blob: 844ee7539d3350427e0802e4b745b2aee1a9cb99 [file] [log] [blame]
Ben Hutchings8127d662013-08-29 19:19:29 +01001/****************************************************************************
2 * Driver for Solarflare network controllers and boards
3 * Copyright 2012-2013 Solarflare Communications Inc.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 as published
7 * by the Free Software Foundation, incorporated herein by reference.
8 */
9
10#include "net_driver.h"
11#include "ef10_regs.h"
12#include "io.h"
13#include "mcdi.h"
14#include "mcdi_pcol.h"
15#include "nic.h"
16#include "workarounds.h"
17#include <linux/in.h>
18#include <linux/jhash.h>
19#include <linux/wait.h>
20#include <linux/workqueue.h>
21
22/* Hardware control for EF10 architecture including 'Huntington'. */
23
24#define EFX_EF10_DRVGEN_EV 7
25enum {
26 EFX_EF10_TEST = 1,
27 EFX_EF10_REFILL,
28};
29
30/* The reserved RSS context value */
31#define EFX_EF10_RSS_CONTEXT_INVALID 0xffffffff
32
33/* The filter table(s) are managed by firmware and we have write-only
34 * access. When removing filters we must identify them to the
35 * firmware by a 64-bit handle, but this is too wide for Linux kernel
36 * interfaces (32-bit for RX NFC, 16-bit for RFS). Also, we need to
37 * be able to tell in advance whether a requested insertion will
38 * replace an existing filter. Therefore we maintain a software hash
39 * table, which should be at least as large as the hardware hash
40 * table.
41 *
42 * Huntington has a single 8K filter table shared between all filter
43 * types and both ports.
44 */
45#define HUNT_FILTER_TBL_ROWS 8192
46
47struct efx_ef10_filter_table {
48/* The RX match field masks supported by this fw & hw, in order of priority */
49 enum efx_filter_match_flags rx_match_flags[
50 MC_CMD_GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES_MAXNUM];
51 unsigned int rx_match_count;
52
53 struct {
54 unsigned long spec; /* pointer to spec plus flag bits */
55/* BUSY flag indicates that an update is in progress. STACK_OLD is
56 * used to mark and sweep stack-owned MAC filters.
57 */
58#define EFX_EF10_FILTER_FLAG_BUSY 1UL
59#define EFX_EF10_FILTER_FLAG_STACK_OLD 2UL
60#define EFX_EF10_FILTER_FLAGS 3UL
61 u64 handle; /* firmware handle */
62 } *entry;
63 wait_queue_head_t waitq;
64/* Shadow of net_device address lists, guarded by mac_lock */
65#define EFX_EF10_FILTER_STACK_UC_MAX 32
66#define EFX_EF10_FILTER_STACK_MC_MAX 256
67 struct {
68 u8 addr[ETH_ALEN];
69 u16 id;
70 } stack_uc_list[EFX_EF10_FILTER_STACK_UC_MAX],
71 stack_mc_list[EFX_EF10_FILTER_STACK_MC_MAX];
72 int stack_uc_count; /* negative for PROMISC */
73 int stack_mc_count; /* negative for PROMISC/ALLMULTI */
74};
75
76/* An arbitrary search limit for the software hash table */
77#define EFX_EF10_FILTER_SEARCH_LIMIT 200
78
79static void efx_ef10_rx_push_indir_table(struct efx_nic *efx);
80static void efx_ef10_rx_free_indir_table(struct efx_nic *efx);
81static void efx_ef10_filter_table_remove(struct efx_nic *efx);
82
83static int efx_ef10_get_warm_boot_count(struct efx_nic *efx)
84{
85 efx_dword_t reg;
86
87 efx_readd(efx, &reg, ER_DZ_BIU_MC_SFT_STATUS);
88 return EFX_DWORD_FIELD(reg, EFX_WORD_1) == 0xb007 ?
89 EFX_DWORD_FIELD(reg, EFX_WORD_0) : -EIO;
90}
91
92static unsigned int efx_ef10_mem_map_size(struct efx_nic *efx)
93{
94 return resource_size(&efx->pci_dev->resource[EFX_MEM_BAR]);
95}
96
Ben Hutchingse5a25382013-09-05 22:50:59 +010097static int efx_ef10_init_datapath_caps(struct efx_nic *efx)
Ben Hutchings8127d662013-08-29 19:19:29 +010098{
99 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CAPABILITIES_OUT_LEN);
100 struct efx_ef10_nic_data *nic_data = efx->nic_data;
101 size_t outlen;
102 int rc;
103
104 BUILD_BUG_ON(MC_CMD_GET_CAPABILITIES_IN_LEN != 0);
105
106 rc = efx_mcdi_rpc(efx, MC_CMD_GET_CAPABILITIES, NULL, 0,
107 outbuf, sizeof(outbuf), &outlen);
108 if (rc)
109 return rc;
Ben Hutchingse5a25382013-09-05 22:50:59 +0100110 if (outlen < sizeof(outbuf)) {
111 netif_err(efx, drv, efx->net_dev,
112 "unable to read datapath firmware capabilities\n");
113 return -EIO;
114 }
Ben Hutchings8127d662013-08-29 19:19:29 +0100115
Ben Hutchingse5a25382013-09-05 22:50:59 +0100116 nic_data->datapath_caps =
117 MCDI_DWORD(outbuf, GET_CAPABILITIES_OUT_FLAGS1);
118
119 if (!(nic_data->datapath_caps &
120 (1 << MC_CMD_GET_CAPABILITIES_OUT_TX_TSO_LBN))) {
121 netif_err(efx, drv, efx->net_dev,
122 "current firmware does not support TSO\n");
123 return -ENODEV;
124 }
125
126 if (!(nic_data->datapath_caps &
127 (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_PREFIX_LEN_14_LBN))) {
128 netif_err(efx, probe, efx->net_dev,
129 "current firmware does not support an RX prefix\n");
130 return -ENODEV;
Ben Hutchings8127d662013-08-29 19:19:29 +0100131 }
132
133 return 0;
134}
135
136static int efx_ef10_get_sysclk_freq(struct efx_nic *efx)
137{
138 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CLOCK_OUT_LEN);
139 int rc;
140
141 rc = efx_mcdi_rpc(efx, MC_CMD_GET_CLOCK, NULL, 0,
142 outbuf, sizeof(outbuf), NULL);
143 if (rc)
144 return rc;
145 rc = MCDI_DWORD(outbuf, GET_CLOCK_OUT_SYS_FREQ);
146 return rc > 0 ? rc : -ERANGE;
147}
148
149static int efx_ef10_get_mac_address(struct efx_nic *efx, u8 *mac_address)
150{
151 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_MAC_ADDRESSES_OUT_LEN);
152 size_t outlen;
153 int rc;
154
155 BUILD_BUG_ON(MC_CMD_GET_MAC_ADDRESSES_IN_LEN != 0);
156
157 rc = efx_mcdi_rpc(efx, MC_CMD_GET_MAC_ADDRESSES, NULL, 0,
158 outbuf, sizeof(outbuf), &outlen);
159 if (rc)
160 return rc;
161 if (outlen < MC_CMD_GET_MAC_ADDRESSES_OUT_LEN)
162 return -EIO;
163
164 memcpy(mac_address,
165 MCDI_PTR(outbuf, GET_MAC_ADDRESSES_OUT_MAC_ADDR_BASE), ETH_ALEN);
166 return 0;
167}
168
169static int efx_ef10_probe(struct efx_nic *efx)
170{
171 struct efx_ef10_nic_data *nic_data;
172 int i, rc;
173
174 /* We can have one VI for each 8K region. However we need
175 * multiple TX queues per channel.
176 */
177 efx->max_channels =
178 min_t(unsigned int,
179 EFX_MAX_CHANNELS,
180 resource_size(&efx->pci_dev->resource[EFX_MEM_BAR]) /
181 (EFX_VI_PAGE_SIZE * EFX_TXQ_TYPES));
182 BUG_ON(efx->max_channels == 0);
183
184 nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
185 if (!nic_data)
186 return -ENOMEM;
187 efx->nic_data = nic_data;
188
189 rc = efx_nic_alloc_buffer(efx, &nic_data->mcdi_buf,
190 8 + MCDI_CTL_SDU_LEN_MAX_V2, GFP_KERNEL);
191 if (rc)
192 goto fail1;
193
194 /* Get the MC's warm boot count. In case it's rebooting right
195 * now, be prepared to retry.
196 */
197 i = 0;
198 for (;;) {
199 rc = efx_ef10_get_warm_boot_count(efx);
200 if (rc >= 0)
201 break;
202 if (++i == 5)
203 goto fail2;
204 ssleep(1);
205 }
206 nic_data->warm_boot_count = rc;
207
208 nic_data->rx_rss_context = EFX_EF10_RSS_CONTEXT_INVALID;
209
210 /* In case we're recovering from a crash (kexec), we want to
211 * cancel any outstanding request by the previous user of this
212 * function. We send a special message using the least
213 * significant bits of the 'high' (doorbell) register.
214 */
215 _efx_writed(efx, cpu_to_le32(1), ER_DZ_MC_DB_HWRD);
216
217 rc = efx_mcdi_init(efx);
218 if (rc)
219 goto fail2;
220
221 /* Reset (most) configuration for this function */
222 rc = efx_mcdi_reset(efx, RESET_TYPE_ALL);
223 if (rc)
224 goto fail3;
225
226 /* Enable event logging */
227 rc = efx_mcdi_log_ctrl(efx, true, false, 0);
228 if (rc)
229 goto fail3;
230
Ben Hutchingse5a25382013-09-05 22:50:59 +0100231 rc = efx_ef10_init_datapath_caps(efx);
Ben Hutchings8127d662013-08-29 19:19:29 +0100232 if (rc < 0)
233 goto fail3;
234
235 efx->rx_packet_len_offset =
236 ES_DZ_RX_PREFIX_PKTLEN_OFST - ES_DZ_RX_PREFIX_SIZE;
237
Ben Hutchings8127d662013-08-29 19:19:29 +0100238 rc = efx_mcdi_port_get_number(efx);
239 if (rc < 0)
240 goto fail3;
241 efx->port_num = rc;
242
243 rc = efx_ef10_get_mac_address(efx, efx->net_dev->perm_addr);
244 if (rc)
245 goto fail3;
246
247 rc = efx_ef10_get_sysclk_freq(efx);
248 if (rc < 0)
249 goto fail3;
250 efx->timer_quantum_ns = 1536000 / rc; /* 1536 cycles */
251
252 /* Check whether firmware supports bug 35388 workaround */
253 rc = efx_mcdi_set_workaround(efx, MC_CMD_WORKAROUND_BUG35388, true);
254 if (rc == 0)
255 nic_data->workaround_35388 = true;
256 else if (rc != -ENOSYS && rc != -ENOENT)
257 goto fail3;
258 netif_dbg(efx, probe, efx->net_dev,
259 "workaround for bug 35388 is %sabled\n",
260 nic_data->workaround_35388 ? "en" : "dis");
261
262 rc = efx_mcdi_mon_probe(efx);
263 if (rc)
264 goto fail3;
265
Ben Hutchings8127d662013-08-29 19:19:29 +0100266 return 0;
267
268fail3:
269 efx_mcdi_fini(efx);
270fail2:
271 efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
272fail1:
273 kfree(nic_data);
274 efx->nic_data = NULL;
275 return rc;
276}
277
278static int efx_ef10_free_vis(struct efx_nic *efx)
279{
280 int rc = efx_mcdi_rpc(efx, MC_CMD_FREE_VIS, NULL, 0, NULL, 0, NULL);
281
282 /* -EALREADY means nothing to free, so ignore */
283 if (rc == -EALREADY)
284 rc = 0;
285 return rc;
286}
287
Ben Hutchings183233b2013-06-28 21:47:12 +0100288#ifdef EFX_USE_PIO
289
290static void efx_ef10_free_piobufs(struct efx_nic *efx)
291{
292 struct efx_ef10_nic_data *nic_data = efx->nic_data;
293 MCDI_DECLARE_BUF(inbuf, MC_CMD_FREE_PIOBUF_IN_LEN);
294 unsigned int i;
295 int rc;
296
297 BUILD_BUG_ON(MC_CMD_FREE_PIOBUF_OUT_LEN != 0);
298
299 for (i = 0; i < nic_data->n_piobufs; i++) {
300 MCDI_SET_DWORD(inbuf, FREE_PIOBUF_IN_PIOBUF_HANDLE,
301 nic_data->piobuf_handle[i]);
302 rc = efx_mcdi_rpc(efx, MC_CMD_FREE_PIOBUF, inbuf, sizeof(inbuf),
303 NULL, 0, NULL);
304 WARN_ON(rc);
305 }
306
307 nic_data->n_piobufs = 0;
308}
309
310static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n)
311{
312 struct efx_ef10_nic_data *nic_data = efx->nic_data;
313 MCDI_DECLARE_BUF(outbuf, MC_CMD_ALLOC_PIOBUF_OUT_LEN);
314 unsigned int i;
315 size_t outlen;
316 int rc = 0;
317
318 BUILD_BUG_ON(MC_CMD_ALLOC_PIOBUF_IN_LEN != 0);
319
320 for (i = 0; i < n; i++) {
321 rc = efx_mcdi_rpc(efx, MC_CMD_ALLOC_PIOBUF, NULL, 0,
322 outbuf, sizeof(outbuf), &outlen);
323 if (rc)
324 break;
325 if (outlen < MC_CMD_ALLOC_PIOBUF_OUT_LEN) {
326 rc = -EIO;
327 break;
328 }
329 nic_data->piobuf_handle[i] =
330 MCDI_DWORD(outbuf, ALLOC_PIOBUF_OUT_PIOBUF_HANDLE);
331 netif_dbg(efx, probe, efx->net_dev,
332 "allocated PIO buffer %u handle %x\n", i,
333 nic_data->piobuf_handle[i]);
334 }
335
336 nic_data->n_piobufs = i;
337 if (rc)
338 efx_ef10_free_piobufs(efx);
339 return rc;
340}
341
342static int efx_ef10_link_piobufs(struct efx_nic *efx)
343{
344 struct efx_ef10_nic_data *nic_data = efx->nic_data;
345 MCDI_DECLARE_BUF(inbuf,
346 max(MC_CMD_LINK_PIOBUF_IN_LEN,
347 MC_CMD_UNLINK_PIOBUF_IN_LEN));
348 struct efx_channel *channel;
349 struct efx_tx_queue *tx_queue;
350 unsigned int offset, index;
351 int rc;
352
353 BUILD_BUG_ON(MC_CMD_LINK_PIOBUF_OUT_LEN != 0);
354 BUILD_BUG_ON(MC_CMD_UNLINK_PIOBUF_OUT_LEN != 0);
355
356 /* Link a buffer to each VI in the write-combining mapping */
357 for (index = 0; index < nic_data->n_piobufs; ++index) {
358 MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_PIOBUF_HANDLE,
359 nic_data->piobuf_handle[index]);
360 MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_TXQ_INSTANCE,
361 nic_data->pio_write_vi_base + index);
362 rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF,
363 inbuf, MC_CMD_LINK_PIOBUF_IN_LEN,
364 NULL, 0, NULL);
365 if (rc) {
366 netif_err(efx, drv, efx->net_dev,
367 "failed to link VI %u to PIO buffer %u (%d)\n",
368 nic_data->pio_write_vi_base + index, index,
369 rc);
370 goto fail;
371 }
372 netif_dbg(efx, probe, efx->net_dev,
373 "linked VI %u to PIO buffer %u\n",
374 nic_data->pio_write_vi_base + index, index);
375 }
376
377 /* Link a buffer to each TX queue */
378 efx_for_each_channel(channel, efx) {
379 efx_for_each_channel_tx_queue(tx_queue, channel) {
380 /* We assign the PIO buffers to queues in
381 * reverse order to allow for the following
382 * special case.
383 */
384 offset = ((efx->tx_channel_offset + efx->n_tx_channels -
385 tx_queue->channel->channel - 1) *
386 efx_piobuf_size);
387 index = offset / ER_DZ_TX_PIOBUF_SIZE;
388 offset = offset % ER_DZ_TX_PIOBUF_SIZE;
389
390 /* When the host page size is 4K, the first
391 * host page in the WC mapping may be within
392 * the same VI page as the last TX queue. We
393 * can only link one buffer to each VI.
394 */
395 if (tx_queue->queue == nic_data->pio_write_vi_base) {
396 BUG_ON(index != 0);
397 rc = 0;
398 } else {
399 MCDI_SET_DWORD(inbuf,
400 LINK_PIOBUF_IN_PIOBUF_HANDLE,
401 nic_data->piobuf_handle[index]);
402 MCDI_SET_DWORD(inbuf,
403 LINK_PIOBUF_IN_TXQ_INSTANCE,
404 tx_queue->queue);
405 rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF,
406 inbuf, MC_CMD_LINK_PIOBUF_IN_LEN,
407 NULL, 0, NULL);
408 }
409
410 if (rc) {
411 /* This is non-fatal; the TX path just
412 * won't use PIO for this queue
413 */
414 netif_err(efx, drv, efx->net_dev,
415 "failed to link VI %u to PIO buffer %u (%d)\n",
416 tx_queue->queue, index, rc);
417 tx_queue->piobuf = NULL;
418 } else {
419 tx_queue->piobuf =
420 nic_data->pio_write_base +
421 index * EFX_VI_PAGE_SIZE + offset;
422 tx_queue->piobuf_offset = offset;
423 netif_dbg(efx, probe, efx->net_dev,
424 "linked VI %u to PIO buffer %u offset %x addr %p\n",
425 tx_queue->queue, index,
426 tx_queue->piobuf_offset,
427 tx_queue->piobuf);
428 }
429 }
430 }
431
432 return 0;
433
434fail:
435 while (index--) {
436 MCDI_SET_DWORD(inbuf, UNLINK_PIOBUF_IN_TXQ_INSTANCE,
437 nic_data->pio_write_vi_base + index);
438 efx_mcdi_rpc(efx, MC_CMD_UNLINK_PIOBUF,
439 inbuf, MC_CMD_UNLINK_PIOBUF_IN_LEN,
440 NULL, 0, NULL);
441 }
442 return rc;
443}
444
445#else /* !EFX_USE_PIO */
446
447static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n)
448{
449 return n == 0 ? 0 : -ENOBUFS;
450}
451
452static int efx_ef10_link_piobufs(struct efx_nic *efx)
453{
454 return 0;
455}
456
457static void efx_ef10_free_piobufs(struct efx_nic *efx)
458{
459}
460
461#endif /* EFX_USE_PIO */
462
Ben Hutchings8127d662013-08-29 19:19:29 +0100463static void efx_ef10_remove(struct efx_nic *efx)
464{
465 struct efx_ef10_nic_data *nic_data = efx->nic_data;
466 int rc;
467
468 efx_mcdi_mon_remove(efx);
469
470 /* This needs to be after efx_ptp_remove_channel() with no filters */
471 efx_ef10_rx_free_indir_table(efx);
472
Ben Hutchings183233b2013-06-28 21:47:12 +0100473 if (nic_data->wc_membase)
474 iounmap(nic_data->wc_membase);
475
Ben Hutchings8127d662013-08-29 19:19:29 +0100476 rc = efx_ef10_free_vis(efx);
477 WARN_ON(rc != 0);
478
Ben Hutchings183233b2013-06-28 21:47:12 +0100479 if (!nic_data->must_restore_piobufs)
480 efx_ef10_free_piobufs(efx);
481
Ben Hutchings8127d662013-08-29 19:19:29 +0100482 efx_mcdi_fini(efx);
483 efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
484 kfree(nic_data);
485}
486
487static int efx_ef10_alloc_vis(struct efx_nic *efx,
488 unsigned int min_vis, unsigned int max_vis)
489{
490 MCDI_DECLARE_BUF(inbuf, MC_CMD_ALLOC_VIS_IN_LEN);
491 MCDI_DECLARE_BUF(outbuf, MC_CMD_ALLOC_VIS_OUT_LEN);
492 struct efx_ef10_nic_data *nic_data = efx->nic_data;
493 size_t outlen;
494 int rc;
495
496 MCDI_SET_DWORD(inbuf, ALLOC_VIS_IN_MIN_VI_COUNT, min_vis);
497 MCDI_SET_DWORD(inbuf, ALLOC_VIS_IN_MAX_VI_COUNT, max_vis);
498 rc = efx_mcdi_rpc(efx, MC_CMD_ALLOC_VIS, inbuf, sizeof(inbuf),
499 outbuf, sizeof(outbuf), &outlen);
500 if (rc != 0)
501 return rc;
502
503 if (outlen < MC_CMD_ALLOC_VIS_OUT_LEN)
504 return -EIO;
505
506 netif_dbg(efx, drv, efx->net_dev, "base VI is A0x%03x\n",
507 MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_BASE));
508
509 nic_data->vi_base = MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_BASE);
510 nic_data->n_allocated_vis = MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_COUNT);
511 return 0;
512}
513
Ben Hutchings183233b2013-06-28 21:47:12 +0100514/* Note that the failure path of this function does not free
515 * resources, as this will be done by efx_ef10_remove().
516 */
Ben Hutchings8127d662013-08-29 19:19:29 +0100517static int efx_ef10_dimension_resources(struct efx_nic *efx)
518{
Ben Hutchings183233b2013-06-28 21:47:12 +0100519 struct efx_ef10_nic_data *nic_data = efx->nic_data;
520 unsigned int uc_mem_map_size, wc_mem_map_size;
521 unsigned int min_vis, pio_write_vi_base, max_vis;
522 void __iomem *membase;
523 int rc;
Ben Hutchings8127d662013-08-29 19:19:29 +0100524
Ben Hutchings183233b2013-06-28 21:47:12 +0100525 min_vis = max(efx->n_channels, efx->n_tx_channels * EFX_TXQ_TYPES);
526
527#ifdef EFX_USE_PIO
528 /* Try to allocate PIO buffers if wanted and if the full
529 * number of PIO buffers would be sufficient to allocate one
530 * copy-buffer per TX channel. Failure is non-fatal, as there
531 * are only a small number of PIO buffers shared between all
532 * functions of the controller.
533 */
534 if (efx_piobuf_size != 0 &&
535 ER_DZ_TX_PIOBUF_SIZE / efx_piobuf_size * EF10_TX_PIOBUF_COUNT >=
536 efx->n_tx_channels) {
537 unsigned int n_piobufs =
538 DIV_ROUND_UP(efx->n_tx_channels,
539 ER_DZ_TX_PIOBUF_SIZE / efx_piobuf_size);
540
541 rc = efx_ef10_alloc_piobufs(efx, n_piobufs);
542 if (rc)
543 netif_err(efx, probe, efx->net_dev,
544 "failed to allocate PIO buffers (%d)\n", rc);
545 else
546 netif_dbg(efx, probe, efx->net_dev,
547 "allocated %u PIO buffers\n", n_piobufs);
548 }
549#else
550 nic_data->n_piobufs = 0;
551#endif
552
553 /* PIO buffers should be mapped with write-combining enabled,
554 * and we want to make single UC and WC mappings rather than
555 * several of each (in fact that's the only option if host
556 * page size is >4K). So we may allocate some extra VIs just
557 * for writing PIO buffers through.
558 */
559 uc_mem_map_size = PAGE_ALIGN((min_vis - 1) * EFX_VI_PAGE_SIZE +
560 ER_DZ_TX_PIOBUF);
561 if (nic_data->n_piobufs) {
562 pio_write_vi_base = uc_mem_map_size / EFX_VI_PAGE_SIZE;
563 wc_mem_map_size = (PAGE_ALIGN((pio_write_vi_base +
564 nic_data->n_piobufs) *
565 EFX_VI_PAGE_SIZE) -
566 uc_mem_map_size);
567 max_vis = pio_write_vi_base + nic_data->n_piobufs;
568 } else {
569 pio_write_vi_base = 0;
570 wc_mem_map_size = 0;
571 max_vis = min_vis;
572 }
573
574 /* In case the last attached driver failed to free VIs, do it now */
575 rc = efx_ef10_free_vis(efx);
576 if (rc != 0)
577 return rc;
578
579 rc = efx_ef10_alloc_vis(efx, min_vis, max_vis);
580 if (rc != 0)
581 return rc;
582
583 /* If we didn't get enough VIs to map all the PIO buffers, free the
584 * PIO buffers
585 */
586 if (nic_data->n_piobufs &&
587 nic_data->n_allocated_vis <
588 pio_write_vi_base + nic_data->n_piobufs) {
589 netif_dbg(efx, probe, efx->net_dev,
590 "%u VIs are not sufficient to map %u PIO buffers\n",
591 nic_data->n_allocated_vis, nic_data->n_piobufs);
592 efx_ef10_free_piobufs(efx);
593 }
594
595 /* Shrink the original UC mapping of the memory BAR */
596 membase = ioremap_nocache(efx->membase_phys, uc_mem_map_size);
597 if (!membase) {
598 netif_err(efx, probe, efx->net_dev,
599 "could not shrink memory BAR to %x\n",
600 uc_mem_map_size);
601 return -ENOMEM;
602 }
603 iounmap(efx->membase);
604 efx->membase = membase;
605
606 /* Set up the WC mapping if needed */
607 if (wc_mem_map_size) {
608 nic_data->wc_membase = ioremap_wc(efx->membase_phys +
609 uc_mem_map_size,
610 wc_mem_map_size);
611 if (!nic_data->wc_membase) {
612 netif_err(efx, probe, efx->net_dev,
613 "could not allocate WC mapping of size %x\n",
614 wc_mem_map_size);
615 return -ENOMEM;
616 }
617 nic_data->pio_write_vi_base = pio_write_vi_base;
618 nic_data->pio_write_base =
619 nic_data->wc_membase +
620 (pio_write_vi_base * EFX_VI_PAGE_SIZE + ER_DZ_TX_PIOBUF -
621 uc_mem_map_size);
622
623 rc = efx_ef10_link_piobufs(efx);
624 if (rc)
625 efx_ef10_free_piobufs(efx);
626 }
627
628 netif_dbg(efx, probe, efx->net_dev,
629 "memory BAR at %pa (virtual %p+%x UC, %p+%x WC)\n",
630 &efx->membase_phys, efx->membase, uc_mem_map_size,
631 nic_data->wc_membase, wc_mem_map_size);
632
633 return 0;
Ben Hutchings8127d662013-08-29 19:19:29 +0100634}
635
636static int efx_ef10_init_nic(struct efx_nic *efx)
637{
638 struct efx_ef10_nic_data *nic_data = efx->nic_data;
639 int rc;
640
Ben Hutchingsa915ccc2013-09-05 22:51:55 +0100641 if (nic_data->must_check_datapath_caps) {
642 rc = efx_ef10_init_datapath_caps(efx);
643 if (rc)
644 return rc;
645 nic_data->must_check_datapath_caps = false;
646 }
647
Ben Hutchings8127d662013-08-29 19:19:29 +0100648 if (nic_data->must_realloc_vis) {
649 /* We cannot let the number of VIs change now */
650 rc = efx_ef10_alloc_vis(efx, nic_data->n_allocated_vis,
651 nic_data->n_allocated_vis);
652 if (rc)
653 return rc;
654 nic_data->must_realloc_vis = false;
655 }
656
Ben Hutchings183233b2013-06-28 21:47:12 +0100657 if (nic_data->must_restore_piobufs && nic_data->n_piobufs) {
658 rc = efx_ef10_alloc_piobufs(efx, nic_data->n_piobufs);
659 if (rc == 0) {
660 rc = efx_ef10_link_piobufs(efx);
661 if (rc)
662 efx_ef10_free_piobufs(efx);
663 }
664
665 /* Log an error on failure, but this is non-fatal */
666 if (rc)
667 netif_err(efx, drv, efx->net_dev,
668 "failed to restore PIO buffers (%d)\n", rc);
669 nic_data->must_restore_piobufs = false;
670 }
671
Ben Hutchings8127d662013-08-29 19:19:29 +0100672 efx_ef10_rx_push_indir_table(efx);
673 return 0;
674}
675
676static int efx_ef10_map_reset_flags(u32 *flags)
677{
678 enum {
679 EF10_RESET_PORT = ((ETH_RESET_MAC | ETH_RESET_PHY) <<
680 ETH_RESET_SHARED_SHIFT),
681 EF10_RESET_MC = ((ETH_RESET_DMA | ETH_RESET_FILTER |
682 ETH_RESET_OFFLOAD | ETH_RESET_MAC |
683 ETH_RESET_PHY | ETH_RESET_MGMT) <<
684 ETH_RESET_SHARED_SHIFT)
685 };
686
687 /* We assume for now that our PCI function is permitted to
688 * reset everything.
689 */
690
691 if ((*flags & EF10_RESET_MC) == EF10_RESET_MC) {
692 *flags &= ~EF10_RESET_MC;
693 return RESET_TYPE_WORLD;
694 }
695
696 if ((*flags & EF10_RESET_PORT) == EF10_RESET_PORT) {
697 *flags &= ~EF10_RESET_PORT;
698 return RESET_TYPE_ALL;
699 }
700
701 /* no invisible reset implemented */
702
703 return -EINVAL;
704}
705
706#define EF10_DMA_STAT(ext_name, mcdi_name) \
707 [EF10_STAT_ ## ext_name] = \
708 { #ext_name, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
709#define EF10_DMA_INVIS_STAT(int_name, mcdi_name) \
710 [EF10_STAT_ ## int_name] = \
711 { NULL, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
712#define EF10_OTHER_STAT(ext_name) \
713 [EF10_STAT_ ## ext_name] = { #ext_name, 0, 0 }
714
715static const struct efx_hw_stat_desc efx_ef10_stat_desc[EF10_STAT_COUNT] = {
716 EF10_DMA_STAT(tx_bytes, TX_BYTES),
717 EF10_DMA_STAT(tx_packets, TX_PKTS),
718 EF10_DMA_STAT(tx_pause, TX_PAUSE_PKTS),
719 EF10_DMA_STAT(tx_control, TX_CONTROL_PKTS),
720 EF10_DMA_STAT(tx_unicast, TX_UNICAST_PKTS),
721 EF10_DMA_STAT(tx_multicast, TX_MULTICAST_PKTS),
722 EF10_DMA_STAT(tx_broadcast, TX_BROADCAST_PKTS),
723 EF10_DMA_STAT(tx_lt64, TX_LT64_PKTS),
724 EF10_DMA_STAT(tx_64, TX_64_PKTS),
725 EF10_DMA_STAT(tx_65_to_127, TX_65_TO_127_PKTS),
726 EF10_DMA_STAT(tx_128_to_255, TX_128_TO_255_PKTS),
727 EF10_DMA_STAT(tx_256_to_511, TX_256_TO_511_PKTS),
728 EF10_DMA_STAT(tx_512_to_1023, TX_512_TO_1023_PKTS),
729 EF10_DMA_STAT(tx_1024_to_15xx, TX_1024_TO_15XX_PKTS),
730 EF10_DMA_STAT(tx_15xx_to_jumbo, TX_15XX_TO_JUMBO_PKTS),
731 EF10_DMA_STAT(rx_bytes, RX_BYTES),
732 EF10_DMA_INVIS_STAT(rx_bytes_minus_good_bytes, RX_BAD_BYTES),
733 EF10_OTHER_STAT(rx_good_bytes),
734 EF10_OTHER_STAT(rx_bad_bytes),
735 EF10_DMA_STAT(rx_packets, RX_PKTS),
736 EF10_DMA_STAT(rx_good, RX_GOOD_PKTS),
737 EF10_DMA_STAT(rx_bad, RX_BAD_FCS_PKTS),
738 EF10_DMA_STAT(rx_pause, RX_PAUSE_PKTS),
739 EF10_DMA_STAT(rx_control, RX_CONTROL_PKTS),
740 EF10_DMA_STAT(rx_unicast, RX_UNICAST_PKTS),
741 EF10_DMA_STAT(rx_multicast, RX_MULTICAST_PKTS),
742 EF10_DMA_STAT(rx_broadcast, RX_BROADCAST_PKTS),
743 EF10_DMA_STAT(rx_lt64, RX_UNDERSIZE_PKTS),
744 EF10_DMA_STAT(rx_64, RX_64_PKTS),
745 EF10_DMA_STAT(rx_65_to_127, RX_65_TO_127_PKTS),
746 EF10_DMA_STAT(rx_128_to_255, RX_128_TO_255_PKTS),
747 EF10_DMA_STAT(rx_256_to_511, RX_256_TO_511_PKTS),
748 EF10_DMA_STAT(rx_512_to_1023, RX_512_TO_1023_PKTS),
749 EF10_DMA_STAT(rx_1024_to_15xx, RX_1024_TO_15XX_PKTS),
750 EF10_DMA_STAT(rx_15xx_to_jumbo, RX_15XX_TO_JUMBO_PKTS),
751 EF10_DMA_STAT(rx_gtjumbo, RX_GTJUMBO_PKTS),
752 EF10_DMA_STAT(rx_bad_gtjumbo, RX_JABBER_PKTS),
753 EF10_DMA_STAT(rx_overflow, RX_OVERFLOW_PKTS),
754 EF10_DMA_STAT(rx_align_error, RX_ALIGN_ERROR_PKTS),
755 EF10_DMA_STAT(rx_length_error, RX_LENGTH_ERROR_PKTS),
756 EF10_DMA_STAT(rx_nodesc_drops, RX_NODESC_DROPS),
757};
758
759#define HUNT_COMMON_STAT_MASK ((1ULL << EF10_STAT_tx_bytes) | \
760 (1ULL << EF10_STAT_tx_packets) | \
761 (1ULL << EF10_STAT_tx_pause) | \
762 (1ULL << EF10_STAT_tx_unicast) | \
763 (1ULL << EF10_STAT_tx_multicast) | \
764 (1ULL << EF10_STAT_tx_broadcast) | \
765 (1ULL << EF10_STAT_rx_bytes) | \
766 (1ULL << EF10_STAT_rx_bytes_minus_good_bytes) | \
767 (1ULL << EF10_STAT_rx_good_bytes) | \
768 (1ULL << EF10_STAT_rx_bad_bytes) | \
769 (1ULL << EF10_STAT_rx_packets) | \
770 (1ULL << EF10_STAT_rx_good) | \
771 (1ULL << EF10_STAT_rx_bad) | \
772 (1ULL << EF10_STAT_rx_pause) | \
773 (1ULL << EF10_STAT_rx_control) | \
774 (1ULL << EF10_STAT_rx_unicast) | \
775 (1ULL << EF10_STAT_rx_multicast) | \
776 (1ULL << EF10_STAT_rx_broadcast) | \
777 (1ULL << EF10_STAT_rx_lt64) | \
778 (1ULL << EF10_STAT_rx_64) | \
779 (1ULL << EF10_STAT_rx_65_to_127) | \
780 (1ULL << EF10_STAT_rx_128_to_255) | \
781 (1ULL << EF10_STAT_rx_256_to_511) | \
782 (1ULL << EF10_STAT_rx_512_to_1023) | \
783 (1ULL << EF10_STAT_rx_1024_to_15xx) | \
784 (1ULL << EF10_STAT_rx_15xx_to_jumbo) | \
785 (1ULL << EF10_STAT_rx_gtjumbo) | \
786 (1ULL << EF10_STAT_rx_bad_gtjumbo) | \
787 (1ULL << EF10_STAT_rx_overflow) | \
788 (1ULL << EF10_STAT_rx_nodesc_drops))
789
790/* These statistics are only provided by the 10G MAC. For a 10G/40G
791 * switchable port we do not expose these because they might not
792 * include all the packets they should.
793 */
794#define HUNT_10G_ONLY_STAT_MASK ((1ULL << EF10_STAT_tx_control) | \
795 (1ULL << EF10_STAT_tx_lt64) | \
796 (1ULL << EF10_STAT_tx_64) | \
797 (1ULL << EF10_STAT_tx_65_to_127) | \
798 (1ULL << EF10_STAT_tx_128_to_255) | \
799 (1ULL << EF10_STAT_tx_256_to_511) | \
800 (1ULL << EF10_STAT_tx_512_to_1023) | \
801 (1ULL << EF10_STAT_tx_1024_to_15xx) | \
802 (1ULL << EF10_STAT_tx_15xx_to_jumbo))
803
804/* These statistics are only provided by the 40G MAC. For a 10G/40G
805 * switchable port we do expose these because the errors will otherwise
806 * be silent.
807 */
808#define HUNT_40G_EXTRA_STAT_MASK ((1ULL << EF10_STAT_rx_align_error) | \
809 (1ULL << EF10_STAT_rx_length_error))
810
811#if BITS_PER_LONG == 64
812#define STAT_MASK_BITMAP(bits) (bits)
813#else
814#define STAT_MASK_BITMAP(bits) (bits) & 0xffffffff, (bits) >> 32
815#endif
816
817static const unsigned long *efx_ef10_stat_mask(struct efx_nic *efx)
818{
819 static const unsigned long hunt_40g_stat_mask[] = {
820 STAT_MASK_BITMAP(HUNT_COMMON_STAT_MASK |
821 HUNT_40G_EXTRA_STAT_MASK)
822 };
823 static const unsigned long hunt_10g_only_stat_mask[] = {
824 STAT_MASK_BITMAP(HUNT_COMMON_STAT_MASK |
825 HUNT_10G_ONLY_STAT_MASK)
826 };
827 u32 port_caps = efx_mcdi_phy_get_caps(efx);
828
829 if (port_caps & (1 << MC_CMD_PHY_CAP_40000FDX_LBN))
830 return hunt_40g_stat_mask;
831 else
832 return hunt_10g_only_stat_mask;
833}
834
835static size_t efx_ef10_describe_stats(struct efx_nic *efx, u8 *names)
836{
837 return efx_nic_describe_stats(efx_ef10_stat_desc, EF10_STAT_COUNT,
838 efx_ef10_stat_mask(efx), names);
839}
840
841static int efx_ef10_try_update_nic_stats(struct efx_nic *efx)
842{
843 struct efx_ef10_nic_data *nic_data = efx->nic_data;
844 const unsigned long *stats_mask = efx_ef10_stat_mask(efx);
845 __le64 generation_start, generation_end;
846 u64 *stats = nic_data->stats;
847 __le64 *dma_stats;
848
849 dma_stats = efx->stats_buffer.addr;
850 nic_data = efx->nic_data;
851
852 generation_end = dma_stats[MC_CMD_MAC_GENERATION_END];
853 if (generation_end == EFX_MC_STATS_GENERATION_INVALID)
854 return 0;
855 rmb();
856 efx_nic_update_stats(efx_ef10_stat_desc, EF10_STAT_COUNT, stats_mask,
857 stats, efx->stats_buffer.addr, false);
858 generation_start = dma_stats[MC_CMD_MAC_GENERATION_START];
859 if (generation_end != generation_start)
860 return -EAGAIN;
861
862 /* Update derived statistics */
863 stats[EF10_STAT_rx_good_bytes] =
864 stats[EF10_STAT_rx_bytes] -
865 stats[EF10_STAT_rx_bytes_minus_good_bytes];
866 efx_update_diff_stat(&stats[EF10_STAT_rx_bad_bytes],
867 stats[EF10_STAT_rx_bytes_minus_good_bytes]);
868
869 return 0;
870}
871
872
873static size_t efx_ef10_update_stats(struct efx_nic *efx, u64 *full_stats,
874 struct rtnl_link_stats64 *core_stats)
875{
876 const unsigned long *mask = efx_ef10_stat_mask(efx);
877 struct efx_ef10_nic_data *nic_data = efx->nic_data;
878 u64 *stats = nic_data->stats;
879 size_t stats_count = 0, index;
880 int retry;
881
882 /* If we're unlucky enough to read statistics during the DMA, wait
883 * up to 10ms for it to finish (typically takes <500us)
884 */
885 for (retry = 0; retry < 100; ++retry) {
886 if (efx_ef10_try_update_nic_stats(efx) == 0)
887 break;
888 udelay(100);
889 }
890
891 if (full_stats) {
892 for_each_set_bit(index, mask, EF10_STAT_COUNT) {
893 if (efx_ef10_stat_desc[index].name) {
894 *full_stats++ = stats[index];
895 ++stats_count;
896 }
897 }
898 }
899
900 if (core_stats) {
901 core_stats->rx_packets = stats[EF10_STAT_rx_packets];
902 core_stats->tx_packets = stats[EF10_STAT_tx_packets];
903 core_stats->rx_bytes = stats[EF10_STAT_rx_bytes];
904 core_stats->tx_bytes = stats[EF10_STAT_tx_bytes];
905 core_stats->rx_dropped = stats[EF10_STAT_rx_nodesc_drops];
906 core_stats->multicast = stats[EF10_STAT_rx_multicast];
907 core_stats->rx_length_errors =
908 stats[EF10_STAT_rx_gtjumbo] +
909 stats[EF10_STAT_rx_length_error];
910 core_stats->rx_crc_errors = stats[EF10_STAT_rx_bad];
911 core_stats->rx_frame_errors = stats[EF10_STAT_rx_align_error];
912 core_stats->rx_fifo_errors = stats[EF10_STAT_rx_overflow];
913 core_stats->rx_errors = (core_stats->rx_length_errors +
914 core_stats->rx_crc_errors +
915 core_stats->rx_frame_errors);
916 }
917
918 return stats_count;
919}
920
921static void efx_ef10_push_irq_moderation(struct efx_channel *channel)
922{
923 struct efx_nic *efx = channel->efx;
924 unsigned int mode, value;
925 efx_dword_t timer_cmd;
926
927 if (channel->irq_moderation) {
928 mode = 3;
929 value = channel->irq_moderation - 1;
930 } else {
931 mode = 0;
932 value = 0;
933 }
934
935 if (EFX_EF10_WORKAROUND_35388(efx)) {
936 EFX_POPULATE_DWORD_3(timer_cmd, ERF_DD_EVQ_IND_TIMER_FLAGS,
937 EFE_DD_EVQ_IND_TIMER_FLAGS,
938 ERF_DD_EVQ_IND_TIMER_MODE, mode,
939 ERF_DD_EVQ_IND_TIMER_VAL, value);
940 efx_writed_page(efx, &timer_cmd, ER_DD_EVQ_INDIRECT,
941 channel->channel);
942 } else {
943 EFX_POPULATE_DWORD_2(timer_cmd, ERF_DZ_TC_TIMER_MODE, mode,
944 ERF_DZ_TC_TIMER_VAL, value);
945 efx_writed_page(efx, &timer_cmd, ER_DZ_EVQ_TMR,
946 channel->channel);
947 }
948}
949
950static void efx_ef10_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol)
951{
952 wol->supported = 0;
953 wol->wolopts = 0;
954 memset(&wol->sopass, 0, sizeof(wol->sopass));
955}
956
957static int efx_ef10_set_wol(struct efx_nic *efx, u32 type)
958{
959 if (type != 0)
960 return -EINVAL;
961 return 0;
962}
963
964static void efx_ef10_mcdi_request(struct efx_nic *efx,
965 const efx_dword_t *hdr, size_t hdr_len,
966 const efx_dword_t *sdu, size_t sdu_len)
967{
968 struct efx_ef10_nic_data *nic_data = efx->nic_data;
969 u8 *pdu = nic_data->mcdi_buf.addr;
970
971 memcpy(pdu, hdr, hdr_len);
972 memcpy(pdu + hdr_len, sdu, sdu_len);
973 wmb();
974
975 /* The hardware provides 'low' and 'high' (doorbell) registers
976 * for passing the 64-bit address of an MCDI request to
977 * firmware. However the dwords are swapped by firmware. The
978 * least significant bits of the doorbell are then 0 for all
979 * MCDI requests due to alignment.
980 */
981 _efx_writed(efx, cpu_to_le32((u64)nic_data->mcdi_buf.dma_addr >> 32),
982 ER_DZ_MC_DB_LWRD);
983 _efx_writed(efx, cpu_to_le32((u32)nic_data->mcdi_buf.dma_addr),
984 ER_DZ_MC_DB_HWRD);
985}
986
987static bool efx_ef10_mcdi_poll_response(struct efx_nic *efx)
988{
989 struct efx_ef10_nic_data *nic_data = efx->nic_data;
990 const efx_dword_t hdr = *(const efx_dword_t *)nic_data->mcdi_buf.addr;
991
992 rmb();
993 return EFX_DWORD_FIELD(hdr, MCDI_HEADER_RESPONSE);
994}
995
996static void
997efx_ef10_mcdi_read_response(struct efx_nic *efx, efx_dword_t *outbuf,
998 size_t offset, size_t outlen)
999{
1000 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1001 const u8 *pdu = nic_data->mcdi_buf.addr;
1002
1003 memcpy(outbuf, pdu + offset, outlen);
1004}
1005
1006static int efx_ef10_mcdi_poll_reboot(struct efx_nic *efx)
1007{
1008 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1009 int rc;
1010
1011 rc = efx_ef10_get_warm_boot_count(efx);
1012 if (rc < 0) {
1013 /* The firmware is presumably in the process of
1014 * rebooting. However, we are supposed to report each
1015 * reboot just once, so we must only do that once we
1016 * can read and store the updated warm boot count.
1017 */
1018 return 0;
1019 }
1020
1021 if (rc == nic_data->warm_boot_count)
1022 return 0;
1023
1024 nic_data->warm_boot_count = rc;
1025
1026 /* All our allocations have been reset */
1027 nic_data->must_realloc_vis = true;
1028 nic_data->must_restore_filters = true;
Ben Hutchings183233b2013-06-28 21:47:12 +01001029 nic_data->must_restore_piobufs = true;
Ben Hutchings8127d662013-08-29 19:19:29 +01001030 nic_data->rx_rss_context = EFX_EF10_RSS_CONTEXT_INVALID;
1031
Ben Hutchingsa915ccc2013-09-05 22:51:55 +01001032 /* The datapath firmware might have been changed */
1033 nic_data->must_check_datapath_caps = true;
1034
Ben Hutchings869070c2013-09-05 22:46:10 +01001035 /* MAC statistics have been cleared on the NIC; clear the local
1036 * statistic that we update with efx_update_diff_stat().
1037 */
1038 nic_data->stats[EF10_STAT_rx_bad_bytes] = 0;
1039
Ben Hutchings8127d662013-08-29 19:19:29 +01001040 return -EIO;
1041}
1042
1043/* Handle an MSI interrupt
1044 *
1045 * Handle an MSI hardware interrupt. This routine schedules event
1046 * queue processing. No interrupt acknowledgement cycle is necessary.
1047 * Also, we never need to check that the interrupt is for us, since
1048 * MSI interrupts cannot be shared.
1049 */
1050static irqreturn_t efx_ef10_msi_interrupt(int irq, void *dev_id)
1051{
1052 struct efx_msi_context *context = dev_id;
1053 struct efx_nic *efx = context->efx;
1054
1055 netif_vdbg(efx, intr, efx->net_dev,
1056 "IRQ %d on CPU %d\n", irq, raw_smp_processor_id());
1057
1058 if (likely(ACCESS_ONCE(efx->irq_soft_enabled))) {
1059 /* Note test interrupts */
1060 if (context->index == efx->irq_level)
1061 efx->last_irq_cpu = raw_smp_processor_id();
1062
1063 /* Schedule processing of the channel */
1064 efx_schedule_channel_irq(efx->channel[context->index]);
1065 }
1066
1067 return IRQ_HANDLED;
1068}
1069
1070static irqreturn_t efx_ef10_legacy_interrupt(int irq, void *dev_id)
1071{
1072 struct efx_nic *efx = dev_id;
1073 bool soft_enabled = ACCESS_ONCE(efx->irq_soft_enabled);
1074 struct efx_channel *channel;
1075 efx_dword_t reg;
1076 u32 queues;
1077
1078 /* Read the ISR which also ACKs the interrupts */
1079 efx_readd(efx, &reg, ER_DZ_BIU_INT_ISR);
1080 queues = EFX_DWORD_FIELD(reg, ERF_DZ_ISR_REG);
1081
1082 if (queues == 0)
1083 return IRQ_NONE;
1084
1085 if (likely(soft_enabled)) {
1086 /* Note test interrupts */
1087 if (queues & (1U << efx->irq_level))
1088 efx->last_irq_cpu = raw_smp_processor_id();
1089
1090 efx_for_each_channel(channel, efx) {
1091 if (queues & 1)
1092 efx_schedule_channel_irq(channel);
1093 queues >>= 1;
1094 }
1095 }
1096
1097 netif_vdbg(efx, intr, efx->net_dev,
1098 "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
1099 irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
1100
1101 return IRQ_HANDLED;
1102}
1103
1104static void efx_ef10_irq_test_generate(struct efx_nic *efx)
1105{
1106 MCDI_DECLARE_BUF(inbuf, MC_CMD_TRIGGER_INTERRUPT_IN_LEN);
1107
1108 BUILD_BUG_ON(MC_CMD_TRIGGER_INTERRUPT_OUT_LEN != 0);
1109
1110 MCDI_SET_DWORD(inbuf, TRIGGER_INTERRUPT_IN_INTR_LEVEL, efx->irq_level);
1111 (void) efx_mcdi_rpc(efx, MC_CMD_TRIGGER_INTERRUPT,
1112 inbuf, sizeof(inbuf), NULL, 0, NULL);
1113}
1114
1115static int efx_ef10_tx_probe(struct efx_tx_queue *tx_queue)
1116{
1117 return efx_nic_alloc_buffer(tx_queue->efx, &tx_queue->txd.buf,
1118 (tx_queue->ptr_mask + 1) *
1119 sizeof(efx_qword_t),
1120 GFP_KERNEL);
1121}
1122
1123/* This writes to the TX_DESC_WPTR and also pushes data */
1124static inline void efx_ef10_push_tx_desc(struct efx_tx_queue *tx_queue,
1125 const efx_qword_t *txd)
1126{
1127 unsigned int write_ptr;
1128 efx_oword_t reg;
1129
1130 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
1131 EFX_POPULATE_OWORD_1(reg, ERF_DZ_TX_DESC_WPTR, write_ptr);
1132 reg.qword[0] = *txd;
1133 efx_writeo_page(tx_queue->efx, &reg,
1134 ER_DZ_TX_DESC_UPD, tx_queue->queue);
1135}
1136
1137static void efx_ef10_tx_init(struct efx_tx_queue *tx_queue)
1138{
1139 MCDI_DECLARE_BUF(inbuf, MC_CMD_INIT_TXQ_IN_LEN(EFX_MAX_DMAQ_SIZE * 8 /
1140 EFX_BUF_SIZE));
1141 MCDI_DECLARE_BUF(outbuf, MC_CMD_INIT_TXQ_OUT_LEN);
1142 bool csum_offload = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
1143 size_t entries = tx_queue->txd.buf.len / EFX_BUF_SIZE;
1144 struct efx_channel *channel = tx_queue->channel;
1145 struct efx_nic *efx = tx_queue->efx;
1146 size_t inlen, outlen;
1147 dma_addr_t dma_addr;
1148 efx_qword_t *txd;
1149 int rc;
1150 int i;
1151
1152 MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_SIZE, tx_queue->ptr_mask + 1);
1153 MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_TARGET_EVQ, channel->channel);
1154 MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_LABEL, tx_queue->queue);
1155 MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_INSTANCE, tx_queue->queue);
1156 MCDI_POPULATE_DWORD_2(inbuf, INIT_TXQ_IN_FLAGS,
1157 INIT_TXQ_IN_FLAG_IP_CSUM_DIS, !csum_offload,
1158 INIT_TXQ_IN_FLAG_TCP_CSUM_DIS, !csum_offload);
1159 MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_OWNER_ID, 0);
1160 MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_PORT_ID, EVB_PORT_ID_ASSIGNED);
1161
1162 dma_addr = tx_queue->txd.buf.dma_addr;
1163
1164 netif_dbg(efx, hw, efx->net_dev, "pushing TXQ %d. %zu entries (%llx)\n",
1165 tx_queue->queue, entries, (u64)dma_addr);
1166
1167 for (i = 0; i < entries; ++i) {
1168 MCDI_SET_ARRAY_QWORD(inbuf, INIT_TXQ_IN_DMA_ADDR, i, dma_addr);
1169 dma_addr += EFX_BUF_SIZE;
1170 }
1171
1172 inlen = MC_CMD_INIT_TXQ_IN_LEN(entries);
1173
1174 rc = efx_mcdi_rpc(efx, MC_CMD_INIT_TXQ, inbuf, inlen,
1175 outbuf, sizeof(outbuf), &outlen);
1176 if (rc)
1177 goto fail;
1178
1179 /* A previous user of this TX queue might have set us up the
1180 * bomb by writing a descriptor to the TX push collector but
1181 * not the doorbell. (Each collector belongs to a port, not a
1182 * queue or function, so cannot easily be reset.) We must
1183 * attempt to push a no-op descriptor in its place.
1184 */
1185 tx_queue->buffer[0].flags = EFX_TX_BUF_OPTION;
1186 tx_queue->insert_count = 1;
1187 txd = efx_tx_desc(tx_queue, 0);
1188 EFX_POPULATE_QWORD_4(*txd,
1189 ESF_DZ_TX_DESC_IS_OPT, true,
1190 ESF_DZ_TX_OPTION_TYPE,
1191 ESE_DZ_TX_OPTION_DESC_CRC_CSUM,
1192 ESF_DZ_TX_OPTION_UDP_TCP_CSUM, csum_offload,
1193 ESF_DZ_TX_OPTION_IP_CSUM, csum_offload);
1194 tx_queue->write_count = 1;
1195 wmb();
1196 efx_ef10_push_tx_desc(tx_queue, txd);
1197
1198 return;
1199
1200fail:
1201 WARN_ON(true);
1202 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1203}
1204
1205static void efx_ef10_tx_fini(struct efx_tx_queue *tx_queue)
1206{
1207 MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_TXQ_IN_LEN);
1208 MCDI_DECLARE_BUF(outbuf, MC_CMD_FINI_TXQ_OUT_LEN);
1209 struct efx_nic *efx = tx_queue->efx;
1210 size_t outlen;
1211 int rc;
1212
1213 MCDI_SET_DWORD(inbuf, FINI_TXQ_IN_INSTANCE,
1214 tx_queue->queue);
1215
1216 rc = efx_mcdi_rpc(efx, MC_CMD_FINI_TXQ, inbuf, sizeof(inbuf),
1217 outbuf, sizeof(outbuf), &outlen);
1218
1219 if (rc && rc != -EALREADY)
1220 goto fail;
1221
1222 return;
1223
1224fail:
1225 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1226}
1227
1228static void efx_ef10_tx_remove(struct efx_tx_queue *tx_queue)
1229{
1230 efx_nic_free_buffer(tx_queue->efx, &tx_queue->txd.buf);
1231}
1232
1233/* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
1234static inline void efx_ef10_notify_tx_desc(struct efx_tx_queue *tx_queue)
1235{
1236 unsigned int write_ptr;
1237 efx_dword_t reg;
1238
1239 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
1240 EFX_POPULATE_DWORD_1(reg, ERF_DZ_TX_DESC_WPTR_DWORD, write_ptr);
1241 efx_writed_page(tx_queue->efx, &reg,
1242 ER_DZ_TX_DESC_UPD_DWORD, tx_queue->queue);
1243}
1244
1245static void efx_ef10_tx_write(struct efx_tx_queue *tx_queue)
1246{
1247 unsigned int old_write_count = tx_queue->write_count;
1248 struct efx_tx_buffer *buffer;
1249 unsigned int write_ptr;
1250 efx_qword_t *txd;
1251
1252 BUG_ON(tx_queue->write_count == tx_queue->insert_count);
1253
1254 do {
1255 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
1256 buffer = &tx_queue->buffer[write_ptr];
1257 txd = efx_tx_desc(tx_queue, write_ptr);
1258 ++tx_queue->write_count;
1259
1260 /* Create TX descriptor ring entry */
1261 if (buffer->flags & EFX_TX_BUF_OPTION) {
1262 *txd = buffer->option;
1263 } else {
1264 BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
1265 EFX_POPULATE_QWORD_3(
1266 *txd,
1267 ESF_DZ_TX_KER_CONT,
1268 buffer->flags & EFX_TX_BUF_CONT,
1269 ESF_DZ_TX_KER_BYTE_CNT, buffer->len,
1270 ESF_DZ_TX_KER_BUF_ADDR, buffer->dma_addr);
1271 }
1272 } while (tx_queue->write_count != tx_queue->insert_count);
1273
1274 wmb(); /* Ensure descriptors are written before they are fetched */
1275
1276 if (efx_nic_may_push_tx_desc(tx_queue, old_write_count)) {
1277 txd = efx_tx_desc(tx_queue,
1278 old_write_count & tx_queue->ptr_mask);
1279 efx_ef10_push_tx_desc(tx_queue, txd);
1280 ++tx_queue->pushes;
1281 } else {
1282 efx_ef10_notify_tx_desc(tx_queue);
1283 }
1284}
1285
1286static int efx_ef10_alloc_rss_context(struct efx_nic *efx, u32 *context)
1287{
1288 MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_ALLOC_IN_LEN);
1289 MCDI_DECLARE_BUF(outbuf, MC_CMD_RSS_CONTEXT_ALLOC_OUT_LEN);
1290 size_t outlen;
1291 int rc;
1292
1293 MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_UPSTREAM_PORT_ID,
1294 EVB_PORT_ID_ASSIGNED);
1295 MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_TYPE,
1296 MC_CMD_RSS_CONTEXT_ALLOC_IN_TYPE_EXCLUSIVE);
1297 MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_NUM_QUEUES,
1298 EFX_MAX_CHANNELS);
1299
1300 rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_ALLOC, inbuf, sizeof(inbuf),
1301 outbuf, sizeof(outbuf), &outlen);
1302 if (rc != 0)
1303 return rc;
1304
1305 if (outlen < MC_CMD_RSS_CONTEXT_ALLOC_OUT_LEN)
1306 return -EIO;
1307
1308 *context = MCDI_DWORD(outbuf, RSS_CONTEXT_ALLOC_OUT_RSS_CONTEXT_ID);
1309
1310 return 0;
1311}
1312
1313static void efx_ef10_free_rss_context(struct efx_nic *efx, u32 context)
1314{
1315 MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_FREE_IN_LEN);
1316 int rc;
1317
1318 MCDI_SET_DWORD(inbuf, RSS_CONTEXT_FREE_IN_RSS_CONTEXT_ID,
1319 context);
1320
1321 rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_FREE, inbuf, sizeof(inbuf),
1322 NULL, 0, NULL);
1323 WARN_ON(rc != 0);
1324}
1325
1326static int efx_ef10_populate_rss_table(struct efx_nic *efx, u32 context)
1327{
1328 MCDI_DECLARE_BUF(tablebuf, MC_CMD_RSS_CONTEXT_SET_TABLE_IN_LEN);
1329 MCDI_DECLARE_BUF(keybuf, MC_CMD_RSS_CONTEXT_SET_KEY_IN_LEN);
1330 int i, rc;
1331
1332 MCDI_SET_DWORD(tablebuf, RSS_CONTEXT_SET_TABLE_IN_RSS_CONTEXT_ID,
1333 context);
1334 BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) !=
1335 MC_CMD_RSS_CONTEXT_SET_TABLE_IN_INDIRECTION_TABLE_LEN);
1336
1337 for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); ++i)
1338 MCDI_PTR(tablebuf,
1339 RSS_CONTEXT_SET_TABLE_IN_INDIRECTION_TABLE)[i] =
1340 (u8) efx->rx_indir_table[i];
1341
1342 rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_SET_TABLE, tablebuf,
1343 sizeof(tablebuf), NULL, 0, NULL);
1344 if (rc != 0)
1345 return rc;
1346
1347 MCDI_SET_DWORD(keybuf, RSS_CONTEXT_SET_KEY_IN_RSS_CONTEXT_ID,
1348 context);
1349 BUILD_BUG_ON(ARRAY_SIZE(efx->rx_hash_key) !=
1350 MC_CMD_RSS_CONTEXT_SET_KEY_IN_TOEPLITZ_KEY_LEN);
1351 for (i = 0; i < ARRAY_SIZE(efx->rx_hash_key); ++i)
1352 MCDI_PTR(keybuf, RSS_CONTEXT_SET_KEY_IN_TOEPLITZ_KEY)[i] =
1353 efx->rx_hash_key[i];
1354
1355 return efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_SET_KEY, keybuf,
1356 sizeof(keybuf), NULL, 0, NULL);
1357}
1358
1359static void efx_ef10_rx_free_indir_table(struct efx_nic *efx)
1360{
1361 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1362
1363 if (nic_data->rx_rss_context != EFX_EF10_RSS_CONTEXT_INVALID)
1364 efx_ef10_free_rss_context(efx, nic_data->rx_rss_context);
1365 nic_data->rx_rss_context = EFX_EF10_RSS_CONTEXT_INVALID;
1366}
1367
1368static void efx_ef10_rx_push_indir_table(struct efx_nic *efx)
1369{
1370 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1371 int rc;
1372
1373 netif_dbg(efx, drv, efx->net_dev, "pushing RX indirection table\n");
1374
1375 if (nic_data->rx_rss_context == EFX_EF10_RSS_CONTEXT_INVALID) {
1376 rc = efx_ef10_alloc_rss_context(efx, &nic_data->rx_rss_context);
1377 if (rc != 0)
1378 goto fail;
1379 }
1380
1381 rc = efx_ef10_populate_rss_table(efx, nic_data->rx_rss_context);
1382 if (rc != 0)
1383 goto fail;
1384
1385 return;
1386
1387fail:
1388 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1389}
1390
1391static int efx_ef10_rx_probe(struct efx_rx_queue *rx_queue)
1392{
1393 return efx_nic_alloc_buffer(rx_queue->efx, &rx_queue->rxd.buf,
1394 (rx_queue->ptr_mask + 1) *
1395 sizeof(efx_qword_t),
1396 GFP_KERNEL);
1397}
1398
1399static void efx_ef10_rx_init(struct efx_rx_queue *rx_queue)
1400{
1401 MCDI_DECLARE_BUF(inbuf,
1402 MC_CMD_INIT_RXQ_IN_LEN(EFX_MAX_DMAQ_SIZE * 8 /
1403 EFX_BUF_SIZE));
1404 MCDI_DECLARE_BUF(outbuf, MC_CMD_INIT_RXQ_OUT_LEN);
1405 struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
1406 size_t entries = rx_queue->rxd.buf.len / EFX_BUF_SIZE;
1407 struct efx_nic *efx = rx_queue->efx;
1408 size_t inlen, outlen;
1409 dma_addr_t dma_addr;
1410 int rc;
1411 int i;
1412
1413 rx_queue->scatter_n = 0;
1414 rx_queue->scatter_len = 0;
1415
1416 MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_SIZE, rx_queue->ptr_mask + 1);
1417 MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_TARGET_EVQ, channel->channel);
1418 MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_LABEL, efx_rx_queue_index(rx_queue));
1419 MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_INSTANCE,
1420 efx_rx_queue_index(rx_queue));
1421 MCDI_POPULATE_DWORD_1(inbuf, INIT_RXQ_IN_FLAGS,
1422 INIT_RXQ_IN_FLAG_PREFIX, 1);
1423 MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_OWNER_ID, 0);
1424 MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_PORT_ID, EVB_PORT_ID_ASSIGNED);
1425
1426 dma_addr = rx_queue->rxd.buf.dma_addr;
1427
1428 netif_dbg(efx, hw, efx->net_dev, "pushing RXQ %d. %zu entries (%llx)\n",
1429 efx_rx_queue_index(rx_queue), entries, (u64)dma_addr);
1430
1431 for (i = 0; i < entries; ++i) {
1432 MCDI_SET_ARRAY_QWORD(inbuf, INIT_RXQ_IN_DMA_ADDR, i, dma_addr);
1433 dma_addr += EFX_BUF_SIZE;
1434 }
1435
1436 inlen = MC_CMD_INIT_RXQ_IN_LEN(entries);
1437
1438 rc = efx_mcdi_rpc(efx, MC_CMD_INIT_RXQ, inbuf, inlen,
1439 outbuf, sizeof(outbuf), &outlen);
1440 if (rc)
1441 goto fail;
1442
1443 return;
1444
1445fail:
1446 WARN_ON(true);
1447 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1448}
1449
1450static void efx_ef10_rx_fini(struct efx_rx_queue *rx_queue)
1451{
1452 MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_RXQ_IN_LEN);
1453 MCDI_DECLARE_BUF(outbuf, MC_CMD_FINI_RXQ_OUT_LEN);
1454 struct efx_nic *efx = rx_queue->efx;
1455 size_t outlen;
1456 int rc;
1457
1458 MCDI_SET_DWORD(inbuf, FINI_RXQ_IN_INSTANCE,
1459 efx_rx_queue_index(rx_queue));
1460
1461 rc = efx_mcdi_rpc(efx, MC_CMD_FINI_RXQ, inbuf, sizeof(inbuf),
1462 outbuf, sizeof(outbuf), &outlen);
1463
1464 if (rc && rc != -EALREADY)
1465 goto fail;
1466
1467 return;
1468
1469fail:
1470 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1471}
1472
1473static void efx_ef10_rx_remove(struct efx_rx_queue *rx_queue)
1474{
1475 efx_nic_free_buffer(rx_queue->efx, &rx_queue->rxd.buf);
1476}
1477
1478/* This creates an entry in the RX descriptor queue */
1479static inline void
1480efx_ef10_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
1481{
1482 struct efx_rx_buffer *rx_buf;
1483 efx_qword_t *rxd;
1484
1485 rxd = efx_rx_desc(rx_queue, index);
1486 rx_buf = efx_rx_buffer(rx_queue, index);
1487 EFX_POPULATE_QWORD_2(*rxd,
1488 ESF_DZ_RX_KER_BYTE_CNT, rx_buf->len,
1489 ESF_DZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
1490}
1491
1492static void efx_ef10_rx_write(struct efx_rx_queue *rx_queue)
1493{
1494 struct efx_nic *efx = rx_queue->efx;
1495 unsigned int write_count;
1496 efx_dword_t reg;
1497
1498 /* Firmware requires that RX_DESC_WPTR be a multiple of 8 */
1499 write_count = rx_queue->added_count & ~7;
1500 if (rx_queue->notified_count == write_count)
1501 return;
1502
1503 do
1504 efx_ef10_build_rx_desc(
1505 rx_queue,
1506 rx_queue->notified_count & rx_queue->ptr_mask);
1507 while (++rx_queue->notified_count != write_count);
1508
1509 wmb();
1510 EFX_POPULATE_DWORD_1(reg, ERF_DZ_RX_DESC_WPTR,
1511 write_count & rx_queue->ptr_mask);
1512 efx_writed_page(efx, &reg, ER_DZ_RX_DESC_UPD,
1513 efx_rx_queue_index(rx_queue));
1514}
1515
1516static efx_mcdi_async_completer efx_ef10_rx_defer_refill_complete;
1517
1518static void efx_ef10_rx_defer_refill(struct efx_rx_queue *rx_queue)
1519{
1520 struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
1521 MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
1522 efx_qword_t event;
1523
1524 EFX_POPULATE_QWORD_2(event,
1525 ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
1526 ESF_DZ_EV_DATA, EFX_EF10_REFILL);
1527
1528 MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
1529
1530 /* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
1531 * already swapped the data to little-endian order.
1532 */
1533 memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
1534 sizeof(efx_qword_t));
1535
1536 efx_mcdi_rpc_async(channel->efx, MC_CMD_DRIVER_EVENT,
1537 inbuf, sizeof(inbuf), 0,
1538 efx_ef10_rx_defer_refill_complete, 0);
1539}
1540
1541static void
1542efx_ef10_rx_defer_refill_complete(struct efx_nic *efx, unsigned long cookie,
1543 int rc, efx_dword_t *outbuf,
1544 size_t outlen_actual)
1545{
1546 /* nothing to do */
1547}
1548
1549static int efx_ef10_ev_probe(struct efx_channel *channel)
1550{
1551 return efx_nic_alloc_buffer(channel->efx, &channel->eventq.buf,
1552 (channel->eventq_mask + 1) *
1553 sizeof(efx_qword_t),
1554 GFP_KERNEL);
1555}
1556
1557static int efx_ef10_ev_init(struct efx_channel *channel)
1558{
1559 MCDI_DECLARE_BUF(inbuf,
1560 MC_CMD_INIT_EVQ_IN_LEN(EFX_MAX_EVQ_SIZE * 8 /
1561 EFX_BUF_SIZE));
1562 MCDI_DECLARE_BUF(outbuf, MC_CMD_INIT_EVQ_OUT_LEN);
1563 size_t entries = channel->eventq.buf.len / EFX_BUF_SIZE;
1564 struct efx_nic *efx = channel->efx;
1565 struct efx_ef10_nic_data *nic_data;
1566 bool supports_rx_merge;
1567 size_t inlen, outlen;
1568 dma_addr_t dma_addr;
1569 int rc;
1570 int i;
1571
1572 nic_data = efx->nic_data;
1573 supports_rx_merge =
1574 !!(nic_data->datapath_caps &
1575 1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN);
1576
1577 /* Fill event queue with all ones (i.e. empty events) */
1578 memset(channel->eventq.buf.addr, 0xff, channel->eventq.buf.len);
1579
1580 MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_SIZE, channel->eventq_mask + 1);
1581 MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_INSTANCE, channel->channel);
1582 /* INIT_EVQ expects index in vector table, not absolute */
1583 MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_IRQ_NUM, channel->channel);
1584 MCDI_POPULATE_DWORD_4(inbuf, INIT_EVQ_IN_FLAGS,
1585 INIT_EVQ_IN_FLAG_INTERRUPTING, 1,
1586 INIT_EVQ_IN_FLAG_RX_MERGE, 1,
1587 INIT_EVQ_IN_FLAG_TX_MERGE, 1,
1588 INIT_EVQ_IN_FLAG_CUT_THRU, !supports_rx_merge);
1589 MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_MODE,
1590 MC_CMD_INIT_EVQ_IN_TMR_MODE_DIS);
1591 MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_LOAD, 0);
1592 MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_RELOAD, 0);
1593 MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_COUNT_MODE,
1594 MC_CMD_INIT_EVQ_IN_COUNT_MODE_DIS);
1595 MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_COUNT_THRSHLD, 0);
1596
1597 dma_addr = channel->eventq.buf.dma_addr;
1598 for (i = 0; i < entries; ++i) {
1599 MCDI_SET_ARRAY_QWORD(inbuf, INIT_EVQ_IN_DMA_ADDR, i, dma_addr);
1600 dma_addr += EFX_BUF_SIZE;
1601 }
1602
1603 inlen = MC_CMD_INIT_EVQ_IN_LEN(entries);
1604
1605 rc = efx_mcdi_rpc(efx, MC_CMD_INIT_EVQ, inbuf, inlen,
1606 outbuf, sizeof(outbuf), &outlen);
1607 if (rc)
1608 goto fail;
1609
1610 /* IRQ return is ignored */
1611
1612 return 0;
1613
1614fail:
1615 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1616 return rc;
1617}
1618
1619static void efx_ef10_ev_fini(struct efx_channel *channel)
1620{
1621 MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_EVQ_IN_LEN);
1622 MCDI_DECLARE_BUF(outbuf, MC_CMD_FINI_EVQ_OUT_LEN);
1623 struct efx_nic *efx = channel->efx;
1624 size_t outlen;
1625 int rc;
1626
1627 MCDI_SET_DWORD(inbuf, FINI_EVQ_IN_INSTANCE, channel->channel);
1628
1629 rc = efx_mcdi_rpc(efx, MC_CMD_FINI_EVQ, inbuf, sizeof(inbuf),
1630 outbuf, sizeof(outbuf), &outlen);
1631
1632 if (rc && rc != -EALREADY)
1633 goto fail;
1634
1635 return;
1636
1637fail:
1638 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1639}
1640
1641static void efx_ef10_ev_remove(struct efx_channel *channel)
1642{
1643 efx_nic_free_buffer(channel->efx, &channel->eventq.buf);
1644}
1645
1646static void efx_ef10_handle_rx_wrong_queue(struct efx_rx_queue *rx_queue,
1647 unsigned int rx_queue_label)
1648{
1649 struct efx_nic *efx = rx_queue->efx;
1650
1651 netif_info(efx, hw, efx->net_dev,
1652 "rx event arrived on queue %d labeled as queue %u\n",
1653 efx_rx_queue_index(rx_queue), rx_queue_label);
1654
1655 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1656}
1657
1658static void
1659efx_ef10_handle_rx_bad_lbits(struct efx_rx_queue *rx_queue,
1660 unsigned int actual, unsigned int expected)
1661{
1662 unsigned int dropped = (actual - expected) & rx_queue->ptr_mask;
1663 struct efx_nic *efx = rx_queue->efx;
1664
1665 netif_info(efx, hw, efx->net_dev,
1666 "dropped %d events (index=%d expected=%d)\n",
1667 dropped, actual, expected);
1668
1669 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1670}
1671
1672/* partially received RX was aborted. clean up. */
1673static void efx_ef10_handle_rx_abort(struct efx_rx_queue *rx_queue)
1674{
1675 unsigned int rx_desc_ptr;
1676
1677 WARN_ON(rx_queue->scatter_n == 0);
1678
1679 netif_dbg(rx_queue->efx, hw, rx_queue->efx->net_dev,
1680 "scattered RX aborted (dropping %u buffers)\n",
1681 rx_queue->scatter_n);
1682
1683 rx_desc_ptr = rx_queue->removed_count & rx_queue->ptr_mask;
1684
1685 efx_rx_packet(rx_queue, rx_desc_ptr, rx_queue->scatter_n,
1686 0, EFX_RX_PKT_DISCARD);
1687
1688 rx_queue->removed_count += rx_queue->scatter_n;
1689 rx_queue->scatter_n = 0;
1690 rx_queue->scatter_len = 0;
1691 ++efx_rx_queue_channel(rx_queue)->n_rx_nodesc_trunc;
1692}
1693
1694static int efx_ef10_handle_rx_event(struct efx_channel *channel,
1695 const efx_qword_t *event)
1696{
1697 unsigned int rx_bytes, next_ptr_lbits, rx_queue_label, rx_l4_class;
1698 unsigned int n_descs, n_packets, i;
1699 struct efx_nic *efx = channel->efx;
1700 struct efx_rx_queue *rx_queue;
1701 bool rx_cont;
1702 u16 flags = 0;
1703
1704 if (unlikely(ACCESS_ONCE(efx->reset_pending)))
1705 return 0;
1706
1707 /* Basic packet information */
1708 rx_bytes = EFX_QWORD_FIELD(*event, ESF_DZ_RX_BYTES);
1709 next_ptr_lbits = EFX_QWORD_FIELD(*event, ESF_DZ_RX_DSC_PTR_LBITS);
1710 rx_queue_label = EFX_QWORD_FIELD(*event, ESF_DZ_RX_QLABEL);
1711 rx_l4_class = EFX_QWORD_FIELD(*event, ESF_DZ_RX_L4_CLASS);
1712 rx_cont = EFX_QWORD_FIELD(*event, ESF_DZ_RX_CONT);
1713
1714 WARN_ON(EFX_QWORD_FIELD(*event, ESF_DZ_RX_DROP_EVENT));
1715
1716 rx_queue = efx_channel_get_rx_queue(channel);
1717
1718 if (unlikely(rx_queue_label != efx_rx_queue_index(rx_queue)))
1719 efx_ef10_handle_rx_wrong_queue(rx_queue, rx_queue_label);
1720
1721 n_descs = ((next_ptr_lbits - rx_queue->removed_count) &
1722 ((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));
1723
1724 if (n_descs != rx_queue->scatter_n + 1) {
1725 /* detect rx abort */
1726 if (unlikely(n_descs == rx_queue->scatter_n)) {
1727 WARN_ON(rx_bytes != 0);
1728 efx_ef10_handle_rx_abort(rx_queue);
1729 return 0;
1730 }
1731
1732 if (unlikely(rx_queue->scatter_n != 0)) {
1733 /* Scattered packet completions cannot be
1734 * merged, so something has gone wrong.
1735 */
1736 efx_ef10_handle_rx_bad_lbits(
1737 rx_queue, next_ptr_lbits,
1738 (rx_queue->removed_count +
1739 rx_queue->scatter_n + 1) &
1740 ((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));
1741 return 0;
1742 }
1743
1744 /* Merged completion for multiple non-scattered packets */
1745 rx_queue->scatter_n = 1;
1746 rx_queue->scatter_len = 0;
1747 n_packets = n_descs;
1748 ++channel->n_rx_merge_events;
1749 channel->n_rx_merge_packets += n_packets;
1750 flags |= EFX_RX_PKT_PREFIX_LEN;
1751 } else {
1752 ++rx_queue->scatter_n;
1753 rx_queue->scatter_len += rx_bytes;
1754 if (rx_cont)
1755 return 0;
1756 n_packets = 1;
1757 }
1758
1759 if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_RX_ECRC_ERR)))
1760 flags |= EFX_RX_PKT_DISCARD;
1761
1762 if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_RX_IPCKSUM_ERR))) {
1763 channel->n_rx_ip_hdr_chksum_err += n_packets;
1764 } else if (unlikely(EFX_QWORD_FIELD(*event,
1765 ESF_DZ_RX_TCPUDP_CKSUM_ERR))) {
1766 channel->n_rx_tcp_udp_chksum_err += n_packets;
1767 } else if (rx_l4_class == ESE_DZ_L4_CLASS_TCP ||
1768 rx_l4_class == ESE_DZ_L4_CLASS_UDP) {
1769 flags |= EFX_RX_PKT_CSUMMED;
1770 }
1771
1772 if (rx_l4_class == ESE_DZ_L4_CLASS_TCP)
1773 flags |= EFX_RX_PKT_TCP;
1774
1775 channel->irq_mod_score += 2 * n_packets;
1776
1777 /* Handle received packet(s) */
1778 for (i = 0; i < n_packets; i++) {
1779 efx_rx_packet(rx_queue,
1780 rx_queue->removed_count & rx_queue->ptr_mask,
1781 rx_queue->scatter_n, rx_queue->scatter_len,
1782 flags);
1783 rx_queue->removed_count += rx_queue->scatter_n;
1784 }
1785
1786 rx_queue->scatter_n = 0;
1787 rx_queue->scatter_len = 0;
1788
1789 return n_packets;
1790}
1791
1792static int
1793efx_ef10_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
1794{
1795 struct efx_nic *efx = channel->efx;
1796 struct efx_tx_queue *tx_queue;
1797 unsigned int tx_ev_desc_ptr;
1798 unsigned int tx_ev_q_label;
1799 int tx_descs = 0;
1800
1801 if (unlikely(ACCESS_ONCE(efx->reset_pending)))
1802 return 0;
1803
1804 if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_TX_DROP_EVENT)))
1805 return 0;
1806
1807 /* Transmit completion */
1808 tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, ESF_DZ_TX_DESCR_INDX);
1809 tx_ev_q_label = EFX_QWORD_FIELD(*event, ESF_DZ_TX_QLABEL);
1810 tx_queue = efx_channel_get_tx_queue(channel,
1811 tx_ev_q_label % EFX_TXQ_TYPES);
1812 tx_descs = ((tx_ev_desc_ptr + 1 - tx_queue->read_count) &
1813 tx_queue->ptr_mask);
1814 efx_xmit_done(tx_queue, tx_ev_desc_ptr & tx_queue->ptr_mask);
1815
1816 return tx_descs;
1817}
1818
1819static void
1820efx_ef10_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
1821{
1822 struct efx_nic *efx = channel->efx;
1823 int subcode;
1824
1825 subcode = EFX_QWORD_FIELD(*event, ESF_DZ_DRV_SUB_CODE);
1826
1827 switch (subcode) {
1828 case ESE_DZ_DRV_TIMER_EV:
1829 case ESE_DZ_DRV_WAKE_UP_EV:
1830 break;
1831 case ESE_DZ_DRV_START_UP_EV:
1832 /* event queue init complete. ok. */
1833 break;
1834 default:
1835 netif_err(efx, hw, efx->net_dev,
1836 "channel %d unknown driver event type %d"
1837 " (data " EFX_QWORD_FMT ")\n",
1838 channel->channel, subcode,
1839 EFX_QWORD_VAL(*event));
1840
1841 }
1842}
1843
1844static void efx_ef10_handle_driver_generated_event(struct efx_channel *channel,
1845 efx_qword_t *event)
1846{
1847 struct efx_nic *efx = channel->efx;
1848 u32 subcode;
1849
1850 subcode = EFX_QWORD_FIELD(*event, EFX_DWORD_0);
1851
1852 switch (subcode) {
1853 case EFX_EF10_TEST:
1854 channel->event_test_cpu = raw_smp_processor_id();
1855 break;
1856 case EFX_EF10_REFILL:
1857 /* The queue must be empty, so we won't receive any rx
1858 * events, so efx_process_channel() won't refill the
1859 * queue. Refill it here
1860 */
1861 efx_fast_push_rx_descriptors(&channel->rx_queue);
1862 break;
1863 default:
1864 netif_err(efx, hw, efx->net_dev,
1865 "channel %d unknown driver event type %u"
1866 " (data " EFX_QWORD_FMT ")\n",
1867 channel->channel, (unsigned) subcode,
1868 EFX_QWORD_VAL(*event));
1869 }
1870}
1871
1872static int efx_ef10_ev_process(struct efx_channel *channel, int quota)
1873{
1874 struct efx_nic *efx = channel->efx;
1875 efx_qword_t event, *p_event;
1876 unsigned int read_ptr;
1877 int ev_code;
1878 int tx_descs = 0;
1879 int spent = 0;
1880
1881 read_ptr = channel->eventq_read_ptr;
1882
1883 for (;;) {
1884 p_event = efx_event(channel, read_ptr);
1885 event = *p_event;
1886
1887 if (!efx_event_present(&event))
1888 break;
1889
1890 EFX_SET_QWORD(*p_event);
1891
1892 ++read_ptr;
1893
1894 ev_code = EFX_QWORD_FIELD(event, ESF_DZ_EV_CODE);
1895
1896 netif_vdbg(efx, drv, efx->net_dev,
1897 "processing event on %d " EFX_QWORD_FMT "\n",
1898 channel->channel, EFX_QWORD_VAL(event));
1899
1900 switch (ev_code) {
1901 case ESE_DZ_EV_CODE_MCDI_EV:
1902 efx_mcdi_process_event(channel, &event);
1903 break;
1904 case ESE_DZ_EV_CODE_RX_EV:
1905 spent += efx_ef10_handle_rx_event(channel, &event);
1906 if (spent >= quota) {
1907 /* XXX can we split a merged event to
1908 * avoid going over-quota?
1909 */
1910 spent = quota;
1911 goto out;
1912 }
1913 break;
1914 case ESE_DZ_EV_CODE_TX_EV:
1915 tx_descs += efx_ef10_handle_tx_event(channel, &event);
1916 if (tx_descs > efx->txq_entries) {
1917 spent = quota;
1918 goto out;
1919 } else if (++spent == quota) {
1920 goto out;
1921 }
1922 break;
1923 case ESE_DZ_EV_CODE_DRIVER_EV:
1924 efx_ef10_handle_driver_event(channel, &event);
1925 if (++spent == quota)
1926 goto out;
1927 break;
1928 case EFX_EF10_DRVGEN_EV:
1929 efx_ef10_handle_driver_generated_event(channel, &event);
1930 break;
1931 default:
1932 netif_err(efx, hw, efx->net_dev,
1933 "channel %d unknown event type %d"
1934 " (data " EFX_QWORD_FMT ")\n",
1935 channel->channel, ev_code,
1936 EFX_QWORD_VAL(event));
1937 }
1938 }
1939
1940out:
1941 channel->eventq_read_ptr = read_ptr;
1942 return spent;
1943}
1944
1945static void efx_ef10_ev_read_ack(struct efx_channel *channel)
1946{
1947 struct efx_nic *efx = channel->efx;
1948 efx_dword_t rptr;
1949
1950 if (EFX_EF10_WORKAROUND_35388(efx)) {
1951 BUILD_BUG_ON(EFX_MIN_EVQ_SIZE <
1952 (1 << ERF_DD_EVQ_IND_RPTR_WIDTH));
1953 BUILD_BUG_ON(EFX_MAX_EVQ_SIZE >
1954 (1 << 2 * ERF_DD_EVQ_IND_RPTR_WIDTH));
1955
1956 EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
1957 EFE_DD_EVQ_IND_RPTR_FLAGS_HIGH,
1958 ERF_DD_EVQ_IND_RPTR,
1959 (channel->eventq_read_ptr &
1960 channel->eventq_mask) >>
1961 ERF_DD_EVQ_IND_RPTR_WIDTH);
1962 efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
1963 channel->channel);
1964 EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
1965 EFE_DD_EVQ_IND_RPTR_FLAGS_LOW,
1966 ERF_DD_EVQ_IND_RPTR,
1967 channel->eventq_read_ptr &
1968 ((1 << ERF_DD_EVQ_IND_RPTR_WIDTH) - 1));
1969 efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
1970 channel->channel);
1971 } else {
1972 EFX_POPULATE_DWORD_1(rptr, ERF_DZ_EVQ_RPTR,
1973 channel->eventq_read_ptr &
1974 channel->eventq_mask);
1975 efx_writed_page(efx, &rptr, ER_DZ_EVQ_RPTR, channel->channel);
1976 }
1977}
1978
1979static void efx_ef10_ev_test_generate(struct efx_channel *channel)
1980{
1981 MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
1982 struct efx_nic *efx = channel->efx;
1983 efx_qword_t event;
1984 int rc;
1985
1986 EFX_POPULATE_QWORD_2(event,
1987 ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
1988 ESF_DZ_EV_DATA, EFX_EF10_TEST);
1989
1990 MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
1991
1992 /* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
1993 * already swapped the data to little-endian order.
1994 */
1995 memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
1996 sizeof(efx_qword_t));
1997
1998 rc = efx_mcdi_rpc(efx, MC_CMD_DRIVER_EVENT, inbuf, sizeof(inbuf),
1999 NULL, 0, NULL);
2000 if (rc != 0)
2001 goto fail;
2002
2003 return;
2004
2005fail:
2006 WARN_ON(true);
2007 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
2008}
2009
2010void efx_ef10_handle_drain_event(struct efx_nic *efx)
2011{
2012 if (atomic_dec_and_test(&efx->active_queues))
2013 wake_up(&efx->flush_wq);
2014
2015 WARN_ON(atomic_read(&efx->active_queues) < 0);
2016}
2017
2018static int efx_ef10_fini_dmaq(struct efx_nic *efx)
2019{
2020 struct efx_ef10_nic_data *nic_data = efx->nic_data;
2021 struct efx_channel *channel;
2022 struct efx_tx_queue *tx_queue;
2023 struct efx_rx_queue *rx_queue;
2024 int pending;
2025
2026 /* If the MC has just rebooted, the TX/RX queues will have already been
2027 * torn down, but efx->active_queues needs to be set to zero.
2028 */
2029 if (nic_data->must_realloc_vis) {
2030 atomic_set(&efx->active_queues, 0);
2031 return 0;
2032 }
2033
2034 /* Do not attempt to write to the NIC during EEH recovery */
2035 if (efx->state != STATE_RECOVERY) {
2036 efx_for_each_channel(channel, efx) {
2037 efx_for_each_channel_rx_queue(rx_queue, channel)
2038 efx_ef10_rx_fini(rx_queue);
2039 efx_for_each_channel_tx_queue(tx_queue, channel)
2040 efx_ef10_tx_fini(tx_queue);
2041 }
2042
2043 wait_event_timeout(efx->flush_wq,
2044 atomic_read(&efx->active_queues) == 0,
2045 msecs_to_jiffies(EFX_MAX_FLUSH_TIME));
2046 pending = atomic_read(&efx->active_queues);
2047 if (pending) {
2048 netif_err(efx, hw, efx->net_dev, "failed to flush %d queues\n",
2049 pending);
2050 return -ETIMEDOUT;
2051 }
2052 }
2053
2054 return 0;
2055}
2056
2057static bool efx_ef10_filter_equal(const struct efx_filter_spec *left,
2058 const struct efx_filter_spec *right)
2059{
2060 if ((left->match_flags ^ right->match_flags) |
2061 ((left->flags ^ right->flags) &
2062 (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_TX)))
2063 return false;
2064
2065 return memcmp(&left->outer_vid, &right->outer_vid,
2066 sizeof(struct efx_filter_spec) -
2067 offsetof(struct efx_filter_spec, outer_vid)) == 0;
2068}
2069
2070static unsigned int efx_ef10_filter_hash(const struct efx_filter_spec *spec)
2071{
2072 BUILD_BUG_ON(offsetof(struct efx_filter_spec, outer_vid) & 3);
2073 return jhash2((const u32 *)&spec->outer_vid,
2074 (sizeof(struct efx_filter_spec) -
2075 offsetof(struct efx_filter_spec, outer_vid)) / 4,
2076 0);
2077 /* XXX should we randomise the initval? */
2078}
2079
2080/* Decide whether a filter should be exclusive or else should allow
2081 * delivery to additional recipients. Currently we decide that
2082 * filters for specific local unicast MAC and IP addresses are
2083 * exclusive.
2084 */
2085static bool efx_ef10_filter_is_exclusive(const struct efx_filter_spec *spec)
2086{
2087 if (spec->match_flags & EFX_FILTER_MATCH_LOC_MAC &&
2088 !is_multicast_ether_addr(spec->loc_mac))
2089 return true;
2090
2091 if ((spec->match_flags &
2092 (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) ==
2093 (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) {
2094 if (spec->ether_type == htons(ETH_P_IP) &&
2095 !ipv4_is_multicast(spec->loc_host[0]))
2096 return true;
2097 if (spec->ether_type == htons(ETH_P_IPV6) &&
2098 ((const u8 *)spec->loc_host)[0] != 0xff)
2099 return true;
2100 }
2101
2102 return false;
2103}
2104
2105static struct efx_filter_spec *
2106efx_ef10_filter_entry_spec(const struct efx_ef10_filter_table *table,
2107 unsigned int filter_idx)
2108{
2109 return (struct efx_filter_spec *)(table->entry[filter_idx].spec &
2110 ~EFX_EF10_FILTER_FLAGS);
2111}
2112
2113static unsigned int
2114efx_ef10_filter_entry_flags(const struct efx_ef10_filter_table *table,
2115 unsigned int filter_idx)
2116{
2117 return table->entry[filter_idx].spec & EFX_EF10_FILTER_FLAGS;
2118}
2119
2120static void
2121efx_ef10_filter_set_entry(struct efx_ef10_filter_table *table,
2122 unsigned int filter_idx,
2123 const struct efx_filter_spec *spec,
2124 unsigned int flags)
2125{
2126 table->entry[filter_idx].spec = (unsigned long)spec | flags;
2127}
2128
2129static void efx_ef10_filter_push_prep(struct efx_nic *efx,
2130 const struct efx_filter_spec *spec,
2131 efx_dword_t *inbuf, u64 handle,
2132 bool replacing)
2133{
2134 struct efx_ef10_nic_data *nic_data = efx->nic_data;
2135
2136 memset(inbuf, 0, MC_CMD_FILTER_OP_IN_LEN);
2137
2138 if (replacing) {
2139 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
2140 MC_CMD_FILTER_OP_IN_OP_REPLACE);
2141 MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE, handle);
2142 } else {
2143 u32 match_fields = 0;
2144
2145 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
2146 efx_ef10_filter_is_exclusive(spec) ?
2147 MC_CMD_FILTER_OP_IN_OP_INSERT :
2148 MC_CMD_FILTER_OP_IN_OP_SUBSCRIBE);
2149
2150 /* Convert match flags and values. Unlike almost
2151 * everything else in MCDI, these fields are in
2152 * network byte order.
2153 */
2154 if (spec->match_flags & EFX_FILTER_MATCH_LOC_MAC_IG)
2155 match_fields |=
2156 is_multicast_ether_addr(spec->loc_mac) ?
2157 1 << MC_CMD_FILTER_OP_IN_MATCH_UNKNOWN_MCAST_DST_LBN :
2158 1 << MC_CMD_FILTER_OP_IN_MATCH_UNKNOWN_UCAST_DST_LBN;
2159#define COPY_FIELD(gen_flag, gen_field, mcdi_field) \
2160 if (spec->match_flags & EFX_FILTER_MATCH_ ## gen_flag) { \
2161 match_fields |= \
2162 1 << MC_CMD_FILTER_OP_IN_MATCH_ ## \
2163 mcdi_field ## _LBN; \
2164 BUILD_BUG_ON( \
2165 MC_CMD_FILTER_OP_IN_ ## mcdi_field ## _LEN < \
2166 sizeof(spec->gen_field)); \
2167 memcpy(MCDI_PTR(inbuf, FILTER_OP_IN_ ## mcdi_field), \
2168 &spec->gen_field, sizeof(spec->gen_field)); \
2169 }
2170 COPY_FIELD(REM_HOST, rem_host, SRC_IP);
2171 COPY_FIELD(LOC_HOST, loc_host, DST_IP);
2172 COPY_FIELD(REM_MAC, rem_mac, SRC_MAC);
2173 COPY_FIELD(REM_PORT, rem_port, SRC_PORT);
2174 COPY_FIELD(LOC_MAC, loc_mac, DST_MAC);
2175 COPY_FIELD(LOC_PORT, loc_port, DST_PORT);
2176 COPY_FIELD(ETHER_TYPE, ether_type, ETHER_TYPE);
2177 COPY_FIELD(INNER_VID, inner_vid, INNER_VLAN);
2178 COPY_FIELD(OUTER_VID, outer_vid, OUTER_VLAN);
2179 COPY_FIELD(IP_PROTO, ip_proto, IP_PROTO);
2180#undef COPY_FIELD
2181 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_MATCH_FIELDS,
2182 match_fields);
2183 }
2184
2185 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_PORT_ID, EVB_PORT_ID_ASSIGNED);
2186 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_DEST,
2187 spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP ?
2188 MC_CMD_FILTER_OP_IN_RX_DEST_DROP :
2189 MC_CMD_FILTER_OP_IN_RX_DEST_HOST);
2190 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_TX_DEST,
2191 MC_CMD_FILTER_OP_IN_TX_DEST_DEFAULT);
2192 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_QUEUE, spec->dmaq_id);
2193 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_MODE,
2194 (spec->flags & EFX_FILTER_FLAG_RX_RSS) ?
2195 MC_CMD_FILTER_OP_IN_RX_MODE_RSS :
2196 MC_CMD_FILTER_OP_IN_RX_MODE_SIMPLE);
2197 if (spec->flags & EFX_FILTER_FLAG_RX_RSS)
2198 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_CONTEXT,
2199 spec->rss_context !=
2200 EFX_FILTER_RSS_CONTEXT_DEFAULT ?
2201 spec->rss_context : nic_data->rx_rss_context);
2202}
2203
2204static int efx_ef10_filter_push(struct efx_nic *efx,
2205 const struct efx_filter_spec *spec,
2206 u64 *handle, bool replacing)
2207{
2208 MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN);
2209 MCDI_DECLARE_BUF(outbuf, MC_CMD_FILTER_OP_OUT_LEN);
2210 int rc;
2211
2212 efx_ef10_filter_push_prep(efx, spec, inbuf, *handle, replacing);
2213 rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf),
2214 outbuf, sizeof(outbuf), NULL);
2215 if (rc == 0)
2216 *handle = MCDI_QWORD(outbuf, FILTER_OP_OUT_HANDLE);
2217 return rc;
2218}
2219
2220static int efx_ef10_filter_rx_match_pri(struct efx_ef10_filter_table *table,
2221 enum efx_filter_match_flags match_flags)
2222{
2223 unsigned int match_pri;
2224
2225 for (match_pri = 0;
2226 match_pri < table->rx_match_count;
2227 match_pri++)
2228 if (table->rx_match_flags[match_pri] == match_flags)
2229 return match_pri;
2230
2231 return -EPROTONOSUPPORT;
2232}
2233
2234static s32 efx_ef10_filter_insert(struct efx_nic *efx,
2235 struct efx_filter_spec *spec,
2236 bool replace_equal)
2237{
2238 struct efx_ef10_filter_table *table = efx->filter_state;
2239 DECLARE_BITMAP(mc_rem_map, EFX_EF10_FILTER_SEARCH_LIMIT);
2240 struct efx_filter_spec *saved_spec;
2241 unsigned int match_pri, hash;
2242 unsigned int priv_flags;
2243 bool replacing = false;
2244 int ins_index = -1;
2245 DEFINE_WAIT(wait);
2246 bool is_mc_recip;
2247 s32 rc;
2248
2249 /* For now, only support RX filters */
2250 if ((spec->flags & (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_TX)) !=
2251 EFX_FILTER_FLAG_RX)
2252 return -EINVAL;
2253
2254 rc = efx_ef10_filter_rx_match_pri(table, spec->match_flags);
2255 if (rc < 0)
2256 return rc;
2257 match_pri = rc;
2258
2259 hash = efx_ef10_filter_hash(spec);
2260 is_mc_recip = efx_filter_is_mc_recipient(spec);
2261 if (is_mc_recip)
2262 bitmap_zero(mc_rem_map, EFX_EF10_FILTER_SEARCH_LIMIT);
2263
2264 /* Find any existing filters with the same match tuple or
2265 * else a free slot to insert at. If any of them are busy,
2266 * we have to wait and retry.
2267 */
2268 for (;;) {
2269 unsigned int depth = 1;
2270 unsigned int i;
2271
2272 spin_lock_bh(&efx->filter_lock);
2273
2274 for (;;) {
2275 i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
2276 saved_spec = efx_ef10_filter_entry_spec(table, i);
2277
2278 if (!saved_spec) {
2279 if (ins_index < 0)
2280 ins_index = i;
2281 } else if (efx_ef10_filter_equal(spec, saved_spec)) {
2282 if (table->entry[i].spec &
2283 EFX_EF10_FILTER_FLAG_BUSY)
2284 break;
2285 if (spec->priority < saved_spec->priority &&
2286 !(saved_spec->priority ==
2287 EFX_FILTER_PRI_REQUIRED &&
2288 saved_spec->flags &
2289 EFX_FILTER_FLAG_RX_STACK)) {
2290 rc = -EPERM;
2291 goto out_unlock;
2292 }
2293 if (!is_mc_recip) {
2294 /* This is the only one */
2295 if (spec->priority ==
2296 saved_spec->priority &&
2297 !replace_equal) {
2298 rc = -EEXIST;
2299 goto out_unlock;
2300 }
2301 ins_index = i;
2302 goto found;
2303 } else if (spec->priority >
2304 saved_spec->priority ||
2305 (spec->priority ==
2306 saved_spec->priority &&
2307 replace_equal)) {
2308 if (ins_index < 0)
2309 ins_index = i;
2310 else
2311 __set_bit(depth, mc_rem_map);
2312 }
2313 }
2314
2315 /* Once we reach the maximum search depth, use
2316 * the first suitable slot or return -EBUSY if
2317 * there was none
2318 */
2319 if (depth == EFX_EF10_FILTER_SEARCH_LIMIT) {
2320 if (ins_index < 0) {
2321 rc = -EBUSY;
2322 goto out_unlock;
2323 }
2324 goto found;
2325 }
2326
2327 ++depth;
2328 }
2329
2330 prepare_to_wait(&table->waitq, &wait, TASK_UNINTERRUPTIBLE);
2331 spin_unlock_bh(&efx->filter_lock);
2332 schedule();
2333 }
2334
2335found:
2336 /* Create a software table entry if necessary, and mark it
2337 * busy. We might yet fail to insert, but any attempt to
2338 * insert a conflicting filter while we're waiting for the
2339 * firmware must find the busy entry.
2340 */
2341 saved_spec = efx_ef10_filter_entry_spec(table, ins_index);
2342 if (saved_spec) {
2343 if (spec->flags & EFX_FILTER_FLAG_RX_STACK) {
2344 /* Just make sure it won't be removed */
2345 saved_spec->flags |= EFX_FILTER_FLAG_RX_STACK;
2346 table->entry[ins_index].spec &=
2347 ~EFX_EF10_FILTER_FLAG_STACK_OLD;
2348 rc = ins_index;
2349 goto out_unlock;
2350 }
2351 replacing = true;
2352 priv_flags = efx_ef10_filter_entry_flags(table, ins_index);
2353 } else {
2354 saved_spec = kmalloc(sizeof(*spec), GFP_ATOMIC);
2355 if (!saved_spec) {
2356 rc = -ENOMEM;
2357 goto out_unlock;
2358 }
2359 *saved_spec = *spec;
2360 priv_flags = 0;
2361 }
2362 efx_ef10_filter_set_entry(table, ins_index, saved_spec,
2363 priv_flags | EFX_EF10_FILTER_FLAG_BUSY);
2364
2365 /* Mark lower-priority multicast recipients busy prior to removal */
2366 if (is_mc_recip) {
2367 unsigned int depth, i;
2368
2369 for (depth = 0; depth < EFX_EF10_FILTER_SEARCH_LIMIT; depth++) {
2370 i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
2371 if (test_bit(depth, mc_rem_map))
2372 table->entry[i].spec |=
2373 EFX_EF10_FILTER_FLAG_BUSY;
2374 }
2375 }
2376
2377 spin_unlock_bh(&efx->filter_lock);
2378
2379 rc = efx_ef10_filter_push(efx, spec, &table->entry[ins_index].handle,
2380 replacing);
2381
2382 /* Finalise the software table entry */
2383 spin_lock_bh(&efx->filter_lock);
2384 if (rc == 0) {
2385 if (replacing) {
2386 /* Update the fields that may differ */
2387 saved_spec->priority = spec->priority;
2388 saved_spec->flags &= EFX_FILTER_FLAG_RX_STACK;
2389 saved_spec->flags |= spec->flags;
2390 saved_spec->rss_context = spec->rss_context;
2391 saved_spec->dmaq_id = spec->dmaq_id;
2392 }
2393 } else if (!replacing) {
2394 kfree(saved_spec);
2395 saved_spec = NULL;
2396 }
2397 efx_ef10_filter_set_entry(table, ins_index, saved_spec, priv_flags);
2398
2399 /* Remove and finalise entries for lower-priority multicast
2400 * recipients
2401 */
2402 if (is_mc_recip) {
2403 MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN);
2404 unsigned int depth, i;
2405
2406 memset(inbuf, 0, sizeof(inbuf));
2407
2408 for (depth = 0; depth < EFX_EF10_FILTER_SEARCH_LIMIT; depth++) {
2409 if (!test_bit(depth, mc_rem_map))
2410 continue;
2411
2412 i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
2413 saved_spec = efx_ef10_filter_entry_spec(table, i);
2414 priv_flags = efx_ef10_filter_entry_flags(table, i);
2415
2416 if (rc == 0) {
2417 spin_unlock_bh(&efx->filter_lock);
2418 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
2419 MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE);
2420 MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
2421 table->entry[i].handle);
2422 rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP,
2423 inbuf, sizeof(inbuf),
2424 NULL, 0, NULL);
2425 spin_lock_bh(&efx->filter_lock);
2426 }
2427
2428 if (rc == 0) {
2429 kfree(saved_spec);
2430 saved_spec = NULL;
2431 priv_flags = 0;
2432 } else {
2433 priv_flags &= ~EFX_EF10_FILTER_FLAG_BUSY;
2434 }
2435 efx_ef10_filter_set_entry(table, i, saved_spec,
2436 priv_flags);
2437 }
2438 }
2439
2440 /* If successful, return the inserted filter ID */
2441 if (rc == 0)
2442 rc = match_pri * HUNT_FILTER_TBL_ROWS + ins_index;
2443
2444 wake_up_all(&table->waitq);
2445out_unlock:
2446 spin_unlock_bh(&efx->filter_lock);
2447 finish_wait(&table->waitq, &wait);
2448 return rc;
2449}
2450
Fengguang Wu9fd8095d2013-08-31 06:54:05 +08002451static void efx_ef10_filter_update_rx_scatter(struct efx_nic *efx)
Ben Hutchings8127d662013-08-29 19:19:29 +01002452{
2453 /* no need to do anything here on EF10 */
2454}
2455
2456/* Remove a filter.
2457 * If !stack_requested, remove by ID
2458 * If stack_requested, remove by index
2459 * Filter ID may come from userland and must be range-checked.
2460 */
2461static int efx_ef10_filter_remove_internal(struct efx_nic *efx,
2462 enum efx_filter_priority priority,
2463 u32 filter_id, bool stack_requested)
2464{
2465 unsigned int filter_idx = filter_id % HUNT_FILTER_TBL_ROWS;
2466 struct efx_ef10_filter_table *table = efx->filter_state;
2467 MCDI_DECLARE_BUF(inbuf,
2468 MC_CMD_FILTER_OP_IN_HANDLE_OFST +
2469 MC_CMD_FILTER_OP_IN_HANDLE_LEN);
2470 struct efx_filter_spec *spec;
2471 DEFINE_WAIT(wait);
2472 int rc;
2473
2474 /* Find the software table entry and mark it busy. Don't
2475 * remove it yet; any attempt to update while we're waiting
2476 * for the firmware must find the busy entry.
2477 */
2478 for (;;) {
2479 spin_lock_bh(&efx->filter_lock);
2480 if (!(table->entry[filter_idx].spec &
2481 EFX_EF10_FILTER_FLAG_BUSY))
2482 break;
2483 prepare_to_wait(&table->waitq, &wait, TASK_UNINTERRUPTIBLE);
2484 spin_unlock_bh(&efx->filter_lock);
2485 schedule();
2486 }
2487 spec = efx_ef10_filter_entry_spec(table, filter_idx);
2488 if (!spec || spec->priority > priority ||
2489 (!stack_requested &&
2490 efx_ef10_filter_rx_match_pri(table, spec->match_flags) !=
2491 filter_id / HUNT_FILTER_TBL_ROWS)) {
2492 rc = -ENOENT;
2493 goto out_unlock;
2494 }
2495 table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_BUSY;
2496 spin_unlock_bh(&efx->filter_lock);
2497
2498 if (spec->flags & EFX_FILTER_FLAG_RX_STACK && !stack_requested) {
2499 /* Reset steering of a stack-owned filter */
2500
2501 struct efx_filter_spec new_spec = *spec;
2502
2503 new_spec.priority = EFX_FILTER_PRI_REQUIRED;
2504 new_spec.flags = (EFX_FILTER_FLAG_RX |
2505 EFX_FILTER_FLAG_RX_RSS |
2506 EFX_FILTER_FLAG_RX_STACK);
2507 new_spec.dmaq_id = 0;
2508 new_spec.rss_context = EFX_FILTER_RSS_CONTEXT_DEFAULT;
2509 rc = efx_ef10_filter_push(efx, &new_spec,
2510 &table->entry[filter_idx].handle,
2511 true);
2512
2513 spin_lock_bh(&efx->filter_lock);
2514 if (rc == 0)
2515 *spec = new_spec;
2516 } else {
2517 /* Really remove the filter */
2518
2519 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
2520 efx_ef10_filter_is_exclusive(spec) ?
2521 MC_CMD_FILTER_OP_IN_OP_REMOVE :
2522 MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE);
2523 MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
2524 table->entry[filter_idx].handle);
2525 rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP,
2526 inbuf, sizeof(inbuf), NULL, 0, NULL);
2527
2528 spin_lock_bh(&efx->filter_lock);
2529 if (rc == 0) {
2530 kfree(spec);
2531 efx_ef10_filter_set_entry(table, filter_idx, NULL, 0);
2532 }
2533 }
2534 table->entry[filter_idx].spec &= ~EFX_EF10_FILTER_FLAG_BUSY;
2535 wake_up_all(&table->waitq);
2536out_unlock:
2537 spin_unlock_bh(&efx->filter_lock);
2538 finish_wait(&table->waitq, &wait);
2539 return rc;
2540}
2541
2542static int efx_ef10_filter_remove_safe(struct efx_nic *efx,
2543 enum efx_filter_priority priority,
2544 u32 filter_id)
2545{
2546 return efx_ef10_filter_remove_internal(efx, priority, filter_id, false);
2547}
2548
2549static int efx_ef10_filter_get_safe(struct efx_nic *efx,
2550 enum efx_filter_priority priority,
2551 u32 filter_id, struct efx_filter_spec *spec)
2552{
2553 unsigned int filter_idx = filter_id % HUNT_FILTER_TBL_ROWS;
2554 struct efx_ef10_filter_table *table = efx->filter_state;
2555 const struct efx_filter_spec *saved_spec;
2556 int rc;
2557
2558 spin_lock_bh(&efx->filter_lock);
2559 saved_spec = efx_ef10_filter_entry_spec(table, filter_idx);
2560 if (saved_spec && saved_spec->priority == priority &&
2561 efx_ef10_filter_rx_match_pri(table, saved_spec->match_flags) ==
2562 filter_id / HUNT_FILTER_TBL_ROWS) {
2563 *spec = *saved_spec;
2564 rc = 0;
2565 } else {
2566 rc = -ENOENT;
2567 }
2568 spin_unlock_bh(&efx->filter_lock);
2569 return rc;
2570}
2571
2572static void efx_ef10_filter_clear_rx(struct efx_nic *efx,
2573 enum efx_filter_priority priority)
2574{
2575 /* TODO */
2576}
2577
2578static u32 efx_ef10_filter_count_rx_used(struct efx_nic *efx,
2579 enum efx_filter_priority priority)
2580{
2581 struct efx_ef10_filter_table *table = efx->filter_state;
2582 unsigned int filter_idx;
2583 s32 count = 0;
2584
2585 spin_lock_bh(&efx->filter_lock);
2586 for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
2587 if (table->entry[filter_idx].spec &&
2588 efx_ef10_filter_entry_spec(table, filter_idx)->priority ==
2589 priority)
2590 ++count;
2591 }
2592 spin_unlock_bh(&efx->filter_lock);
2593 return count;
2594}
2595
2596static u32 efx_ef10_filter_get_rx_id_limit(struct efx_nic *efx)
2597{
2598 struct efx_ef10_filter_table *table = efx->filter_state;
2599
2600 return table->rx_match_count * HUNT_FILTER_TBL_ROWS;
2601}
2602
2603static s32 efx_ef10_filter_get_rx_ids(struct efx_nic *efx,
2604 enum efx_filter_priority priority,
2605 u32 *buf, u32 size)
2606{
2607 struct efx_ef10_filter_table *table = efx->filter_state;
2608 struct efx_filter_spec *spec;
2609 unsigned int filter_idx;
2610 s32 count = 0;
2611
2612 spin_lock_bh(&efx->filter_lock);
2613 for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
2614 spec = efx_ef10_filter_entry_spec(table, filter_idx);
2615 if (spec && spec->priority == priority) {
2616 if (count == size) {
2617 count = -EMSGSIZE;
2618 break;
2619 }
2620 buf[count++] = (efx_ef10_filter_rx_match_pri(
2621 table, spec->match_flags) *
2622 HUNT_FILTER_TBL_ROWS +
2623 filter_idx);
2624 }
2625 }
2626 spin_unlock_bh(&efx->filter_lock);
2627 return count;
2628}
2629
2630#ifdef CONFIG_RFS_ACCEL
2631
2632static efx_mcdi_async_completer efx_ef10_filter_rfs_insert_complete;
2633
2634static s32 efx_ef10_filter_rfs_insert(struct efx_nic *efx,
2635 struct efx_filter_spec *spec)
2636{
2637 struct efx_ef10_filter_table *table = efx->filter_state;
2638 MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN);
2639 struct efx_filter_spec *saved_spec;
2640 unsigned int hash, i, depth = 1;
2641 bool replacing = false;
2642 int ins_index = -1;
2643 u64 cookie;
2644 s32 rc;
2645
2646 /* Must be an RX filter without RSS and not for a multicast
2647 * destination address (RFS only works for connected sockets).
2648 * These restrictions allow us to pass only a tiny amount of
2649 * data through to the completion function.
2650 */
2651 EFX_WARN_ON_PARANOID(spec->flags !=
2652 (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_RX_SCATTER));
2653 EFX_WARN_ON_PARANOID(spec->priority != EFX_FILTER_PRI_HINT);
2654 EFX_WARN_ON_PARANOID(efx_filter_is_mc_recipient(spec));
2655
2656 hash = efx_ef10_filter_hash(spec);
2657
2658 spin_lock_bh(&efx->filter_lock);
2659
2660 /* Find any existing filter with the same match tuple or else
2661 * a free slot to insert at. If an existing filter is busy,
2662 * we have to give up.
2663 */
2664 for (;;) {
2665 i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
2666 saved_spec = efx_ef10_filter_entry_spec(table, i);
2667
2668 if (!saved_spec) {
2669 if (ins_index < 0)
2670 ins_index = i;
2671 } else if (efx_ef10_filter_equal(spec, saved_spec)) {
2672 if (table->entry[i].spec & EFX_EF10_FILTER_FLAG_BUSY) {
2673 rc = -EBUSY;
2674 goto fail_unlock;
2675 }
2676 EFX_WARN_ON_PARANOID(saved_spec->flags &
2677 EFX_FILTER_FLAG_RX_STACK);
2678 if (spec->priority < saved_spec->priority) {
2679 rc = -EPERM;
2680 goto fail_unlock;
2681 }
2682 ins_index = i;
2683 break;
2684 }
2685
2686 /* Once we reach the maximum search depth, use the
2687 * first suitable slot or return -EBUSY if there was
2688 * none
2689 */
2690 if (depth == EFX_EF10_FILTER_SEARCH_LIMIT) {
2691 if (ins_index < 0) {
2692 rc = -EBUSY;
2693 goto fail_unlock;
2694 }
2695 break;
2696 }
2697
2698 ++depth;
2699 }
2700
2701 /* Create a software table entry if necessary, and mark it
2702 * busy. We might yet fail to insert, but any attempt to
2703 * insert a conflicting filter while we're waiting for the
2704 * firmware must find the busy entry.
2705 */
2706 saved_spec = efx_ef10_filter_entry_spec(table, ins_index);
2707 if (saved_spec) {
2708 replacing = true;
2709 } else {
2710 saved_spec = kmalloc(sizeof(*spec), GFP_ATOMIC);
2711 if (!saved_spec) {
2712 rc = -ENOMEM;
2713 goto fail_unlock;
2714 }
2715 *saved_spec = *spec;
2716 }
2717 efx_ef10_filter_set_entry(table, ins_index, saved_spec,
2718 EFX_EF10_FILTER_FLAG_BUSY);
2719
2720 spin_unlock_bh(&efx->filter_lock);
2721
2722 /* Pack up the variables needed on completion */
2723 cookie = replacing << 31 | ins_index << 16 | spec->dmaq_id;
2724
2725 efx_ef10_filter_push_prep(efx, spec, inbuf,
2726 table->entry[ins_index].handle, replacing);
2727 efx_mcdi_rpc_async(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf),
2728 MC_CMD_FILTER_OP_OUT_LEN,
2729 efx_ef10_filter_rfs_insert_complete, cookie);
2730
2731 return ins_index;
2732
2733fail_unlock:
2734 spin_unlock_bh(&efx->filter_lock);
2735 return rc;
2736}
2737
2738static void
2739efx_ef10_filter_rfs_insert_complete(struct efx_nic *efx, unsigned long cookie,
2740 int rc, efx_dword_t *outbuf,
2741 size_t outlen_actual)
2742{
2743 struct efx_ef10_filter_table *table = efx->filter_state;
2744 unsigned int ins_index, dmaq_id;
2745 struct efx_filter_spec *spec;
2746 bool replacing;
2747
2748 /* Unpack the cookie */
2749 replacing = cookie >> 31;
2750 ins_index = (cookie >> 16) & (HUNT_FILTER_TBL_ROWS - 1);
2751 dmaq_id = cookie & 0xffff;
2752
2753 spin_lock_bh(&efx->filter_lock);
2754 spec = efx_ef10_filter_entry_spec(table, ins_index);
2755 if (rc == 0) {
2756 table->entry[ins_index].handle =
2757 MCDI_QWORD(outbuf, FILTER_OP_OUT_HANDLE);
2758 if (replacing)
2759 spec->dmaq_id = dmaq_id;
2760 } else if (!replacing) {
2761 kfree(spec);
2762 spec = NULL;
2763 }
2764 efx_ef10_filter_set_entry(table, ins_index, spec, 0);
2765 spin_unlock_bh(&efx->filter_lock);
2766
2767 wake_up_all(&table->waitq);
2768}
2769
2770static void
2771efx_ef10_filter_rfs_expire_complete(struct efx_nic *efx,
2772 unsigned long filter_idx,
2773 int rc, efx_dword_t *outbuf,
2774 size_t outlen_actual);
2775
2776static bool efx_ef10_filter_rfs_expire_one(struct efx_nic *efx, u32 flow_id,
2777 unsigned int filter_idx)
2778{
2779 struct efx_ef10_filter_table *table = efx->filter_state;
2780 struct efx_filter_spec *spec =
2781 efx_ef10_filter_entry_spec(table, filter_idx);
2782 MCDI_DECLARE_BUF(inbuf,
2783 MC_CMD_FILTER_OP_IN_HANDLE_OFST +
2784 MC_CMD_FILTER_OP_IN_HANDLE_LEN);
2785
2786 if (!spec ||
2787 (table->entry[filter_idx].spec & EFX_EF10_FILTER_FLAG_BUSY) ||
2788 spec->priority != EFX_FILTER_PRI_HINT ||
2789 !rps_may_expire_flow(efx->net_dev, spec->dmaq_id,
2790 flow_id, filter_idx))
2791 return false;
2792
2793 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
2794 MC_CMD_FILTER_OP_IN_OP_REMOVE);
2795 MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
2796 table->entry[filter_idx].handle);
2797 if (efx_mcdi_rpc_async(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf), 0,
2798 efx_ef10_filter_rfs_expire_complete, filter_idx))
2799 return false;
2800
2801 table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_BUSY;
2802 return true;
2803}
2804
2805static void
2806efx_ef10_filter_rfs_expire_complete(struct efx_nic *efx,
2807 unsigned long filter_idx,
2808 int rc, efx_dword_t *outbuf,
2809 size_t outlen_actual)
2810{
2811 struct efx_ef10_filter_table *table = efx->filter_state;
2812 struct efx_filter_spec *spec =
2813 efx_ef10_filter_entry_spec(table, filter_idx);
2814
2815 spin_lock_bh(&efx->filter_lock);
2816 if (rc == 0) {
2817 kfree(spec);
2818 efx_ef10_filter_set_entry(table, filter_idx, NULL, 0);
2819 }
2820 table->entry[filter_idx].spec &= ~EFX_EF10_FILTER_FLAG_BUSY;
2821 wake_up_all(&table->waitq);
2822 spin_unlock_bh(&efx->filter_lock);
2823}
2824
2825#endif /* CONFIG_RFS_ACCEL */
2826
2827static int efx_ef10_filter_match_flags_from_mcdi(u32 mcdi_flags)
2828{
2829 int match_flags = 0;
2830
2831#define MAP_FLAG(gen_flag, mcdi_field) { \
2832 u32 old_mcdi_flags = mcdi_flags; \
2833 mcdi_flags &= ~(1 << MC_CMD_FILTER_OP_IN_MATCH_ ## \
2834 mcdi_field ## _LBN); \
2835 if (mcdi_flags != old_mcdi_flags) \
2836 match_flags |= EFX_FILTER_MATCH_ ## gen_flag; \
2837 }
2838 MAP_FLAG(LOC_MAC_IG, UNKNOWN_UCAST_DST);
2839 MAP_FLAG(LOC_MAC_IG, UNKNOWN_MCAST_DST);
2840 MAP_FLAG(REM_HOST, SRC_IP);
2841 MAP_FLAG(LOC_HOST, DST_IP);
2842 MAP_FLAG(REM_MAC, SRC_MAC);
2843 MAP_FLAG(REM_PORT, SRC_PORT);
2844 MAP_FLAG(LOC_MAC, DST_MAC);
2845 MAP_FLAG(LOC_PORT, DST_PORT);
2846 MAP_FLAG(ETHER_TYPE, ETHER_TYPE);
2847 MAP_FLAG(INNER_VID, INNER_VLAN);
2848 MAP_FLAG(OUTER_VID, OUTER_VLAN);
2849 MAP_FLAG(IP_PROTO, IP_PROTO);
2850#undef MAP_FLAG
2851
2852 /* Did we map them all? */
2853 if (mcdi_flags)
2854 return -EINVAL;
2855
2856 return match_flags;
2857}
2858
2859static int efx_ef10_filter_table_probe(struct efx_nic *efx)
2860{
2861 MCDI_DECLARE_BUF(inbuf, MC_CMD_GET_PARSER_DISP_INFO_IN_LEN);
2862 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_PARSER_DISP_INFO_OUT_LENMAX);
2863 unsigned int pd_match_pri, pd_match_count;
2864 struct efx_ef10_filter_table *table;
2865 size_t outlen;
2866 int rc;
2867
2868 table = kzalloc(sizeof(*table), GFP_KERNEL);
2869 if (!table)
2870 return -ENOMEM;
2871
2872 /* Find out which RX filter types are supported, and their priorities */
2873 MCDI_SET_DWORD(inbuf, GET_PARSER_DISP_INFO_IN_OP,
2874 MC_CMD_GET_PARSER_DISP_INFO_IN_OP_GET_SUPPORTED_RX_MATCHES);
2875 rc = efx_mcdi_rpc(efx, MC_CMD_GET_PARSER_DISP_INFO,
2876 inbuf, sizeof(inbuf), outbuf, sizeof(outbuf),
2877 &outlen);
2878 if (rc)
2879 goto fail;
2880 pd_match_count = MCDI_VAR_ARRAY_LEN(
2881 outlen, GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES);
2882 table->rx_match_count = 0;
2883
2884 for (pd_match_pri = 0; pd_match_pri < pd_match_count; pd_match_pri++) {
2885 u32 mcdi_flags =
2886 MCDI_ARRAY_DWORD(
2887 outbuf,
2888 GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES,
2889 pd_match_pri);
2890 rc = efx_ef10_filter_match_flags_from_mcdi(mcdi_flags);
2891 if (rc < 0) {
2892 netif_dbg(efx, probe, efx->net_dev,
2893 "%s: fw flags %#x pri %u not supported in driver\n",
2894 __func__, mcdi_flags, pd_match_pri);
2895 } else {
2896 netif_dbg(efx, probe, efx->net_dev,
2897 "%s: fw flags %#x pri %u supported as driver flags %#x pri %u\n",
2898 __func__, mcdi_flags, pd_match_pri,
2899 rc, table->rx_match_count);
2900 table->rx_match_flags[table->rx_match_count++] = rc;
2901 }
2902 }
2903
2904 table->entry = vzalloc(HUNT_FILTER_TBL_ROWS * sizeof(*table->entry));
2905 if (!table->entry) {
2906 rc = -ENOMEM;
2907 goto fail;
2908 }
2909
2910 efx->filter_state = table;
2911 init_waitqueue_head(&table->waitq);
2912 return 0;
2913
2914fail:
2915 kfree(table);
2916 return rc;
2917}
2918
2919static void efx_ef10_filter_table_restore(struct efx_nic *efx)
2920{
2921 struct efx_ef10_filter_table *table = efx->filter_state;
2922 struct efx_ef10_nic_data *nic_data = efx->nic_data;
2923 struct efx_filter_spec *spec;
2924 unsigned int filter_idx;
2925 bool failed = false;
2926 int rc;
2927
2928 if (!nic_data->must_restore_filters)
2929 return;
2930
2931 spin_lock_bh(&efx->filter_lock);
2932
2933 for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
2934 spec = efx_ef10_filter_entry_spec(table, filter_idx);
2935 if (!spec)
2936 continue;
2937
2938 table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_BUSY;
2939 spin_unlock_bh(&efx->filter_lock);
2940
2941 rc = efx_ef10_filter_push(efx, spec,
2942 &table->entry[filter_idx].handle,
2943 false);
2944 if (rc)
2945 failed = true;
2946
2947 spin_lock_bh(&efx->filter_lock);
2948 if (rc) {
2949 kfree(spec);
2950 efx_ef10_filter_set_entry(table, filter_idx, NULL, 0);
2951 } else {
2952 table->entry[filter_idx].spec &=
2953 ~EFX_EF10_FILTER_FLAG_BUSY;
2954 }
2955 }
2956
2957 spin_unlock_bh(&efx->filter_lock);
2958
2959 if (failed)
2960 netif_err(efx, hw, efx->net_dev,
2961 "unable to restore all filters\n");
2962 else
2963 nic_data->must_restore_filters = false;
2964}
2965
2966static void efx_ef10_filter_table_remove(struct efx_nic *efx)
2967{
2968 struct efx_ef10_filter_table *table = efx->filter_state;
2969 MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN);
2970 struct efx_filter_spec *spec;
2971 unsigned int filter_idx;
2972 int rc;
2973
2974 for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
2975 spec = efx_ef10_filter_entry_spec(table, filter_idx);
2976 if (!spec)
2977 continue;
2978
2979 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
2980 efx_ef10_filter_is_exclusive(spec) ?
2981 MC_CMD_FILTER_OP_IN_OP_REMOVE :
2982 MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE);
2983 MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
2984 table->entry[filter_idx].handle);
2985 rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf),
2986 NULL, 0, NULL);
2987
2988 WARN_ON(rc != 0);
2989 kfree(spec);
2990 }
2991
2992 vfree(table->entry);
2993 kfree(table);
2994}
2995
2996static void efx_ef10_filter_sync_rx_mode(struct efx_nic *efx)
2997{
2998 struct efx_ef10_filter_table *table = efx->filter_state;
2999 struct net_device *net_dev = efx->net_dev;
3000 struct efx_filter_spec spec;
3001 bool remove_failed = false;
3002 struct netdev_hw_addr *uc;
3003 struct netdev_hw_addr *mc;
3004 unsigned int filter_idx;
3005 int i, n, rc;
3006
3007 if (!efx_dev_registered(efx))
3008 return;
3009
3010 /* Mark old filters that may need to be removed */
3011 spin_lock_bh(&efx->filter_lock);
3012 n = table->stack_uc_count < 0 ? 1 : table->stack_uc_count;
3013 for (i = 0; i < n; i++) {
3014 filter_idx = table->stack_uc_list[i].id % HUNT_FILTER_TBL_ROWS;
3015 table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_STACK_OLD;
3016 }
3017 n = table->stack_mc_count < 0 ? 1 : table->stack_mc_count;
3018 for (i = 0; i < n; i++) {
3019 filter_idx = table->stack_mc_list[i].id % HUNT_FILTER_TBL_ROWS;
3020 table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_STACK_OLD;
3021 }
3022 spin_unlock_bh(&efx->filter_lock);
3023
3024 /* Copy/convert the address lists; add the primary station
3025 * address and broadcast address
3026 */
3027 netif_addr_lock_bh(net_dev);
3028 if (net_dev->flags & IFF_PROMISC ||
3029 netdev_uc_count(net_dev) >= EFX_EF10_FILTER_STACK_UC_MAX) {
3030 table->stack_uc_count = -1;
3031 } else {
3032 table->stack_uc_count = 1 + netdev_uc_count(net_dev);
3033 memcpy(table->stack_uc_list[0].addr, net_dev->dev_addr,
3034 ETH_ALEN);
3035 i = 1;
3036 netdev_for_each_uc_addr(uc, net_dev) {
3037 memcpy(table->stack_uc_list[i].addr,
3038 uc->addr, ETH_ALEN);
3039 i++;
3040 }
3041 }
3042 if (net_dev->flags & (IFF_PROMISC | IFF_ALLMULTI) ||
3043 netdev_mc_count(net_dev) >= EFX_EF10_FILTER_STACK_MC_MAX) {
3044 table->stack_mc_count = -1;
3045 } else {
3046 table->stack_mc_count = 1 + netdev_mc_count(net_dev);
3047 eth_broadcast_addr(table->stack_mc_list[0].addr);
3048 i = 1;
3049 netdev_for_each_mc_addr(mc, net_dev) {
3050 memcpy(table->stack_mc_list[i].addr,
3051 mc->addr, ETH_ALEN);
3052 i++;
3053 }
3054 }
3055 netif_addr_unlock_bh(net_dev);
3056
3057 /* Insert/renew unicast filters */
3058 if (table->stack_uc_count >= 0) {
3059 for (i = 0; i < table->stack_uc_count; i++) {
3060 efx_filter_init_rx(&spec, EFX_FILTER_PRI_REQUIRED,
3061 EFX_FILTER_FLAG_RX_RSS |
3062 EFX_FILTER_FLAG_RX_STACK,
3063 0);
3064 efx_filter_set_eth_local(&spec, EFX_FILTER_VID_UNSPEC,
3065 table->stack_uc_list[i].addr);
3066 rc = efx_ef10_filter_insert(efx, &spec, true);
3067 if (rc < 0) {
3068 /* Fall back to unicast-promisc */
3069 while (i--)
3070 efx_ef10_filter_remove_safe(
3071 efx, EFX_FILTER_PRI_REQUIRED,
3072 table->stack_uc_list[i].id);
3073 table->stack_uc_count = -1;
3074 break;
3075 }
3076 table->stack_uc_list[i].id = rc;
3077 }
3078 }
3079 if (table->stack_uc_count < 0) {
3080 efx_filter_init_rx(&spec, EFX_FILTER_PRI_REQUIRED,
3081 EFX_FILTER_FLAG_RX_RSS |
3082 EFX_FILTER_FLAG_RX_STACK,
3083 0);
3084 efx_filter_set_uc_def(&spec);
3085 rc = efx_ef10_filter_insert(efx, &spec, true);
3086 if (rc < 0) {
3087 WARN_ON(1);
3088 table->stack_uc_count = 0;
3089 } else {
3090 table->stack_uc_list[0].id = rc;
3091 }
3092 }
3093
3094 /* Insert/renew multicast filters */
3095 if (table->stack_mc_count >= 0) {
3096 for (i = 0; i < table->stack_mc_count; i++) {
3097 efx_filter_init_rx(&spec, EFX_FILTER_PRI_REQUIRED,
3098 EFX_FILTER_FLAG_RX_RSS |
3099 EFX_FILTER_FLAG_RX_STACK,
3100 0);
3101 efx_filter_set_eth_local(&spec, EFX_FILTER_VID_UNSPEC,
3102 table->stack_mc_list[i].addr);
3103 rc = efx_ef10_filter_insert(efx, &spec, true);
3104 if (rc < 0) {
3105 /* Fall back to multicast-promisc */
3106 while (i--)
3107 efx_ef10_filter_remove_safe(
3108 efx, EFX_FILTER_PRI_REQUIRED,
3109 table->stack_mc_list[i].id);
3110 table->stack_mc_count = -1;
3111 break;
3112 }
3113 table->stack_mc_list[i].id = rc;
3114 }
3115 }
3116 if (table->stack_mc_count < 0) {
3117 efx_filter_init_rx(&spec, EFX_FILTER_PRI_REQUIRED,
3118 EFX_FILTER_FLAG_RX_RSS |
3119 EFX_FILTER_FLAG_RX_STACK,
3120 0);
3121 efx_filter_set_mc_def(&spec);
3122 rc = efx_ef10_filter_insert(efx, &spec, true);
3123 if (rc < 0) {
3124 WARN_ON(1);
3125 table->stack_mc_count = 0;
3126 } else {
3127 table->stack_mc_list[0].id = rc;
3128 }
3129 }
3130
3131 /* Remove filters that weren't renewed. Since nothing else
3132 * changes the STACK_OLD flag or removes these filters, we
3133 * don't need to hold the filter_lock while scanning for
3134 * these filters.
3135 */
3136 for (i = 0; i < HUNT_FILTER_TBL_ROWS; i++) {
3137 if (ACCESS_ONCE(table->entry[i].spec) &
3138 EFX_EF10_FILTER_FLAG_STACK_OLD) {
3139 if (efx_ef10_filter_remove_internal(efx,
3140 EFX_FILTER_PRI_REQUIRED,
3141 i, true) < 0)
3142 remove_failed = true;
3143 }
3144 }
3145 WARN_ON(remove_failed);
3146}
3147
3148static int efx_ef10_mac_reconfigure(struct efx_nic *efx)
3149{
3150 efx_ef10_filter_sync_rx_mode(efx);
3151
3152 return efx_mcdi_set_mac(efx);
3153}
3154
3155#ifdef CONFIG_SFC_MTD
3156
3157struct efx_ef10_nvram_type_info {
3158 u16 type, type_mask;
3159 u8 port;
3160 const char *name;
3161};
3162
3163static const struct efx_ef10_nvram_type_info efx_ef10_nvram_types[] = {
3164 { NVRAM_PARTITION_TYPE_MC_FIRMWARE, 0, 0, "sfc_mcfw" },
3165 { NVRAM_PARTITION_TYPE_MC_FIRMWARE_BACKUP, 0, 0, "sfc_mcfw_backup" },
3166 { NVRAM_PARTITION_TYPE_EXPANSION_ROM, 0, 0, "sfc_exp_rom" },
3167 { NVRAM_PARTITION_TYPE_STATIC_CONFIG, 0, 0, "sfc_static_cfg" },
3168 { NVRAM_PARTITION_TYPE_DYNAMIC_CONFIG, 0, 0, "sfc_dynamic_cfg" },
3169 { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT0, 0, 0, "sfc_exp_rom_cfg" },
3170 { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT1, 0, 1, "sfc_exp_rom_cfg" },
3171 { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT2, 0, 2, "sfc_exp_rom_cfg" },
3172 { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT3, 0, 3, "sfc_exp_rom_cfg" },
3173 { NVRAM_PARTITION_TYPE_PHY_MIN, 0xff, 0, "sfc_phy_fw" },
3174};
3175
3176static int efx_ef10_mtd_probe_partition(struct efx_nic *efx,
3177 struct efx_mcdi_mtd_partition *part,
3178 unsigned int type)
3179{
3180 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_METADATA_IN_LEN);
3181 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_METADATA_OUT_LENMAX);
3182 const struct efx_ef10_nvram_type_info *info;
3183 size_t size, erase_size, outlen;
3184 bool protected;
3185 int rc;
3186
3187 for (info = efx_ef10_nvram_types; ; info++) {
3188 if (info ==
3189 efx_ef10_nvram_types + ARRAY_SIZE(efx_ef10_nvram_types))
3190 return -ENODEV;
3191 if ((type & ~info->type_mask) == info->type)
3192 break;
3193 }
3194 if (info->port != efx_port_num(efx))
3195 return -ENODEV;
3196
3197 rc = efx_mcdi_nvram_info(efx, type, &size, &erase_size, &protected);
3198 if (rc)
3199 return rc;
3200 if (protected)
3201 return -ENODEV; /* hide it */
3202
3203 part->nvram_type = type;
3204
3205 MCDI_SET_DWORD(inbuf, NVRAM_METADATA_IN_TYPE, type);
3206 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_METADATA, inbuf, sizeof(inbuf),
3207 outbuf, sizeof(outbuf), &outlen);
3208 if (rc)
3209 return rc;
3210 if (outlen < MC_CMD_NVRAM_METADATA_OUT_LENMIN)
3211 return -EIO;
3212 if (MCDI_DWORD(outbuf, NVRAM_METADATA_OUT_FLAGS) &
3213 (1 << MC_CMD_NVRAM_METADATA_OUT_SUBTYPE_VALID_LBN))
3214 part->fw_subtype = MCDI_DWORD(outbuf,
3215 NVRAM_METADATA_OUT_SUBTYPE);
3216
3217 part->common.dev_type_name = "EF10 NVRAM manager";
3218 part->common.type_name = info->name;
3219
3220 part->common.mtd.type = MTD_NORFLASH;
3221 part->common.mtd.flags = MTD_CAP_NORFLASH;
3222 part->common.mtd.size = size;
3223 part->common.mtd.erasesize = erase_size;
3224
3225 return 0;
3226}
3227
3228static int efx_ef10_mtd_probe(struct efx_nic *efx)
3229{
3230 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_PARTITIONS_OUT_LENMAX);
3231 struct efx_mcdi_mtd_partition *parts;
3232 size_t outlen, n_parts_total, i, n_parts;
3233 unsigned int type;
3234 int rc;
3235
3236 ASSERT_RTNL();
3237
3238 BUILD_BUG_ON(MC_CMD_NVRAM_PARTITIONS_IN_LEN != 0);
3239 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_PARTITIONS, NULL, 0,
3240 outbuf, sizeof(outbuf), &outlen);
3241 if (rc)
3242 return rc;
3243 if (outlen < MC_CMD_NVRAM_PARTITIONS_OUT_LENMIN)
3244 return -EIO;
3245
3246 n_parts_total = MCDI_DWORD(outbuf, NVRAM_PARTITIONS_OUT_NUM_PARTITIONS);
3247 if (n_parts_total >
3248 MCDI_VAR_ARRAY_LEN(outlen, NVRAM_PARTITIONS_OUT_TYPE_ID))
3249 return -EIO;
3250
3251 parts = kcalloc(n_parts_total, sizeof(*parts), GFP_KERNEL);
3252 if (!parts)
3253 return -ENOMEM;
3254
3255 n_parts = 0;
3256 for (i = 0; i < n_parts_total; i++) {
3257 type = MCDI_ARRAY_DWORD(outbuf, NVRAM_PARTITIONS_OUT_TYPE_ID,
3258 i);
3259 rc = efx_ef10_mtd_probe_partition(efx, &parts[n_parts], type);
3260 if (rc == 0)
3261 n_parts++;
3262 else if (rc != -ENODEV)
3263 goto fail;
3264 }
3265
3266 rc = efx_mtd_add(efx, &parts[0].common, n_parts, sizeof(*parts));
3267fail:
3268 if (rc)
3269 kfree(parts);
3270 return rc;
3271}
3272
3273#endif /* CONFIG_SFC_MTD */
3274
3275static void efx_ef10_ptp_write_host_time(struct efx_nic *efx, u32 host_time)
3276{
3277 _efx_writed(efx, cpu_to_le32(host_time), ER_DZ_MC_DB_LWRD);
3278}
3279
3280const struct efx_nic_type efx_hunt_a0_nic_type = {
3281 .mem_map_size = efx_ef10_mem_map_size,
3282 .probe = efx_ef10_probe,
3283 .remove = efx_ef10_remove,
3284 .dimension_resources = efx_ef10_dimension_resources,
3285 .init = efx_ef10_init_nic,
3286 .fini = efx_port_dummy_op_void,
3287 .map_reset_reason = efx_mcdi_map_reset_reason,
3288 .map_reset_flags = efx_ef10_map_reset_flags,
3289 .reset = efx_mcdi_reset,
3290 .probe_port = efx_mcdi_port_probe,
3291 .remove_port = efx_mcdi_port_remove,
3292 .fini_dmaq = efx_ef10_fini_dmaq,
3293 .describe_stats = efx_ef10_describe_stats,
3294 .update_stats = efx_ef10_update_stats,
3295 .start_stats = efx_mcdi_mac_start_stats,
3296 .stop_stats = efx_mcdi_mac_stop_stats,
3297 .set_id_led = efx_mcdi_set_id_led,
3298 .push_irq_moderation = efx_ef10_push_irq_moderation,
3299 .reconfigure_mac = efx_ef10_mac_reconfigure,
3300 .check_mac_fault = efx_mcdi_mac_check_fault,
3301 .reconfigure_port = efx_mcdi_port_reconfigure,
3302 .get_wol = efx_ef10_get_wol,
3303 .set_wol = efx_ef10_set_wol,
3304 .resume_wol = efx_port_dummy_op_void,
3305 /* TODO: test_chip */
3306 .test_nvram = efx_mcdi_nvram_test_all,
3307 .mcdi_request = efx_ef10_mcdi_request,
3308 .mcdi_poll_response = efx_ef10_mcdi_poll_response,
3309 .mcdi_read_response = efx_ef10_mcdi_read_response,
3310 .mcdi_poll_reboot = efx_ef10_mcdi_poll_reboot,
3311 .irq_enable_master = efx_port_dummy_op_void,
3312 .irq_test_generate = efx_ef10_irq_test_generate,
3313 .irq_disable_non_ev = efx_port_dummy_op_void,
3314 .irq_handle_msi = efx_ef10_msi_interrupt,
3315 .irq_handle_legacy = efx_ef10_legacy_interrupt,
3316 .tx_probe = efx_ef10_tx_probe,
3317 .tx_init = efx_ef10_tx_init,
3318 .tx_remove = efx_ef10_tx_remove,
3319 .tx_write = efx_ef10_tx_write,
3320 .rx_push_indir_table = efx_ef10_rx_push_indir_table,
3321 .rx_probe = efx_ef10_rx_probe,
3322 .rx_init = efx_ef10_rx_init,
3323 .rx_remove = efx_ef10_rx_remove,
3324 .rx_write = efx_ef10_rx_write,
3325 .rx_defer_refill = efx_ef10_rx_defer_refill,
3326 .ev_probe = efx_ef10_ev_probe,
3327 .ev_init = efx_ef10_ev_init,
3328 .ev_fini = efx_ef10_ev_fini,
3329 .ev_remove = efx_ef10_ev_remove,
3330 .ev_process = efx_ef10_ev_process,
3331 .ev_read_ack = efx_ef10_ev_read_ack,
3332 .ev_test_generate = efx_ef10_ev_test_generate,
3333 .filter_table_probe = efx_ef10_filter_table_probe,
3334 .filter_table_restore = efx_ef10_filter_table_restore,
3335 .filter_table_remove = efx_ef10_filter_table_remove,
3336 .filter_update_rx_scatter = efx_ef10_filter_update_rx_scatter,
3337 .filter_insert = efx_ef10_filter_insert,
3338 .filter_remove_safe = efx_ef10_filter_remove_safe,
3339 .filter_get_safe = efx_ef10_filter_get_safe,
3340 .filter_clear_rx = efx_ef10_filter_clear_rx,
3341 .filter_count_rx_used = efx_ef10_filter_count_rx_used,
3342 .filter_get_rx_id_limit = efx_ef10_filter_get_rx_id_limit,
3343 .filter_get_rx_ids = efx_ef10_filter_get_rx_ids,
3344#ifdef CONFIG_RFS_ACCEL
3345 .filter_rfs_insert = efx_ef10_filter_rfs_insert,
3346 .filter_rfs_expire_one = efx_ef10_filter_rfs_expire_one,
3347#endif
3348#ifdef CONFIG_SFC_MTD
3349 .mtd_probe = efx_ef10_mtd_probe,
3350 .mtd_rename = efx_mcdi_mtd_rename,
3351 .mtd_read = efx_mcdi_mtd_read,
3352 .mtd_erase = efx_mcdi_mtd_erase,
3353 .mtd_write = efx_mcdi_mtd_write,
3354 .mtd_sync = efx_mcdi_mtd_sync,
3355#endif
3356 .ptp_write_host_time = efx_ef10_ptp_write_host_time,
3357
3358 .revision = EFX_REV_HUNT_A0,
3359 .max_dma_mask = DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH),
3360 .rx_prefix_size = ES_DZ_RX_PREFIX_SIZE,
3361 .rx_hash_offset = ES_DZ_RX_PREFIX_HASH_OFST,
3362 .can_rx_scatter = true,
3363 .always_rx_scatter = true,
3364 .max_interrupt_mode = EFX_INT_MODE_MSIX,
3365 .timer_period_max = 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH,
3366 .offload_features = (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
3367 NETIF_F_RXHASH | NETIF_F_NTUPLE),
3368 .mcdi_max_ver = 2,
3369 .max_rx_ip_filters = HUNT_FILTER_TBL_ROWS,
3370};