blob: 145ad13d52d1cd5d504a55ec45cedc490718d400 [file] [log] [blame]
Timur Tabi17467f22008-01-11 18:15:26 +01001/*
2 * Freescale SSI ALSA SoC Digital Audio Interface (DAI) driver
3 *
4 * Author: Timur Tabi <timur@freescale.com>
5 *
6 * Copyright 2007-2008 Freescale Semiconductor, Inc. This file is licensed
7 * under the terms of the GNU General Public License version 2. This
8 * program is licensed "as is" without any warranty of any kind, whether
9 * express or implied.
10 */
11
12#include <linux/init.h>
13#include <linux/module.h>
14#include <linux/interrupt.h>
15#include <linux/device.h>
16#include <linux/delay.h>
17
18#include <sound/driver.h>
19#include <sound/core.h>
20#include <sound/pcm.h>
21#include <sound/pcm_params.h>
22#include <sound/initval.h>
23#include <sound/soc.h>
24
25#include <asm/immap_86xx.h>
26
27#include "fsl_ssi.h"
28
29/**
30 * FSLSSI_I2S_RATES: sample rates supported by the I2S
31 *
32 * This driver currently only supports the SSI running in I2S slave mode,
33 * which means the codec determines the sample rate. Therefore, we tell
34 * ALSA that we support all rates and let the codec driver decide what rates
35 * are really supported.
36 */
37#define FSLSSI_I2S_RATES (SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_192000 | \
38 SNDRV_PCM_RATE_CONTINUOUS)
39
40/**
41 * FSLSSI_I2S_FORMATS: audio formats supported by the SSI
42 *
43 * This driver currently only supports the SSI running in I2S slave mode.
44 *
45 * The SSI has a limitation in that the samples must be in the same byte
46 * order as the host CPU. This is because when multiple bytes are written
47 * to the STX register, the bytes and bits must be written in the same
48 * order. The STX is a shift register, so all the bits need to be aligned
49 * (bit-endianness must match byte-endianness). Processors typically write
50 * the bits within a byte in the same order that the bytes of a word are
51 * written in. So if the host CPU is big-endian, then only big-endian
52 * samples will be written to STX properly.
53 */
54#ifdef __BIG_ENDIAN
55#define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_BE | \
56 SNDRV_PCM_FMTBIT_S18_3BE | SNDRV_PCM_FMTBIT_S20_3BE | \
57 SNDRV_PCM_FMTBIT_S24_3BE | SNDRV_PCM_FMTBIT_S24_BE)
58#else
59#define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_LE | \
60 SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S20_3LE | \
61 SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S24_LE)
62#endif
63
64/**
65 * fsl_ssi_private: per-SSI private data
66 *
67 * @name: short name for this device ("SSI0", "SSI1", etc)
68 * @ssi: pointer to the SSI's registers
69 * @ssi_phys: physical address of the SSI registers
70 * @irq: IRQ of this SSI
71 * @dev: struct device pointer
72 * @playback: the number of playback streams opened
73 * @capture: the number of capture streams opened
74 * @cpu_dai: the CPU DAI for this device
75 * @dev_attr: the sysfs device attribute structure
76 * @stats: SSI statistics
77 */
78struct fsl_ssi_private {
79 char name[8];
80 struct ccsr_ssi __iomem *ssi;
81 dma_addr_t ssi_phys;
82 unsigned int irq;
83 struct device *dev;
84 unsigned int playback;
85 unsigned int capture;
86 struct snd_soc_cpu_dai cpu_dai;
87 struct device_attribute dev_attr;
88
89 struct {
90 unsigned int rfrc;
91 unsigned int tfrc;
92 unsigned int cmdau;
93 unsigned int cmddu;
94 unsigned int rxt;
95 unsigned int rdr1;
96 unsigned int rdr0;
97 unsigned int tde1;
98 unsigned int tde0;
99 unsigned int roe1;
100 unsigned int roe0;
101 unsigned int tue1;
102 unsigned int tue0;
103 unsigned int tfs;
104 unsigned int rfs;
105 unsigned int tls;
106 unsigned int rls;
107 unsigned int rff1;
108 unsigned int rff0;
109 unsigned int tfe1;
110 unsigned int tfe0;
111 } stats;
112};
113
114/**
115 * fsl_ssi_isr: SSI interrupt handler
116 *
117 * Although it's possible to use the interrupt handler to send and receive
118 * data to/from the SSI, we use the DMA instead. Programming is more
119 * complicated, but the performance is much better.
120 *
121 * This interrupt handler is used only to gather statistics.
122 *
123 * @irq: IRQ of the SSI device
124 * @dev_id: pointer to the ssi_private structure for this SSI device
125 */
126static irqreturn_t fsl_ssi_isr(int irq, void *dev_id)
127{
128 struct fsl_ssi_private *ssi_private = dev_id;
129 struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
130 irqreturn_t ret = IRQ_NONE;
131 __be32 sisr;
132 __be32 sisr2 = 0;
133
134 /* We got an interrupt, so read the status register to see what we
135 were interrupted for. We mask it with the Interrupt Enable register
136 so that we only check for events that we're interested in.
137 */
138 sisr = in_be32(&ssi->sisr) & in_be32(&ssi->sier);
139
140 if (sisr & CCSR_SSI_SISR_RFRC) {
141 ssi_private->stats.rfrc++;
142 sisr2 |= CCSR_SSI_SISR_RFRC;
143 ret = IRQ_HANDLED;
144 }
145
146 if (sisr & CCSR_SSI_SISR_TFRC) {
147 ssi_private->stats.tfrc++;
148 sisr2 |= CCSR_SSI_SISR_TFRC;
149 ret = IRQ_HANDLED;
150 }
151
152 if (sisr & CCSR_SSI_SISR_CMDAU) {
153 ssi_private->stats.cmdau++;
154 ret = IRQ_HANDLED;
155 }
156
157 if (sisr & CCSR_SSI_SISR_CMDDU) {
158 ssi_private->stats.cmddu++;
159 ret = IRQ_HANDLED;
160 }
161
162 if (sisr & CCSR_SSI_SISR_RXT) {
163 ssi_private->stats.rxt++;
164 ret = IRQ_HANDLED;
165 }
166
167 if (sisr & CCSR_SSI_SISR_RDR1) {
168 ssi_private->stats.rdr1++;
169 ret = IRQ_HANDLED;
170 }
171
172 if (sisr & CCSR_SSI_SISR_RDR0) {
173 ssi_private->stats.rdr0++;
174 ret = IRQ_HANDLED;
175 }
176
177 if (sisr & CCSR_SSI_SISR_TDE1) {
178 ssi_private->stats.tde1++;
179 ret = IRQ_HANDLED;
180 }
181
182 if (sisr & CCSR_SSI_SISR_TDE0) {
183 ssi_private->stats.tde0++;
184 ret = IRQ_HANDLED;
185 }
186
187 if (sisr & CCSR_SSI_SISR_ROE1) {
188 ssi_private->stats.roe1++;
189 sisr2 |= CCSR_SSI_SISR_ROE1;
190 ret = IRQ_HANDLED;
191 }
192
193 if (sisr & CCSR_SSI_SISR_ROE0) {
194 ssi_private->stats.roe0++;
195 sisr2 |= CCSR_SSI_SISR_ROE0;
196 ret = IRQ_HANDLED;
197 }
198
199 if (sisr & CCSR_SSI_SISR_TUE1) {
200 ssi_private->stats.tue1++;
201 sisr2 |= CCSR_SSI_SISR_TUE1;
202 ret = IRQ_HANDLED;
203 }
204
205 if (sisr & CCSR_SSI_SISR_TUE0) {
206 ssi_private->stats.tue0++;
207 sisr2 |= CCSR_SSI_SISR_TUE0;
208 ret = IRQ_HANDLED;
209 }
210
211 if (sisr & CCSR_SSI_SISR_TFS) {
212 ssi_private->stats.tfs++;
213 ret = IRQ_HANDLED;
214 }
215
216 if (sisr & CCSR_SSI_SISR_RFS) {
217 ssi_private->stats.rfs++;
218 ret = IRQ_HANDLED;
219 }
220
221 if (sisr & CCSR_SSI_SISR_TLS) {
222 ssi_private->stats.tls++;
223 ret = IRQ_HANDLED;
224 }
225
226 if (sisr & CCSR_SSI_SISR_RLS) {
227 ssi_private->stats.rls++;
228 ret = IRQ_HANDLED;
229 }
230
231 if (sisr & CCSR_SSI_SISR_RFF1) {
232 ssi_private->stats.rff1++;
233 ret = IRQ_HANDLED;
234 }
235
236 if (sisr & CCSR_SSI_SISR_RFF0) {
237 ssi_private->stats.rff0++;
238 ret = IRQ_HANDLED;
239 }
240
241 if (sisr & CCSR_SSI_SISR_TFE1) {
242 ssi_private->stats.tfe1++;
243 ret = IRQ_HANDLED;
244 }
245
246 if (sisr & CCSR_SSI_SISR_TFE0) {
247 ssi_private->stats.tfe0++;
248 ret = IRQ_HANDLED;
249 }
250
251 /* Clear the bits that we set */
252 if (sisr2)
253 out_be32(&ssi->sisr, sisr2);
254
255 return ret;
256}
257
258/**
259 * fsl_ssi_startup: create a new substream
260 *
261 * This is the first function called when a stream is opened.
262 *
263 * If this is the first stream open, then grab the IRQ and program most of
264 * the SSI registers.
265 */
266static int fsl_ssi_startup(struct snd_pcm_substream *substream)
267{
268 struct snd_soc_pcm_runtime *rtd = substream->private_data;
269 struct fsl_ssi_private *ssi_private = rtd->dai->cpu_dai->private_data;
270
271 /*
272 * If this is the first stream opened, then request the IRQ
273 * and initialize the SSI registers.
274 */
275 if (!ssi_private->playback && !ssi_private->capture) {
276 struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
277 int ret;
278
279 ret = request_irq(ssi_private->irq, fsl_ssi_isr, 0,
280 ssi_private->name, ssi_private);
281 if (ret < 0) {
282 dev_err(substream->pcm->card->dev,
283 "could not claim irq %u\n", ssi_private->irq);
284 return ret;
285 }
286
287 /*
288 * Section 16.5 of the MPC8610 reference manual says that the
289 * SSI needs to be disabled before updating the registers we set
290 * here.
291 */
292 clrbits32(&ssi->scr, CCSR_SSI_SCR_SSIEN);
293
294 /*
295 * Program the SSI into I2S Slave Non-Network Synchronous mode.
296 * Also enable the transmit and receive FIFO.
297 *
298 * FIXME: Little-endian samples require a different shift dir
299 */
300 clrsetbits_be32(&ssi->scr, CCSR_SSI_SCR_I2S_MODE_MASK,
301 CCSR_SSI_SCR_TFR_CLK_DIS |
302 CCSR_SSI_SCR_I2S_MODE_SLAVE | CCSR_SSI_SCR_SYN);
303
304 out_be32(&ssi->stcr,
305 CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TFEN0 |
306 CCSR_SSI_STCR_TFSI | CCSR_SSI_STCR_TEFS |
307 CCSR_SSI_STCR_TSCKP);
308
309 out_be32(&ssi->srcr,
310 CCSR_SSI_SRCR_RXBIT0 | CCSR_SSI_SRCR_RFEN0 |
311 CCSR_SSI_SRCR_RFSI | CCSR_SSI_SRCR_REFS |
312 CCSR_SSI_SRCR_RSCKP);
313
314 /*
315 * The DC and PM bits are only used if the SSI is the clock
316 * master.
317 */
318
319 /* 4. Enable the interrupts and DMA requests */
320 out_be32(&ssi->sier,
321 CCSR_SSI_SIER_TFRC_EN | CCSR_SSI_SIER_TDMAE |
322 CCSR_SSI_SIER_TIE | CCSR_SSI_SIER_TUE0_EN |
323 CCSR_SSI_SIER_TUE1_EN | CCSR_SSI_SIER_RFRC_EN |
324 CCSR_SSI_SIER_RDMAE | CCSR_SSI_SIER_RIE |
325 CCSR_SSI_SIER_ROE0_EN | CCSR_SSI_SIER_ROE1_EN);
326
327 /*
328 * Set the watermark for transmit FIFI 0 and receive FIFO 0. We
329 * don't use FIFO 1. Since the SSI only supports stereo, the
330 * watermark should never be an odd number.
331 */
332 out_be32(&ssi->sfcsr,
333 CCSR_SSI_SFCSR_TFWM0(6) | CCSR_SSI_SFCSR_RFWM0(2));
334
335 /*
336 * We keep the SSI disabled because if we enable it, then the
337 * DMA controller will start. It's not supposed to start until
338 * the SCR.TE (or SCR.RE) bit is set, but it does anyway. The
339 * DMA controller will transfer one "BWC" of data (i.e. the
340 * amount of data that the MR.BWC bits are set to). The reason
341 * this is bad is because at this point, the PCM driver has not
342 * finished initializing the DMA controller.
343 */
344 }
345
346 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
347 ssi_private->playback++;
348
349 if (substream->stream == SNDRV_PCM_STREAM_CAPTURE)
350 ssi_private->capture++;
351
352 return 0;
353}
354
355/**
356 * fsl_ssi_prepare: prepare the SSI.
357 *
358 * Most of the SSI registers have been programmed in the startup function,
359 * but the word length must be programmed here. Unfortunately, programming
360 * the SxCCR.WL bits requires the SSI to be temporarily disabled. This can
361 * cause a problem with supporting simultaneous playback and capture. If
362 * the SSI is already playing a stream, then that stream may be temporarily
363 * stopped when you start capture.
364 *
365 * Note: The SxCCR.DC and SxCCR.PM bits are only used if the SSI is the
366 * clock master.
367 */
368static int fsl_ssi_prepare(struct snd_pcm_substream *substream)
369{
370 struct snd_pcm_runtime *runtime = substream->runtime;
371 struct snd_soc_pcm_runtime *rtd = substream->private_data;
372 struct fsl_ssi_private *ssi_private = rtd->dai->cpu_dai->private_data;
373
374 struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
375 u32 wl;
376
377 wl = CCSR_SSI_SxCCR_WL(snd_pcm_format_width(runtime->format));
378
379 clrbits32(&ssi->scr, CCSR_SSI_SCR_SSIEN);
380
381 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
382 clrsetbits_be32(&ssi->stccr, CCSR_SSI_SxCCR_WL_MASK, wl);
383 else
384 clrsetbits_be32(&ssi->srccr, CCSR_SSI_SxCCR_WL_MASK, wl);
385
386 setbits32(&ssi->scr, CCSR_SSI_SCR_SSIEN);
387
388 return 0;
389}
390
391/**
392 * fsl_ssi_trigger: start and stop the DMA transfer.
393 *
394 * This function is called by ALSA to start, stop, pause, and resume the DMA
395 * transfer of data.
396 *
397 * The DMA channel is in external master start and pause mode, which
398 * means the SSI completely controls the flow of data.
399 */
400static int fsl_ssi_trigger(struct snd_pcm_substream *substream, int cmd)
401{
402 struct snd_soc_pcm_runtime *rtd = substream->private_data;
403 struct fsl_ssi_private *ssi_private = rtd->dai->cpu_dai->private_data;
404 struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
405
406 switch (cmd) {
407 case SNDRV_PCM_TRIGGER_START:
408 case SNDRV_PCM_TRIGGER_RESUME:
409 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
410 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
411 setbits32(&ssi->scr, CCSR_SSI_SCR_TE);
412 } else {
413 setbits32(&ssi->scr, CCSR_SSI_SCR_RE);
414
415 /*
416 * I think we need this delay to allow time for the SSI
417 * to put data into its FIFO. Without it, ALSA starts
418 * to complain about overruns.
419 */
420 msleep(1);
421 }
422 break;
423
424 case SNDRV_PCM_TRIGGER_STOP:
425 case SNDRV_PCM_TRIGGER_SUSPEND:
426 case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
427 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
428 clrbits32(&ssi->scr, CCSR_SSI_SCR_TE);
429 else
430 clrbits32(&ssi->scr, CCSR_SSI_SCR_RE);
431 break;
432
433 default:
434 return -EINVAL;
435 }
436
437 return 0;
438}
439
440/**
441 * fsl_ssi_shutdown: shutdown the SSI
442 *
443 * Shutdown the SSI if there are no other substreams open.
444 */
445static void fsl_ssi_shutdown(struct snd_pcm_substream *substream)
446{
447 struct snd_soc_pcm_runtime *rtd = substream->private_data;
448 struct fsl_ssi_private *ssi_private = rtd->dai->cpu_dai->private_data;
449
450 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
451 ssi_private->playback--;
452
453 if (substream->stream == SNDRV_PCM_STREAM_CAPTURE)
454 ssi_private->capture--;
455
456 /*
457 * If this is the last active substream, disable the SSI and release
458 * the IRQ.
459 */
460 if (!ssi_private->playback && !ssi_private->capture) {
461 struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
462
463 clrbits32(&ssi->scr, CCSR_SSI_SCR_SSIEN);
464
465 free_irq(ssi_private->irq, ssi_private);
466 }
467}
468
469/**
470 * fsl_ssi_set_sysclk: set the clock frequency and direction
471 *
472 * This function is called by the machine driver to tell us what the clock
473 * frequency and direction are.
474 *
475 * Currently, we only support operating as a clock slave (SND_SOC_CLOCK_IN),
476 * and we don't care about the frequency. Return an error if the direction
477 * is not SND_SOC_CLOCK_IN.
478 *
479 * @clk_id: reserved, should be zero
480 * @freq: the frequency of the given clock ID, currently ignored
481 * @dir: SND_SOC_CLOCK_IN (clock slave) or SND_SOC_CLOCK_OUT (clock master)
482 */
483static int fsl_ssi_set_sysclk(struct snd_soc_cpu_dai *cpu_dai,
484 int clk_id, unsigned int freq, int dir)
485{
486
487 return (dir == SND_SOC_CLOCK_IN) ? 0 : -EINVAL;
488}
489
490/**
491 * fsl_ssi_set_fmt: set the serial format.
492 *
493 * This function is called by the machine driver to tell us what serial
494 * format to use.
495 *
496 * Currently, we only support I2S mode. Return an error if the format is
497 * not SND_SOC_DAIFMT_I2S.
498 *
499 * @format: one of SND_SOC_DAIFMT_xxx
500 */
501static int fsl_ssi_set_fmt(struct snd_soc_cpu_dai *cpu_dai, unsigned int format)
502{
503 return (format == SND_SOC_DAIFMT_I2S) ? 0 : -EINVAL;
504}
505
506/**
507 * fsl_ssi_dai_template: template CPU DAI for the SSI
508 */
509static struct snd_soc_cpu_dai fsl_ssi_dai_template = {
510 .playback = {
511 /* The SSI does not support monaural audio. */
512 .channels_min = 2,
513 .channels_max = 2,
514 .rates = FSLSSI_I2S_RATES,
515 .formats = FSLSSI_I2S_FORMATS,
516 },
517 .capture = {
518 .channels_min = 2,
519 .channels_max = 2,
520 .rates = FSLSSI_I2S_RATES,
521 .formats = FSLSSI_I2S_FORMATS,
522 },
523 .ops = {
524 .startup = fsl_ssi_startup,
525 .prepare = fsl_ssi_prepare,
526 .shutdown = fsl_ssi_shutdown,
527 .trigger = fsl_ssi_trigger,
528 },
529 .dai_ops = {
530 .set_sysclk = fsl_ssi_set_sysclk,
531 .set_fmt = fsl_ssi_set_fmt,
532 },
533};
534
535/**
536 * fsl_sysfs_ssi_show: display SSI statistics
537 *
538 * Display the statistics for the current SSI device.
539 */
540static ssize_t fsl_sysfs_ssi_show(struct device *dev,
541 struct device_attribute *attr, char *buf)
542{
543 struct fsl_ssi_private *ssi_private =
544 container_of(attr, struct fsl_ssi_private, dev_attr);
545 ssize_t length;
546
547 length = sprintf(buf, "rfrc=%u", ssi_private->stats.rfrc);
548 length += sprintf(buf + length, "\ttfrc=%u", ssi_private->stats.tfrc);
549 length += sprintf(buf + length, "\tcmdau=%u", ssi_private->stats.cmdau);
550 length += sprintf(buf + length, "\tcmddu=%u", ssi_private->stats.cmddu);
551 length += sprintf(buf + length, "\trxt=%u", ssi_private->stats.rxt);
552 length += sprintf(buf + length, "\trdr1=%u", ssi_private->stats.rdr1);
553 length += sprintf(buf + length, "\trdr0=%u", ssi_private->stats.rdr0);
554 length += sprintf(buf + length, "\ttde1=%u", ssi_private->stats.tde1);
555 length += sprintf(buf + length, "\ttde0=%u", ssi_private->stats.tde0);
556 length += sprintf(buf + length, "\troe1=%u", ssi_private->stats.roe1);
557 length += sprintf(buf + length, "\troe0=%u", ssi_private->stats.roe0);
558 length += sprintf(buf + length, "\ttue1=%u", ssi_private->stats.tue1);
559 length += sprintf(buf + length, "\ttue0=%u", ssi_private->stats.tue0);
560 length += sprintf(buf + length, "\ttfs=%u", ssi_private->stats.tfs);
561 length += sprintf(buf + length, "\trfs=%u", ssi_private->stats.rfs);
562 length += sprintf(buf + length, "\ttls=%u", ssi_private->stats.tls);
563 length += sprintf(buf + length, "\trls=%u", ssi_private->stats.rls);
564 length += sprintf(buf + length, "\trff1=%u", ssi_private->stats.rff1);
565 length += sprintf(buf + length, "\trff0=%u", ssi_private->stats.rff0);
566 length += sprintf(buf + length, "\ttfe1=%u", ssi_private->stats.tfe1);
567 length += sprintf(buf + length, "\ttfe0=%u\n", ssi_private->stats.tfe0);
568
569 return length;
570}
571
572/**
573 * fsl_ssi_create_dai: create a snd_soc_cpu_dai structure
574 *
575 * This function is called by the machine driver to create a snd_soc_cpu_dai
576 * structure. The function creates an ssi_private object, which contains
577 * the snd_soc_cpu_dai. It also creates the sysfs statistics device.
578 */
579struct snd_soc_cpu_dai *fsl_ssi_create_dai(struct fsl_ssi_info *ssi_info)
580{
581 struct snd_soc_cpu_dai *fsl_ssi_dai;
582 struct fsl_ssi_private *ssi_private;
583 int ret = 0;
584 struct device_attribute *dev_attr;
585
586 ssi_private = kzalloc(sizeof(struct fsl_ssi_private), GFP_KERNEL);
587 if (!ssi_private) {
588 dev_err(ssi_info->dev, "could not allocate DAI object\n");
589 return NULL;
590 }
591 memcpy(&ssi_private->cpu_dai, &fsl_ssi_dai_template,
592 sizeof(struct snd_soc_cpu_dai));
593
594 fsl_ssi_dai = &ssi_private->cpu_dai;
595 dev_attr = &ssi_private->dev_attr;
596
597 sprintf(ssi_private->name, "ssi%u", (u8) ssi_info->id);
598 ssi_private->ssi = ssi_info->ssi;
599 ssi_private->ssi_phys = ssi_info->ssi_phys;
600 ssi_private->irq = ssi_info->irq;
601 ssi_private->dev = ssi_info->dev;
602
603 ssi_private->dev->driver_data = fsl_ssi_dai;
604
605 /* Initialize the the device_attribute structure */
606 dev_attr->attr.name = "ssi-stats";
607 dev_attr->attr.mode = S_IRUGO;
608 dev_attr->show = fsl_sysfs_ssi_show;
609
610 ret = device_create_file(ssi_private->dev, dev_attr);
611 if (ret) {
612 dev_err(ssi_info->dev, "could not create sysfs %s file\n",
613 ssi_private->dev_attr.attr.name);
614 kfree(fsl_ssi_dai);
615 return NULL;
616 }
617
618 fsl_ssi_dai->private_data = ssi_private;
619 fsl_ssi_dai->name = ssi_private->name;
620 fsl_ssi_dai->id = ssi_info->id;
621
622 return fsl_ssi_dai;
623}
624EXPORT_SYMBOL_GPL(fsl_ssi_create_dai);
625
626/**
627 * fsl_ssi_destroy_dai: destroy the snd_soc_cpu_dai object
628 *
629 * This function undoes the operations of fsl_ssi_create_dai()
630 */
631void fsl_ssi_destroy_dai(struct snd_soc_cpu_dai *fsl_ssi_dai)
632{
633 struct fsl_ssi_private *ssi_private =
634 container_of(fsl_ssi_dai, struct fsl_ssi_private, cpu_dai);
635
636 device_remove_file(ssi_private->dev, &ssi_private->dev_attr);
637
638 kfree(ssi_private);
639}
640EXPORT_SYMBOL_GPL(fsl_ssi_destroy_dai);
641
642MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
643MODULE_DESCRIPTION("Freescale Synchronous Serial Interface (SSI) ASoC Driver");
644MODULE_LICENSE("GPL");