Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* |
| 2 | * lib/bitmap.c |
| 3 | * Helper functions for bitmap.h. |
| 4 | * |
| 5 | * This source code is licensed under the GNU General Public License, |
| 6 | * Version 2. See the file COPYING for more details. |
| 7 | */ |
| 8 | #include <linux/module.h> |
| 9 | #include <linux/ctype.h> |
| 10 | #include <linux/errno.h> |
| 11 | #include <linux/bitmap.h> |
| 12 | #include <linux/bitops.h> |
| 13 | #include <asm/uaccess.h> |
| 14 | |
| 15 | /* |
| 16 | * bitmaps provide an array of bits, implemented using an an |
| 17 | * array of unsigned longs. The number of valid bits in a |
| 18 | * given bitmap does _not_ need to be an exact multiple of |
| 19 | * BITS_PER_LONG. |
| 20 | * |
| 21 | * The possible unused bits in the last, partially used word |
| 22 | * of a bitmap are 'don't care'. The implementation makes |
| 23 | * no particular effort to keep them zero. It ensures that |
| 24 | * their value will not affect the results of any operation. |
| 25 | * The bitmap operations that return Boolean (bitmap_empty, |
| 26 | * for example) or scalar (bitmap_weight, for example) results |
| 27 | * carefully filter out these unused bits from impacting their |
| 28 | * results. |
| 29 | * |
| 30 | * These operations actually hold to a slightly stronger rule: |
| 31 | * if you don't input any bitmaps to these ops that have some |
| 32 | * unused bits set, then they won't output any set unused bits |
| 33 | * in output bitmaps. |
| 34 | * |
| 35 | * The byte ordering of bitmaps is more natural on little |
| 36 | * endian architectures. See the big-endian headers |
| 37 | * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h |
| 38 | * for the best explanations of this ordering. |
| 39 | */ |
| 40 | |
| 41 | int __bitmap_empty(const unsigned long *bitmap, int bits) |
| 42 | { |
| 43 | int k, lim = bits/BITS_PER_LONG; |
| 44 | for (k = 0; k < lim; ++k) |
| 45 | if (bitmap[k]) |
| 46 | return 0; |
| 47 | |
| 48 | if (bits % BITS_PER_LONG) |
| 49 | if (bitmap[k] & BITMAP_LAST_WORD_MASK(bits)) |
| 50 | return 0; |
| 51 | |
| 52 | return 1; |
| 53 | } |
| 54 | EXPORT_SYMBOL(__bitmap_empty); |
| 55 | |
| 56 | int __bitmap_full(const unsigned long *bitmap, int bits) |
| 57 | { |
| 58 | int k, lim = bits/BITS_PER_LONG; |
| 59 | for (k = 0; k < lim; ++k) |
| 60 | if (~bitmap[k]) |
| 61 | return 0; |
| 62 | |
| 63 | if (bits % BITS_PER_LONG) |
| 64 | if (~bitmap[k] & BITMAP_LAST_WORD_MASK(bits)) |
| 65 | return 0; |
| 66 | |
| 67 | return 1; |
| 68 | } |
| 69 | EXPORT_SYMBOL(__bitmap_full); |
| 70 | |
| 71 | int __bitmap_equal(const unsigned long *bitmap1, |
| 72 | const unsigned long *bitmap2, int bits) |
| 73 | { |
| 74 | int k, lim = bits/BITS_PER_LONG; |
| 75 | for (k = 0; k < lim; ++k) |
| 76 | if (bitmap1[k] != bitmap2[k]) |
| 77 | return 0; |
| 78 | |
| 79 | if (bits % BITS_PER_LONG) |
| 80 | if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) |
| 81 | return 0; |
| 82 | |
| 83 | return 1; |
| 84 | } |
| 85 | EXPORT_SYMBOL(__bitmap_equal); |
| 86 | |
| 87 | void __bitmap_complement(unsigned long *dst, const unsigned long *src, int bits) |
| 88 | { |
| 89 | int k, lim = bits/BITS_PER_LONG; |
| 90 | for (k = 0; k < lim; ++k) |
| 91 | dst[k] = ~src[k]; |
| 92 | |
| 93 | if (bits % BITS_PER_LONG) |
| 94 | dst[k] = ~src[k] & BITMAP_LAST_WORD_MASK(bits); |
| 95 | } |
| 96 | EXPORT_SYMBOL(__bitmap_complement); |
| 97 | |
| 98 | /* |
| 99 | * __bitmap_shift_right - logical right shift of the bits in a bitmap |
| 100 | * @dst - destination bitmap |
| 101 | * @src - source bitmap |
| 102 | * @nbits - shift by this many bits |
| 103 | * @bits - bitmap size, in bits |
| 104 | * |
| 105 | * Shifting right (dividing) means moving bits in the MS -> LS bit |
| 106 | * direction. Zeros are fed into the vacated MS positions and the |
| 107 | * LS bits shifted off the bottom are lost. |
| 108 | */ |
| 109 | void __bitmap_shift_right(unsigned long *dst, |
| 110 | const unsigned long *src, int shift, int bits) |
| 111 | { |
| 112 | int k, lim = BITS_TO_LONGS(bits), left = bits % BITS_PER_LONG; |
| 113 | int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG; |
| 114 | unsigned long mask = (1UL << left) - 1; |
| 115 | for (k = 0; off + k < lim; ++k) { |
| 116 | unsigned long upper, lower; |
| 117 | |
| 118 | /* |
| 119 | * If shift is not word aligned, take lower rem bits of |
| 120 | * word above and make them the top rem bits of result. |
| 121 | */ |
| 122 | if (!rem || off + k + 1 >= lim) |
| 123 | upper = 0; |
| 124 | else { |
| 125 | upper = src[off + k + 1]; |
| 126 | if (off + k + 1 == lim - 1 && left) |
| 127 | upper &= mask; |
| 128 | } |
| 129 | lower = src[off + k]; |
| 130 | if (left && off + k == lim - 1) |
| 131 | lower &= mask; |
| 132 | dst[k] = upper << (BITS_PER_LONG - rem) | lower >> rem; |
| 133 | if (left && k == lim - 1) |
| 134 | dst[k] &= mask; |
| 135 | } |
| 136 | if (off) |
| 137 | memset(&dst[lim - off], 0, off*sizeof(unsigned long)); |
| 138 | } |
| 139 | EXPORT_SYMBOL(__bitmap_shift_right); |
| 140 | |
| 141 | |
| 142 | /* |
| 143 | * __bitmap_shift_left - logical left shift of the bits in a bitmap |
| 144 | * @dst - destination bitmap |
| 145 | * @src - source bitmap |
| 146 | * @nbits - shift by this many bits |
| 147 | * @bits - bitmap size, in bits |
| 148 | * |
| 149 | * Shifting left (multiplying) means moving bits in the LS -> MS |
| 150 | * direction. Zeros are fed into the vacated LS bit positions |
| 151 | * and those MS bits shifted off the top are lost. |
| 152 | */ |
| 153 | |
| 154 | void __bitmap_shift_left(unsigned long *dst, |
| 155 | const unsigned long *src, int shift, int bits) |
| 156 | { |
| 157 | int k, lim = BITS_TO_LONGS(bits), left = bits % BITS_PER_LONG; |
| 158 | int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG; |
| 159 | for (k = lim - off - 1; k >= 0; --k) { |
| 160 | unsigned long upper, lower; |
| 161 | |
| 162 | /* |
| 163 | * If shift is not word aligned, take upper rem bits of |
| 164 | * word below and make them the bottom rem bits of result. |
| 165 | */ |
| 166 | if (rem && k > 0) |
| 167 | lower = src[k - 1]; |
| 168 | else |
| 169 | lower = 0; |
| 170 | upper = src[k]; |
| 171 | if (left && k == lim - 1) |
| 172 | upper &= (1UL << left) - 1; |
| 173 | dst[k + off] = lower >> (BITS_PER_LONG - rem) | upper << rem; |
| 174 | if (left && k + off == lim - 1) |
| 175 | dst[k + off] &= (1UL << left) - 1; |
| 176 | } |
| 177 | if (off) |
| 178 | memset(dst, 0, off*sizeof(unsigned long)); |
| 179 | } |
| 180 | EXPORT_SYMBOL(__bitmap_shift_left); |
| 181 | |
| 182 | void __bitmap_and(unsigned long *dst, const unsigned long *bitmap1, |
| 183 | const unsigned long *bitmap2, int bits) |
| 184 | { |
| 185 | int k; |
| 186 | int nr = BITS_TO_LONGS(bits); |
| 187 | |
| 188 | for (k = 0; k < nr; k++) |
| 189 | dst[k] = bitmap1[k] & bitmap2[k]; |
| 190 | } |
| 191 | EXPORT_SYMBOL(__bitmap_and); |
| 192 | |
| 193 | void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1, |
| 194 | const unsigned long *bitmap2, int bits) |
| 195 | { |
| 196 | int k; |
| 197 | int nr = BITS_TO_LONGS(bits); |
| 198 | |
| 199 | for (k = 0; k < nr; k++) |
| 200 | dst[k] = bitmap1[k] | bitmap2[k]; |
| 201 | } |
| 202 | EXPORT_SYMBOL(__bitmap_or); |
| 203 | |
| 204 | void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1, |
| 205 | const unsigned long *bitmap2, int bits) |
| 206 | { |
| 207 | int k; |
| 208 | int nr = BITS_TO_LONGS(bits); |
| 209 | |
| 210 | for (k = 0; k < nr; k++) |
| 211 | dst[k] = bitmap1[k] ^ bitmap2[k]; |
| 212 | } |
| 213 | EXPORT_SYMBOL(__bitmap_xor); |
| 214 | |
| 215 | void __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1, |
| 216 | const unsigned long *bitmap2, int bits) |
| 217 | { |
| 218 | int k; |
| 219 | int nr = BITS_TO_LONGS(bits); |
| 220 | |
| 221 | for (k = 0; k < nr; k++) |
| 222 | dst[k] = bitmap1[k] & ~bitmap2[k]; |
| 223 | } |
| 224 | EXPORT_SYMBOL(__bitmap_andnot); |
| 225 | |
| 226 | int __bitmap_intersects(const unsigned long *bitmap1, |
| 227 | const unsigned long *bitmap2, int bits) |
| 228 | { |
| 229 | int k, lim = bits/BITS_PER_LONG; |
| 230 | for (k = 0; k < lim; ++k) |
| 231 | if (bitmap1[k] & bitmap2[k]) |
| 232 | return 1; |
| 233 | |
| 234 | if (bits % BITS_PER_LONG) |
| 235 | if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) |
| 236 | return 1; |
| 237 | return 0; |
| 238 | } |
| 239 | EXPORT_SYMBOL(__bitmap_intersects); |
| 240 | |
| 241 | int __bitmap_subset(const unsigned long *bitmap1, |
| 242 | const unsigned long *bitmap2, int bits) |
| 243 | { |
| 244 | int k, lim = bits/BITS_PER_LONG; |
| 245 | for (k = 0; k < lim; ++k) |
| 246 | if (bitmap1[k] & ~bitmap2[k]) |
| 247 | return 0; |
| 248 | |
| 249 | if (bits % BITS_PER_LONG) |
| 250 | if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) |
| 251 | return 0; |
| 252 | return 1; |
| 253 | } |
| 254 | EXPORT_SYMBOL(__bitmap_subset); |
| 255 | |
| 256 | #if BITS_PER_LONG == 32 |
| 257 | int __bitmap_weight(const unsigned long *bitmap, int bits) |
| 258 | { |
| 259 | int k, w = 0, lim = bits/BITS_PER_LONG; |
| 260 | |
| 261 | for (k = 0; k < lim; k++) |
| 262 | w += hweight32(bitmap[k]); |
| 263 | |
| 264 | if (bits % BITS_PER_LONG) |
| 265 | w += hweight32(bitmap[k] & BITMAP_LAST_WORD_MASK(bits)); |
| 266 | |
| 267 | return w; |
| 268 | } |
| 269 | #else |
| 270 | int __bitmap_weight(const unsigned long *bitmap, int bits) |
| 271 | { |
| 272 | int k, w = 0, lim = bits/BITS_PER_LONG; |
| 273 | |
| 274 | for (k = 0; k < lim; k++) |
| 275 | w += hweight64(bitmap[k]); |
| 276 | |
| 277 | if (bits % BITS_PER_LONG) |
| 278 | w += hweight64(bitmap[k] & BITMAP_LAST_WORD_MASK(bits)); |
| 279 | |
| 280 | return w; |
| 281 | } |
| 282 | #endif |
| 283 | EXPORT_SYMBOL(__bitmap_weight); |
| 284 | |
| 285 | /* |
| 286 | * Bitmap printing & parsing functions: first version by Bill Irwin, |
| 287 | * second version by Paul Jackson, third by Joe Korty. |
| 288 | */ |
| 289 | |
| 290 | #define CHUNKSZ 32 |
| 291 | #define nbits_to_hold_value(val) fls(val) |
| 292 | #define roundup_power2(val,modulus) (((val) + (modulus) - 1) & ~((modulus) - 1)) |
| 293 | #define unhex(c) (isdigit(c) ? (c - '0') : (toupper(c) - 'A' + 10)) |
| 294 | #define BASEDEC 10 /* fancier cpuset lists input in decimal */ |
| 295 | |
| 296 | /** |
| 297 | * bitmap_scnprintf - convert bitmap to an ASCII hex string. |
| 298 | * @buf: byte buffer into which string is placed |
| 299 | * @buflen: reserved size of @buf, in bytes |
| 300 | * @maskp: pointer to bitmap to convert |
| 301 | * @nmaskbits: size of bitmap, in bits |
| 302 | * |
| 303 | * Exactly @nmaskbits bits are displayed. Hex digits are grouped into |
| 304 | * comma-separated sets of eight digits per set. |
| 305 | */ |
| 306 | int bitmap_scnprintf(char *buf, unsigned int buflen, |
| 307 | const unsigned long *maskp, int nmaskbits) |
| 308 | { |
| 309 | int i, word, bit, len = 0; |
| 310 | unsigned long val; |
| 311 | const char *sep = ""; |
| 312 | int chunksz; |
| 313 | u32 chunkmask; |
| 314 | |
| 315 | chunksz = nmaskbits & (CHUNKSZ - 1); |
| 316 | if (chunksz == 0) |
| 317 | chunksz = CHUNKSZ; |
| 318 | |
| 319 | i = roundup_power2(nmaskbits, CHUNKSZ) - CHUNKSZ; |
| 320 | for (; i >= 0; i -= CHUNKSZ) { |
| 321 | chunkmask = ((1ULL << chunksz) - 1); |
| 322 | word = i / BITS_PER_LONG; |
| 323 | bit = i % BITS_PER_LONG; |
| 324 | val = (maskp[word] >> bit) & chunkmask; |
| 325 | len += scnprintf(buf+len, buflen-len, "%s%0*lx", sep, |
| 326 | (chunksz+3)/4, val); |
| 327 | chunksz = CHUNKSZ; |
| 328 | sep = ","; |
| 329 | } |
| 330 | return len; |
| 331 | } |
| 332 | EXPORT_SYMBOL(bitmap_scnprintf); |
| 333 | |
| 334 | /** |
| 335 | * bitmap_parse - convert an ASCII hex string into a bitmap. |
| 336 | * @buf: pointer to buffer in user space containing string. |
| 337 | * @buflen: buffer size in bytes. If string is smaller than this |
| 338 | * then it must be terminated with a \0. |
| 339 | * @maskp: pointer to bitmap array that will contain result. |
| 340 | * @nmaskbits: size of bitmap, in bits. |
| 341 | * |
| 342 | * Commas group hex digits into chunks. Each chunk defines exactly 32 |
| 343 | * bits of the resultant bitmask. No chunk may specify a value larger |
| 344 | * than 32 bits (-EOVERFLOW), and if a chunk specifies a smaller value |
| 345 | * then leading 0-bits are prepended. -EINVAL is returned for illegal |
| 346 | * characters and for grouping errors such as "1,,5", ",44", "," and "". |
| 347 | * Leading and trailing whitespace accepted, but not embedded whitespace. |
| 348 | */ |
| 349 | int bitmap_parse(const char __user *ubuf, unsigned int ubuflen, |
| 350 | unsigned long *maskp, int nmaskbits) |
| 351 | { |
| 352 | int c, old_c, totaldigits, ndigits, nchunks, nbits; |
| 353 | u32 chunk; |
| 354 | |
| 355 | bitmap_zero(maskp, nmaskbits); |
| 356 | |
| 357 | nchunks = nbits = totaldigits = c = 0; |
| 358 | do { |
| 359 | chunk = ndigits = 0; |
| 360 | |
| 361 | /* Get the next chunk of the bitmap */ |
| 362 | while (ubuflen) { |
| 363 | old_c = c; |
| 364 | if (get_user(c, ubuf++)) |
| 365 | return -EFAULT; |
| 366 | ubuflen--; |
| 367 | if (isspace(c)) |
| 368 | continue; |
| 369 | |
| 370 | /* |
| 371 | * If the last character was a space and the current |
| 372 | * character isn't '\0', we've got embedded whitespace. |
| 373 | * This is a no-no, so throw an error. |
| 374 | */ |
| 375 | if (totaldigits && c && isspace(old_c)) |
| 376 | return -EINVAL; |
| 377 | |
| 378 | /* A '\0' or a ',' signal the end of the chunk */ |
| 379 | if (c == '\0' || c == ',') |
| 380 | break; |
| 381 | |
| 382 | if (!isxdigit(c)) |
| 383 | return -EINVAL; |
| 384 | |
| 385 | /* |
| 386 | * Make sure there are at least 4 free bits in 'chunk'. |
| 387 | * If not, this hexdigit will overflow 'chunk', so |
| 388 | * throw an error. |
| 389 | */ |
| 390 | if (chunk & ~((1UL << (CHUNKSZ - 4)) - 1)) |
| 391 | return -EOVERFLOW; |
| 392 | |
| 393 | chunk = (chunk << 4) | unhex(c); |
| 394 | ndigits++; totaldigits++; |
| 395 | } |
| 396 | if (ndigits == 0) |
| 397 | return -EINVAL; |
| 398 | if (nchunks == 0 && chunk == 0) |
| 399 | continue; |
| 400 | |
| 401 | __bitmap_shift_left(maskp, maskp, CHUNKSZ, nmaskbits); |
| 402 | *maskp |= chunk; |
| 403 | nchunks++; |
| 404 | nbits += (nchunks == 1) ? nbits_to_hold_value(chunk) : CHUNKSZ; |
| 405 | if (nbits > nmaskbits) |
| 406 | return -EOVERFLOW; |
| 407 | } while (ubuflen && c == ','); |
| 408 | |
| 409 | return 0; |
| 410 | } |
| 411 | EXPORT_SYMBOL(bitmap_parse); |
| 412 | |
| 413 | /* |
| 414 | * bscnl_emit(buf, buflen, rbot, rtop, bp) |
| 415 | * |
| 416 | * Helper routine for bitmap_scnlistprintf(). Write decimal number |
| 417 | * or range to buf, suppressing output past buf+buflen, with optional |
| 418 | * comma-prefix. Return len of what would be written to buf, if it |
| 419 | * all fit. |
| 420 | */ |
| 421 | static inline int bscnl_emit(char *buf, int buflen, int rbot, int rtop, int len) |
| 422 | { |
| 423 | if (len > 0) |
| 424 | len += scnprintf(buf + len, buflen - len, ","); |
| 425 | if (rbot == rtop) |
| 426 | len += scnprintf(buf + len, buflen - len, "%d", rbot); |
| 427 | else |
| 428 | len += scnprintf(buf + len, buflen - len, "%d-%d", rbot, rtop); |
| 429 | return len; |
| 430 | } |
| 431 | |
| 432 | /** |
| 433 | * bitmap_scnlistprintf - convert bitmap to list format ASCII string |
| 434 | * @buf: byte buffer into which string is placed |
| 435 | * @buflen: reserved size of @buf, in bytes |
| 436 | * @maskp: pointer to bitmap to convert |
| 437 | * @nmaskbits: size of bitmap, in bits |
| 438 | * |
| 439 | * Output format is a comma-separated list of decimal numbers and |
| 440 | * ranges. Consecutively set bits are shown as two hyphen-separated |
| 441 | * decimal numbers, the smallest and largest bit numbers set in |
| 442 | * the range. Output format is compatible with the format |
| 443 | * accepted as input by bitmap_parselist(). |
| 444 | * |
| 445 | * The return value is the number of characters which would be |
| 446 | * generated for the given input, excluding the trailing '\0', as |
| 447 | * per ISO C99. |
| 448 | */ |
| 449 | int bitmap_scnlistprintf(char *buf, unsigned int buflen, |
| 450 | const unsigned long *maskp, int nmaskbits) |
| 451 | { |
| 452 | int len = 0; |
| 453 | /* current bit is 'cur', most recently seen range is [rbot, rtop] */ |
| 454 | int cur, rbot, rtop; |
| 455 | |
| 456 | rbot = cur = find_first_bit(maskp, nmaskbits); |
| 457 | while (cur < nmaskbits) { |
| 458 | rtop = cur; |
| 459 | cur = find_next_bit(maskp, nmaskbits, cur+1); |
| 460 | if (cur >= nmaskbits || cur > rtop + 1) { |
| 461 | len = bscnl_emit(buf, buflen, rbot, rtop, len); |
| 462 | rbot = cur; |
| 463 | } |
| 464 | } |
| 465 | return len; |
| 466 | } |
| 467 | EXPORT_SYMBOL(bitmap_scnlistprintf); |
| 468 | |
| 469 | /** |
| 470 | * bitmap_parselist - convert list format ASCII string to bitmap |
| 471 | * @buf: read nul-terminated user string from this buffer |
| 472 | * @mask: write resulting mask here |
| 473 | * @nmaskbits: number of bits in mask to be written |
| 474 | * |
| 475 | * Input format is a comma-separated list of decimal numbers and |
| 476 | * ranges. Consecutively set bits are shown as two hyphen-separated |
| 477 | * decimal numbers, the smallest and largest bit numbers set in |
| 478 | * the range. |
| 479 | * |
| 480 | * Returns 0 on success, -errno on invalid input strings: |
| 481 | * -EINVAL: second number in range smaller than first |
| 482 | * -EINVAL: invalid character in string |
| 483 | * -ERANGE: bit number specified too large for mask |
| 484 | */ |
| 485 | int bitmap_parselist(const char *bp, unsigned long *maskp, int nmaskbits) |
| 486 | { |
| 487 | unsigned a, b; |
| 488 | |
| 489 | bitmap_zero(maskp, nmaskbits); |
| 490 | do { |
| 491 | if (!isdigit(*bp)) |
| 492 | return -EINVAL; |
| 493 | b = a = simple_strtoul(bp, (char **)&bp, BASEDEC); |
| 494 | if (*bp == '-') { |
| 495 | bp++; |
| 496 | if (!isdigit(*bp)) |
| 497 | return -EINVAL; |
| 498 | b = simple_strtoul(bp, (char **)&bp, BASEDEC); |
| 499 | } |
| 500 | if (!(a <= b)) |
| 501 | return -EINVAL; |
| 502 | if (b >= nmaskbits) |
| 503 | return -ERANGE; |
| 504 | while (a <= b) { |
| 505 | set_bit(a, maskp); |
| 506 | a++; |
| 507 | } |
| 508 | if (*bp == ',') |
| 509 | bp++; |
| 510 | } while (*bp != '\0' && *bp != '\n'); |
| 511 | return 0; |
| 512 | } |
| 513 | EXPORT_SYMBOL(bitmap_parselist); |
| 514 | |
| 515 | /** |
| 516 | * bitmap_find_free_region - find a contiguous aligned mem region |
| 517 | * @bitmap: an array of unsigned longs corresponding to the bitmap |
| 518 | * @bits: number of bits in the bitmap |
| 519 | * @order: region size to find (size is actually 1<<order) |
| 520 | * |
| 521 | * This is used to allocate a memory region from a bitmap. The idea is |
| 522 | * that the region has to be 1<<order sized and 1<<order aligned (this |
| 523 | * makes the search algorithm much faster). |
| 524 | * |
| 525 | * The region is marked as set bits in the bitmap if a free one is |
| 526 | * found. |
| 527 | * |
| 528 | * Returns either beginning of region or negative error |
| 529 | */ |
| 530 | int bitmap_find_free_region(unsigned long *bitmap, int bits, int order) |
| 531 | { |
| 532 | unsigned long mask; |
| 533 | int pages = 1 << order; |
| 534 | int i; |
| 535 | |
| 536 | if(pages > BITS_PER_LONG) |
| 537 | return -EINVAL; |
| 538 | |
| 539 | /* make a mask of the order */ |
| 540 | mask = (1ul << (pages - 1)); |
| 541 | mask += mask - 1; |
| 542 | |
| 543 | /* run up the bitmap pages bits at a time */ |
| 544 | for (i = 0; i < bits; i += pages) { |
| 545 | int index = i/BITS_PER_LONG; |
| 546 | int offset = i - (index * BITS_PER_LONG); |
| 547 | if((bitmap[index] & (mask << offset)) == 0) { |
| 548 | /* set region in bimap */ |
| 549 | bitmap[index] |= (mask << offset); |
| 550 | return i; |
| 551 | } |
| 552 | } |
| 553 | return -ENOMEM; |
| 554 | } |
| 555 | EXPORT_SYMBOL(bitmap_find_free_region); |
| 556 | |
| 557 | /** |
| 558 | * bitmap_release_region - release allocated bitmap region |
| 559 | * @bitmap: a pointer to the bitmap |
| 560 | * @pos: the beginning of the region |
| 561 | * @order: the order of the bits to release (number is 1<<order) |
| 562 | * |
| 563 | * This is the complement to __bitmap_find_free_region and releases |
| 564 | * the found region (by clearing it in the bitmap). |
| 565 | */ |
| 566 | void bitmap_release_region(unsigned long *bitmap, int pos, int order) |
| 567 | { |
| 568 | int pages = 1 << order; |
| 569 | unsigned long mask = (1ul << (pages - 1)); |
| 570 | int index = pos/BITS_PER_LONG; |
| 571 | int offset = pos - (index * BITS_PER_LONG); |
| 572 | mask += mask - 1; |
| 573 | bitmap[index] &= ~(mask << offset); |
| 574 | } |
| 575 | EXPORT_SYMBOL(bitmap_release_region); |
| 576 | |
| 577 | int bitmap_allocate_region(unsigned long *bitmap, int pos, int order) |
| 578 | { |
| 579 | int pages = 1 << order; |
| 580 | unsigned long mask = (1ul << (pages - 1)); |
| 581 | int index = pos/BITS_PER_LONG; |
| 582 | int offset = pos - (index * BITS_PER_LONG); |
| 583 | |
| 584 | /* We don't do regions of pages > BITS_PER_LONG. The |
| 585 | * algorithm would be a simple look for multiple zeros in the |
| 586 | * array, but there's no driver today that needs this. If you |
| 587 | * trip this BUG(), you get to code it... */ |
| 588 | BUG_ON(pages > BITS_PER_LONG); |
| 589 | mask += mask - 1; |
| 590 | if (bitmap[index] & (mask << offset)) |
| 591 | return -EBUSY; |
| 592 | bitmap[index] |= (mask << offset); |
| 593 | return 0; |
| 594 | } |
| 595 | EXPORT_SYMBOL(bitmap_allocate_region); |