Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* |
| 2 | * drivers/net/gianfar.c |
| 3 | * |
| 4 | * Gianfar Ethernet Driver |
| 5 | * Driver for FEC on MPC8540 and TSEC on MPC8540/MPC8560 |
| 6 | * Based on 8260_io/fcc_enet.c |
| 7 | * |
| 8 | * Author: Andy Fleming |
| 9 | * Maintainer: Kumar Gala (kumar.gala@freescale.com) |
| 10 | * |
| 11 | * Copyright (c) 2002-2004 Freescale Semiconductor, Inc. |
| 12 | * |
| 13 | * This program is free software; you can redistribute it and/or modify it |
| 14 | * under the terms of the GNU General Public License as published by the |
| 15 | * Free Software Foundation; either version 2 of the License, or (at your |
| 16 | * option) any later version. |
| 17 | * |
| 18 | * Gianfar: AKA Lambda Draconis, "Dragon" |
| 19 | * RA 11 31 24.2 |
| 20 | * Dec +69 19 52 |
| 21 | * V 3.84 |
| 22 | * B-V +1.62 |
| 23 | * |
| 24 | * Theory of operation |
| 25 | * This driver is designed for the Triple-speed Ethernet |
| 26 | * controllers on the Freescale 8540/8560 integrated processors, |
| 27 | * as well as the Fast Ethernet Controller on the 8540. |
| 28 | * |
| 29 | * The driver is initialized through platform_device. Structures which |
| 30 | * define the configuration needed by the board are defined in a |
| 31 | * board structure in arch/ppc/platforms (though I do not |
| 32 | * discount the possibility that other architectures could one |
| 33 | * day be supported. One assumption the driver currently makes |
| 34 | * is that the PHY is configured in such a way to advertise all |
| 35 | * capabilities. This is a sensible default, and on certain |
| 36 | * PHYs, changing this default encounters substantial errata |
| 37 | * issues. Future versions may remove this requirement, but for |
| 38 | * now, it is best for the firmware to ensure this is the case. |
| 39 | * |
| 40 | * The Gianfar Ethernet Controller uses a ring of buffer |
| 41 | * descriptors. The beginning is indicated by a register |
| 42 | * pointing to the physical address of the start of the ring. |
| 43 | * The end is determined by a "wrap" bit being set in the |
| 44 | * last descriptor of the ring. |
| 45 | * |
| 46 | * When a packet is received, the RXF bit in the |
| 47 | * IEVENT register is set, triggering an interrupt when the |
| 48 | * corresponding bit in the IMASK register is also set (if |
| 49 | * interrupt coalescing is active, then the interrupt may not |
| 50 | * happen immediately, but will wait until either a set number |
| 51 | * of frames or amount of time have passed.). In NAPI, the |
| 52 | * interrupt handler will signal there is work to be done, and |
| 53 | * exit. Without NAPI, the packet(s) will be handled |
| 54 | * immediately. Both methods will start at the last known empty |
| 55 | * descriptor, and process every subsequent descriptor until there |
| 56 | * are none left with data (NAPI will stop after a set number of |
| 57 | * packets to give time to other tasks, but will eventually |
| 58 | * process all the packets). The data arrives inside a |
| 59 | * pre-allocated skb, and so after the skb is passed up to the |
| 60 | * stack, a new skb must be allocated, and the address field in |
| 61 | * the buffer descriptor must be updated to indicate this new |
| 62 | * skb. |
| 63 | * |
| 64 | * When the kernel requests that a packet be transmitted, the |
| 65 | * driver starts where it left off last time, and points the |
| 66 | * descriptor at the buffer which was passed in. The driver |
| 67 | * then informs the DMA engine that there are packets ready to |
| 68 | * be transmitted. Once the controller is finished transmitting |
| 69 | * the packet, an interrupt may be triggered (under the same |
| 70 | * conditions as for reception, but depending on the TXF bit). |
| 71 | * The driver then cleans up the buffer. |
| 72 | */ |
| 73 | |
| 74 | #include <linux/config.h> |
| 75 | #include <linux/kernel.h> |
| 76 | #include <linux/sched.h> |
| 77 | #include <linux/string.h> |
| 78 | #include <linux/errno.h> |
| 79 | #include <linux/slab.h> |
| 80 | #include <linux/interrupt.h> |
| 81 | #include <linux/init.h> |
| 82 | #include <linux/delay.h> |
| 83 | #include <linux/netdevice.h> |
| 84 | #include <linux/etherdevice.h> |
| 85 | #include <linux/skbuff.h> |
| 86 | #include <linux/spinlock.h> |
| 87 | #include <linux/mm.h> |
| 88 | #include <linux/device.h> |
| 89 | |
| 90 | #include <asm/io.h> |
| 91 | #include <asm/irq.h> |
| 92 | #include <asm/uaccess.h> |
| 93 | #include <linux/module.h> |
| 94 | #include <linux/version.h> |
| 95 | #include <linux/dma-mapping.h> |
| 96 | #include <linux/crc32.h> |
| 97 | |
| 98 | #include "gianfar.h" |
| 99 | #include "gianfar_phy.h" |
| 100 | |
| 101 | #define TX_TIMEOUT (1*HZ) |
| 102 | #define SKB_ALLOC_TIMEOUT 1000000 |
| 103 | #undef BRIEF_GFAR_ERRORS |
| 104 | #undef VERBOSE_GFAR_ERRORS |
| 105 | |
| 106 | #ifdef CONFIG_GFAR_NAPI |
| 107 | #define RECEIVE(x) netif_receive_skb(x) |
| 108 | #else |
| 109 | #define RECEIVE(x) netif_rx(x) |
| 110 | #endif |
| 111 | |
| 112 | const char gfar_driver_name[] = "Gianfar Ethernet"; |
| 113 | const char gfar_driver_version[] = "1.1"; |
| 114 | |
| 115 | int startup_gfar(struct net_device *dev); |
| 116 | static int gfar_enet_open(struct net_device *dev); |
| 117 | static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev); |
| 118 | static void gfar_timeout(struct net_device *dev); |
| 119 | static int gfar_close(struct net_device *dev); |
| 120 | struct sk_buff *gfar_new_skb(struct net_device *dev, struct rxbd8 *bdp); |
| 121 | static struct net_device_stats *gfar_get_stats(struct net_device *dev); |
| 122 | static int gfar_set_mac_address(struct net_device *dev); |
| 123 | static int gfar_change_mtu(struct net_device *dev, int new_mtu); |
| 124 | static irqreturn_t gfar_error(int irq, void *dev_id, struct pt_regs *regs); |
| 125 | static irqreturn_t gfar_transmit(int irq, void *dev_id, struct pt_regs *regs); |
| 126 | irqreturn_t gfar_receive(int irq, void *dev_id, struct pt_regs *regs); |
| 127 | static irqreturn_t gfar_interrupt(int irq, void *dev_id, struct pt_regs *regs); |
| 128 | static irqreturn_t phy_interrupt(int irq, void *dev_id, struct pt_regs *regs); |
| 129 | static void gfar_phy_change(void *data); |
| 130 | static void gfar_phy_timer(unsigned long data); |
| 131 | static void adjust_link(struct net_device *dev); |
| 132 | static void init_registers(struct net_device *dev); |
| 133 | static int init_phy(struct net_device *dev); |
| 134 | static int gfar_probe(struct device *device); |
| 135 | static int gfar_remove(struct device *device); |
| 136 | void free_skb_resources(struct gfar_private *priv); |
| 137 | static void gfar_set_multi(struct net_device *dev); |
| 138 | static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr); |
| 139 | #ifdef CONFIG_GFAR_NAPI |
| 140 | static int gfar_poll(struct net_device *dev, int *budget); |
| 141 | #endif |
| 142 | static int gfar_clean_rx_ring(struct net_device *dev, int rx_work_limit); |
| 143 | static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb, int length); |
| 144 | static void gfar_phy_startup_timer(unsigned long data); |
| 145 | |
| 146 | extern struct ethtool_ops gfar_ethtool_ops; |
| 147 | |
| 148 | MODULE_AUTHOR("Freescale Semiconductor, Inc"); |
| 149 | MODULE_DESCRIPTION("Gianfar Ethernet Driver"); |
| 150 | MODULE_LICENSE("GPL"); |
| 151 | |
| 152 | static int gfar_probe(struct device *device) |
| 153 | { |
| 154 | u32 tempval; |
| 155 | struct net_device *dev = NULL; |
| 156 | struct gfar_private *priv = NULL; |
| 157 | struct platform_device *pdev = to_platform_device(device); |
| 158 | struct gianfar_platform_data *einfo; |
| 159 | struct resource *r; |
| 160 | int idx; |
| 161 | int err = 0; |
| 162 | int dev_ethtool_ops = 0; |
| 163 | |
| 164 | einfo = (struct gianfar_platform_data *) pdev->dev.platform_data; |
| 165 | |
| 166 | if (einfo == NULL) { |
| 167 | printk(KERN_ERR "gfar %d: Missing additional data!\n", |
| 168 | pdev->id); |
| 169 | |
| 170 | return -ENODEV; |
| 171 | } |
| 172 | |
| 173 | /* Create an ethernet device instance */ |
| 174 | dev = alloc_etherdev(sizeof (*priv)); |
| 175 | |
| 176 | if (dev == NULL) |
| 177 | return -ENOMEM; |
| 178 | |
| 179 | priv = netdev_priv(dev); |
| 180 | |
| 181 | /* Set the info in the priv to the current info */ |
| 182 | priv->einfo = einfo; |
| 183 | |
| 184 | /* fill out IRQ fields */ |
| 185 | if (einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) { |
| 186 | priv->interruptTransmit = platform_get_irq_byname(pdev, "tx"); |
| 187 | priv->interruptReceive = platform_get_irq_byname(pdev, "rx"); |
| 188 | priv->interruptError = platform_get_irq_byname(pdev, "error"); |
| 189 | } else { |
| 190 | priv->interruptTransmit = platform_get_irq(pdev, 0); |
| 191 | } |
| 192 | |
| 193 | /* get a pointer to the register memory */ |
| 194 | r = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| 195 | priv->regs = (struct gfar *) |
| 196 | ioremap(r->start, sizeof (struct gfar)); |
| 197 | |
| 198 | if (priv->regs == NULL) { |
| 199 | err = -ENOMEM; |
| 200 | goto regs_fail; |
| 201 | } |
| 202 | |
| 203 | /* Set the PHY base address */ |
| 204 | priv->phyregs = (struct gfar *) |
| 205 | ioremap(einfo->phy_reg_addr, sizeof (struct gfar)); |
| 206 | |
| 207 | if (priv->phyregs == NULL) { |
| 208 | err = -ENOMEM; |
| 209 | goto phy_regs_fail; |
| 210 | } |
| 211 | |
| 212 | spin_lock_init(&priv->lock); |
| 213 | |
| 214 | dev_set_drvdata(device, dev); |
| 215 | |
| 216 | /* Stop the DMA engine now, in case it was running before */ |
| 217 | /* (The firmware could have used it, and left it running). */ |
| 218 | /* To do this, we write Graceful Receive Stop and Graceful */ |
| 219 | /* Transmit Stop, and then wait until the corresponding bits */ |
| 220 | /* in IEVENT indicate the stops have completed. */ |
| 221 | tempval = gfar_read(&priv->regs->dmactrl); |
| 222 | tempval &= ~(DMACTRL_GRS | DMACTRL_GTS); |
| 223 | gfar_write(&priv->regs->dmactrl, tempval); |
| 224 | |
| 225 | tempval = gfar_read(&priv->regs->dmactrl); |
| 226 | tempval |= (DMACTRL_GRS | DMACTRL_GTS); |
| 227 | gfar_write(&priv->regs->dmactrl, tempval); |
| 228 | |
| 229 | while (!(gfar_read(&priv->regs->ievent) & (IEVENT_GRSC | IEVENT_GTSC))) |
| 230 | cpu_relax(); |
| 231 | |
| 232 | /* Reset MAC layer */ |
| 233 | gfar_write(&priv->regs->maccfg1, MACCFG1_SOFT_RESET); |
| 234 | |
| 235 | tempval = (MACCFG1_TX_FLOW | MACCFG1_RX_FLOW); |
| 236 | gfar_write(&priv->regs->maccfg1, tempval); |
| 237 | |
| 238 | /* Initialize MACCFG2. */ |
| 239 | gfar_write(&priv->regs->maccfg2, MACCFG2_INIT_SETTINGS); |
| 240 | |
| 241 | /* Initialize ECNTRL */ |
| 242 | gfar_write(&priv->regs->ecntrl, ECNTRL_INIT_SETTINGS); |
| 243 | |
| 244 | /* Copy the station address into the dev structure, */ |
| 245 | memcpy(dev->dev_addr, einfo->mac_addr, MAC_ADDR_LEN); |
| 246 | |
| 247 | /* Set the dev->base_addr to the gfar reg region */ |
| 248 | dev->base_addr = (unsigned long) (priv->regs); |
| 249 | |
| 250 | SET_MODULE_OWNER(dev); |
| 251 | SET_NETDEV_DEV(dev, device); |
| 252 | |
| 253 | /* Fill in the dev structure */ |
| 254 | dev->open = gfar_enet_open; |
| 255 | dev->hard_start_xmit = gfar_start_xmit; |
| 256 | dev->tx_timeout = gfar_timeout; |
| 257 | dev->watchdog_timeo = TX_TIMEOUT; |
| 258 | #ifdef CONFIG_GFAR_NAPI |
| 259 | dev->poll = gfar_poll; |
| 260 | dev->weight = GFAR_DEV_WEIGHT; |
| 261 | #endif |
| 262 | dev->stop = gfar_close; |
| 263 | dev->get_stats = gfar_get_stats; |
| 264 | dev->change_mtu = gfar_change_mtu; |
| 265 | dev->mtu = 1500; |
| 266 | dev->set_multicast_list = gfar_set_multi; |
| 267 | |
| 268 | /* Index into the array of possible ethtool |
| 269 | * ops to catch all 4 possibilities */ |
| 270 | if((priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_RMON) == 0) |
| 271 | dev_ethtool_ops += 1; |
| 272 | |
| 273 | if((priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_COALESCE) == 0) |
| 274 | dev_ethtool_ops += 2; |
| 275 | |
| 276 | dev->ethtool_ops = gfar_op_array[dev_ethtool_ops]; |
| 277 | |
| 278 | priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE; |
| 279 | #ifdef CONFIG_GFAR_BUFSTASH |
| 280 | priv->rx_stash_size = STASH_LENGTH; |
| 281 | #endif |
| 282 | priv->tx_ring_size = DEFAULT_TX_RING_SIZE; |
| 283 | priv->rx_ring_size = DEFAULT_RX_RING_SIZE; |
| 284 | |
| 285 | priv->txcoalescing = DEFAULT_TX_COALESCE; |
| 286 | priv->txcount = DEFAULT_TXCOUNT; |
| 287 | priv->txtime = DEFAULT_TXTIME; |
| 288 | priv->rxcoalescing = DEFAULT_RX_COALESCE; |
| 289 | priv->rxcount = DEFAULT_RXCOUNT; |
| 290 | priv->rxtime = DEFAULT_RXTIME; |
| 291 | |
| 292 | err = register_netdev(dev); |
| 293 | |
| 294 | if (err) { |
| 295 | printk(KERN_ERR "%s: Cannot register net device, aborting.\n", |
| 296 | dev->name); |
| 297 | goto register_fail; |
| 298 | } |
| 299 | |
| 300 | /* Print out the device info */ |
| 301 | printk(KERN_INFO DEVICE_NAME, dev->name); |
| 302 | for (idx = 0; idx < 6; idx++) |
| 303 | printk("%2.2x%c", dev->dev_addr[idx], idx == 5 ? ' ' : ':'); |
| 304 | printk("\n"); |
| 305 | |
| 306 | /* Even more device info helps when determining which kernel */ |
| 307 | /* provided which set of benchmarks. Since this is global for all */ |
| 308 | /* devices, we only print it once */ |
| 309 | #ifdef CONFIG_GFAR_NAPI |
| 310 | printk(KERN_INFO "%s: Running with NAPI enabled\n", dev->name); |
| 311 | #else |
| 312 | printk(KERN_INFO "%s: Running with NAPI disabled\n", dev->name); |
| 313 | #endif |
| 314 | printk(KERN_INFO "%s: %d/%d RX/TX BD ring size\n", |
| 315 | dev->name, priv->rx_ring_size, priv->tx_ring_size); |
| 316 | |
| 317 | return 0; |
| 318 | |
| 319 | register_fail: |
| 320 | iounmap((void *) priv->phyregs); |
| 321 | phy_regs_fail: |
| 322 | iounmap((void *) priv->regs); |
| 323 | regs_fail: |
| 324 | free_netdev(dev); |
| 325 | return -ENOMEM; |
| 326 | } |
| 327 | |
| 328 | static int gfar_remove(struct device *device) |
| 329 | { |
| 330 | struct net_device *dev = dev_get_drvdata(device); |
| 331 | struct gfar_private *priv = netdev_priv(dev); |
| 332 | |
| 333 | dev_set_drvdata(device, NULL); |
| 334 | |
| 335 | iounmap((void *) priv->regs); |
| 336 | iounmap((void *) priv->phyregs); |
| 337 | free_netdev(dev); |
| 338 | |
| 339 | return 0; |
| 340 | } |
| 341 | |
| 342 | |
| 343 | /* Configure the PHY for dev. |
| 344 | * returns 0 if success. -1 if failure |
| 345 | */ |
| 346 | static int init_phy(struct net_device *dev) |
| 347 | { |
| 348 | struct gfar_private *priv = netdev_priv(dev); |
| 349 | struct phy_info *curphy; |
| 350 | unsigned int timeout = PHY_INIT_TIMEOUT; |
| 351 | struct gfar *phyregs = priv->phyregs; |
| 352 | struct gfar_mii_info *mii_info; |
| 353 | int err; |
| 354 | |
| 355 | priv->oldlink = 0; |
| 356 | priv->oldspeed = 0; |
| 357 | priv->oldduplex = -1; |
| 358 | |
| 359 | mii_info = kmalloc(sizeof(struct gfar_mii_info), |
| 360 | GFP_KERNEL); |
| 361 | |
| 362 | if(NULL == mii_info) { |
| 363 | printk(KERN_ERR "%s: Could not allocate mii_info\n", |
| 364 | dev->name); |
| 365 | return -ENOMEM; |
| 366 | } |
| 367 | |
| 368 | mii_info->speed = SPEED_1000; |
| 369 | mii_info->duplex = DUPLEX_FULL; |
| 370 | mii_info->pause = 0; |
| 371 | mii_info->link = 1; |
| 372 | |
| 373 | mii_info->advertising = (ADVERTISED_10baseT_Half | |
| 374 | ADVERTISED_10baseT_Full | |
| 375 | ADVERTISED_100baseT_Half | |
| 376 | ADVERTISED_100baseT_Full | |
| 377 | ADVERTISED_1000baseT_Full); |
| 378 | mii_info->autoneg = 1; |
| 379 | |
| 380 | spin_lock_init(&mii_info->mdio_lock); |
| 381 | |
| 382 | mii_info->mii_id = priv->einfo->phyid; |
| 383 | |
| 384 | mii_info->dev = dev; |
| 385 | |
| 386 | mii_info->mdio_read = &read_phy_reg; |
| 387 | mii_info->mdio_write = &write_phy_reg; |
| 388 | |
| 389 | priv->mii_info = mii_info; |
| 390 | |
| 391 | /* Reset the management interface */ |
| 392 | gfar_write(&phyregs->miimcfg, MIIMCFG_RESET); |
| 393 | |
| 394 | /* Setup the MII Mgmt clock speed */ |
| 395 | gfar_write(&phyregs->miimcfg, MIIMCFG_INIT_VALUE); |
| 396 | |
| 397 | /* Wait until the bus is free */ |
| 398 | while ((gfar_read(&phyregs->miimind) & MIIMIND_BUSY) && |
| 399 | timeout--) |
| 400 | cpu_relax(); |
| 401 | |
| 402 | if(timeout <= 0) { |
| 403 | printk(KERN_ERR "%s: The MII Bus is stuck!\n", |
| 404 | dev->name); |
| 405 | err = -1; |
| 406 | goto bus_fail; |
| 407 | } |
| 408 | |
| 409 | /* get info for this PHY */ |
| 410 | curphy = get_phy_info(priv->mii_info); |
| 411 | |
| 412 | if (curphy == NULL) { |
| 413 | printk(KERN_ERR "%s: No PHY found\n", dev->name); |
| 414 | err = -1; |
| 415 | goto no_phy; |
| 416 | } |
| 417 | |
| 418 | mii_info->phyinfo = curphy; |
| 419 | |
| 420 | /* Run the commands which initialize the PHY */ |
| 421 | if(curphy->init) { |
| 422 | err = curphy->init(priv->mii_info); |
| 423 | |
| 424 | if (err) |
| 425 | goto phy_init_fail; |
| 426 | } |
| 427 | |
| 428 | return 0; |
| 429 | |
| 430 | phy_init_fail: |
| 431 | no_phy: |
| 432 | bus_fail: |
| 433 | kfree(mii_info); |
| 434 | |
| 435 | return err; |
| 436 | } |
| 437 | |
| 438 | static void init_registers(struct net_device *dev) |
| 439 | { |
| 440 | struct gfar_private *priv = netdev_priv(dev); |
| 441 | |
| 442 | /* Clear IEVENT */ |
| 443 | gfar_write(&priv->regs->ievent, IEVENT_INIT_CLEAR); |
| 444 | |
| 445 | /* Initialize IMASK */ |
| 446 | gfar_write(&priv->regs->imask, IMASK_INIT_CLEAR); |
| 447 | |
| 448 | /* Init hash registers to zero */ |
| 449 | gfar_write(&priv->regs->iaddr0, 0); |
| 450 | gfar_write(&priv->regs->iaddr1, 0); |
| 451 | gfar_write(&priv->regs->iaddr2, 0); |
| 452 | gfar_write(&priv->regs->iaddr3, 0); |
| 453 | gfar_write(&priv->regs->iaddr4, 0); |
| 454 | gfar_write(&priv->regs->iaddr5, 0); |
| 455 | gfar_write(&priv->regs->iaddr6, 0); |
| 456 | gfar_write(&priv->regs->iaddr7, 0); |
| 457 | |
| 458 | gfar_write(&priv->regs->gaddr0, 0); |
| 459 | gfar_write(&priv->regs->gaddr1, 0); |
| 460 | gfar_write(&priv->regs->gaddr2, 0); |
| 461 | gfar_write(&priv->regs->gaddr3, 0); |
| 462 | gfar_write(&priv->regs->gaddr4, 0); |
| 463 | gfar_write(&priv->regs->gaddr5, 0); |
| 464 | gfar_write(&priv->regs->gaddr6, 0); |
| 465 | gfar_write(&priv->regs->gaddr7, 0); |
| 466 | |
| 467 | /* Zero out rctrl */ |
| 468 | gfar_write(&priv->regs->rctrl, 0x00000000); |
| 469 | |
| 470 | /* Zero out the rmon mib registers if it has them */ |
| 471 | if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_RMON) { |
| 472 | memset((void *) &(priv->regs->rmon), 0, |
| 473 | sizeof (struct rmon_mib)); |
| 474 | |
| 475 | /* Mask off the CAM interrupts */ |
| 476 | gfar_write(&priv->regs->rmon.cam1, 0xffffffff); |
| 477 | gfar_write(&priv->regs->rmon.cam2, 0xffffffff); |
| 478 | } |
| 479 | |
| 480 | /* Initialize the max receive buffer length */ |
| 481 | gfar_write(&priv->regs->mrblr, priv->rx_buffer_size); |
| 482 | |
| 483 | #ifdef CONFIG_GFAR_BUFSTASH |
| 484 | /* If we are stashing buffers, we need to set the |
| 485 | * extraction length to the size of the buffer */ |
| 486 | gfar_write(&priv->regs->attreli, priv->rx_stash_size << 16); |
| 487 | #endif |
| 488 | |
| 489 | /* Initialize the Minimum Frame Length Register */ |
| 490 | gfar_write(&priv->regs->minflr, MINFLR_INIT_SETTINGS); |
| 491 | |
| 492 | /* Setup Attributes so that snooping is on for rx */ |
| 493 | gfar_write(&priv->regs->attr, ATTR_INIT_SETTINGS); |
| 494 | gfar_write(&priv->regs->attreli, ATTRELI_INIT_SETTINGS); |
| 495 | |
| 496 | /* Assign the TBI an address which won't conflict with the PHYs */ |
| 497 | gfar_write(&priv->regs->tbipa, TBIPA_VALUE); |
| 498 | } |
| 499 | |
| 500 | void stop_gfar(struct net_device *dev) |
| 501 | { |
| 502 | struct gfar_private *priv = netdev_priv(dev); |
| 503 | struct gfar *regs = priv->regs; |
| 504 | unsigned long flags; |
| 505 | u32 tempval; |
| 506 | |
| 507 | /* Lock it down */ |
| 508 | spin_lock_irqsave(&priv->lock, flags); |
| 509 | |
| 510 | /* Tell the kernel the link is down */ |
| 511 | priv->mii_info->link = 0; |
| 512 | adjust_link(dev); |
| 513 | |
| 514 | /* Mask all interrupts */ |
| 515 | gfar_write(®s->imask, IMASK_INIT_CLEAR); |
| 516 | |
| 517 | /* Clear all interrupts */ |
| 518 | gfar_write(®s->ievent, IEVENT_INIT_CLEAR); |
| 519 | |
| 520 | /* Stop the DMA, and wait for it to stop */ |
| 521 | tempval = gfar_read(&priv->regs->dmactrl); |
| 522 | if ((tempval & (DMACTRL_GRS | DMACTRL_GTS)) |
| 523 | != (DMACTRL_GRS | DMACTRL_GTS)) { |
| 524 | tempval |= (DMACTRL_GRS | DMACTRL_GTS); |
| 525 | gfar_write(&priv->regs->dmactrl, tempval); |
| 526 | |
| 527 | while (!(gfar_read(&priv->regs->ievent) & |
| 528 | (IEVENT_GRSC | IEVENT_GTSC))) |
| 529 | cpu_relax(); |
| 530 | } |
| 531 | |
| 532 | /* Disable Rx and Tx */ |
| 533 | tempval = gfar_read(®s->maccfg1); |
| 534 | tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN); |
| 535 | gfar_write(®s->maccfg1, tempval); |
| 536 | |
| 537 | if (priv->einfo->board_flags & FSL_GIANFAR_BRD_HAS_PHY_INTR) { |
| 538 | /* Clear any pending interrupts */ |
| 539 | mii_clear_phy_interrupt(priv->mii_info); |
| 540 | |
| 541 | /* Disable PHY Interrupts */ |
| 542 | mii_configure_phy_interrupt(priv->mii_info, |
| 543 | MII_INTERRUPT_DISABLED); |
| 544 | } |
| 545 | |
| 546 | spin_unlock_irqrestore(&priv->lock, flags); |
| 547 | |
| 548 | /* Free the IRQs */ |
| 549 | if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) { |
| 550 | free_irq(priv->interruptError, dev); |
| 551 | free_irq(priv->interruptTransmit, dev); |
| 552 | free_irq(priv->interruptReceive, dev); |
| 553 | } else { |
| 554 | free_irq(priv->interruptTransmit, dev); |
| 555 | } |
| 556 | |
| 557 | if (priv->einfo->board_flags & FSL_GIANFAR_BRD_HAS_PHY_INTR) { |
| 558 | free_irq(priv->einfo->interruptPHY, dev); |
| 559 | } else { |
| 560 | del_timer_sync(&priv->phy_info_timer); |
| 561 | } |
| 562 | |
| 563 | free_skb_resources(priv); |
| 564 | |
| 565 | dma_free_coherent(NULL, |
| 566 | sizeof(struct txbd8)*priv->tx_ring_size |
| 567 | + sizeof(struct rxbd8)*priv->rx_ring_size, |
| 568 | priv->tx_bd_base, |
| 569 | gfar_read(®s->tbase)); |
| 570 | } |
| 571 | |
| 572 | /* If there are any tx skbs or rx skbs still around, free them. |
| 573 | * Then free tx_skbuff and rx_skbuff */ |
| 574 | void free_skb_resources(struct gfar_private *priv) |
| 575 | { |
| 576 | struct rxbd8 *rxbdp; |
| 577 | struct txbd8 *txbdp; |
| 578 | int i; |
| 579 | |
| 580 | /* Go through all the buffer descriptors and free their data buffers */ |
| 581 | txbdp = priv->tx_bd_base; |
| 582 | |
| 583 | for (i = 0; i < priv->tx_ring_size; i++) { |
| 584 | |
| 585 | if (priv->tx_skbuff[i]) { |
| 586 | dma_unmap_single(NULL, txbdp->bufPtr, |
| 587 | txbdp->length, |
| 588 | DMA_TO_DEVICE); |
| 589 | dev_kfree_skb_any(priv->tx_skbuff[i]); |
| 590 | priv->tx_skbuff[i] = NULL; |
| 591 | } |
| 592 | } |
| 593 | |
| 594 | kfree(priv->tx_skbuff); |
| 595 | |
| 596 | rxbdp = priv->rx_bd_base; |
| 597 | |
| 598 | /* rx_skbuff is not guaranteed to be allocated, so only |
| 599 | * free it and its contents if it is allocated */ |
| 600 | if(priv->rx_skbuff != NULL) { |
| 601 | for (i = 0; i < priv->rx_ring_size; i++) { |
| 602 | if (priv->rx_skbuff[i]) { |
| 603 | dma_unmap_single(NULL, rxbdp->bufPtr, |
| 604 | priv->rx_buffer_size |
| 605 | + RXBUF_ALIGNMENT, |
| 606 | DMA_FROM_DEVICE); |
| 607 | |
| 608 | dev_kfree_skb_any(priv->rx_skbuff[i]); |
| 609 | priv->rx_skbuff[i] = NULL; |
| 610 | } |
| 611 | |
| 612 | rxbdp->status = 0; |
| 613 | rxbdp->length = 0; |
| 614 | rxbdp->bufPtr = 0; |
| 615 | |
| 616 | rxbdp++; |
| 617 | } |
| 618 | |
| 619 | kfree(priv->rx_skbuff); |
| 620 | } |
| 621 | } |
| 622 | |
| 623 | /* Bring the controller up and running */ |
| 624 | int startup_gfar(struct net_device *dev) |
| 625 | { |
| 626 | struct txbd8 *txbdp; |
| 627 | struct rxbd8 *rxbdp; |
| 628 | dma_addr_t addr; |
| 629 | unsigned long vaddr; |
| 630 | int i; |
| 631 | struct gfar_private *priv = netdev_priv(dev); |
| 632 | struct gfar *regs = priv->regs; |
| 633 | u32 tempval; |
| 634 | int err = 0; |
| 635 | |
| 636 | gfar_write(®s->imask, IMASK_INIT_CLEAR); |
| 637 | |
| 638 | /* Allocate memory for the buffer descriptors */ |
| 639 | vaddr = (unsigned long) dma_alloc_coherent(NULL, |
| 640 | sizeof (struct txbd8) * priv->tx_ring_size + |
| 641 | sizeof (struct rxbd8) * priv->rx_ring_size, |
| 642 | &addr, GFP_KERNEL); |
| 643 | |
| 644 | if (vaddr == 0) { |
| 645 | printk(KERN_ERR "%s: Could not allocate buffer descriptors!\n", |
| 646 | dev->name); |
| 647 | return -ENOMEM; |
| 648 | } |
| 649 | |
| 650 | priv->tx_bd_base = (struct txbd8 *) vaddr; |
| 651 | |
| 652 | /* enet DMA only understands physical addresses */ |
| 653 | gfar_write(®s->tbase, addr); |
| 654 | |
| 655 | /* Start the rx descriptor ring where the tx ring leaves off */ |
| 656 | addr = addr + sizeof (struct txbd8) * priv->tx_ring_size; |
| 657 | vaddr = vaddr + sizeof (struct txbd8) * priv->tx_ring_size; |
| 658 | priv->rx_bd_base = (struct rxbd8 *) vaddr; |
| 659 | gfar_write(®s->rbase, addr); |
| 660 | |
| 661 | /* Setup the skbuff rings */ |
| 662 | priv->tx_skbuff = |
| 663 | (struct sk_buff **) kmalloc(sizeof (struct sk_buff *) * |
| 664 | priv->tx_ring_size, GFP_KERNEL); |
| 665 | |
| 666 | if (priv->tx_skbuff == NULL) { |
| 667 | printk(KERN_ERR "%s: Could not allocate tx_skbuff\n", |
| 668 | dev->name); |
| 669 | err = -ENOMEM; |
| 670 | goto tx_skb_fail; |
| 671 | } |
| 672 | |
| 673 | for (i = 0; i < priv->tx_ring_size; i++) |
| 674 | priv->tx_skbuff[i] = NULL; |
| 675 | |
| 676 | priv->rx_skbuff = |
| 677 | (struct sk_buff **) kmalloc(sizeof (struct sk_buff *) * |
| 678 | priv->rx_ring_size, GFP_KERNEL); |
| 679 | |
| 680 | if (priv->rx_skbuff == NULL) { |
| 681 | printk(KERN_ERR "%s: Could not allocate rx_skbuff\n", |
| 682 | dev->name); |
| 683 | err = -ENOMEM; |
| 684 | goto rx_skb_fail; |
| 685 | } |
| 686 | |
| 687 | for (i = 0; i < priv->rx_ring_size; i++) |
| 688 | priv->rx_skbuff[i] = NULL; |
| 689 | |
| 690 | /* Initialize some variables in our dev structure */ |
| 691 | priv->dirty_tx = priv->cur_tx = priv->tx_bd_base; |
| 692 | priv->cur_rx = priv->rx_bd_base; |
| 693 | priv->skb_curtx = priv->skb_dirtytx = 0; |
| 694 | priv->skb_currx = 0; |
| 695 | |
| 696 | /* Initialize Transmit Descriptor Ring */ |
| 697 | txbdp = priv->tx_bd_base; |
| 698 | for (i = 0; i < priv->tx_ring_size; i++) { |
| 699 | txbdp->status = 0; |
| 700 | txbdp->length = 0; |
| 701 | txbdp->bufPtr = 0; |
| 702 | txbdp++; |
| 703 | } |
| 704 | |
| 705 | /* Set the last descriptor in the ring to indicate wrap */ |
| 706 | txbdp--; |
| 707 | txbdp->status |= TXBD_WRAP; |
| 708 | |
| 709 | rxbdp = priv->rx_bd_base; |
| 710 | for (i = 0; i < priv->rx_ring_size; i++) { |
| 711 | struct sk_buff *skb = NULL; |
| 712 | |
| 713 | rxbdp->status = 0; |
| 714 | |
| 715 | skb = gfar_new_skb(dev, rxbdp); |
| 716 | |
| 717 | priv->rx_skbuff[i] = skb; |
| 718 | |
| 719 | rxbdp++; |
| 720 | } |
| 721 | |
| 722 | /* Set the last descriptor in the ring to wrap */ |
| 723 | rxbdp--; |
| 724 | rxbdp->status |= RXBD_WRAP; |
| 725 | |
| 726 | /* If the device has multiple interrupts, register for |
| 727 | * them. Otherwise, only register for the one */ |
| 728 | if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) { |
| 729 | /* Install our interrupt handlers for Error, |
| 730 | * Transmit, and Receive */ |
| 731 | if (request_irq(priv->interruptError, gfar_error, |
| 732 | 0, "enet_error", dev) < 0) { |
| 733 | printk(KERN_ERR "%s: Can't get IRQ %d\n", |
| 734 | dev->name, priv->interruptError); |
| 735 | |
| 736 | err = -1; |
| 737 | goto err_irq_fail; |
| 738 | } |
| 739 | |
| 740 | if (request_irq(priv->interruptTransmit, gfar_transmit, |
| 741 | 0, "enet_tx", dev) < 0) { |
| 742 | printk(KERN_ERR "%s: Can't get IRQ %d\n", |
| 743 | dev->name, priv->interruptTransmit); |
| 744 | |
| 745 | err = -1; |
| 746 | |
| 747 | goto tx_irq_fail; |
| 748 | } |
| 749 | |
| 750 | if (request_irq(priv->interruptReceive, gfar_receive, |
| 751 | 0, "enet_rx", dev) < 0) { |
| 752 | printk(KERN_ERR "%s: Can't get IRQ %d (receive0)\n", |
| 753 | dev->name, priv->interruptReceive); |
| 754 | |
| 755 | err = -1; |
| 756 | goto rx_irq_fail; |
| 757 | } |
| 758 | } else { |
| 759 | if (request_irq(priv->interruptTransmit, gfar_interrupt, |
| 760 | 0, "gfar_interrupt", dev) < 0) { |
| 761 | printk(KERN_ERR "%s: Can't get IRQ %d\n", |
| 762 | dev->name, priv->interruptError); |
| 763 | |
| 764 | err = -1; |
| 765 | goto err_irq_fail; |
| 766 | } |
| 767 | } |
| 768 | |
| 769 | /* Set up the PHY change work queue */ |
| 770 | INIT_WORK(&priv->tq, gfar_phy_change, dev); |
| 771 | |
| 772 | init_timer(&priv->phy_info_timer); |
| 773 | priv->phy_info_timer.function = &gfar_phy_startup_timer; |
| 774 | priv->phy_info_timer.data = (unsigned long) priv->mii_info; |
| 775 | mod_timer(&priv->phy_info_timer, jiffies + HZ); |
| 776 | |
| 777 | /* Configure the coalescing support */ |
| 778 | if (priv->txcoalescing) |
| 779 | gfar_write(®s->txic, |
| 780 | mk_ic_value(priv->txcount, priv->txtime)); |
| 781 | else |
| 782 | gfar_write(®s->txic, 0); |
| 783 | |
| 784 | if (priv->rxcoalescing) |
| 785 | gfar_write(®s->rxic, |
| 786 | mk_ic_value(priv->rxcount, priv->rxtime)); |
| 787 | else |
| 788 | gfar_write(®s->rxic, 0); |
| 789 | |
| 790 | init_waitqueue_head(&priv->rxcleanupq); |
| 791 | |
| 792 | /* Enable Rx and Tx in MACCFG1 */ |
| 793 | tempval = gfar_read(®s->maccfg1); |
| 794 | tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN); |
| 795 | gfar_write(®s->maccfg1, tempval); |
| 796 | |
| 797 | /* Initialize DMACTRL to have WWR and WOP */ |
| 798 | tempval = gfar_read(&priv->regs->dmactrl); |
| 799 | tempval |= DMACTRL_INIT_SETTINGS; |
| 800 | gfar_write(&priv->regs->dmactrl, tempval); |
| 801 | |
| 802 | /* Clear THLT, so that the DMA starts polling now */ |
| 803 | gfar_write(®s->tstat, TSTAT_CLEAR_THALT); |
| 804 | |
| 805 | /* Make sure we aren't stopped */ |
| 806 | tempval = gfar_read(&priv->regs->dmactrl); |
| 807 | tempval &= ~(DMACTRL_GRS | DMACTRL_GTS); |
| 808 | gfar_write(&priv->regs->dmactrl, tempval); |
| 809 | |
| 810 | /* Unmask the interrupts we look for */ |
| 811 | gfar_write(®s->imask, IMASK_DEFAULT); |
| 812 | |
| 813 | return 0; |
| 814 | |
| 815 | rx_irq_fail: |
| 816 | free_irq(priv->interruptTransmit, dev); |
| 817 | tx_irq_fail: |
| 818 | free_irq(priv->interruptError, dev); |
| 819 | err_irq_fail: |
| 820 | rx_skb_fail: |
| 821 | free_skb_resources(priv); |
| 822 | tx_skb_fail: |
| 823 | dma_free_coherent(NULL, |
| 824 | sizeof(struct txbd8)*priv->tx_ring_size |
| 825 | + sizeof(struct rxbd8)*priv->rx_ring_size, |
| 826 | priv->tx_bd_base, |
| 827 | gfar_read(®s->tbase)); |
| 828 | |
| 829 | if (priv->mii_info->phyinfo->close) |
| 830 | priv->mii_info->phyinfo->close(priv->mii_info); |
| 831 | |
| 832 | kfree(priv->mii_info); |
| 833 | |
| 834 | return err; |
| 835 | } |
| 836 | |
| 837 | /* Called when something needs to use the ethernet device */ |
| 838 | /* Returns 0 for success. */ |
| 839 | static int gfar_enet_open(struct net_device *dev) |
| 840 | { |
| 841 | int err; |
| 842 | |
| 843 | /* Initialize a bunch of registers */ |
| 844 | init_registers(dev); |
| 845 | |
| 846 | gfar_set_mac_address(dev); |
| 847 | |
| 848 | err = init_phy(dev); |
| 849 | |
| 850 | if(err) |
| 851 | return err; |
| 852 | |
| 853 | err = startup_gfar(dev); |
| 854 | |
| 855 | netif_start_queue(dev); |
| 856 | |
| 857 | return err; |
| 858 | } |
| 859 | |
| 860 | /* This is called by the kernel when a frame is ready for transmission. */ |
| 861 | /* It is pointed to by the dev->hard_start_xmit function pointer */ |
| 862 | static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev) |
| 863 | { |
| 864 | struct gfar_private *priv = netdev_priv(dev); |
| 865 | struct txbd8 *txbdp; |
| 866 | |
| 867 | /* Update transmit stats */ |
| 868 | priv->stats.tx_bytes += skb->len; |
| 869 | |
| 870 | /* Lock priv now */ |
| 871 | spin_lock_irq(&priv->lock); |
| 872 | |
| 873 | /* Point at the first free tx descriptor */ |
| 874 | txbdp = priv->cur_tx; |
| 875 | |
| 876 | /* Clear all but the WRAP status flags */ |
| 877 | txbdp->status &= TXBD_WRAP; |
| 878 | |
| 879 | /* Set buffer length and pointer */ |
| 880 | txbdp->length = skb->len; |
| 881 | txbdp->bufPtr = dma_map_single(NULL, skb->data, |
| 882 | skb->len, DMA_TO_DEVICE); |
| 883 | |
| 884 | /* Save the skb pointer so we can free it later */ |
| 885 | priv->tx_skbuff[priv->skb_curtx] = skb; |
| 886 | |
| 887 | /* Update the current skb pointer (wrapping if this was the last) */ |
| 888 | priv->skb_curtx = |
| 889 | (priv->skb_curtx + 1) & TX_RING_MOD_MASK(priv->tx_ring_size); |
| 890 | |
| 891 | /* Flag the BD as interrupt-causing */ |
| 892 | txbdp->status |= TXBD_INTERRUPT; |
| 893 | |
| 894 | /* Flag the BD as ready to go, last in frame, and */ |
| 895 | /* in need of CRC */ |
| 896 | txbdp->status |= (TXBD_READY | TXBD_LAST | TXBD_CRC); |
| 897 | |
| 898 | dev->trans_start = jiffies; |
| 899 | |
| 900 | /* If this was the last BD in the ring, the next one */ |
| 901 | /* is at the beginning of the ring */ |
| 902 | if (txbdp->status & TXBD_WRAP) |
| 903 | txbdp = priv->tx_bd_base; |
| 904 | else |
| 905 | txbdp++; |
| 906 | |
| 907 | /* If the next BD still needs to be cleaned up, then the bds |
| 908 | are full. We need to tell the kernel to stop sending us stuff. */ |
| 909 | if (txbdp == priv->dirty_tx) { |
| 910 | netif_stop_queue(dev); |
| 911 | |
| 912 | priv->stats.tx_fifo_errors++; |
| 913 | } |
| 914 | |
| 915 | /* Update the current txbd to the next one */ |
| 916 | priv->cur_tx = txbdp; |
| 917 | |
| 918 | /* Tell the DMA to go go go */ |
| 919 | gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT); |
| 920 | |
| 921 | /* Unlock priv */ |
| 922 | spin_unlock_irq(&priv->lock); |
| 923 | |
| 924 | return 0; |
| 925 | } |
| 926 | |
| 927 | /* Stops the kernel queue, and halts the controller */ |
| 928 | static int gfar_close(struct net_device *dev) |
| 929 | { |
| 930 | struct gfar_private *priv = netdev_priv(dev); |
| 931 | stop_gfar(dev); |
| 932 | |
| 933 | /* Shutdown the PHY */ |
| 934 | if (priv->mii_info->phyinfo->close) |
| 935 | priv->mii_info->phyinfo->close(priv->mii_info); |
| 936 | |
| 937 | kfree(priv->mii_info); |
| 938 | |
| 939 | netif_stop_queue(dev); |
| 940 | |
| 941 | return 0; |
| 942 | } |
| 943 | |
| 944 | /* returns a net_device_stats structure pointer */ |
| 945 | static struct net_device_stats * gfar_get_stats(struct net_device *dev) |
| 946 | { |
| 947 | struct gfar_private *priv = netdev_priv(dev); |
| 948 | |
| 949 | return &(priv->stats); |
| 950 | } |
| 951 | |
| 952 | /* Changes the mac address if the controller is not running. */ |
| 953 | int gfar_set_mac_address(struct net_device *dev) |
| 954 | { |
| 955 | struct gfar_private *priv = netdev_priv(dev); |
| 956 | int i; |
| 957 | char tmpbuf[MAC_ADDR_LEN]; |
| 958 | u32 tempval; |
| 959 | |
| 960 | /* Now copy it into the mac registers backwards, cuz */ |
| 961 | /* little endian is silly */ |
| 962 | for (i = 0; i < MAC_ADDR_LEN; i++) |
| 963 | tmpbuf[MAC_ADDR_LEN - 1 - i] = dev->dev_addr[i]; |
| 964 | |
| 965 | gfar_write(&priv->regs->macstnaddr1, *((u32 *) (tmpbuf))); |
| 966 | |
| 967 | tempval = *((u32 *) (tmpbuf + 4)); |
| 968 | |
| 969 | gfar_write(&priv->regs->macstnaddr2, tempval); |
| 970 | |
| 971 | return 0; |
| 972 | } |
| 973 | |
| 974 | |
| 975 | static int gfar_change_mtu(struct net_device *dev, int new_mtu) |
| 976 | { |
| 977 | int tempsize, tempval; |
| 978 | struct gfar_private *priv = netdev_priv(dev); |
| 979 | int oldsize = priv->rx_buffer_size; |
| 980 | int frame_size = new_mtu + 18; |
| 981 | |
| 982 | if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) { |
| 983 | printk(KERN_ERR "%s: Invalid MTU setting\n", dev->name); |
| 984 | return -EINVAL; |
| 985 | } |
| 986 | |
| 987 | tempsize = |
| 988 | (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) + |
| 989 | INCREMENTAL_BUFFER_SIZE; |
| 990 | |
| 991 | /* Only stop and start the controller if it isn't already |
| 992 | * stopped */ |
| 993 | if ((oldsize != tempsize) && (dev->flags & IFF_UP)) |
| 994 | stop_gfar(dev); |
| 995 | |
| 996 | priv->rx_buffer_size = tempsize; |
| 997 | |
| 998 | dev->mtu = new_mtu; |
| 999 | |
| 1000 | gfar_write(&priv->regs->mrblr, priv->rx_buffer_size); |
| 1001 | gfar_write(&priv->regs->maxfrm, priv->rx_buffer_size); |
| 1002 | |
| 1003 | /* If the mtu is larger than the max size for standard |
| 1004 | * ethernet frames (ie, a jumbo frame), then set maccfg2 |
| 1005 | * to allow huge frames, and to check the length */ |
| 1006 | tempval = gfar_read(&priv->regs->maccfg2); |
| 1007 | |
| 1008 | if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE) |
| 1009 | tempval |= (MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK); |
| 1010 | else |
| 1011 | tempval &= ~(MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK); |
| 1012 | |
| 1013 | gfar_write(&priv->regs->maccfg2, tempval); |
| 1014 | |
| 1015 | if ((oldsize != tempsize) && (dev->flags & IFF_UP)) |
| 1016 | startup_gfar(dev); |
| 1017 | |
| 1018 | return 0; |
| 1019 | } |
| 1020 | |
| 1021 | /* gfar_timeout gets called when a packet has not been |
| 1022 | * transmitted after a set amount of time. |
| 1023 | * For now, assume that clearing out all the structures, and |
| 1024 | * starting over will fix the problem. */ |
| 1025 | static void gfar_timeout(struct net_device *dev) |
| 1026 | { |
| 1027 | struct gfar_private *priv = netdev_priv(dev); |
| 1028 | |
| 1029 | priv->stats.tx_errors++; |
| 1030 | |
| 1031 | if (dev->flags & IFF_UP) { |
| 1032 | stop_gfar(dev); |
| 1033 | startup_gfar(dev); |
| 1034 | } |
| 1035 | |
| 1036 | netif_schedule(dev); |
| 1037 | } |
| 1038 | |
| 1039 | /* Interrupt Handler for Transmit complete */ |
| 1040 | static irqreturn_t gfar_transmit(int irq, void *dev_id, struct pt_regs *regs) |
| 1041 | { |
| 1042 | struct net_device *dev = (struct net_device *) dev_id; |
| 1043 | struct gfar_private *priv = netdev_priv(dev); |
| 1044 | struct txbd8 *bdp; |
| 1045 | |
| 1046 | /* Clear IEVENT */ |
| 1047 | gfar_write(&priv->regs->ievent, IEVENT_TX_MASK); |
| 1048 | |
| 1049 | /* Lock priv */ |
| 1050 | spin_lock(&priv->lock); |
| 1051 | bdp = priv->dirty_tx; |
| 1052 | while ((bdp->status & TXBD_READY) == 0) { |
| 1053 | /* If dirty_tx and cur_tx are the same, then either the */ |
| 1054 | /* ring is empty or full now (it could only be full in the beginning, */ |
| 1055 | /* obviously). If it is empty, we are done. */ |
| 1056 | if ((bdp == priv->cur_tx) && (netif_queue_stopped(dev) == 0)) |
| 1057 | break; |
| 1058 | |
| 1059 | priv->stats.tx_packets++; |
| 1060 | |
| 1061 | /* Deferred means some collisions occurred during transmit, */ |
| 1062 | /* but we eventually sent the packet. */ |
| 1063 | if (bdp->status & TXBD_DEF) |
| 1064 | priv->stats.collisions++; |
| 1065 | |
| 1066 | /* Free the sk buffer associated with this TxBD */ |
| 1067 | dev_kfree_skb_irq(priv->tx_skbuff[priv->skb_dirtytx]); |
| 1068 | priv->tx_skbuff[priv->skb_dirtytx] = NULL; |
| 1069 | priv->skb_dirtytx = |
| 1070 | (priv->skb_dirtytx + |
| 1071 | 1) & TX_RING_MOD_MASK(priv->tx_ring_size); |
| 1072 | |
| 1073 | /* update bdp to point at next bd in the ring (wrapping if necessary) */ |
| 1074 | if (bdp->status & TXBD_WRAP) |
| 1075 | bdp = priv->tx_bd_base; |
| 1076 | else |
| 1077 | bdp++; |
| 1078 | |
| 1079 | /* Move dirty_tx to be the next bd */ |
| 1080 | priv->dirty_tx = bdp; |
| 1081 | |
| 1082 | /* We freed a buffer, so now we can restart transmission */ |
| 1083 | if (netif_queue_stopped(dev)) |
| 1084 | netif_wake_queue(dev); |
| 1085 | } /* while ((bdp->status & TXBD_READY) == 0) */ |
| 1086 | |
| 1087 | /* If we are coalescing the interrupts, reset the timer */ |
| 1088 | /* Otherwise, clear it */ |
| 1089 | if (priv->txcoalescing) |
| 1090 | gfar_write(&priv->regs->txic, |
| 1091 | mk_ic_value(priv->txcount, priv->txtime)); |
| 1092 | else |
| 1093 | gfar_write(&priv->regs->txic, 0); |
| 1094 | |
| 1095 | spin_unlock(&priv->lock); |
| 1096 | |
| 1097 | return IRQ_HANDLED; |
| 1098 | } |
| 1099 | |
| 1100 | struct sk_buff * gfar_new_skb(struct net_device *dev, struct rxbd8 *bdp) |
| 1101 | { |
| 1102 | struct gfar_private *priv = netdev_priv(dev); |
| 1103 | struct sk_buff *skb = NULL; |
| 1104 | unsigned int timeout = SKB_ALLOC_TIMEOUT; |
| 1105 | |
| 1106 | /* We have to allocate the skb, so keep trying till we succeed */ |
| 1107 | while ((!skb) && timeout--) |
| 1108 | skb = dev_alloc_skb(priv->rx_buffer_size + RXBUF_ALIGNMENT); |
| 1109 | |
| 1110 | if (skb == NULL) |
| 1111 | return NULL; |
| 1112 | |
| 1113 | /* We need the data buffer to be aligned properly. We will reserve |
| 1114 | * as many bytes as needed to align the data properly |
| 1115 | */ |
| 1116 | skb_reserve(skb, |
| 1117 | RXBUF_ALIGNMENT - |
| 1118 | (((unsigned) skb->data) & (RXBUF_ALIGNMENT - 1))); |
| 1119 | |
| 1120 | skb->dev = dev; |
| 1121 | |
| 1122 | bdp->bufPtr = dma_map_single(NULL, skb->data, |
| 1123 | priv->rx_buffer_size + RXBUF_ALIGNMENT, |
| 1124 | DMA_FROM_DEVICE); |
| 1125 | |
| 1126 | bdp->length = 0; |
| 1127 | |
| 1128 | /* Mark the buffer empty */ |
| 1129 | bdp->status |= (RXBD_EMPTY | RXBD_INTERRUPT); |
| 1130 | |
| 1131 | return skb; |
| 1132 | } |
| 1133 | |
| 1134 | static inline void count_errors(unsigned short status, struct gfar_private *priv) |
| 1135 | { |
| 1136 | struct net_device_stats *stats = &priv->stats; |
| 1137 | struct gfar_extra_stats *estats = &priv->extra_stats; |
| 1138 | |
| 1139 | /* If the packet was truncated, none of the other errors |
| 1140 | * matter */ |
| 1141 | if (status & RXBD_TRUNCATED) { |
| 1142 | stats->rx_length_errors++; |
| 1143 | |
| 1144 | estats->rx_trunc++; |
| 1145 | |
| 1146 | return; |
| 1147 | } |
| 1148 | /* Count the errors, if there were any */ |
| 1149 | if (status & (RXBD_LARGE | RXBD_SHORT)) { |
| 1150 | stats->rx_length_errors++; |
| 1151 | |
| 1152 | if (status & RXBD_LARGE) |
| 1153 | estats->rx_large++; |
| 1154 | else |
| 1155 | estats->rx_short++; |
| 1156 | } |
| 1157 | if (status & RXBD_NONOCTET) { |
| 1158 | stats->rx_frame_errors++; |
| 1159 | estats->rx_nonoctet++; |
| 1160 | } |
| 1161 | if (status & RXBD_CRCERR) { |
| 1162 | estats->rx_crcerr++; |
| 1163 | stats->rx_crc_errors++; |
| 1164 | } |
| 1165 | if (status & RXBD_OVERRUN) { |
| 1166 | estats->rx_overrun++; |
| 1167 | stats->rx_crc_errors++; |
| 1168 | } |
| 1169 | } |
| 1170 | |
| 1171 | irqreturn_t gfar_receive(int irq, void *dev_id, struct pt_regs *regs) |
| 1172 | { |
| 1173 | struct net_device *dev = (struct net_device *) dev_id; |
| 1174 | struct gfar_private *priv = netdev_priv(dev); |
| 1175 | |
| 1176 | #ifdef CONFIG_GFAR_NAPI |
| 1177 | u32 tempval; |
| 1178 | #endif |
| 1179 | |
| 1180 | /* Clear IEVENT, so rx interrupt isn't called again |
| 1181 | * because of this interrupt */ |
| 1182 | gfar_write(&priv->regs->ievent, IEVENT_RX_MASK); |
| 1183 | |
| 1184 | /* support NAPI */ |
| 1185 | #ifdef CONFIG_GFAR_NAPI |
| 1186 | if (netif_rx_schedule_prep(dev)) { |
| 1187 | tempval = gfar_read(&priv->regs->imask); |
| 1188 | tempval &= IMASK_RX_DISABLED; |
| 1189 | gfar_write(&priv->regs->imask, tempval); |
| 1190 | |
| 1191 | __netif_rx_schedule(dev); |
| 1192 | } else { |
| 1193 | #ifdef VERBOSE_GFAR_ERRORS |
| 1194 | printk(KERN_DEBUG "%s: receive called twice (%x)[%x]\n", |
| 1195 | dev->name, gfar_read(&priv->regs->ievent), |
| 1196 | gfar_read(&priv->regs->imask)); |
| 1197 | #endif |
| 1198 | } |
| 1199 | #else |
| 1200 | |
| 1201 | spin_lock(&priv->lock); |
| 1202 | gfar_clean_rx_ring(dev, priv->rx_ring_size); |
| 1203 | |
| 1204 | /* If we are coalescing interrupts, update the timer */ |
| 1205 | /* Otherwise, clear it */ |
| 1206 | if (priv->rxcoalescing) |
| 1207 | gfar_write(&priv->regs->rxic, |
| 1208 | mk_ic_value(priv->rxcount, priv->rxtime)); |
| 1209 | else |
| 1210 | gfar_write(&priv->regs->rxic, 0); |
| 1211 | |
| 1212 | /* Just in case we need to wake the ring param changer */ |
| 1213 | priv->rxclean = 1; |
| 1214 | |
| 1215 | spin_unlock(&priv->lock); |
| 1216 | #endif |
| 1217 | |
| 1218 | return IRQ_HANDLED; |
| 1219 | } |
| 1220 | |
| 1221 | |
| 1222 | /* gfar_process_frame() -- handle one incoming packet if skb |
| 1223 | * isn't NULL. */ |
| 1224 | static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb, |
| 1225 | int length) |
| 1226 | { |
| 1227 | struct gfar_private *priv = netdev_priv(dev); |
| 1228 | |
| 1229 | if (skb == NULL) { |
| 1230 | #ifdef BRIEF_GFAR_ERRORS |
| 1231 | printk(KERN_WARNING "%s: Missing skb!!.\n", |
| 1232 | dev->name); |
| 1233 | #endif |
| 1234 | priv->stats.rx_dropped++; |
| 1235 | priv->extra_stats.rx_skbmissing++; |
| 1236 | } else { |
| 1237 | /* Prep the skb for the packet */ |
| 1238 | skb_put(skb, length); |
| 1239 | |
| 1240 | /* Tell the skb what kind of packet this is */ |
| 1241 | skb->protocol = eth_type_trans(skb, dev); |
| 1242 | |
| 1243 | /* Send the packet up the stack */ |
| 1244 | if (RECEIVE(skb) == NET_RX_DROP) { |
| 1245 | priv->extra_stats.kernel_dropped++; |
| 1246 | } |
| 1247 | } |
| 1248 | |
| 1249 | return 0; |
| 1250 | } |
| 1251 | |
| 1252 | /* gfar_clean_rx_ring() -- Processes each frame in the rx ring |
| 1253 | * until the budget/quota has been reached. Returns the number |
| 1254 | * of frames handled |
| 1255 | */ |
| 1256 | static int gfar_clean_rx_ring(struct net_device *dev, int rx_work_limit) |
| 1257 | { |
| 1258 | struct rxbd8 *bdp; |
| 1259 | struct sk_buff *skb; |
| 1260 | u16 pkt_len; |
| 1261 | int howmany = 0; |
| 1262 | struct gfar_private *priv = netdev_priv(dev); |
| 1263 | |
| 1264 | /* Get the first full descriptor */ |
| 1265 | bdp = priv->cur_rx; |
| 1266 | |
| 1267 | while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) { |
| 1268 | skb = priv->rx_skbuff[priv->skb_currx]; |
| 1269 | |
| 1270 | if (!(bdp->status & |
| 1271 | (RXBD_LARGE | RXBD_SHORT | RXBD_NONOCTET |
| 1272 | | RXBD_CRCERR | RXBD_OVERRUN | RXBD_TRUNCATED))) { |
| 1273 | /* Increment the number of packets */ |
| 1274 | priv->stats.rx_packets++; |
| 1275 | howmany++; |
| 1276 | |
| 1277 | /* Remove the FCS from the packet length */ |
| 1278 | pkt_len = bdp->length - 4; |
| 1279 | |
| 1280 | gfar_process_frame(dev, skb, pkt_len); |
| 1281 | |
| 1282 | priv->stats.rx_bytes += pkt_len; |
| 1283 | } else { |
| 1284 | count_errors(bdp->status, priv); |
| 1285 | |
| 1286 | if (skb) |
| 1287 | dev_kfree_skb_any(skb); |
| 1288 | |
| 1289 | priv->rx_skbuff[priv->skb_currx] = NULL; |
| 1290 | } |
| 1291 | |
| 1292 | dev->last_rx = jiffies; |
| 1293 | |
| 1294 | /* Clear the status flags for this buffer */ |
| 1295 | bdp->status &= ~RXBD_STATS; |
| 1296 | |
| 1297 | /* Add another skb for the future */ |
| 1298 | skb = gfar_new_skb(dev, bdp); |
| 1299 | priv->rx_skbuff[priv->skb_currx] = skb; |
| 1300 | |
| 1301 | /* Update to the next pointer */ |
| 1302 | if (bdp->status & RXBD_WRAP) |
| 1303 | bdp = priv->rx_bd_base; |
| 1304 | else |
| 1305 | bdp++; |
| 1306 | |
| 1307 | /* update to point at the next skb */ |
| 1308 | priv->skb_currx = |
| 1309 | (priv->skb_currx + |
| 1310 | 1) & RX_RING_MOD_MASK(priv->rx_ring_size); |
| 1311 | |
| 1312 | } |
| 1313 | |
| 1314 | /* Update the current rxbd pointer to be the next one */ |
| 1315 | priv->cur_rx = bdp; |
| 1316 | |
| 1317 | /* If no packets have arrived since the |
| 1318 | * last one we processed, clear the IEVENT RX and |
| 1319 | * BSY bits so that another interrupt won't be |
| 1320 | * generated when we set IMASK */ |
| 1321 | if (bdp->status & RXBD_EMPTY) |
| 1322 | gfar_write(&priv->regs->ievent, IEVENT_RX_MASK); |
| 1323 | |
| 1324 | return howmany; |
| 1325 | } |
| 1326 | |
| 1327 | #ifdef CONFIG_GFAR_NAPI |
| 1328 | static int gfar_poll(struct net_device *dev, int *budget) |
| 1329 | { |
| 1330 | int howmany; |
| 1331 | struct gfar_private *priv = netdev_priv(dev); |
| 1332 | int rx_work_limit = *budget; |
| 1333 | |
| 1334 | if (rx_work_limit > dev->quota) |
| 1335 | rx_work_limit = dev->quota; |
| 1336 | |
| 1337 | howmany = gfar_clean_rx_ring(dev, rx_work_limit); |
| 1338 | |
| 1339 | dev->quota -= howmany; |
| 1340 | rx_work_limit -= howmany; |
| 1341 | *budget -= howmany; |
| 1342 | |
| 1343 | if (rx_work_limit >= 0) { |
| 1344 | netif_rx_complete(dev); |
| 1345 | |
| 1346 | /* Clear the halt bit in RSTAT */ |
| 1347 | gfar_write(&priv->regs->rstat, RSTAT_CLEAR_RHALT); |
| 1348 | |
| 1349 | gfar_write(&priv->regs->imask, IMASK_DEFAULT); |
| 1350 | |
| 1351 | /* If we are coalescing interrupts, update the timer */ |
| 1352 | /* Otherwise, clear it */ |
| 1353 | if (priv->rxcoalescing) |
| 1354 | gfar_write(&priv->regs->rxic, |
| 1355 | mk_ic_value(priv->rxcount, priv->rxtime)); |
| 1356 | else |
| 1357 | gfar_write(&priv->regs->rxic, 0); |
| 1358 | |
| 1359 | /* Signal to the ring size changer that it's safe to go */ |
| 1360 | priv->rxclean = 1; |
| 1361 | } |
| 1362 | |
| 1363 | return (rx_work_limit < 0) ? 1 : 0; |
| 1364 | } |
| 1365 | #endif |
| 1366 | |
| 1367 | /* The interrupt handler for devices with one interrupt */ |
| 1368 | static irqreturn_t gfar_interrupt(int irq, void *dev_id, struct pt_regs *regs) |
| 1369 | { |
| 1370 | struct net_device *dev = dev_id; |
| 1371 | struct gfar_private *priv = netdev_priv(dev); |
| 1372 | |
| 1373 | /* Save ievent for future reference */ |
| 1374 | u32 events = gfar_read(&priv->regs->ievent); |
| 1375 | |
| 1376 | /* Clear IEVENT */ |
| 1377 | gfar_write(&priv->regs->ievent, events); |
| 1378 | |
| 1379 | /* Check for reception */ |
| 1380 | if ((events & IEVENT_RXF0) || (events & IEVENT_RXB0)) |
| 1381 | gfar_receive(irq, dev_id, regs); |
| 1382 | |
| 1383 | /* Check for transmit completion */ |
| 1384 | if ((events & IEVENT_TXF) || (events & IEVENT_TXB)) |
| 1385 | gfar_transmit(irq, dev_id, regs); |
| 1386 | |
| 1387 | /* Update error statistics */ |
| 1388 | if (events & IEVENT_TXE) { |
| 1389 | priv->stats.tx_errors++; |
| 1390 | |
| 1391 | if (events & IEVENT_LC) |
| 1392 | priv->stats.tx_window_errors++; |
| 1393 | if (events & IEVENT_CRL) |
| 1394 | priv->stats.tx_aborted_errors++; |
| 1395 | if (events & IEVENT_XFUN) { |
| 1396 | #ifdef VERBOSE_GFAR_ERRORS |
| 1397 | printk(KERN_WARNING "%s: tx underrun. dropped packet\n", |
| 1398 | dev->name); |
| 1399 | #endif |
| 1400 | priv->stats.tx_dropped++; |
| 1401 | priv->extra_stats.tx_underrun++; |
| 1402 | |
| 1403 | /* Reactivate the Tx Queues */ |
| 1404 | gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT); |
| 1405 | } |
| 1406 | } |
| 1407 | if (events & IEVENT_BSY) { |
| 1408 | priv->stats.rx_errors++; |
| 1409 | priv->extra_stats.rx_bsy++; |
| 1410 | |
| 1411 | gfar_receive(irq, dev_id, regs); |
| 1412 | |
| 1413 | #ifndef CONFIG_GFAR_NAPI |
| 1414 | /* Clear the halt bit in RSTAT */ |
| 1415 | gfar_write(&priv->regs->rstat, RSTAT_CLEAR_RHALT); |
| 1416 | #endif |
| 1417 | |
| 1418 | #ifdef VERBOSE_GFAR_ERRORS |
| 1419 | printk(KERN_DEBUG "%s: busy error (rhalt: %x)\n", dev->name, |
| 1420 | gfar_read(&priv->regs->rstat)); |
| 1421 | #endif |
| 1422 | } |
| 1423 | if (events & IEVENT_BABR) { |
| 1424 | priv->stats.rx_errors++; |
| 1425 | priv->extra_stats.rx_babr++; |
| 1426 | |
| 1427 | #ifdef VERBOSE_GFAR_ERRORS |
| 1428 | printk(KERN_DEBUG "%s: babbling error\n", dev->name); |
| 1429 | #endif |
| 1430 | } |
| 1431 | if (events & IEVENT_EBERR) { |
| 1432 | priv->extra_stats.eberr++; |
| 1433 | #ifdef VERBOSE_GFAR_ERRORS |
| 1434 | printk(KERN_DEBUG "%s: EBERR\n", dev->name); |
| 1435 | #endif |
| 1436 | } |
| 1437 | if (events & IEVENT_RXC) { |
| 1438 | #ifdef VERBOSE_GFAR_ERRORS |
| 1439 | printk(KERN_DEBUG "%s: control frame\n", dev->name); |
| 1440 | #endif |
| 1441 | } |
| 1442 | |
| 1443 | if (events & IEVENT_BABT) { |
| 1444 | priv->extra_stats.tx_babt++; |
| 1445 | #ifdef VERBOSE_GFAR_ERRORS |
| 1446 | printk(KERN_DEBUG "%s: babt error\n", dev->name); |
| 1447 | #endif |
| 1448 | } |
| 1449 | |
| 1450 | return IRQ_HANDLED; |
| 1451 | } |
| 1452 | |
| 1453 | static irqreturn_t phy_interrupt(int irq, void *dev_id, struct pt_regs *regs) |
| 1454 | { |
| 1455 | struct net_device *dev = (struct net_device *) dev_id; |
| 1456 | struct gfar_private *priv = netdev_priv(dev); |
| 1457 | |
| 1458 | /* Clear the interrupt */ |
| 1459 | mii_clear_phy_interrupt(priv->mii_info); |
| 1460 | |
| 1461 | /* Disable PHY interrupts */ |
| 1462 | mii_configure_phy_interrupt(priv->mii_info, |
| 1463 | MII_INTERRUPT_DISABLED); |
| 1464 | |
| 1465 | /* Schedule the phy change */ |
| 1466 | schedule_work(&priv->tq); |
| 1467 | |
| 1468 | return IRQ_HANDLED; |
| 1469 | } |
| 1470 | |
| 1471 | /* Scheduled by the phy_interrupt/timer to handle PHY changes */ |
| 1472 | static void gfar_phy_change(void *data) |
| 1473 | { |
| 1474 | struct net_device *dev = (struct net_device *) data; |
| 1475 | struct gfar_private *priv = netdev_priv(dev); |
| 1476 | int result = 0; |
| 1477 | |
| 1478 | /* Delay to give the PHY a chance to change the |
| 1479 | * register state */ |
| 1480 | msleep(1); |
| 1481 | |
| 1482 | /* Update the link, speed, duplex */ |
| 1483 | result = priv->mii_info->phyinfo->read_status(priv->mii_info); |
| 1484 | |
| 1485 | /* Adjust the known status as long as the link |
| 1486 | * isn't still coming up */ |
| 1487 | if((0 == result) || (priv->mii_info->link == 0)) |
| 1488 | adjust_link(dev); |
| 1489 | |
| 1490 | /* Reenable interrupts, if needed */ |
| 1491 | if (priv->einfo->board_flags & FSL_GIANFAR_BRD_HAS_PHY_INTR) |
| 1492 | mii_configure_phy_interrupt(priv->mii_info, |
| 1493 | MII_INTERRUPT_ENABLED); |
| 1494 | } |
| 1495 | |
| 1496 | /* Called every so often on systems that don't interrupt |
| 1497 | * the core for PHY changes */ |
| 1498 | static void gfar_phy_timer(unsigned long data) |
| 1499 | { |
| 1500 | struct net_device *dev = (struct net_device *) data; |
| 1501 | struct gfar_private *priv = netdev_priv(dev); |
| 1502 | |
| 1503 | schedule_work(&priv->tq); |
| 1504 | |
| 1505 | mod_timer(&priv->phy_info_timer, jiffies + |
| 1506 | GFAR_PHY_CHANGE_TIME * HZ); |
| 1507 | } |
| 1508 | |
| 1509 | /* Keep trying aneg for some time |
| 1510 | * If, after GFAR_AN_TIMEOUT seconds, it has not |
| 1511 | * finished, we switch to forced. |
| 1512 | * Either way, once the process has completed, we either |
| 1513 | * request the interrupt, or switch the timer over to |
| 1514 | * using gfar_phy_timer to check status */ |
| 1515 | static void gfar_phy_startup_timer(unsigned long data) |
| 1516 | { |
| 1517 | int result; |
| 1518 | static int secondary = GFAR_AN_TIMEOUT; |
| 1519 | struct gfar_mii_info *mii_info = (struct gfar_mii_info *)data; |
| 1520 | struct gfar_private *priv = netdev_priv(mii_info->dev); |
| 1521 | |
| 1522 | /* Configure the Auto-negotiation */ |
| 1523 | result = mii_info->phyinfo->config_aneg(mii_info); |
| 1524 | |
| 1525 | /* If autonegotiation failed to start, and |
| 1526 | * we haven't timed out, reset the timer, and return */ |
| 1527 | if (result && secondary--) { |
| 1528 | mod_timer(&priv->phy_info_timer, jiffies + HZ); |
| 1529 | return; |
| 1530 | } else if (result) { |
| 1531 | /* Couldn't start autonegotiation. |
| 1532 | * Try switching to forced */ |
| 1533 | mii_info->autoneg = 0; |
| 1534 | result = mii_info->phyinfo->config_aneg(mii_info); |
| 1535 | |
| 1536 | /* Forcing failed! Give up */ |
| 1537 | if(result) { |
| 1538 | printk(KERN_ERR "%s: Forcing failed!\n", |
| 1539 | mii_info->dev->name); |
| 1540 | return; |
| 1541 | } |
| 1542 | } |
| 1543 | |
| 1544 | /* Kill the timer so it can be restarted */ |
| 1545 | del_timer_sync(&priv->phy_info_timer); |
| 1546 | |
| 1547 | /* Grab the PHY interrupt, if necessary/possible */ |
| 1548 | if (priv->einfo->board_flags & FSL_GIANFAR_BRD_HAS_PHY_INTR) { |
| 1549 | if (request_irq(priv->einfo->interruptPHY, |
| 1550 | phy_interrupt, |
| 1551 | SA_SHIRQ, |
| 1552 | "phy_interrupt", |
| 1553 | mii_info->dev) < 0) { |
| 1554 | printk(KERN_ERR "%s: Can't get IRQ %d (PHY)\n", |
| 1555 | mii_info->dev->name, |
| 1556 | priv->einfo->interruptPHY); |
| 1557 | } else { |
| 1558 | mii_configure_phy_interrupt(priv->mii_info, |
| 1559 | MII_INTERRUPT_ENABLED); |
| 1560 | return; |
| 1561 | } |
| 1562 | } |
| 1563 | |
| 1564 | /* Start the timer again, this time in order to |
| 1565 | * handle a change in status */ |
| 1566 | init_timer(&priv->phy_info_timer); |
| 1567 | priv->phy_info_timer.function = &gfar_phy_timer; |
| 1568 | priv->phy_info_timer.data = (unsigned long) mii_info->dev; |
| 1569 | mod_timer(&priv->phy_info_timer, jiffies + |
| 1570 | GFAR_PHY_CHANGE_TIME * HZ); |
| 1571 | } |
| 1572 | |
| 1573 | /* Called every time the controller might need to be made |
| 1574 | * aware of new link state. The PHY code conveys this |
| 1575 | * information through variables in the priv structure, and this |
| 1576 | * function converts those variables into the appropriate |
| 1577 | * register values, and can bring down the device if needed. |
| 1578 | */ |
| 1579 | static void adjust_link(struct net_device *dev) |
| 1580 | { |
| 1581 | struct gfar_private *priv = netdev_priv(dev); |
| 1582 | struct gfar *regs = priv->regs; |
| 1583 | u32 tempval; |
| 1584 | struct gfar_mii_info *mii_info = priv->mii_info; |
| 1585 | |
| 1586 | if (mii_info->link) { |
| 1587 | /* Now we make sure that we can be in full duplex mode. |
| 1588 | * If not, we operate in half-duplex mode. */ |
| 1589 | if (mii_info->duplex != priv->oldduplex) { |
| 1590 | if (!(mii_info->duplex)) { |
| 1591 | tempval = gfar_read(®s->maccfg2); |
| 1592 | tempval &= ~(MACCFG2_FULL_DUPLEX); |
| 1593 | gfar_write(®s->maccfg2, tempval); |
| 1594 | |
| 1595 | printk(KERN_INFO "%s: Half Duplex\n", |
| 1596 | dev->name); |
| 1597 | } else { |
| 1598 | tempval = gfar_read(®s->maccfg2); |
| 1599 | tempval |= MACCFG2_FULL_DUPLEX; |
| 1600 | gfar_write(®s->maccfg2, tempval); |
| 1601 | |
| 1602 | printk(KERN_INFO "%s: Full Duplex\n", |
| 1603 | dev->name); |
| 1604 | } |
| 1605 | |
| 1606 | priv->oldduplex = mii_info->duplex; |
| 1607 | } |
| 1608 | |
| 1609 | if (mii_info->speed != priv->oldspeed) { |
| 1610 | switch (mii_info->speed) { |
| 1611 | case 1000: |
| 1612 | tempval = gfar_read(®s->maccfg2); |
| 1613 | tempval = |
| 1614 | ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII); |
| 1615 | gfar_write(®s->maccfg2, tempval); |
| 1616 | break; |
| 1617 | case 100: |
| 1618 | case 10: |
| 1619 | tempval = gfar_read(®s->maccfg2); |
| 1620 | tempval = |
| 1621 | ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII); |
| 1622 | gfar_write(®s->maccfg2, tempval); |
| 1623 | break; |
| 1624 | default: |
| 1625 | printk(KERN_WARNING |
| 1626 | "%s: Ack! Speed (%d) is not 10/100/1000!\n", |
| 1627 | dev->name, mii_info->speed); |
| 1628 | break; |
| 1629 | } |
| 1630 | |
| 1631 | printk(KERN_INFO "%s: Speed %dBT\n", dev->name, |
| 1632 | mii_info->speed); |
| 1633 | |
| 1634 | priv->oldspeed = mii_info->speed; |
| 1635 | } |
| 1636 | |
| 1637 | if (!priv->oldlink) { |
| 1638 | printk(KERN_INFO "%s: Link is up\n", dev->name); |
| 1639 | priv->oldlink = 1; |
| 1640 | netif_carrier_on(dev); |
| 1641 | netif_schedule(dev); |
| 1642 | } |
| 1643 | } else { |
| 1644 | if (priv->oldlink) { |
| 1645 | printk(KERN_INFO "%s: Link is down\n", dev->name); |
| 1646 | priv->oldlink = 0; |
| 1647 | priv->oldspeed = 0; |
| 1648 | priv->oldduplex = -1; |
| 1649 | netif_carrier_off(dev); |
| 1650 | } |
| 1651 | } |
| 1652 | } |
| 1653 | |
| 1654 | |
| 1655 | /* Update the hash table based on the current list of multicast |
| 1656 | * addresses we subscribe to. Also, change the promiscuity of |
| 1657 | * the device based on the flags (this function is called |
| 1658 | * whenever dev->flags is changed */ |
| 1659 | static void gfar_set_multi(struct net_device *dev) |
| 1660 | { |
| 1661 | struct dev_mc_list *mc_ptr; |
| 1662 | struct gfar_private *priv = netdev_priv(dev); |
| 1663 | struct gfar *regs = priv->regs; |
| 1664 | u32 tempval; |
| 1665 | |
| 1666 | if(dev->flags & IFF_PROMISC) { |
| 1667 | printk(KERN_INFO "%s: Entering promiscuous mode.\n", |
| 1668 | dev->name); |
| 1669 | /* Set RCTRL to PROM */ |
| 1670 | tempval = gfar_read(®s->rctrl); |
| 1671 | tempval |= RCTRL_PROM; |
| 1672 | gfar_write(®s->rctrl, tempval); |
| 1673 | } else { |
| 1674 | /* Set RCTRL to not PROM */ |
| 1675 | tempval = gfar_read(®s->rctrl); |
| 1676 | tempval &= ~(RCTRL_PROM); |
| 1677 | gfar_write(®s->rctrl, tempval); |
| 1678 | } |
| 1679 | |
| 1680 | if(dev->flags & IFF_ALLMULTI) { |
| 1681 | /* Set the hash to rx all multicast frames */ |
| 1682 | gfar_write(®s->gaddr0, 0xffffffff); |
| 1683 | gfar_write(®s->gaddr1, 0xffffffff); |
| 1684 | gfar_write(®s->gaddr2, 0xffffffff); |
| 1685 | gfar_write(®s->gaddr3, 0xffffffff); |
| 1686 | gfar_write(®s->gaddr4, 0xffffffff); |
| 1687 | gfar_write(®s->gaddr5, 0xffffffff); |
| 1688 | gfar_write(®s->gaddr6, 0xffffffff); |
| 1689 | gfar_write(®s->gaddr7, 0xffffffff); |
| 1690 | } else { |
| 1691 | /* zero out the hash */ |
| 1692 | gfar_write(®s->gaddr0, 0x0); |
| 1693 | gfar_write(®s->gaddr1, 0x0); |
| 1694 | gfar_write(®s->gaddr2, 0x0); |
| 1695 | gfar_write(®s->gaddr3, 0x0); |
| 1696 | gfar_write(®s->gaddr4, 0x0); |
| 1697 | gfar_write(®s->gaddr5, 0x0); |
| 1698 | gfar_write(®s->gaddr6, 0x0); |
| 1699 | gfar_write(®s->gaddr7, 0x0); |
| 1700 | |
| 1701 | if(dev->mc_count == 0) |
| 1702 | return; |
| 1703 | |
| 1704 | /* Parse the list, and set the appropriate bits */ |
| 1705 | for(mc_ptr = dev->mc_list; mc_ptr; mc_ptr = mc_ptr->next) { |
| 1706 | gfar_set_hash_for_addr(dev, mc_ptr->dmi_addr); |
| 1707 | } |
| 1708 | } |
| 1709 | |
| 1710 | return; |
| 1711 | } |
| 1712 | |
| 1713 | /* Set the appropriate hash bit for the given addr */ |
| 1714 | /* The algorithm works like so: |
| 1715 | * 1) Take the Destination Address (ie the multicast address), and |
| 1716 | * do a CRC on it (little endian), and reverse the bits of the |
| 1717 | * result. |
| 1718 | * 2) Use the 8 most significant bits as a hash into a 256-entry |
| 1719 | * table. The table is controlled through 8 32-bit registers: |
| 1720 | * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is |
| 1721 | * gaddr7. This means that the 3 most significant bits in the |
| 1722 | * hash index which gaddr register to use, and the 5 other bits |
| 1723 | * indicate which bit (assuming an IBM numbering scheme, which |
| 1724 | * for PowerPC (tm) is usually the case) in the register holds |
| 1725 | * the entry. */ |
| 1726 | static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr) |
| 1727 | { |
| 1728 | u32 tempval; |
| 1729 | struct gfar_private *priv = netdev_priv(dev); |
| 1730 | struct gfar *regs = priv->regs; |
| 1731 | u32 *hash = ®s->gaddr0; |
| 1732 | u32 result = ether_crc(MAC_ADDR_LEN, addr); |
| 1733 | u8 whichreg = ((result >> 29) & 0x7); |
| 1734 | u8 whichbit = ((result >> 24) & 0x1f); |
| 1735 | u32 value = (1 << (31-whichbit)); |
| 1736 | |
| 1737 | tempval = gfar_read(&hash[whichreg]); |
| 1738 | tempval |= value; |
| 1739 | gfar_write(&hash[whichreg], tempval); |
| 1740 | |
| 1741 | return; |
| 1742 | } |
| 1743 | |
| 1744 | /* GFAR error interrupt handler */ |
| 1745 | static irqreturn_t gfar_error(int irq, void *dev_id, struct pt_regs *regs) |
| 1746 | { |
| 1747 | struct net_device *dev = dev_id; |
| 1748 | struct gfar_private *priv = netdev_priv(dev); |
| 1749 | |
| 1750 | /* Save ievent for future reference */ |
| 1751 | u32 events = gfar_read(&priv->regs->ievent); |
| 1752 | |
| 1753 | /* Clear IEVENT */ |
| 1754 | gfar_write(&priv->regs->ievent, IEVENT_ERR_MASK); |
| 1755 | |
| 1756 | /* Hmm... */ |
| 1757 | #if defined (BRIEF_GFAR_ERRORS) || defined (VERBOSE_GFAR_ERRORS) |
| 1758 | printk(KERN_DEBUG "%s: error interrupt (ievent=0x%08x imask=0x%08x)\n", |
| 1759 | dev->name, events, gfar_read(&priv->regs->imask)); |
| 1760 | #endif |
| 1761 | |
| 1762 | /* Update the error counters */ |
| 1763 | if (events & IEVENT_TXE) { |
| 1764 | priv->stats.tx_errors++; |
| 1765 | |
| 1766 | if (events & IEVENT_LC) |
| 1767 | priv->stats.tx_window_errors++; |
| 1768 | if (events & IEVENT_CRL) |
| 1769 | priv->stats.tx_aborted_errors++; |
| 1770 | if (events & IEVENT_XFUN) { |
| 1771 | #ifdef VERBOSE_GFAR_ERRORS |
| 1772 | printk(KERN_DEBUG "%s: underrun. packet dropped.\n", |
| 1773 | dev->name); |
| 1774 | #endif |
| 1775 | priv->stats.tx_dropped++; |
| 1776 | priv->extra_stats.tx_underrun++; |
| 1777 | |
| 1778 | /* Reactivate the Tx Queues */ |
| 1779 | gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT); |
| 1780 | } |
| 1781 | #ifdef VERBOSE_GFAR_ERRORS |
| 1782 | printk(KERN_DEBUG "%s: Transmit Error\n", dev->name); |
| 1783 | #endif |
| 1784 | } |
| 1785 | if (events & IEVENT_BSY) { |
| 1786 | priv->stats.rx_errors++; |
| 1787 | priv->extra_stats.rx_bsy++; |
| 1788 | |
| 1789 | gfar_receive(irq, dev_id, regs); |
| 1790 | |
| 1791 | #ifndef CONFIG_GFAR_NAPI |
| 1792 | /* Clear the halt bit in RSTAT */ |
| 1793 | gfar_write(&priv->regs->rstat, RSTAT_CLEAR_RHALT); |
| 1794 | #endif |
| 1795 | |
| 1796 | #ifdef VERBOSE_GFAR_ERRORS |
| 1797 | printk(KERN_DEBUG "%s: busy error (rhalt: %x)\n", dev->name, |
| 1798 | gfar_read(&priv->regs->rstat)); |
| 1799 | #endif |
| 1800 | } |
| 1801 | if (events & IEVENT_BABR) { |
| 1802 | priv->stats.rx_errors++; |
| 1803 | priv->extra_stats.rx_babr++; |
| 1804 | |
| 1805 | #ifdef VERBOSE_GFAR_ERRORS |
| 1806 | printk(KERN_DEBUG "%s: babbling error\n", dev->name); |
| 1807 | #endif |
| 1808 | } |
| 1809 | if (events & IEVENT_EBERR) { |
| 1810 | priv->extra_stats.eberr++; |
| 1811 | #ifdef VERBOSE_GFAR_ERRORS |
| 1812 | printk(KERN_DEBUG "%s: EBERR\n", dev->name); |
| 1813 | #endif |
| 1814 | } |
| 1815 | if (events & IEVENT_RXC) |
| 1816 | #ifdef VERBOSE_GFAR_ERRORS |
| 1817 | printk(KERN_DEBUG "%s: control frame\n", dev->name); |
| 1818 | #endif |
| 1819 | |
| 1820 | if (events & IEVENT_BABT) { |
| 1821 | priv->extra_stats.tx_babt++; |
| 1822 | #ifdef VERBOSE_GFAR_ERRORS |
| 1823 | printk(KERN_DEBUG "%s: babt error\n", dev->name); |
| 1824 | #endif |
| 1825 | } |
| 1826 | return IRQ_HANDLED; |
| 1827 | } |
| 1828 | |
| 1829 | /* Structure for a device driver */ |
| 1830 | static struct device_driver gfar_driver = { |
| 1831 | .name = "fsl-gianfar", |
| 1832 | .bus = &platform_bus_type, |
| 1833 | .probe = gfar_probe, |
| 1834 | .remove = gfar_remove, |
| 1835 | }; |
| 1836 | |
| 1837 | static int __init gfar_init(void) |
| 1838 | { |
| 1839 | return driver_register(&gfar_driver); |
| 1840 | } |
| 1841 | |
| 1842 | static void __exit gfar_exit(void) |
| 1843 | { |
| 1844 | driver_unregister(&gfar_driver); |
| 1845 | } |
| 1846 | |
| 1847 | module_init(gfar_init); |
| 1848 | module_exit(gfar_exit); |
| 1849 | |