission. |
| 312 | */ |
| 313 | static int dn_phase3_output(struct sk_buff *skb) |
| 314 | { |
| 315 | struct dst_entry *dst = skb->dst; |
| 316 | struct neighbour *neigh = dst->neighbour; |
| 317 | struct net_device *dev = neigh->dev; |
| 318 | int headroom = dev->hard_header_len + sizeof(struct dn_short_packet) + 2; |
| 319 | struct dn_short_packet *sp; |
| 320 | unsigned char *data; |
| 321 | struct dn_skb_cb *cb = DN_SKB_CB(skb); |
| 322 | |
| 323 | if (skb_headroom(skb) < headroom) { |
| 324 | struct sk_buff *skb2 = skb_realloc_headroom(skb, headroom); |
| 325 | if (skb2 == NULL) { |
| 326 | if (net_ratelimit()) |
| 327 | printk(KERN_CRIT "dn_phase3_output: no memory\n"); |
| 328 | kfree_skb(skb); |
| 329 | return -ENOBUFS; |
| 330 | } |
| 331 | kfree_skb(skb); |
| 332 | skb = skb2; |
| 333 | if (net_ratelimit()) |
| 334 | printk(KERN_INFO "dn_phase3_output: Increasing headroom\n"); |
| 335 | } |
| 336 | |
| 337 | data = skb_push(skb, sizeof(struct dn_short_packet) + 2); |
| 338 | *((unsigned short *)data) = dn_htons(skb->len - 2); |
| 339 | sp = (struct dn_short_packet *)(data + 2); |
| 340 | |
| 341 | sp->msgflg = DN_RT_PKT_SHORT|(cb->rt_flags&(DN_RT_F_RQR|DN_RT_F_RTS)); |
| 342 | sp->dstnode = cb->dst & dn_htons(0x03ff); |
| 343 | sp->srcnode = cb->src & dn_htons(0x03ff); |
| 344 | sp->forward = cb->hops & 0x3f; |
| 345 | |
| 346 | skb->nh.raw = skb->data; |
| 347 | |
| 348 | return NF_HOOK(PF_DECnet, NF_DN_POST_ROUTING, skb, NULL, neigh->dev, dn_neigh_output_packet); |
| 349 | } |
| 350 | |
| 351 | /* |
| 352 | * Unfortunately, the neighbour code uses the device in its hash |
| 353 | * function, so we don't get any advantage from it. This function |
| 354 | * basically does a neigh_lookup(), but without comparing the device |
| 355 | * field. This is required for the On-Ethernet cache |
| 356 | */ |
| 357 | |
| 358 | /* |
| 359 | * Pointopoint link receives a hello message |
| 360 | */ |
| 361 | void dn_neigh_pointopoint_hello(struct sk_buff *skb) |
| 362 | { |
| 363 | kfree_skb(skb); |
| 364 | } |
| 365 | |
| 366 | /* |
| 367 | * Ethernet router hello message received |
| 368 | */ |
| 369 | int dn_neigh_router_hello(struct sk_buff *skb) |
| 370 | { |
| 371 | struct rtnode_hello_message *msg = (struct rtnode_hello_message *)skb->data; |
| 372 | |
| 373 | struct neighbour *neigh; |
| 374 | struct dn_neigh *dn; |
| 375 | struct dn_dev *dn_db; |
| 376 | dn_address src; |
| 377 | |
| 378 | src = dn_htons(dn_eth2dn(msg->id)); |
| 379 | |
| 380 | neigh = __neigh_lookup(&dn_neigh_table, &src, skb->dev, 1); |
| 381 | |
| 382 | dn = (struct dn_neigh *)neigh; |
| 383 | |
| 384 | if (neigh) { |
| 385 | write_lock(&neigh->lock); |
| 386 | |
| 387 | neigh->used = jiffies; |
| 388 | dn_db = (struct dn_dev *)neigh->dev->dn_ptr; |
| 389 | |
| 390 | if (!(neigh->nud_state & NUD_PERMANENT)) { |
| 391 | neigh->updated = jiffies; |
| 392 | |
| 393 | if (neigh->dev->type == ARPHRD_ETHER) |
| 394 | memcpy(neigh->ha, ð_hdr(skb)->h_source, ETH_ALEN); |
| 395 | |
| 396 | dn->blksize = dn_ntohs(msg->blksize); |
| 397 | dn->priority = msg->priority; |
| 398 | |
| 399 | dn->flags &= ~DN_NDFLAG_P3; |
| 400 | |
| 401 | switch(msg->iinfo & DN_RT_INFO_TYPE) { |
| 402 | case DN_RT_INFO_L1RT: |
| 403 | dn->flags &=~DN_NDFLAG_R2; |
| 404 | dn->flags |= DN_NDFLAG_R1; |
| 405 | break; |
| 406 | case DN_RT_INFO_L2RT: |
| 407 | dn->flags |= DN_NDFLAG_R2; |
| 408 | } |
| 409 | } |
| 410 | |
| 411 | if (!dn_db->router) { |
| 412 | dn_db->router = neigh_clone(neigh); |
| 413 | } else { |
| 414 | if (msg->priority > ((struct dn_neigh *)dn_db->router)->priority) |
| 415 | neigh_release(xchg(&dn_db->router, neigh_clone(neigh))); |
| 416 | } |
| 417 | write_unlock(&neigh->lock); |
| 418 | neigh_release(neigh); |
| 419 | } |
| 420 | |
| 421 | kfree_skb(skb); |
| 422 | return 0; |
| 423 | } |
| 424 | |
| 425 | /* |
| 426 | * Endnode hello message received |
| 427 | */ |
| 428 | int dn_neigh_endnode_hello(struct sk_buff *skb) |
| 429 | { |
| 430 | struct endnode_hello_message *msg = (struct endnode_hello_message *)skb->data; |
| 431 | struct neighbour *neigh; |
| 432 | struct dn_neigh *dn; |
| 433 | dn_address src; |
| 434 | |
| 435 | src = dn_htons(dn_eth2dn(msg->id)); |
| 436 | |
| 437 | neigh = __neigh_lookup(&dn_neigh_table, &src, skb->dev, 1); |
| 438 | |
| 439 | dn = (struct dn_neigh *)neigh; |
| 440 | |
| 441 | if (neigh) { |
| 442 | write_lock(&neigh->lock); |
| 443 | |
| 444 | neigh->used = jiffies; |
| 445 | |
| 446 | if (!(neigh->nud_state & NUD_PERMANENT)) { |
| 447 | neigh->updated = jiffies; |
| 448 | |
| 449 | if (neigh->dev->type == ARPHRD_ETHER) |
| 450 | memcpy(neigh->ha, ð_hdr(skb)->h_source, ETH_ALEN); |
| 451 | dn->flags &= ~(DN_NDFLAG_R1 | DN_NDFLAG_R2); |
| 452 | dn->blksize = dn_ntohs(msg->blksize); |
| 453 | dn->priority = 0; |
| 454 | } |
| 455 | |
| 456 | write_unlock(&neigh->lock); |
| 457 | neigh_release(neigh); |
| 458 | } |
| 459 | |
| 460 | kfree_skb(skb); |
| 461 | return 0; |
| 462 | } |
| 463 | |
| 464 | static char *dn_find_slot(char *base, int max, int priority) |
| 465 | { |
| 466 | int i; |
| 467 | unsigned char *min = NULL; |
| 468 | |
| 469 | base += 6; /* skip first id */ |
| 470 | |
| 471 | for(i = 0; i < max; i++) { |
| 472 | if (!min || (*base < *min)) |
| 473 | min = base; |
| 474 | base += 7; /* find next priority */ |
| 475 | } |
| 476 | |
| 477 | if (!min) |
| 478 | return NULL; |
| 479 | |
| 480 | return (*min < priority) ? (min - 6) : NULL; |
| 481 | } |
| 482 | |
| 483 | struct elist_cb_state { |
| 484 | struct net_device *dev; |
| 485 | unsigned char *ptr; |
| 486 | unsigned char *rs; |
| 487 | int t, n; |
| 488 | }; |
| 489 | |
| 490 | static void neigh_elist_cb(struct neighbour *neigh, void *_info) |
| 491 | { |
| 492 | struct elist_cb_state *s = _info; |
| 493 | struct dn_dev *dn_db; |
| 494 | struct dn_neigh *dn; |
| 495 | |
| 496 | if (neigh->dev != s->dev) |
| 497 | return; |
| 498 | |
| 499 | dn = (struct dn_neigh *) neigh; |
| 500 | if (!(dn->flags & (DN_NDFLAG_R1|DN_NDFLAG_R2))) |
| 501 | return; |
| 502 | |
| 503 | dn_db = (struct dn_dev *) s->dev->dn_ptr; |
| 504 | if (dn_db->parms.forwarding == 1 && (dn->flags & DN_NDFLAG_R2)) |
| 505 | return; |
| 506 | |
| 507 | if (s->t == s->n) |
| 508 | s->rs = dn_find_slot(s->ptr, s->n, dn->priority); |
| 509 | else |
| 510 | s->t++; |
| 511 | if (s->rs == NULL) |
| 512 | return; |
| 513 | |
| 514 | dn_dn2eth(s->rs, dn->addr); |
| 515 | s->rs += 6; |
| 516 | *(s->rs) = neigh->nud_state & NUD_CONNECTED ? 0x80 : 0x0; |
| 517 | *(s->rs) |= dn->priority; |
| 518 | s->rs++; |
| 519 | } |
| 520 | |
| 521 | int dn_neigh_elist(struct net_device *dev, unsigned char *ptr, int n) |
| 522 | { |
| 523 | struct elist_cb_state state; |
| 524 | |
| 525 | state.dev = dev; |
| 526 | state.t = 0; |
| 527 | state.n = n; |
| 528 | state.ptr = ptr; |
| 529 | state.rs = ptr; |
| 530 | |
| 531 | neigh_for_each(&dn_neigh_table, neigh_elist_cb, &state); |
| 532 | |
| 533 | return state.t; |
| 534 | } |
| 535 | |
| 536 | |
| 537 | #ifdef CONFIG_PROC_FS |
| 538 | |
| 539 | static inline void dn_neigh_format_entry(struct seq_file *seq, |
| 540 | struct neighbour *n) |
| 541 | { |
| 542 | struct dn_neigh *dn = (struct dn_neigh *) n; |
| 543 | char buf[DN_ASCBUF_LEN]; |
| 544 | |
| 545 | read_lock(&n->lock); |
| 546 | seq_printf(seq, "%-7s %s%s%s %02x %02d %07ld %-8s\n", |
| 547 | dn_addr2asc(dn_ntohs(dn->addr), buf), |
| 548 | (dn->flags&DN_NDFLAG_R1) ? "1" : "-", |
| 549 | (dn->flags&DN_NDFLAG_R2) ? "2" : "-", |
| 550 | (dn->flags&DN_NDFLAG_P3) ? "3" : "-", |
| 551 | dn->n.nud_state, |
| 552 | atomic_read(&dn->n.refcnt), |
| 553 | dn->blksize, |
| 554 | (dn->n.dev) ? dn->n.dev->name : "?"); |
| 555 | read_unlock(&n->lock); |
| 556 | } |
| 557 | |
| 558 | static int dn_neigh_seq_show(struct seq_file *seq, void *v) |
| 559 | { |
| 560 | if (v == SEQ_START_TOKEN) { |
| 561 | seq_puts(seq, "Addr Flags State Use Blksize Dev\n"); |
| 562 | } else { |
| 563 | dn_neigh_format_entry(seq, v); |
| 564 | } |
| 565 | |
| 566 | return 0; |
| 567 | } |
| 568 | |
| 569 | static void *dn_neigh_seq_start(struct seq_file *seq, loff_t *pos) |
| 570 | { |
| 571 | return neigh_seq_start(seq, pos, &dn_neigh_table, |
| 572 | NEIGH_SEQ_NEIGH_ONLY); |
| 573 | } |
| 574 | |
| 575 | static struct seq_operations dn_neigh_seq_ops = { |
| 576 | .start = dn_neigh_seq_start, |
| 577 | .next = neigh_seq_next, |
| 578 | .stop = neigh_seq_stop, |
| 579 | .show = dn_neigh_seq_show, |
| 580 | }; |
| 581 | |
| 582 | static int dn_neigh_seq_open(struct inode *inode, struct file *file) |
| 583 | { |
| 584 | struct seq_file *seq; |
| 585 | int rc = -ENOMEM; |
| 586 | struct neigh_seq_state *s = kmalloc(sizeof(*s), GFP_KERNEL); |
| 587 | |
| 588 | if (!s) |
| 589 | goto out; |
| 590 | |
| 591 | memset(s, 0, sizeof(*s)); |
| 592 | rc = seq_open(file, &dn_neigh_seq_ops); |
| 593 | if (rc) |
| 594 | goto out_kfree; |
| 595 | |
| 596 | seq = file->private_data; |
| 597 | seq->private = s; |
| 598 | memset(s, 0, sizeof(*s)); |
| 599 | out: |
| 600 | return rc; |
| 601 | out_kfree: |
| 602 | kfree(s); |
| 603 | goto out; |
| 604 | } |
| 605 | |
| 606 | static struct file_operations dn_neigh_seq_fops = { |
| 607 | .owner = THIS_MODULE, |
| 608 | .open = dn_neigh_seq_open, |
| 609 | .read = seq_read, |
| 610 | .llseek = seq_lseek, |
| 611 | .release = seq_release_private, |
| 612 | }; |
| 613 | |
| 614 | #endif |
| 615 | |
| 616 | void __init dn_neigh_init(void) |
| 617 | { |
| 618 | neigh_table_init(&dn_neigh_table); |
| 619 | proc_net_fops_create("decnet_neigh", S_IRUGO, &dn_neigh_seq_fops); |
| 620 | } |
| 621 | |
| 622 | void __exit dn_neigh_cleanup(void) |
| 623 | { |
| 624 | proc_net_remove("decnet_neigh"); |
| 625 | neigh_table_clear(&dn_neigh_table); |
| 626 | } |