Maynard Johnson | 18f2190 | 2006-11-20 18:45:16 +0100 | [diff] [blame^] | 1 | /* |
| 2 | * Cell Broadband Engine OProfile Support |
| 3 | * |
| 4 | * (C) Copyright IBM Corporation 2006 |
| 5 | * |
| 6 | * Author: David Erb (djerb@us.ibm.com) |
| 7 | * Modifications: |
| 8 | * Carl Love <carll@us.ibm.com> |
| 9 | * Maynard Johnson <maynardj@us.ibm.com> |
| 10 | * |
| 11 | * This program is free software; you can redistribute it and/or |
| 12 | * modify it under the terms of the GNU General Public License |
| 13 | * as published by the Free Software Foundation; either version |
| 14 | * 2 of the License, or (at your option) any later version. |
| 15 | */ |
| 16 | |
| 17 | #include <linux/cpufreq.h> |
| 18 | #include <linux/delay.h> |
| 19 | #include <linux/init.h> |
| 20 | #include <linux/jiffies.h> |
| 21 | #include <linux/kthread.h> |
| 22 | #include <linux/oprofile.h> |
| 23 | #include <linux/percpu.h> |
| 24 | #include <linux/smp.h> |
| 25 | #include <linux/spinlock.h> |
| 26 | #include <linux/timer.h> |
| 27 | #include <asm/cell-pmu.h> |
| 28 | #include <asm/cputable.h> |
| 29 | #include <asm/firmware.h> |
| 30 | #include <asm/io.h> |
| 31 | #include <asm/oprofile_impl.h> |
| 32 | #include <asm/processor.h> |
| 33 | #include <asm/prom.h> |
| 34 | #include <asm/ptrace.h> |
| 35 | #include <asm/reg.h> |
| 36 | #include <asm/rtas.h> |
| 37 | #include <asm/system.h> |
| 38 | |
| 39 | #include "../platforms/cell/interrupt.h" |
| 40 | |
| 41 | #define PPU_CYCLES_EVENT_NUM 1 /* event number for CYCLES */ |
| 42 | #define CBE_COUNT_ALL_CYCLES 0x42800000 /* PPU cycle event specifier */ |
| 43 | |
| 44 | #define NUM_THREADS 2 |
| 45 | #define VIRT_CNTR_SW_TIME_NS 100000000 // 0.5 seconds |
| 46 | |
| 47 | struct pmc_cntrl_data { |
| 48 | unsigned long vcntr; |
| 49 | unsigned long evnts; |
| 50 | unsigned long masks; |
| 51 | unsigned long enabled; |
| 52 | }; |
| 53 | |
| 54 | /* |
| 55 | * ibm,cbe-perftools rtas parameters |
| 56 | */ |
| 57 | |
| 58 | struct pm_signal { |
| 59 | u16 cpu; /* Processor to modify */ |
| 60 | u16 sub_unit; /* hw subunit this applies to (if applicable) */ |
| 61 | u16 signal_group; /* Signal Group to Enable/Disable */ |
| 62 | u8 bus_word; /* Enable/Disable on this Trace/Trigger/Event |
| 63 | * Bus Word(s) (bitmask) |
| 64 | */ |
| 65 | u8 bit; /* Trigger/Event bit (if applicable) */ |
| 66 | }; |
| 67 | |
| 68 | /* |
| 69 | * rtas call arguments |
| 70 | */ |
| 71 | enum { |
| 72 | SUBFUNC_RESET = 1, |
| 73 | SUBFUNC_ACTIVATE = 2, |
| 74 | SUBFUNC_DEACTIVATE = 3, |
| 75 | |
| 76 | PASSTHRU_IGNORE = 0, |
| 77 | PASSTHRU_ENABLE = 1, |
| 78 | PASSTHRU_DISABLE = 2, |
| 79 | }; |
| 80 | |
| 81 | struct pm_cntrl { |
| 82 | u16 enable; |
| 83 | u16 stop_at_max; |
| 84 | u16 trace_mode; |
| 85 | u16 freeze; |
| 86 | u16 count_mode; |
| 87 | }; |
| 88 | |
| 89 | static struct { |
| 90 | u32 group_control; |
| 91 | u32 debug_bus_control; |
| 92 | struct pm_cntrl pm_cntrl; |
| 93 | u32 pm07_cntrl[NR_PHYS_CTRS]; |
| 94 | } pm_regs; |
| 95 | |
| 96 | |
| 97 | #define GET_SUB_UNIT(x) ((x & 0x0000f000) >> 12) |
| 98 | #define GET_BUS_WORD(x) ((x & 0x000000f0) >> 4) |
| 99 | #define GET_BUS_TYPE(x) ((x & 0x00000300) >> 8) |
| 100 | #define GET_POLARITY(x) ((x & 0x00000002) >> 1) |
| 101 | #define GET_COUNT_CYCLES(x) (x & 0x00000001) |
| 102 | #define GET_INPUT_CONTROL(x) ((x & 0x00000004) >> 2) |
| 103 | |
| 104 | |
| 105 | static DEFINE_PER_CPU(unsigned long[NR_PHYS_CTRS], pmc_values); |
| 106 | |
| 107 | static struct pmc_cntrl_data pmc_cntrl[NUM_THREADS][NR_PHYS_CTRS]; |
| 108 | |
| 109 | /* Interpetation of hdw_thread: |
| 110 | * 0 - even virtual cpus 0, 2, 4,... |
| 111 | * 1 - odd virtual cpus 1, 3, 5, ... |
| 112 | */ |
| 113 | static u32 hdw_thread; |
| 114 | |
| 115 | static u32 virt_cntr_inter_mask; |
| 116 | static struct timer_list timer_virt_cntr; |
| 117 | |
| 118 | /* pm_signal needs to be global since it is initialized in |
| 119 | * cell_reg_setup at the time when the necessary information |
| 120 | * is available. |
| 121 | */ |
| 122 | static struct pm_signal pm_signal[NR_PHYS_CTRS]; |
| 123 | static int pm_rtas_token; |
| 124 | |
| 125 | static u32 reset_value[NR_PHYS_CTRS]; |
| 126 | static int num_counters; |
| 127 | static int oprofile_running; |
| 128 | static spinlock_t virt_cntr_lock = SPIN_LOCK_UNLOCKED; |
| 129 | |
| 130 | static u32 ctr_enabled; |
| 131 | |
| 132 | static unsigned char trace_bus[4]; |
| 133 | static unsigned char input_bus[2]; |
| 134 | |
| 135 | /* |
| 136 | * Firmware interface functions |
| 137 | */ |
| 138 | static int |
| 139 | rtas_ibm_cbe_perftools(int subfunc, int passthru, |
| 140 | void *address, unsigned long length) |
| 141 | { |
| 142 | u64 paddr = __pa(address); |
| 143 | |
| 144 | return rtas_call(pm_rtas_token, 5, 1, NULL, subfunc, passthru, |
| 145 | paddr >> 32, paddr & 0xffffffff, length); |
| 146 | } |
| 147 | |
| 148 | static void pm_rtas_reset_signals(u32 node) |
| 149 | { |
| 150 | int ret; |
| 151 | struct pm_signal pm_signal_local; |
| 152 | |
| 153 | /* The debug bus is being set to the passthru disable state. |
| 154 | * However, the FW still expects atleast one legal signal routing |
| 155 | * entry or it will return an error on the arguments. If we don't |
| 156 | * supply a valid entry, we must ignore all return values. Ignoring |
| 157 | * all return values means we might miss an error we should be |
| 158 | * concerned about. |
| 159 | */ |
| 160 | |
| 161 | /* fw expects physical cpu #. */ |
| 162 | pm_signal_local.cpu = node; |
| 163 | pm_signal_local.signal_group = 21; |
| 164 | pm_signal_local.bus_word = 1; |
| 165 | pm_signal_local.sub_unit = 0; |
| 166 | pm_signal_local.bit = 0; |
| 167 | |
| 168 | ret = rtas_ibm_cbe_perftools(SUBFUNC_RESET, PASSTHRU_DISABLE, |
| 169 | &pm_signal_local, |
| 170 | sizeof(struct pm_signal)); |
| 171 | |
| 172 | if (ret) |
| 173 | printk(KERN_WARNING "%s: rtas returned: %d\n", |
| 174 | __FUNCTION__, ret); |
| 175 | } |
| 176 | |
| 177 | static void pm_rtas_activate_signals(u32 node, u32 count) |
| 178 | { |
| 179 | int ret; |
| 180 | int j; |
| 181 | struct pm_signal pm_signal_local[NR_PHYS_CTRS]; |
| 182 | |
| 183 | for (j = 0; j < count; j++) { |
| 184 | /* fw expects physical cpu # */ |
| 185 | pm_signal_local[j].cpu = node; |
| 186 | pm_signal_local[j].signal_group = pm_signal[j].signal_group; |
| 187 | pm_signal_local[j].bus_word = pm_signal[j].bus_word; |
| 188 | pm_signal_local[j].sub_unit = pm_signal[j].sub_unit; |
| 189 | pm_signal_local[j].bit = pm_signal[j].bit; |
| 190 | } |
| 191 | |
| 192 | ret = rtas_ibm_cbe_perftools(SUBFUNC_ACTIVATE, PASSTHRU_ENABLE, |
| 193 | pm_signal_local, |
| 194 | count * sizeof(struct pm_signal)); |
| 195 | |
| 196 | if (ret) |
| 197 | printk(KERN_WARNING "%s: rtas returned: %d\n", |
| 198 | __FUNCTION__, ret); |
| 199 | } |
| 200 | |
| 201 | /* |
| 202 | * PM Signal functions |
| 203 | */ |
| 204 | static void set_pm_event(u32 ctr, int event, u32 unit_mask) |
| 205 | { |
| 206 | struct pm_signal *p; |
| 207 | u32 signal_bit; |
| 208 | u32 bus_word, bus_type, count_cycles, polarity, input_control; |
| 209 | int j, i; |
| 210 | |
| 211 | if (event == PPU_CYCLES_EVENT_NUM) { |
| 212 | /* Special Event: Count all cpu cycles */ |
| 213 | pm_regs.pm07_cntrl[ctr] = CBE_COUNT_ALL_CYCLES; |
| 214 | p = &(pm_signal[ctr]); |
| 215 | p->signal_group = 21; |
| 216 | p->bus_word = 1; |
| 217 | p->sub_unit = 0; |
| 218 | p->bit = 0; |
| 219 | goto out; |
| 220 | } else { |
| 221 | pm_regs.pm07_cntrl[ctr] = 0; |
| 222 | } |
| 223 | |
| 224 | bus_word = GET_BUS_WORD(unit_mask); |
| 225 | bus_type = GET_BUS_TYPE(unit_mask); |
| 226 | count_cycles = GET_COUNT_CYCLES(unit_mask); |
| 227 | polarity = GET_POLARITY(unit_mask); |
| 228 | input_control = GET_INPUT_CONTROL(unit_mask); |
| 229 | signal_bit = (event % 100); |
| 230 | |
| 231 | p = &(pm_signal[ctr]); |
| 232 | |
| 233 | p->signal_group = event / 100; |
| 234 | p->bus_word = bus_word; |
| 235 | p->sub_unit = unit_mask & 0x0000f000; |
| 236 | |
| 237 | pm_regs.pm07_cntrl[ctr] = 0; |
| 238 | pm_regs.pm07_cntrl[ctr] |= PM07_CTR_COUNT_CYCLES(count_cycles); |
| 239 | pm_regs.pm07_cntrl[ctr] |= PM07_CTR_POLARITY(polarity); |
| 240 | pm_regs.pm07_cntrl[ctr] |= PM07_CTR_INPUT_CONTROL(input_control); |
| 241 | |
| 242 | if (input_control == 0) { |
| 243 | if (signal_bit > 31) { |
| 244 | signal_bit -= 32; |
| 245 | if (bus_word == 0x3) |
| 246 | bus_word = 0x2; |
| 247 | else if (bus_word == 0xc) |
| 248 | bus_word = 0x8; |
| 249 | } |
| 250 | |
| 251 | if ((bus_type == 0) && p->signal_group >= 60) |
| 252 | bus_type = 2; |
| 253 | if ((bus_type == 1) && p->signal_group >= 50) |
| 254 | bus_type = 0; |
| 255 | |
| 256 | pm_regs.pm07_cntrl[ctr] |= PM07_CTR_INPUT_MUX(signal_bit); |
| 257 | } else { |
| 258 | pm_regs.pm07_cntrl[ctr] = 0; |
| 259 | p->bit = signal_bit; |
| 260 | } |
| 261 | |
| 262 | for (i = 0; i < 4; i++) { |
| 263 | if (bus_word & (1 << i)) { |
| 264 | pm_regs.debug_bus_control |= |
| 265 | (bus_type << (31 - (2 * i) + 1)); |
| 266 | |
| 267 | for (j = 0; j < 2; j++) { |
| 268 | if (input_bus[j] == 0xff) { |
| 269 | input_bus[j] = i; |
| 270 | pm_regs.group_control |= |
| 271 | (i << (31 - i)); |
| 272 | break; |
| 273 | } |
| 274 | } |
| 275 | } |
| 276 | } |
| 277 | out: |
| 278 | ; |
| 279 | } |
| 280 | |
| 281 | static void write_pm_cntrl(int cpu, struct pm_cntrl *pm_cntrl) |
| 282 | { |
| 283 | /* Oprofile will use 32 bit counters, set bits 7:10 to 0 */ |
| 284 | u32 val = 0; |
| 285 | if (pm_cntrl->enable == 1) |
| 286 | val |= CBE_PM_ENABLE_PERF_MON; |
| 287 | |
| 288 | if (pm_cntrl->stop_at_max == 1) |
| 289 | val |= CBE_PM_STOP_AT_MAX; |
| 290 | |
| 291 | if (pm_cntrl->trace_mode == 1) |
| 292 | val |= CBE_PM_TRACE_MODE_SET(pm_cntrl->trace_mode); |
| 293 | |
| 294 | if (pm_cntrl->freeze == 1) |
| 295 | val |= CBE_PM_FREEZE_ALL_CTRS; |
| 296 | |
| 297 | /* Routine set_count_mode must be called previously to set |
| 298 | * the count mode based on the user selection of user and kernel. |
| 299 | */ |
| 300 | val |= CBE_PM_COUNT_MODE_SET(pm_cntrl->count_mode); |
| 301 | cbe_write_pm(cpu, pm_control, val); |
| 302 | } |
| 303 | |
| 304 | static inline void |
| 305 | set_count_mode(u32 kernel, u32 user, struct pm_cntrl *pm_cntrl) |
| 306 | { |
| 307 | /* The user must specify user and kernel if they want them. If |
| 308 | * neither is specified, OProfile will count in hypervisor mode |
| 309 | */ |
| 310 | if (kernel) { |
| 311 | if (user) |
| 312 | pm_cntrl->count_mode = CBE_COUNT_ALL_MODES; |
| 313 | else |
| 314 | pm_cntrl->count_mode = CBE_COUNT_SUPERVISOR_MODE; |
| 315 | } else { |
| 316 | if (user) |
| 317 | pm_cntrl->count_mode = CBE_COUNT_PROBLEM_MODE; |
| 318 | else |
| 319 | pm_cntrl->count_mode = CBE_COUNT_HYPERVISOR_MODE; |
| 320 | } |
| 321 | } |
| 322 | |
| 323 | static inline void enable_ctr(u32 cpu, u32 ctr, u32 * pm07_cntrl) |
| 324 | { |
| 325 | |
| 326 | pm07_cntrl[ctr] |= PM07_CTR_ENABLE(1); |
| 327 | cbe_write_pm07_control(cpu, ctr, pm07_cntrl[ctr]); |
| 328 | } |
| 329 | |
| 330 | /* |
| 331 | * Oprofile is expected to collect data on all CPUs simultaneously. |
| 332 | * However, there is one set of performance counters per node. There are |
| 333 | * two hardware threads or virtual CPUs on each node. Hence, OProfile must |
| 334 | * multiplex in time the performance counter collection on the two virtual |
| 335 | * CPUs. The multiplexing of the performance counters is done by this |
| 336 | * virtual counter routine. |
| 337 | * |
| 338 | * The pmc_values used below is defined as 'per-cpu' but its use is |
| 339 | * more akin to 'per-node'. We need to store two sets of counter |
| 340 | * values per node -- one for the previous run and one for the next. |
| 341 | * The per-cpu[NR_PHYS_CTRS] gives us the storage we need. Each odd/even |
| 342 | * pair of per-cpu arrays is used for storing the previous and next |
| 343 | * pmc values for a given node. |
| 344 | * NOTE: We use the per-cpu variable to improve cache performance. |
| 345 | */ |
| 346 | static void cell_virtual_cntr(unsigned long data) |
| 347 | { |
| 348 | /* This routine will alternate loading the virtual counters for |
| 349 | * virtual CPUs |
| 350 | */ |
| 351 | int i, prev_hdw_thread, next_hdw_thread; |
| 352 | u32 cpu; |
| 353 | unsigned long flags; |
| 354 | |
| 355 | /* Make sure that the interrupt_hander and |
| 356 | * the virt counter are not both playing with |
| 357 | * the counters on the same node. |
| 358 | */ |
| 359 | |
| 360 | spin_lock_irqsave(&virt_cntr_lock, flags); |
| 361 | |
| 362 | prev_hdw_thread = hdw_thread; |
| 363 | |
| 364 | /* switch the cpu handling the interrupts */ |
| 365 | hdw_thread = 1 ^ hdw_thread; |
| 366 | next_hdw_thread = hdw_thread; |
| 367 | |
| 368 | /* The following is done only once per each node, but |
| 369 | * we need cpu #, not node #, to pass to the cbe_xxx functions. |
| 370 | */ |
| 371 | for_each_online_cpu(cpu) { |
| 372 | if (cbe_get_hw_thread_id(cpu)) |
| 373 | continue; |
| 374 | |
| 375 | /* stop counters, save counter values, restore counts |
| 376 | * for previous thread |
| 377 | */ |
| 378 | cbe_disable_pm(cpu); |
| 379 | cbe_disable_pm_interrupts(cpu); |
| 380 | for (i = 0; i < num_counters; i++) { |
| 381 | per_cpu(pmc_values, cpu + prev_hdw_thread)[i] |
| 382 | = cbe_read_ctr(cpu, i); |
| 383 | |
| 384 | if (per_cpu(pmc_values, cpu + next_hdw_thread)[i] |
| 385 | == 0xFFFFFFFF) |
| 386 | /* If the cntr value is 0xffffffff, we must |
| 387 | * reset that to 0xfffffff0 when the current |
| 388 | * thread is restarted. This will generate a new |
| 389 | * interrupt and make sure that we never restore |
| 390 | * the counters to the max value. If the counters |
| 391 | * were restored to the max value, they do not |
| 392 | * increment and no interrupts are generated. Hence |
| 393 | * no more samples will be collected on that cpu. |
| 394 | */ |
| 395 | cbe_write_ctr(cpu, i, 0xFFFFFFF0); |
| 396 | else |
| 397 | cbe_write_ctr(cpu, i, |
| 398 | per_cpu(pmc_values, |
| 399 | cpu + |
| 400 | next_hdw_thread)[i]); |
| 401 | } |
| 402 | |
| 403 | /* Switch to the other thread. Change the interrupt |
| 404 | * and control regs to be scheduled on the CPU |
| 405 | * corresponding to the thread to execute. |
| 406 | */ |
| 407 | for (i = 0; i < num_counters; i++) { |
| 408 | if (pmc_cntrl[next_hdw_thread][i].enabled) { |
| 409 | /* There are some per thread events. |
| 410 | * Must do the set event, enable_cntr |
| 411 | * for each cpu. |
| 412 | */ |
| 413 | set_pm_event(i, |
| 414 | pmc_cntrl[next_hdw_thread][i].evnts, |
| 415 | pmc_cntrl[next_hdw_thread][i].masks); |
| 416 | enable_ctr(cpu, i, |
| 417 | pm_regs.pm07_cntrl); |
| 418 | } else { |
| 419 | cbe_write_pm07_control(cpu, i, 0); |
| 420 | } |
| 421 | } |
| 422 | |
| 423 | /* Enable interrupts on the CPU thread that is starting */ |
| 424 | cbe_enable_pm_interrupts(cpu, next_hdw_thread, |
| 425 | virt_cntr_inter_mask); |
| 426 | cbe_enable_pm(cpu); |
| 427 | } |
| 428 | |
| 429 | spin_unlock_irqrestore(&virt_cntr_lock, flags); |
| 430 | |
| 431 | mod_timer(&timer_virt_cntr, jiffies + HZ / 10); |
| 432 | } |
| 433 | |
| 434 | static void start_virt_cntrs(void) |
| 435 | { |
| 436 | init_timer(&timer_virt_cntr); |
| 437 | timer_virt_cntr.function = cell_virtual_cntr; |
| 438 | timer_virt_cntr.data = 0UL; |
| 439 | timer_virt_cntr.expires = jiffies + HZ / 10; |
| 440 | add_timer(&timer_virt_cntr); |
| 441 | } |
| 442 | |
| 443 | /* This function is called once for all cpus combined */ |
| 444 | static void |
| 445 | cell_reg_setup(struct op_counter_config *ctr, |
| 446 | struct op_system_config *sys, int num_ctrs) |
| 447 | { |
| 448 | int i, j, cpu; |
| 449 | |
| 450 | pm_rtas_token = rtas_token("ibm,cbe-perftools"); |
| 451 | if (pm_rtas_token == RTAS_UNKNOWN_SERVICE) { |
| 452 | printk(KERN_WARNING "%s: RTAS_UNKNOWN_SERVICE\n", |
| 453 | __FUNCTION__); |
| 454 | goto out; |
| 455 | } |
| 456 | |
| 457 | num_counters = num_ctrs; |
| 458 | |
| 459 | pm_regs.group_control = 0; |
| 460 | pm_regs.debug_bus_control = 0; |
| 461 | |
| 462 | /* setup the pm_control register */ |
| 463 | memset(&pm_regs.pm_cntrl, 0, sizeof(struct pm_cntrl)); |
| 464 | pm_regs.pm_cntrl.stop_at_max = 1; |
| 465 | pm_regs.pm_cntrl.trace_mode = 0; |
| 466 | pm_regs.pm_cntrl.freeze = 1; |
| 467 | |
| 468 | set_count_mode(sys->enable_kernel, sys->enable_user, |
| 469 | &pm_regs.pm_cntrl); |
| 470 | |
| 471 | /* Setup the thread 0 events */ |
| 472 | for (i = 0; i < num_ctrs; ++i) { |
| 473 | |
| 474 | pmc_cntrl[0][i].evnts = ctr[i].event; |
| 475 | pmc_cntrl[0][i].masks = ctr[i].unit_mask; |
| 476 | pmc_cntrl[0][i].enabled = ctr[i].enabled; |
| 477 | pmc_cntrl[0][i].vcntr = i; |
| 478 | |
| 479 | for_each_possible_cpu(j) |
| 480 | per_cpu(pmc_values, j)[i] = 0; |
| 481 | } |
| 482 | |
| 483 | /* Setup the thread 1 events, map the thread 0 event to the |
| 484 | * equivalent thread 1 event. |
| 485 | */ |
| 486 | for (i = 0; i < num_ctrs; ++i) { |
| 487 | if ((ctr[i].event >= 2100) && (ctr[i].event <= 2111)) |
| 488 | pmc_cntrl[1][i].evnts = ctr[i].event + 19; |
| 489 | else if (ctr[i].event == 2203) |
| 490 | pmc_cntrl[1][i].evnts = ctr[i].event; |
| 491 | else if ((ctr[i].event >= 2200) && (ctr[i].event <= 2215)) |
| 492 | pmc_cntrl[1][i].evnts = ctr[i].event + 16; |
| 493 | else |
| 494 | pmc_cntrl[1][i].evnts = ctr[i].event; |
| 495 | |
| 496 | pmc_cntrl[1][i].masks = ctr[i].unit_mask; |
| 497 | pmc_cntrl[1][i].enabled = ctr[i].enabled; |
| 498 | pmc_cntrl[1][i].vcntr = i; |
| 499 | } |
| 500 | |
| 501 | for (i = 0; i < 4; i++) |
| 502 | trace_bus[i] = 0xff; |
| 503 | |
| 504 | for (i = 0; i < 2; i++) |
| 505 | input_bus[i] = 0xff; |
| 506 | |
| 507 | /* Our counters count up, and "count" refers to |
| 508 | * how much before the next interrupt, and we interrupt |
| 509 | * on overflow. So we calculate the starting value |
| 510 | * which will give us "count" until overflow. |
| 511 | * Then we set the events on the enabled counters. |
| 512 | */ |
| 513 | for (i = 0; i < num_counters; ++i) { |
| 514 | /* start with virtual counter set 0 */ |
| 515 | if (pmc_cntrl[0][i].enabled) { |
| 516 | /* Using 32bit counters, reset max - count */ |
| 517 | reset_value[i] = 0xFFFFFFFF - ctr[i].count; |
| 518 | set_pm_event(i, |
| 519 | pmc_cntrl[0][i].evnts, |
| 520 | pmc_cntrl[0][i].masks); |
| 521 | |
| 522 | /* global, used by cell_cpu_setup */ |
| 523 | ctr_enabled |= (1 << i); |
| 524 | } |
| 525 | } |
| 526 | |
| 527 | /* initialize the previous counts for the virtual cntrs */ |
| 528 | for_each_online_cpu(cpu) |
| 529 | for (i = 0; i < num_counters; ++i) { |
| 530 | per_cpu(pmc_values, cpu)[i] = reset_value[i]; |
| 531 | } |
| 532 | out: |
| 533 | ; |
| 534 | } |
| 535 | |
| 536 | /* This function is called once for each cpu */ |
| 537 | static void cell_cpu_setup(struct op_counter_config *cntr) |
| 538 | { |
| 539 | u32 cpu = smp_processor_id(); |
| 540 | u32 num_enabled = 0; |
| 541 | int i; |
| 542 | |
| 543 | /* There is one performance monitor per processor chip (i.e. node), |
| 544 | * so we only need to perform this function once per node. |
| 545 | */ |
| 546 | if (cbe_get_hw_thread_id(cpu)) |
| 547 | goto out; |
| 548 | |
| 549 | if (pm_rtas_token == RTAS_UNKNOWN_SERVICE) { |
| 550 | printk(KERN_WARNING "%s: RTAS_UNKNOWN_SERVICE\n", |
| 551 | __FUNCTION__); |
| 552 | goto out; |
| 553 | } |
| 554 | |
| 555 | /* Stop all counters */ |
| 556 | cbe_disable_pm(cpu); |
| 557 | cbe_disable_pm_interrupts(cpu); |
| 558 | |
| 559 | cbe_write_pm(cpu, pm_interval, 0); |
| 560 | cbe_write_pm(cpu, pm_start_stop, 0); |
| 561 | cbe_write_pm(cpu, group_control, pm_regs.group_control); |
| 562 | cbe_write_pm(cpu, debug_bus_control, pm_regs.debug_bus_control); |
| 563 | write_pm_cntrl(cpu, &pm_regs.pm_cntrl); |
| 564 | |
| 565 | for (i = 0; i < num_counters; ++i) { |
| 566 | if (ctr_enabled & (1 << i)) { |
| 567 | pm_signal[num_enabled].cpu = cbe_cpu_to_node(cpu); |
| 568 | num_enabled++; |
| 569 | } |
| 570 | } |
| 571 | |
| 572 | pm_rtas_activate_signals(cbe_cpu_to_node(cpu), num_enabled); |
| 573 | out: |
| 574 | ; |
| 575 | } |
| 576 | |
| 577 | static void cell_global_start(struct op_counter_config *ctr) |
| 578 | { |
| 579 | u32 cpu; |
| 580 | u32 interrupt_mask = 0; |
| 581 | u32 i; |
| 582 | |
| 583 | /* This routine gets called once for the system. |
| 584 | * There is one performance monitor per node, so we |
| 585 | * only need to perform this function once per node. |
| 586 | */ |
| 587 | for_each_online_cpu(cpu) { |
| 588 | if (cbe_get_hw_thread_id(cpu)) |
| 589 | continue; |
| 590 | |
| 591 | interrupt_mask = 0; |
| 592 | |
| 593 | for (i = 0; i < num_counters; ++i) { |
| 594 | if (ctr_enabled & (1 << i)) { |
| 595 | cbe_write_ctr(cpu, i, reset_value[i]); |
| 596 | enable_ctr(cpu, i, pm_regs.pm07_cntrl); |
| 597 | interrupt_mask |= |
| 598 | CBE_PM_CTR_OVERFLOW_INTR(i); |
| 599 | } else { |
| 600 | /* Disable counter */ |
| 601 | cbe_write_pm07_control(cpu, i, 0); |
| 602 | } |
| 603 | } |
| 604 | |
| 605 | cbe_clear_pm_interrupts(cpu); |
| 606 | cbe_enable_pm_interrupts(cpu, hdw_thread, interrupt_mask); |
| 607 | cbe_enable_pm(cpu); |
| 608 | } |
| 609 | |
| 610 | virt_cntr_inter_mask = interrupt_mask; |
| 611 | oprofile_running = 1; |
| 612 | smp_wmb(); |
| 613 | |
| 614 | /* NOTE: start_virt_cntrs will result in cell_virtual_cntr() being |
| 615 | * executed which manipulates the PMU. We start the "virtual counter" |
| 616 | * here so that we do not need to synchronize access to the PMU in |
| 617 | * the above for-loop. |
| 618 | */ |
| 619 | start_virt_cntrs(); |
| 620 | } |
| 621 | |
| 622 | static void cell_global_stop(void) |
| 623 | { |
| 624 | int cpu; |
| 625 | |
| 626 | /* This routine will be called once for the system. |
| 627 | * There is one performance monitor per node, so we |
| 628 | * only need to perform this function once per node. |
| 629 | */ |
| 630 | del_timer_sync(&timer_virt_cntr); |
| 631 | oprofile_running = 0; |
| 632 | smp_wmb(); |
| 633 | |
| 634 | for_each_online_cpu(cpu) { |
| 635 | if (cbe_get_hw_thread_id(cpu)) |
| 636 | continue; |
| 637 | |
| 638 | cbe_sync_irq(cbe_cpu_to_node(cpu)); |
| 639 | /* Stop the counters */ |
| 640 | cbe_disable_pm(cpu); |
| 641 | |
| 642 | /* Deactivate the signals */ |
| 643 | pm_rtas_reset_signals(cbe_cpu_to_node(cpu)); |
| 644 | |
| 645 | /* Deactivate interrupts */ |
| 646 | cbe_disable_pm_interrupts(cpu); |
| 647 | } |
| 648 | } |
| 649 | |
| 650 | static void |
| 651 | cell_handle_interrupt(struct pt_regs *regs, struct op_counter_config *ctr) |
| 652 | { |
| 653 | u32 cpu; |
| 654 | u64 pc; |
| 655 | int is_kernel; |
| 656 | unsigned long flags = 0; |
| 657 | u32 interrupt_mask; |
| 658 | int i; |
| 659 | |
| 660 | cpu = smp_processor_id(); |
| 661 | |
| 662 | /* Need to make sure the interrupt handler and the virt counter |
| 663 | * routine are not running at the same time. See the |
| 664 | * cell_virtual_cntr() routine for additional comments. |
| 665 | */ |
| 666 | spin_lock_irqsave(&virt_cntr_lock, flags); |
| 667 | |
| 668 | /* Need to disable and reenable the performance counters |
| 669 | * to get the desired behavior from the hardware. This |
| 670 | * is hardware specific. |
| 671 | */ |
| 672 | |
| 673 | cbe_disable_pm(cpu); |
| 674 | |
| 675 | interrupt_mask = cbe_clear_pm_interrupts(cpu); |
| 676 | |
| 677 | /* If the interrupt mask has been cleared, then the virt cntr |
| 678 | * has cleared the interrupt. When the thread that generated |
| 679 | * the interrupt is restored, the data count will be restored to |
| 680 | * 0xffffff0 to cause the interrupt to be regenerated. |
| 681 | */ |
| 682 | |
| 683 | if ((oprofile_running == 1) && (interrupt_mask != 0)) { |
| 684 | pc = regs->nip; |
| 685 | is_kernel = is_kernel_addr(pc); |
| 686 | |
| 687 | for (i = 0; i < num_counters; ++i) { |
| 688 | if ((interrupt_mask & CBE_PM_CTR_OVERFLOW_INTR(i)) |
| 689 | && ctr[i].enabled) { |
| 690 | oprofile_add_pc(pc, is_kernel, i); |
| 691 | cbe_write_ctr(cpu, i, reset_value[i]); |
| 692 | } |
| 693 | } |
| 694 | |
| 695 | /* The counters were frozen by the interrupt. |
| 696 | * Reenable the interrupt and restart the counters. |
| 697 | * If there was a race between the interrupt handler and |
| 698 | * the virtual counter routine. The virutal counter |
| 699 | * routine may have cleared the interrupts. Hence must |
| 700 | * use the virt_cntr_inter_mask to re-enable the interrupts. |
| 701 | */ |
| 702 | cbe_enable_pm_interrupts(cpu, hdw_thread, |
| 703 | virt_cntr_inter_mask); |
| 704 | |
| 705 | /* The writes to the various performance counters only writes |
| 706 | * to a latch. The new values (interrupt setting bits, reset |
| 707 | * counter value etc.) are not copied to the actual registers |
| 708 | * until the performance monitor is enabled. In order to get |
| 709 | * this to work as desired, the permormance monitor needs to |
| 710 | * be disabled while writting to the latches. This is a |
| 711 | * HW design issue. |
| 712 | */ |
| 713 | cbe_enable_pm(cpu); |
| 714 | } |
| 715 | spin_unlock_irqrestore(&virt_cntr_lock, flags); |
| 716 | } |
| 717 | |
| 718 | struct op_powerpc_model op_model_cell = { |
| 719 | .reg_setup = cell_reg_setup, |
| 720 | .cpu_setup = cell_cpu_setup, |
| 721 | .global_start = cell_global_start, |
| 722 | .global_stop = cell_global_stop, |
| 723 | .handle_interrupt = cell_handle_interrupt, |
| 724 | }; |