Ben Hutchings | 12d00ca | 2009-10-23 08:30:46 +0000 | [diff] [blame^] | 1 | /**************************************************************************** |
| 2 | * Driver for Solarflare Solarstorm network controllers and boards |
| 3 | * Copyright 2005-2006 Fen Systems Ltd. |
| 4 | * Copyright 2006-2009 Solarflare Communications Inc. |
| 5 | * |
| 6 | * This program is free software; you can redistribute it and/or modify it |
| 7 | * under the terms of the GNU General Public License version 2 as published |
| 8 | * by the Free Software Foundation, incorporated herein by reference. |
| 9 | */ |
| 10 | |
| 11 | #ifndef EFX_IO_H |
| 12 | #define EFX_IO_H |
| 13 | |
| 14 | #include <linux/io.h> |
| 15 | #include <linux/spinlock.h> |
| 16 | |
| 17 | /************************************************************************** |
| 18 | * |
| 19 | * NIC register I/O |
| 20 | * |
| 21 | ************************************************************************** |
| 22 | * |
| 23 | * Notes on locking strategy: |
| 24 | * |
| 25 | * Most NIC registers require 16-byte (or 8-byte, for SRAM) atomic writes |
| 26 | * which necessitates locking. |
| 27 | * Under normal operation few writes to NIC registers are made and these |
| 28 | * registers (EVQ_RPTR_REG, RX_DESC_UPD_REG and TX_DESC_UPD_REG) are special |
| 29 | * cased to allow 4-byte (hence lockless) accesses. |
| 30 | * |
| 31 | * It *is* safe to write to these 4-byte registers in the middle of an |
| 32 | * access to an 8-byte or 16-byte register. We therefore use a |
| 33 | * spinlock to protect accesses to the larger registers, but no locks |
| 34 | * for the 4-byte registers. |
| 35 | * |
| 36 | * A write barrier is needed to ensure that DW3 is written after DW0/1/2 |
| 37 | * due to the way the 16byte registers are "collected" in the BIU. |
| 38 | * |
| 39 | * We also lock when carrying out reads, to ensure consistency of the |
| 40 | * data (made possible since the BIU reads all 128 bits into a cache). |
| 41 | * Reads are very rare, so this isn't a significant performance |
| 42 | * impact. (Most data transferred from NIC to host is DMAed directly |
| 43 | * into host memory). |
| 44 | * |
| 45 | * I/O BAR access uses locks for both reads and writes (but is only provided |
| 46 | * for testing purposes). |
| 47 | */ |
| 48 | |
| 49 | #if BITS_PER_LONG == 64 |
| 50 | #define EFX_USE_QWORD_IO 1 |
| 51 | #endif |
| 52 | |
| 53 | #ifdef EFX_USE_QWORD_IO |
| 54 | static inline void _efx_writeq(struct efx_nic *efx, __le64 value, |
| 55 | unsigned int reg) |
| 56 | { |
| 57 | __raw_writeq((__force u64)value, efx->membase + reg); |
| 58 | } |
| 59 | static inline __le64 _efx_readq(struct efx_nic *efx, unsigned int reg) |
| 60 | { |
| 61 | return (__force __le64)__raw_readq(efx->membase + reg); |
| 62 | } |
| 63 | #endif |
| 64 | |
| 65 | static inline void _efx_writed(struct efx_nic *efx, __le32 value, |
| 66 | unsigned int reg) |
| 67 | { |
| 68 | __raw_writel((__force u32)value, efx->membase + reg); |
| 69 | } |
| 70 | static inline __le32 _efx_readd(struct efx_nic *efx, unsigned int reg) |
| 71 | { |
| 72 | return (__force __le32)__raw_readl(efx->membase + reg); |
| 73 | } |
| 74 | |
| 75 | /* Writes to a normal 16-byte Efx register, locking as appropriate. */ |
| 76 | static inline void efx_writeo(struct efx_nic *efx, efx_oword_t *value, |
| 77 | unsigned int reg) |
| 78 | { |
| 79 | unsigned long flags __attribute__ ((unused)); |
| 80 | |
| 81 | EFX_REGDUMP(efx, "writing register %x with " EFX_OWORD_FMT "\n", reg, |
| 82 | EFX_OWORD_VAL(*value)); |
| 83 | |
| 84 | spin_lock_irqsave(&efx->biu_lock, flags); |
| 85 | #ifdef EFX_USE_QWORD_IO |
| 86 | _efx_writeq(efx, value->u64[0], reg + 0); |
| 87 | wmb(); |
| 88 | _efx_writeq(efx, value->u64[1], reg + 8); |
| 89 | #else |
| 90 | _efx_writed(efx, value->u32[0], reg + 0); |
| 91 | _efx_writed(efx, value->u32[1], reg + 4); |
| 92 | _efx_writed(efx, value->u32[2], reg + 8); |
| 93 | wmb(); |
| 94 | _efx_writed(efx, value->u32[3], reg + 12); |
| 95 | #endif |
| 96 | mmiowb(); |
| 97 | spin_unlock_irqrestore(&efx->biu_lock, flags); |
| 98 | } |
| 99 | |
| 100 | /* Write an 8-byte NIC SRAM entry through the supplied mapping, |
| 101 | * locking as appropriate. */ |
| 102 | static inline void efx_sram_writeq(struct efx_nic *efx, void __iomem *membase, |
| 103 | efx_qword_t *value, unsigned int index) |
| 104 | { |
| 105 | unsigned int addr = index * sizeof(*value); |
| 106 | unsigned long flags __attribute__ ((unused)); |
| 107 | |
| 108 | EFX_REGDUMP(efx, "writing SRAM address %x with " EFX_QWORD_FMT "\n", |
| 109 | addr, EFX_QWORD_VAL(*value)); |
| 110 | |
| 111 | spin_lock_irqsave(&efx->biu_lock, flags); |
| 112 | #ifdef EFX_USE_QWORD_IO |
| 113 | __raw_writeq((__force u64)value->u64[0], membase + addr); |
| 114 | #else |
| 115 | __raw_writel((__force u32)value->u32[0], membase + addr); |
| 116 | wmb(); |
| 117 | __raw_writel((__force u32)value->u32[1], membase + addr + 4); |
| 118 | #endif |
| 119 | mmiowb(); |
| 120 | spin_unlock_irqrestore(&efx->biu_lock, flags); |
| 121 | } |
| 122 | |
| 123 | /* Write dword to NIC register that allows partial writes |
| 124 | * |
| 125 | * Some registers (EVQ_RPTR_REG, RX_DESC_UPD_REG and |
| 126 | * TX_DESC_UPD_REG) can be written to as a single dword. This allows |
| 127 | * for lockless writes. |
| 128 | */ |
| 129 | static inline void efx_writed(struct efx_nic *efx, efx_dword_t *value, |
| 130 | unsigned int reg) |
| 131 | { |
| 132 | EFX_REGDUMP(efx, "writing partial register %x with "EFX_DWORD_FMT"\n", |
| 133 | reg, EFX_DWORD_VAL(*value)); |
| 134 | |
| 135 | /* No lock required */ |
| 136 | _efx_writed(efx, value->u32[0], reg); |
| 137 | } |
| 138 | |
| 139 | /* Read from a NIC register |
| 140 | * |
| 141 | * This reads an entire 16-byte register in one go, locking as |
| 142 | * appropriate. It is essential to read the first dword first, as this |
| 143 | * prompts the NIC to load the current value into the shadow register. |
| 144 | */ |
| 145 | static inline void efx_reado(struct efx_nic *efx, efx_oword_t *value, |
| 146 | unsigned int reg) |
| 147 | { |
| 148 | unsigned long flags __attribute__ ((unused)); |
| 149 | |
| 150 | spin_lock_irqsave(&efx->biu_lock, flags); |
| 151 | value->u32[0] = _efx_readd(efx, reg + 0); |
| 152 | rmb(); |
| 153 | value->u32[1] = _efx_readd(efx, reg + 4); |
| 154 | value->u32[2] = _efx_readd(efx, reg + 8); |
| 155 | value->u32[3] = _efx_readd(efx, reg + 12); |
| 156 | spin_unlock_irqrestore(&efx->biu_lock, flags); |
| 157 | |
| 158 | EFX_REGDUMP(efx, "read from register %x, got " EFX_OWORD_FMT "\n", reg, |
| 159 | EFX_OWORD_VAL(*value)); |
| 160 | } |
| 161 | |
| 162 | /* Read an 8-byte SRAM entry through supplied mapping, |
| 163 | * locking as appropriate. */ |
| 164 | static inline void efx_sram_readq(struct efx_nic *efx, void __iomem *membase, |
| 165 | efx_qword_t *value, unsigned int index) |
| 166 | { |
| 167 | unsigned int addr = index * sizeof(*value); |
| 168 | unsigned long flags __attribute__ ((unused)); |
| 169 | |
| 170 | spin_lock_irqsave(&efx->biu_lock, flags); |
| 171 | #ifdef EFX_USE_QWORD_IO |
| 172 | value->u64[0] = (__force __le64)__raw_readq(membase + addr); |
| 173 | #else |
| 174 | value->u32[0] = (__force __le32)__raw_readl(membase + addr); |
| 175 | rmb(); |
| 176 | value->u32[1] = (__force __le32)__raw_readl(membase + addr + 4); |
| 177 | #endif |
| 178 | spin_unlock_irqrestore(&efx->biu_lock, flags); |
| 179 | |
| 180 | EFX_REGDUMP(efx, "read from SRAM address %x, got "EFX_QWORD_FMT"\n", |
| 181 | addr, EFX_QWORD_VAL(*value)); |
| 182 | } |
| 183 | |
| 184 | /* Read dword from register that allows partial writes (sic) */ |
| 185 | static inline void efx_readd(struct efx_nic *efx, efx_dword_t *value, |
| 186 | unsigned int reg) |
| 187 | { |
| 188 | value->u32[0] = _efx_readd(efx, reg); |
| 189 | EFX_REGDUMP(efx, "read from register %x, got "EFX_DWORD_FMT"\n", |
| 190 | reg, EFX_DWORD_VAL(*value)); |
| 191 | } |
| 192 | |
| 193 | /* Write to a register forming part of a table */ |
| 194 | static inline void efx_writeo_table(struct efx_nic *efx, efx_oword_t *value, |
| 195 | unsigned int reg, unsigned int index) |
| 196 | { |
| 197 | efx_writeo(efx, value, reg + index * sizeof(efx_oword_t)); |
| 198 | } |
| 199 | |
| 200 | /* Read to a register forming part of a table */ |
| 201 | static inline void efx_reado_table(struct efx_nic *efx, efx_oword_t *value, |
| 202 | unsigned int reg, unsigned int index) |
| 203 | { |
| 204 | efx_reado(efx, value, reg + index * sizeof(efx_oword_t)); |
| 205 | } |
| 206 | |
| 207 | /* Write to a dword register forming part of a table */ |
| 208 | static inline void efx_writed_table(struct efx_nic *efx, efx_dword_t *value, |
| 209 | unsigned int reg, unsigned int index) |
| 210 | { |
| 211 | efx_writed(efx, value, reg + index * sizeof(efx_oword_t)); |
| 212 | } |
| 213 | |
| 214 | /* Page-mapped register block size */ |
| 215 | #define EFX_PAGE_BLOCK_SIZE 0x2000 |
| 216 | |
| 217 | /* Calculate offset to page-mapped register block */ |
| 218 | #define EFX_PAGED_REG(page, reg) \ |
| 219 | ((page) * EFX_PAGE_BLOCK_SIZE + (reg)) |
| 220 | |
| 221 | /* As for efx_writeo(), but for a page-mapped register. */ |
| 222 | static inline void efx_writeo_page(struct efx_nic *efx, efx_oword_t *value, |
| 223 | unsigned int reg, unsigned int page) |
| 224 | { |
| 225 | efx_writeo(efx, value, EFX_PAGED_REG(page, reg)); |
| 226 | } |
| 227 | |
| 228 | /* As for efx_writed(), but for a page-mapped register. */ |
| 229 | static inline void efx_writed_page(struct efx_nic *efx, efx_dword_t *value, |
| 230 | unsigned int reg, unsigned int page) |
| 231 | { |
| 232 | efx_writed(efx, value, EFX_PAGED_REG(page, reg)); |
| 233 | } |
| 234 | |
| 235 | /* Write dword to page-mapped register with an extra lock. |
| 236 | * |
| 237 | * As for efx_writed_page(), but for a register that suffers from |
| 238 | * SFC bug 3181. Take out a lock so the BIU collector cannot be |
| 239 | * confused. */ |
| 240 | static inline void efx_writed_page_locked(struct efx_nic *efx, |
| 241 | efx_dword_t *value, |
| 242 | unsigned int reg, |
| 243 | unsigned int page) |
| 244 | { |
| 245 | unsigned long flags __attribute__ ((unused)); |
| 246 | |
| 247 | if (page == 0) { |
| 248 | spin_lock_irqsave(&efx->biu_lock, flags); |
| 249 | efx_writed(efx, value, EFX_PAGED_REG(page, reg)); |
| 250 | spin_unlock_irqrestore(&efx->biu_lock, flags); |
| 251 | } else { |
| 252 | efx_writed(efx, value, EFX_PAGED_REG(page, reg)); |
| 253 | } |
| 254 | } |
| 255 | |
| 256 | #endif /* EFX_IO_H */ |