Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* $Id: sunhme.c,v 1.124 2002/01/15 06:25:51 davem Exp $ |
| 2 | * sunhme.c: Sparc HME/BigMac 10/100baseT half/full duplex auto switching, |
| 3 | * auto carrier detecting ethernet driver. Also known as the |
| 4 | * "Happy Meal Ethernet" found on SunSwift SBUS cards. |
| 5 | * |
| 6 | * Copyright (C) 1996, 1998, 1999, 2002, 2003 David S. Miller (davem@redhat.com) |
| 7 | * |
| 8 | * Changes : |
| 9 | * 2000/11/11 Willy Tarreau <willy AT meta-x.org> |
| 10 | * - port to non-sparc architectures. Tested only on x86 and |
| 11 | * only currently works with QFE PCI cards. |
| 12 | * - ability to specify the MAC address at module load time by passing this |
| 13 | * argument : macaddr=0x00,0x10,0x20,0x30,0x40,0x50 |
| 14 | */ |
| 15 | |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 16 | #include <linux/config.h> |
| 17 | #include <linux/module.h> |
| 18 | #include <linux/kernel.h> |
| 19 | #include <linux/types.h> |
| 20 | #include <linux/fcntl.h> |
| 21 | #include <linux/interrupt.h> |
| 22 | #include <linux/ioport.h> |
| 23 | #include <linux/in.h> |
| 24 | #include <linux/slab.h> |
| 25 | #include <linux/string.h> |
| 26 | #include <linux/delay.h> |
| 27 | #include <linux/init.h> |
| 28 | #include <linux/ethtool.h> |
| 29 | #include <linux/mii.h> |
| 30 | #include <linux/crc32.h> |
| 31 | #include <linux/random.h> |
| 32 | #include <linux/errno.h> |
| 33 | #include <linux/netdevice.h> |
| 34 | #include <linux/etherdevice.h> |
| 35 | #include <linux/skbuff.h> |
| 36 | #include <linux/bitops.h> |
| 37 | |
| 38 | #include <asm/system.h> |
| 39 | #include <asm/io.h> |
| 40 | #include <asm/dma.h> |
| 41 | #include <asm/byteorder.h> |
| 42 | |
| 43 | #ifdef __sparc__ |
| 44 | #include <asm/idprom.h> |
| 45 | #include <asm/sbus.h> |
| 46 | #include <asm/openprom.h> |
| 47 | #include <asm/oplib.h> |
| 48 | #include <asm/auxio.h> |
| 49 | #ifndef __sparc_v9__ |
| 50 | #include <asm/io-unit.h> |
| 51 | #endif |
| 52 | #endif |
| 53 | #include <asm/uaccess.h> |
| 54 | |
| 55 | #include <asm/pgtable.h> |
| 56 | #include <asm/irq.h> |
| 57 | |
| 58 | #ifdef CONFIG_PCI |
| 59 | #include <linux/pci.h> |
| 60 | #ifdef __sparc__ |
| 61 | #include <asm/pbm.h> |
| 62 | #endif |
| 63 | #endif |
| 64 | |
| 65 | #include "sunhme.h" |
| 66 | |
Tom 'spot' Callaway | 1015828 | 2005-04-24 20:35:20 -0700 | [diff] [blame] | 67 | #define DRV_NAME "sunhme" |
| 68 | #define DRV_VERSION "2.02" |
| 69 | #define DRV_RELDATE "8/24/03" |
| 70 | #define DRV_AUTHOR "David S. Miller (davem@redhat.com)" |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 71 | |
Tom 'spot' Callaway | 1015828 | 2005-04-24 20:35:20 -0700 | [diff] [blame] | 72 | static char version[] = |
| 73 | DRV_NAME ".c:v" DRV_VERSION " " DRV_RELDATE " " DRV_AUTHOR "\n"; |
| 74 | |
| 75 | MODULE_VERSION(DRV_VERSION); |
| 76 | MODULE_AUTHOR(DRV_AUTHOR); |
| 77 | MODULE_DESCRIPTION("Sun HappyMealEthernet(HME) 10/100baseT ethernet driver"); |
| 78 | MODULE_LICENSE("GPL"); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 79 | |
| 80 | static int macaddr[6]; |
| 81 | |
| 82 | /* accept MAC address of the form macaddr=0x08,0x00,0x20,0x30,0x40,0x50 */ |
| 83 | module_param_array(macaddr, int, NULL, 0); |
| 84 | MODULE_PARM_DESC(macaddr, "Happy Meal MAC address to set"); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 85 | |
| 86 | static struct happy_meal *root_happy_dev; |
| 87 | |
| 88 | #ifdef CONFIG_SBUS |
| 89 | static struct quattro *qfe_sbus_list; |
| 90 | #endif |
| 91 | |
| 92 | #ifdef CONFIG_PCI |
| 93 | static struct quattro *qfe_pci_list; |
| 94 | #endif |
| 95 | |
| 96 | #undef HMEDEBUG |
| 97 | #undef SXDEBUG |
| 98 | #undef RXDEBUG |
| 99 | #undef TXDEBUG |
| 100 | #undef TXLOGGING |
| 101 | |
| 102 | #ifdef TXLOGGING |
| 103 | struct hme_tx_logent { |
| 104 | unsigned int tstamp; |
| 105 | int tx_new, tx_old; |
| 106 | unsigned int action; |
| 107 | #define TXLOG_ACTION_IRQ 0x01 |
| 108 | #define TXLOG_ACTION_TXMIT 0x02 |
| 109 | #define TXLOG_ACTION_TBUSY 0x04 |
| 110 | #define TXLOG_ACTION_NBUFS 0x08 |
| 111 | unsigned int status; |
| 112 | }; |
| 113 | #define TX_LOG_LEN 128 |
| 114 | static struct hme_tx_logent tx_log[TX_LOG_LEN]; |
| 115 | static int txlog_cur_entry; |
| 116 | static __inline__ void tx_add_log(struct happy_meal *hp, unsigned int a, unsigned int s) |
| 117 | { |
| 118 | struct hme_tx_logent *tlp; |
| 119 | unsigned long flags; |
| 120 | |
| 121 | save_and_cli(flags); |
| 122 | tlp = &tx_log[txlog_cur_entry]; |
| 123 | tlp->tstamp = (unsigned int)jiffies; |
| 124 | tlp->tx_new = hp->tx_new; |
| 125 | tlp->tx_old = hp->tx_old; |
| 126 | tlp->action = a; |
| 127 | tlp->status = s; |
| 128 | txlog_cur_entry = (txlog_cur_entry + 1) & (TX_LOG_LEN - 1); |
| 129 | restore_flags(flags); |
| 130 | } |
| 131 | static __inline__ void tx_dump_log(void) |
| 132 | { |
| 133 | int i, this; |
| 134 | |
| 135 | this = txlog_cur_entry; |
| 136 | for (i = 0; i < TX_LOG_LEN; i++) { |
| 137 | printk("TXLOG[%d]: j[%08x] tx[N(%d)O(%d)] action[%08x] stat[%08x]\n", i, |
| 138 | tx_log[this].tstamp, |
| 139 | tx_log[this].tx_new, tx_log[this].tx_old, |
| 140 | tx_log[this].action, tx_log[this].status); |
| 141 | this = (this + 1) & (TX_LOG_LEN - 1); |
| 142 | } |
| 143 | } |
| 144 | static __inline__ void tx_dump_ring(struct happy_meal *hp) |
| 145 | { |
| 146 | struct hmeal_init_block *hb = hp->happy_block; |
| 147 | struct happy_meal_txd *tp = &hb->happy_meal_txd[0]; |
| 148 | int i; |
| 149 | |
| 150 | for (i = 0; i < TX_RING_SIZE; i+=4) { |
| 151 | printk("TXD[%d..%d]: [%08x:%08x] [%08x:%08x] [%08x:%08x] [%08x:%08x]\n", |
| 152 | i, i + 4, |
| 153 | le32_to_cpu(tp[i].tx_flags), le32_to_cpu(tp[i].tx_addr), |
| 154 | le32_to_cpu(tp[i + 1].tx_flags), le32_to_cpu(tp[i + 1].tx_addr), |
| 155 | le32_to_cpu(tp[i + 2].tx_flags), le32_to_cpu(tp[i + 2].tx_addr), |
| 156 | le32_to_cpu(tp[i + 3].tx_flags), le32_to_cpu(tp[i + 3].tx_addr)); |
| 157 | } |
| 158 | } |
| 159 | #else |
| 160 | #define tx_add_log(hp, a, s) do { } while(0) |
| 161 | #define tx_dump_log() do { } while(0) |
| 162 | #define tx_dump_ring(hp) do { } while(0) |
| 163 | #endif |
| 164 | |
| 165 | #ifdef HMEDEBUG |
| 166 | #define HMD(x) printk x |
| 167 | #else |
| 168 | #define HMD(x) |
| 169 | #endif |
| 170 | |
| 171 | /* #define AUTO_SWITCH_DEBUG */ |
| 172 | |
| 173 | #ifdef AUTO_SWITCH_DEBUG |
| 174 | #define ASD(x) printk x |
| 175 | #else |
| 176 | #define ASD(x) |
| 177 | #endif |
| 178 | |
| 179 | #define DEFAULT_IPG0 16 /* For lance-mode only */ |
| 180 | #define DEFAULT_IPG1 8 /* For all modes */ |
| 181 | #define DEFAULT_IPG2 4 /* For all modes */ |
| 182 | #define DEFAULT_JAMSIZE 4 /* Toe jam */ |
| 183 | |
| 184 | #if defined(CONFIG_PCI) && defined(MODULE) |
| 185 | /* This happy_pci_ids is declared __initdata because it is only used |
| 186 | as an advisory to depmod. If this is ported to the new PCI interface |
| 187 | where it could be referenced at any time due to hot plugging, |
| 188 | the __initdata reference should be removed. */ |
| 189 | |
| 190 | static struct pci_device_id happymeal_pci_ids[] = { |
| 191 | { |
| 192 | .vendor = PCI_VENDOR_ID_SUN, |
| 193 | .device = PCI_DEVICE_ID_SUN_HAPPYMEAL, |
| 194 | .subvendor = PCI_ANY_ID, |
| 195 | .subdevice = PCI_ANY_ID, |
| 196 | }, |
| 197 | { } /* Terminating entry */ |
| 198 | }; |
| 199 | |
| 200 | MODULE_DEVICE_TABLE(pci, happymeal_pci_ids); |
| 201 | |
| 202 | #endif |
| 203 | |
| 204 | /* NOTE: In the descriptor writes one _must_ write the address |
| 205 | * member _first_. The card must not be allowed to see |
| 206 | * the updated descriptor flags until the address is |
| 207 | * correct. I've added a write memory barrier between |
| 208 | * the two stores so that I can sleep well at night... -DaveM |
| 209 | */ |
| 210 | |
| 211 | #if defined(CONFIG_SBUS) && defined(CONFIG_PCI) |
| 212 | static void sbus_hme_write32(void __iomem *reg, u32 val) |
| 213 | { |
| 214 | sbus_writel(val, reg); |
| 215 | } |
| 216 | |
| 217 | static u32 sbus_hme_read32(void __iomem *reg) |
| 218 | { |
| 219 | return sbus_readl(reg); |
| 220 | } |
| 221 | |
| 222 | static void sbus_hme_write_rxd(struct happy_meal_rxd *rxd, u32 flags, u32 addr) |
| 223 | { |
| 224 | rxd->rx_addr = addr; |
| 225 | wmb(); |
| 226 | rxd->rx_flags = flags; |
| 227 | } |
| 228 | |
| 229 | static void sbus_hme_write_txd(struct happy_meal_txd *txd, u32 flags, u32 addr) |
| 230 | { |
| 231 | txd->tx_addr = addr; |
| 232 | wmb(); |
| 233 | txd->tx_flags = flags; |
| 234 | } |
| 235 | |
| 236 | static u32 sbus_hme_read_desc32(u32 *p) |
| 237 | { |
| 238 | return *p; |
| 239 | } |
| 240 | |
| 241 | static void pci_hme_write32(void __iomem *reg, u32 val) |
| 242 | { |
| 243 | writel(val, reg); |
| 244 | } |
| 245 | |
| 246 | static u32 pci_hme_read32(void __iomem *reg) |
| 247 | { |
| 248 | return readl(reg); |
| 249 | } |
| 250 | |
| 251 | static void pci_hme_write_rxd(struct happy_meal_rxd *rxd, u32 flags, u32 addr) |
| 252 | { |
| 253 | rxd->rx_addr = cpu_to_le32(addr); |
| 254 | wmb(); |
| 255 | rxd->rx_flags = cpu_to_le32(flags); |
| 256 | } |
| 257 | |
| 258 | static void pci_hme_write_txd(struct happy_meal_txd *txd, u32 flags, u32 addr) |
| 259 | { |
| 260 | txd->tx_addr = cpu_to_le32(addr); |
| 261 | wmb(); |
| 262 | txd->tx_flags = cpu_to_le32(flags); |
| 263 | } |
| 264 | |
| 265 | static u32 pci_hme_read_desc32(u32 *p) |
| 266 | { |
| 267 | return cpu_to_le32p(p); |
| 268 | } |
| 269 | |
| 270 | #define hme_write32(__hp, __reg, __val) \ |
| 271 | ((__hp)->write32((__reg), (__val))) |
| 272 | #define hme_read32(__hp, __reg) \ |
| 273 | ((__hp)->read32(__reg)) |
| 274 | #define hme_write_rxd(__hp, __rxd, __flags, __addr) \ |
| 275 | ((__hp)->write_rxd((__rxd), (__flags), (__addr))) |
| 276 | #define hme_write_txd(__hp, __txd, __flags, __addr) \ |
| 277 | ((__hp)->write_txd((__txd), (__flags), (__addr))) |
| 278 | #define hme_read_desc32(__hp, __p) \ |
| 279 | ((__hp)->read_desc32(__p)) |
| 280 | #define hme_dma_map(__hp, __ptr, __size, __dir) \ |
| 281 | ((__hp)->dma_map((__hp)->happy_dev, (__ptr), (__size), (__dir))) |
| 282 | #define hme_dma_unmap(__hp, __addr, __size, __dir) \ |
| 283 | ((__hp)->dma_unmap((__hp)->happy_dev, (__addr), (__size), (__dir))) |
| 284 | #define hme_dma_sync_for_cpu(__hp, __addr, __size, __dir) \ |
| 285 | ((__hp)->dma_sync_for_cpu((__hp)->happy_dev, (__addr), (__size), (__dir))) |
| 286 | #define hme_dma_sync_for_device(__hp, __addr, __size, __dir) \ |
| 287 | ((__hp)->dma_sync_for_device((__hp)->happy_dev, (__addr), (__size), (__dir))) |
| 288 | #else |
| 289 | #ifdef CONFIG_SBUS |
| 290 | /* SBUS only compilation */ |
| 291 | #define hme_write32(__hp, __reg, __val) \ |
| 292 | sbus_writel((__val), (__reg)) |
| 293 | #define hme_read32(__hp, __reg) \ |
| 294 | sbus_readl(__reg) |
| 295 | #define hme_write_rxd(__hp, __rxd, __flags, __addr) \ |
| 296 | do { (__rxd)->rx_addr = (__addr); \ |
| 297 | wmb(); \ |
| 298 | (__rxd)->rx_flags = (__flags); \ |
| 299 | } while(0) |
| 300 | #define hme_write_txd(__hp, __txd, __flags, __addr) \ |
| 301 | do { (__txd)->tx_addr = (__addr); \ |
| 302 | wmb(); \ |
| 303 | (__txd)->tx_flags = (__flags); \ |
| 304 | } while(0) |
| 305 | #define hme_read_desc32(__hp, __p) (*(__p)) |
| 306 | #define hme_dma_map(__hp, __ptr, __size, __dir) \ |
| 307 | sbus_map_single((__hp)->happy_dev, (__ptr), (__size), (__dir)) |
| 308 | #define hme_dma_unmap(__hp, __addr, __size, __dir) \ |
| 309 | sbus_unmap_single((__hp)->happy_dev, (__addr), (__size), (__dir)) |
| 310 | #define hme_dma_sync_for_cpu(__hp, __addr, __size, __dir) \ |
| 311 | sbus_dma_sync_single_for_cpu((__hp)->happy_dev, (__addr), (__size), (__dir)) |
| 312 | #define hme_dma_sync_for_device(__hp, __addr, __size, __dir) \ |
| 313 | sbus_dma_sync_single_for_device((__hp)->happy_dev, (__addr), (__size), (__dir)) |
| 314 | #else |
| 315 | /* PCI only compilation */ |
| 316 | #define hme_write32(__hp, __reg, __val) \ |
| 317 | writel((__val), (__reg)) |
| 318 | #define hme_read32(__hp, __reg) \ |
| 319 | readl(__reg) |
| 320 | #define hme_write_rxd(__hp, __rxd, __flags, __addr) \ |
| 321 | do { (__rxd)->rx_addr = cpu_to_le32(__addr); \ |
| 322 | wmb(); \ |
| 323 | (__rxd)->rx_flags = cpu_to_le32(__flags); \ |
| 324 | } while(0) |
| 325 | #define hme_write_txd(__hp, __txd, __flags, __addr) \ |
| 326 | do { (__txd)->tx_addr = cpu_to_le32(__addr); \ |
| 327 | wmb(); \ |
| 328 | (__txd)->tx_flags = cpu_to_le32(__flags); \ |
| 329 | } while(0) |
| 330 | #define hme_read_desc32(__hp, __p) cpu_to_le32p(__p) |
| 331 | #define hme_dma_map(__hp, __ptr, __size, __dir) \ |
| 332 | pci_map_single((__hp)->happy_dev, (__ptr), (__size), (__dir)) |
| 333 | #define hme_dma_unmap(__hp, __addr, __size, __dir) \ |
| 334 | pci_unmap_single((__hp)->happy_dev, (__addr), (__size), (__dir)) |
| 335 | #define hme_dma_sync_for_cpu(__hp, __addr, __size, __dir) \ |
| 336 | pci_dma_sync_single_for_cpu((__hp)->happy_dev, (__addr), (__size), (__dir)) |
| 337 | #define hme_dma_sync_for_device(__hp, __addr, __size, __dir) \ |
| 338 | pci_dma_sync_single_for_device((__hp)->happy_dev, (__addr), (__size), (__dir)) |
| 339 | #endif |
| 340 | #endif |
| 341 | |
| 342 | |
| 343 | #ifdef SBUS_DMA_BIDIRECTIONAL |
| 344 | # define DMA_BIDIRECTIONAL SBUS_DMA_BIDIRECTIONAL |
| 345 | #else |
| 346 | # define DMA_BIDIRECTIONAL 0 |
| 347 | #endif |
| 348 | |
| 349 | #ifdef SBUS_DMA_FROMDEVICE |
| 350 | # define DMA_FROMDEVICE SBUS_DMA_FROMDEVICE |
| 351 | #else |
| 352 | # define DMA_TODEVICE 1 |
| 353 | #endif |
| 354 | |
| 355 | #ifdef SBUS_DMA_TODEVICE |
| 356 | # define DMA_TODEVICE SBUS_DMA_TODEVICE |
| 357 | #else |
| 358 | # define DMA_FROMDEVICE 2 |
| 359 | #endif |
| 360 | |
| 361 | |
| 362 | /* Oh yes, the MIF BitBang is mighty fun to program. BitBucket is more like it. */ |
| 363 | static void BB_PUT_BIT(struct happy_meal *hp, void __iomem *tregs, int bit) |
| 364 | { |
| 365 | hme_write32(hp, tregs + TCVR_BBDATA, bit); |
| 366 | hme_write32(hp, tregs + TCVR_BBCLOCK, 0); |
| 367 | hme_write32(hp, tregs + TCVR_BBCLOCK, 1); |
| 368 | } |
| 369 | |
| 370 | #if 0 |
| 371 | static u32 BB_GET_BIT(struct happy_meal *hp, void __iomem *tregs, int internal) |
| 372 | { |
| 373 | u32 ret; |
| 374 | |
| 375 | hme_write32(hp, tregs + TCVR_BBCLOCK, 0); |
| 376 | hme_write32(hp, tregs + TCVR_BBCLOCK, 1); |
| 377 | ret = hme_read32(hp, tregs + TCVR_CFG); |
| 378 | if (internal) |
| 379 | ret &= TCV_CFG_MDIO0; |
| 380 | else |
| 381 | ret &= TCV_CFG_MDIO1; |
| 382 | |
| 383 | return ret; |
| 384 | } |
| 385 | #endif |
| 386 | |
| 387 | static u32 BB_GET_BIT2(struct happy_meal *hp, void __iomem *tregs, int internal) |
| 388 | { |
| 389 | u32 retval; |
| 390 | |
| 391 | hme_write32(hp, tregs + TCVR_BBCLOCK, 0); |
| 392 | udelay(1); |
| 393 | retval = hme_read32(hp, tregs + TCVR_CFG); |
| 394 | if (internal) |
| 395 | retval &= TCV_CFG_MDIO0; |
| 396 | else |
| 397 | retval &= TCV_CFG_MDIO1; |
| 398 | hme_write32(hp, tregs + TCVR_BBCLOCK, 1); |
| 399 | |
| 400 | return retval; |
| 401 | } |
| 402 | |
| 403 | #define TCVR_FAILURE 0x80000000 /* Impossible MIF read value */ |
| 404 | |
| 405 | static int happy_meal_bb_read(struct happy_meal *hp, |
| 406 | void __iomem *tregs, int reg) |
| 407 | { |
| 408 | u32 tmp; |
| 409 | int retval = 0; |
| 410 | int i; |
| 411 | |
| 412 | ASD(("happy_meal_bb_read: reg=%d ", reg)); |
| 413 | |
| 414 | /* Enable the MIF BitBang outputs. */ |
| 415 | hme_write32(hp, tregs + TCVR_BBOENAB, 1); |
| 416 | |
| 417 | /* Force BitBang into the idle state. */ |
| 418 | for (i = 0; i < 32; i++) |
| 419 | BB_PUT_BIT(hp, tregs, 1); |
| 420 | |
| 421 | /* Give it the read sequence. */ |
| 422 | BB_PUT_BIT(hp, tregs, 0); |
| 423 | BB_PUT_BIT(hp, tregs, 1); |
| 424 | BB_PUT_BIT(hp, tregs, 1); |
| 425 | BB_PUT_BIT(hp, tregs, 0); |
| 426 | |
| 427 | /* Give it the PHY address. */ |
| 428 | tmp = hp->paddr & 0xff; |
| 429 | for (i = 4; i >= 0; i--) |
| 430 | BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1)); |
| 431 | |
| 432 | /* Tell it what register we want to read. */ |
| 433 | tmp = (reg & 0xff); |
| 434 | for (i = 4; i >= 0; i--) |
| 435 | BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1)); |
| 436 | |
| 437 | /* Close down the MIF BitBang outputs. */ |
| 438 | hme_write32(hp, tregs + TCVR_BBOENAB, 0); |
| 439 | |
| 440 | /* Now read in the value. */ |
| 441 | (void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal)); |
| 442 | for (i = 15; i >= 0; i--) |
| 443 | retval |= BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal)); |
| 444 | (void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal)); |
| 445 | (void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal)); |
| 446 | (void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal)); |
| 447 | ASD(("value=%x\n", retval)); |
| 448 | return retval; |
| 449 | } |
| 450 | |
| 451 | static void happy_meal_bb_write(struct happy_meal *hp, |
| 452 | void __iomem *tregs, int reg, |
| 453 | unsigned short value) |
| 454 | { |
| 455 | u32 tmp; |
| 456 | int i; |
| 457 | |
| 458 | ASD(("happy_meal_bb_write: reg=%d value=%x\n", reg, value)); |
| 459 | |
| 460 | /* Enable the MIF BitBang outputs. */ |
| 461 | hme_write32(hp, tregs + TCVR_BBOENAB, 1); |
| 462 | |
| 463 | /* Force BitBang into the idle state. */ |
| 464 | for (i = 0; i < 32; i++) |
| 465 | BB_PUT_BIT(hp, tregs, 1); |
| 466 | |
| 467 | /* Give it write sequence. */ |
| 468 | BB_PUT_BIT(hp, tregs, 0); |
| 469 | BB_PUT_BIT(hp, tregs, 1); |
| 470 | BB_PUT_BIT(hp, tregs, 0); |
| 471 | BB_PUT_BIT(hp, tregs, 1); |
| 472 | |
| 473 | /* Give it the PHY address. */ |
| 474 | tmp = (hp->paddr & 0xff); |
| 475 | for (i = 4; i >= 0; i--) |
| 476 | BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1)); |
| 477 | |
| 478 | /* Tell it what register we will be writing. */ |
| 479 | tmp = (reg & 0xff); |
| 480 | for (i = 4; i >= 0; i--) |
| 481 | BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1)); |
| 482 | |
| 483 | /* Tell it to become ready for the bits. */ |
| 484 | BB_PUT_BIT(hp, tregs, 1); |
| 485 | BB_PUT_BIT(hp, tregs, 0); |
| 486 | |
| 487 | for (i = 15; i >= 0; i--) |
| 488 | BB_PUT_BIT(hp, tregs, ((value >> i) & 1)); |
| 489 | |
| 490 | /* Close down the MIF BitBang outputs. */ |
| 491 | hme_write32(hp, tregs + TCVR_BBOENAB, 0); |
| 492 | } |
| 493 | |
| 494 | #define TCVR_READ_TRIES 16 |
| 495 | |
| 496 | static int happy_meal_tcvr_read(struct happy_meal *hp, |
| 497 | void __iomem *tregs, int reg) |
| 498 | { |
| 499 | int tries = TCVR_READ_TRIES; |
| 500 | int retval; |
| 501 | |
| 502 | ASD(("happy_meal_tcvr_read: reg=0x%02x ", reg)); |
| 503 | if (hp->tcvr_type == none) { |
| 504 | ASD(("no transceiver, value=TCVR_FAILURE\n")); |
| 505 | return TCVR_FAILURE; |
| 506 | } |
| 507 | |
| 508 | if (!(hp->happy_flags & HFLAG_FENABLE)) { |
| 509 | ASD(("doing bit bang\n")); |
| 510 | return happy_meal_bb_read(hp, tregs, reg); |
| 511 | } |
| 512 | |
| 513 | hme_write32(hp, tregs + TCVR_FRAME, |
| 514 | (FRAME_READ | (hp->paddr << 23) | ((reg & 0xff) << 18))); |
| 515 | while (!(hme_read32(hp, tregs + TCVR_FRAME) & 0x10000) && --tries) |
| 516 | udelay(20); |
| 517 | if (!tries) { |
| 518 | printk(KERN_ERR "happy meal: Aieee, transceiver MIF read bolixed\n"); |
| 519 | return TCVR_FAILURE; |
| 520 | } |
| 521 | retval = hme_read32(hp, tregs + TCVR_FRAME) & 0xffff; |
| 522 | ASD(("value=%04x\n", retval)); |
| 523 | return retval; |
| 524 | } |
| 525 | |
| 526 | #define TCVR_WRITE_TRIES 16 |
| 527 | |
| 528 | static void happy_meal_tcvr_write(struct happy_meal *hp, |
| 529 | void __iomem *tregs, int reg, |
| 530 | unsigned short value) |
| 531 | { |
| 532 | int tries = TCVR_WRITE_TRIES; |
| 533 | |
| 534 | ASD(("happy_meal_tcvr_write: reg=0x%02x value=%04x\n", reg, value)); |
| 535 | |
| 536 | /* Welcome to Sun Microsystems, can I take your order please? */ |
| 537 | if (!(hp->happy_flags & HFLAG_FENABLE)) { |
| 538 | happy_meal_bb_write(hp, tregs, reg, value); |
| 539 | return; |
| 540 | } |
| 541 | |
| 542 | /* Would you like fries with that? */ |
| 543 | hme_write32(hp, tregs + TCVR_FRAME, |
| 544 | (FRAME_WRITE | (hp->paddr << 23) | |
| 545 | ((reg & 0xff) << 18) | (value & 0xffff))); |
| 546 | while (!(hme_read32(hp, tregs + TCVR_FRAME) & 0x10000) && --tries) |
| 547 | udelay(20); |
| 548 | |
| 549 | /* Anything else? */ |
| 550 | if (!tries) |
| 551 | printk(KERN_ERR "happy meal: Aieee, transceiver MIF write bolixed\n"); |
| 552 | |
| 553 | /* Fifty-two cents is your change, have a nice day. */ |
| 554 | } |
| 555 | |
| 556 | /* Auto negotiation. The scheme is very simple. We have a timer routine |
| 557 | * that keeps watching the auto negotiation process as it progresses. |
| 558 | * The DP83840 is first told to start doing it's thing, we set up the time |
| 559 | * and place the timer state machine in it's initial state. |
| 560 | * |
| 561 | * Here the timer peeks at the DP83840 status registers at each click to see |
| 562 | * if the auto negotiation has completed, we assume here that the DP83840 PHY |
| 563 | * will time out at some point and just tell us what (didn't) happen. For |
| 564 | * complete coverage we only allow so many of the ticks at this level to run, |
| 565 | * when this has expired we print a warning message and try another strategy. |
| 566 | * This "other" strategy is to force the interface into various speed/duplex |
| 567 | * configurations and we stop when we see a link-up condition before the |
| 568 | * maximum number of "peek" ticks have occurred. |
| 569 | * |
| 570 | * Once a valid link status has been detected we configure the BigMAC and |
| 571 | * the rest of the Happy Meal to speak the most efficient protocol we could |
| 572 | * get a clean link for. The priority for link configurations, highest first |
| 573 | * is: |
| 574 | * 100 Base-T Full Duplex |
| 575 | * 100 Base-T Half Duplex |
| 576 | * 10 Base-T Full Duplex |
| 577 | * 10 Base-T Half Duplex |
| 578 | * |
| 579 | * We start a new timer now, after a successful auto negotiation status has |
| 580 | * been detected. This timer just waits for the link-up bit to get set in |
| 581 | * the BMCR of the DP83840. When this occurs we print a kernel log message |
| 582 | * describing the link type in use and the fact that it is up. |
| 583 | * |
| 584 | * If a fatal error of some sort is signalled and detected in the interrupt |
| 585 | * service routine, and the chip is reset, or the link is ifconfig'd down |
| 586 | * and then back up, this entire process repeats itself all over again. |
| 587 | */ |
| 588 | static int try_next_permutation(struct happy_meal *hp, void __iomem *tregs) |
| 589 | { |
| 590 | hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR); |
| 591 | |
| 592 | /* Downgrade from full to half duplex. Only possible |
| 593 | * via ethtool. |
| 594 | */ |
| 595 | if (hp->sw_bmcr & BMCR_FULLDPLX) { |
| 596 | hp->sw_bmcr &= ~(BMCR_FULLDPLX); |
| 597 | happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr); |
| 598 | return 0; |
| 599 | } |
| 600 | |
| 601 | /* Downgrade from 100 to 10. */ |
| 602 | if (hp->sw_bmcr & BMCR_SPEED100) { |
| 603 | hp->sw_bmcr &= ~(BMCR_SPEED100); |
| 604 | happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr); |
| 605 | return 0; |
| 606 | } |
| 607 | |
| 608 | /* We've tried everything. */ |
| 609 | return -1; |
| 610 | } |
| 611 | |
| 612 | static void display_link_mode(struct happy_meal *hp, void __iomem *tregs) |
| 613 | { |
| 614 | printk(KERN_INFO "%s: Link is up using ", hp->dev->name); |
| 615 | if (hp->tcvr_type == external) |
| 616 | printk("external "); |
| 617 | else |
| 618 | printk("internal "); |
| 619 | printk("transceiver at "); |
| 620 | hp->sw_lpa = happy_meal_tcvr_read(hp, tregs, MII_LPA); |
| 621 | if (hp->sw_lpa & (LPA_100HALF | LPA_100FULL)) { |
| 622 | if (hp->sw_lpa & LPA_100FULL) |
| 623 | printk("100Mb/s, Full Duplex.\n"); |
| 624 | else |
| 625 | printk("100Mb/s, Half Duplex.\n"); |
| 626 | } else { |
| 627 | if (hp->sw_lpa & LPA_10FULL) |
| 628 | printk("10Mb/s, Full Duplex.\n"); |
| 629 | else |
| 630 | printk("10Mb/s, Half Duplex.\n"); |
| 631 | } |
| 632 | } |
| 633 | |
| 634 | static void display_forced_link_mode(struct happy_meal *hp, void __iomem *tregs) |
| 635 | { |
| 636 | printk(KERN_INFO "%s: Link has been forced up using ", hp->dev->name); |
| 637 | if (hp->tcvr_type == external) |
| 638 | printk("external "); |
| 639 | else |
| 640 | printk("internal "); |
| 641 | printk("transceiver at "); |
| 642 | hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR); |
| 643 | if (hp->sw_bmcr & BMCR_SPEED100) |
| 644 | printk("100Mb/s, "); |
| 645 | else |
| 646 | printk("10Mb/s, "); |
| 647 | if (hp->sw_bmcr & BMCR_FULLDPLX) |
| 648 | printk("Full Duplex.\n"); |
| 649 | else |
| 650 | printk("Half Duplex.\n"); |
| 651 | } |
| 652 | |
| 653 | static int set_happy_link_modes(struct happy_meal *hp, void __iomem *tregs) |
| 654 | { |
| 655 | int full; |
| 656 | |
| 657 | /* All we care about is making sure the bigmac tx_cfg has a |
| 658 | * proper duplex setting. |
| 659 | */ |
| 660 | if (hp->timer_state == arbwait) { |
| 661 | hp->sw_lpa = happy_meal_tcvr_read(hp, tregs, MII_LPA); |
| 662 | if (!(hp->sw_lpa & (LPA_10HALF | LPA_10FULL | LPA_100HALF | LPA_100FULL))) |
| 663 | goto no_response; |
| 664 | if (hp->sw_lpa & LPA_100FULL) |
| 665 | full = 1; |
| 666 | else if (hp->sw_lpa & LPA_100HALF) |
| 667 | full = 0; |
| 668 | else if (hp->sw_lpa & LPA_10FULL) |
| 669 | full = 1; |
| 670 | else |
| 671 | full = 0; |
| 672 | } else { |
| 673 | /* Forcing a link mode. */ |
| 674 | hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR); |
| 675 | if (hp->sw_bmcr & BMCR_FULLDPLX) |
| 676 | full = 1; |
| 677 | else |
| 678 | full = 0; |
| 679 | } |
| 680 | |
| 681 | /* Before changing other bits in the tx_cfg register, and in |
| 682 | * general any of other the TX config registers too, you |
| 683 | * must: |
| 684 | * 1) Clear Enable |
| 685 | * 2) Poll with reads until that bit reads back as zero |
| 686 | * 3) Make TX configuration changes |
| 687 | * 4) Set Enable once more |
| 688 | */ |
| 689 | hme_write32(hp, hp->bigmacregs + BMAC_TXCFG, |
| 690 | hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) & |
| 691 | ~(BIGMAC_TXCFG_ENABLE)); |
| 692 | while (hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) & BIGMAC_TXCFG_ENABLE) |
| 693 | barrier(); |
| 694 | if (full) { |
| 695 | hp->happy_flags |= HFLAG_FULL; |
| 696 | hme_write32(hp, hp->bigmacregs + BMAC_TXCFG, |
| 697 | hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) | |
| 698 | BIGMAC_TXCFG_FULLDPLX); |
| 699 | } else { |
| 700 | hp->happy_flags &= ~(HFLAG_FULL); |
| 701 | hme_write32(hp, hp->bigmacregs + BMAC_TXCFG, |
| 702 | hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) & |
| 703 | ~(BIGMAC_TXCFG_FULLDPLX)); |
| 704 | } |
| 705 | hme_write32(hp, hp->bigmacregs + BMAC_TXCFG, |
| 706 | hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) | |
| 707 | BIGMAC_TXCFG_ENABLE); |
| 708 | return 0; |
| 709 | no_response: |
| 710 | return 1; |
| 711 | } |
| 712 | |
| 713 | static int happy_meal_init(struct happy_meal *hp); |
| 714 | |
| 715 | static int is_lucent_phy(struct happy_meal *hp) |
| 716 | { |
| 717 | void __iomem *tregs = hp->tcvregs; |
| 718 | unsigned short mr2, mr3; |
| 719 | int ret = 0; |
| 720 | |
| 721 | mr2 = happy_meal_tcvr_read(hp, tregs, 2); |
| 722 | mr3 = happy_meal_tcvr_read(hp, tregs, 3); |
| 723 | if ((mr2 & 0xffff) == 0x0180 && |
| 724 | ((mr3 & 0xffff) >> 10) == 0x1d) |
| 725 | ret = 1; |
| 726 | |
| 727 | return ret; |
| 728 | } |
| 729 | |
| 730 | static void happy_meal_timer(unsigned long data) |
| 731 | { |
| 732 | struct happy_meal *hp = (struct happy_meal *) data; |
| 733 | void __iomem *tregs = hp->tcvregs; |
| 734 | int restart_timer = 0; |
| 735 | |
| 736 | spin_lock_irq(&hp->happy_lock); |
| 737 | |
| 738 | hp->timer_ticks++; |
| 739 | switch(hp->timer_state) { |
| 740 | case arbwait: |
| 741 | /* Only allow for 5 ticks, thats 10 seconds and much too |
| 742 | * long to wait for arbitration to complete. |
| 743 | */ |
| 744 | if (hp->timer_ticks >= 10) { |
| 745 | /* Enter force mode. */ |
| 746 | do_force_mode: |
| 747 | hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR); |
| 748 | printk(KERN_NOTICE "%s: Auto-Negotiation unsuccessful, trying force link mode\n", |
| 749 | hp->dev->name); |
| 750 | hp->sw_bmcr = BMCR_SPEED100; |
| 751 | happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr); |
| 752 | |
| 753 | if (!is_lucent_phy(hp)) { |
| 754 | /* OK, seems we need do disable the transceiver for the first |
| 755 | * tick to make sure we get an accurate link state at the |
| 756 | * second tick. |
| 757 | */ |
| 758 | hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs, DP83840_CSCONFIG); |
| 759 | hp->sw_csconfig &= ~(CSCONFIG_TCVDISAB); |
| 760 | happy_meal_tcvr_write(hp, tregs, DP83840_CSCONFIG, hp->sw_csconfig); |
| 761 | } |
| 762 | hp->timer_state = ltrywait; |
| 763 | hp->timer_ticks = 0; |
| 764 | restart_timer = 1; |
| 765 | } else { |
| 766 | /* Anything interesting happen? */ |
| 767 | hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR); |
| 768 | if (hp->sw_bmsr & BMSR_ANEGCOMPLETE) { |
| 769 | int ret; |
| 770 | |
| 771 | /* Just what we've been waiting for... */ |
| 772 | ret = set_happy_link_modes(hp, tregs); |
| 773 | if (ret) { |
| 774 | /* Ooops, something bad happened, go to force |
| 775 | * mode. |
| 776 | * |
| 777 | * XXX Broken hubs which don't support 802.3u |
| 778 | * XXX auto-negotiation make this happen as well. |
| 779 | */ |
| 780 | goto do_force_mode; |
| 781 | } |
| 782 | |
| 783 | /* Success, at least so far, advance our state engine. */ |
| 784 | hp->timer_state = lupwait; |
| 785 | restart_timer = 1; |
| 786 | } else { |
| 787 | restart_timer = 1; |
| 788 | } |
| 789 | } |
| 790 | break; |
| 791 | |
| 792 | case lupwait: |
| 793 | /* Auto negotiation was successful and we are awaiting a |
| 794 | * link up status. I have decided to let this timer run |
| 795 | * forever until some sort of error is signalled, reporting |
| 796 | * a message to the user at 10 second intervals. |
| 797 | */ |
| 798 | hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR); |
| 799 | if (hp->sw_bmsr & BMSR_LSTATUS) { |
| 800 | /* Wheee, it's up, display the link mode in use and put |
| 801 | * the timer to sleep. |
| 802 | */ |
| 803 | display_link_mode(hp, tregs); |
| 804 | hp->timer_state = asleep; |
| 805 | restart_timer = 0; |
| 806 | } else { |
| 807 | if (hp->timer_ticks >= 10) { |
| 808 | printk(KERN_NOTICE "%s: Auto negotiation successful, link still " |
| 809 | "not completely up.\n", hp->dev->name); |
| 810 | hp->timer_ticks = 0; |
| 811 | restart_timer = 1; |
| 812 | } else { |
| 813 | restart_timer = 1; |
| 814 | } |
| 815 | } |
| 816 | break; |
| 817 | |
| 818 | case ltrywait: |
| 819 | /* Making the timeout here too long can make it take |
| 820 | * annoyingly long to attempt all of the link mode |
| 821 | * permutations, but then again this is essentially |
| 822 | * error recovery code for the most part. |
| 823 | */ |
| 824 | hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR); |
| 825 | hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs, DP83840_CSCONFIG); |
| 826 | if (hp->timer_ticks == 1) { |
| 827 | if (!is_lucent_phy(hp)) { |
| 828 | /* Re-enable transceiver, we'll re-enable the transceiver next |
| 829 | * tick, then check link state on the following tick. |
| 830 | */ |
| 831 | hp->sw_csconfig |= CSCONFIG_TCVDISAB; |
| 832 | happy_meal_tcvr_write(hp, tregs, |
| 833 | DP83840_CSCONFIG, hp->sw_csconfig); |
| 834 | } |
| 835 | restart_timer = 1; |
| 836 | break; |
| 837 | } |
| 838 | if (hp->timer_ticks == 2) { |
| 839 | if (!is_lucent_phy(hp)) { |
| 840 | hp->sw_csconfig &= ~(CSCONFIG_TCVDISAB); |
| 841 | happy_meal_tcvr_write(hp, tregs, |
| 842 | DP83840_CSCONFIG, hp->sw_csconfig); |
| 843 | } |
| 844 | restart_timer = 1; |
| 845 | break; |
| 846 | } |
| 847 | if (hp->sw_bmsr & BMSR_LSTATUS) { |
| 848 | /* Force mode selection success. */ |
| 849 | display_forced_link_mode(hp, tregs); |
| 850 | set_happy_link_modes(hp, tregs); /* XXX error? then what? */ |
| 851 | hp->timer_state = asleep; |
| 852 | restart_timer = 0; |
| 853 | } else { |
| 854 | if (hp->timer_ticks >= 4) { /* 6 seconds or so... */ |
| 855 | int ret; |
| 856 | |
| 857 | ret = try_next_permutation(hp, tregs); |
| 858 | if (ret == -1) { |
| 859 | /* Aieee, tried them all, reset the |
| 860 | * chip and try all over again. |
| 861 | */ |
| 862 | |
| 863 | /* Let the user know... */ |
| 864 | printk(KERN_NOTICE "%s: Link down, cable problem?\n", |
| 865 | hp->dev->name); |
| 866 | |
| 867 | ret = happy_meal_init(hp); |
| 868 | if (ret) { |
| 869 | /* ho hum... */ |
| 870 | printk(KERN_ERR "%s: Error, cannot re-init the " |
| 871 | "Happy Meal.\n", hp->dev->name); |
| 872 | } |
| 873 | goto out; |
| 874 | } |
| 875 | if (!is_lucent_phy(hp)) { |
| 876 | hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs, |
| 877 | DP83840_CSCONFIG); |
| 878 | hp->sw_csconfig |= CSCONFIG_TCVDISAB; |
| 879 | happy_meal_tcvr_write(hp, tregs, |
| 880 | DP83840_CSCONFIG, hp->sw_csconfig); |
| 881 | } |
| 882 | hp->timer_ticks = 0; |
| 883 | restart_timer = 1; |
| 884 | } else { |
| 885 | restart_timer = 1; |
| 886 | } |
| 887 | } |
| 888 | break; |
| 889 | |
| 890 | case asleep: |
| 891 | default: |
| 892 | /* Can't happens.... */ |
| 893 | printk(KERN_ERR "%s: Aieee, link timer is asleep but we got one anyways!\n", |
| 894 | hp->dev->name); |
| 895 | restart_timer = 0; |
| 896 | hp->timer_ticks = 0; |
| 897 | hp->timer_state = asleep; /* foo on you */ |
| 898 | break; |
| 899 | }; |
| 900 | |
| 901 | if (restart_timer) { |
| 902 | hp->happy_timer.expires = jiffies + ((12 * HZ)/10); /* 1.2 sec. */ |
| 903 | add_timer(&hp->happy_timer); |
| 904 | } |
| 905 | |
| 906 | out: |
| 907 | spin_unlock_irq(&hp->happy_lock); |
| 908 | } |
| 909 | |
| 910 | #define TX_RESET_TRIES 32 |
| 911 | #define RX_RESET_TRIES 32 |
| 912 | |
| 913 | /* hp->happy_lock must be held */ |
| 914 | static void happy_meal_tx_reset(struct happy_meal *hp, void __iomem *bregs) |
| 915 | { |
| 916 | int tries = TX_RESET_TRIES; |
| 917 | |
| 918 | HMD(("happy_meal_tx_reset: reset, ")); |
| 919 | |
| 920 | /* Would you like to try our SMCC Delux? */ |
| 921 | hme_write32(hp, bregs + BMAC_TXSWRESET, 0); |
| 922 | while ((hme_read32(hp, bregs + BMAC_TXSWRESET) & 1) && --tries) |
| 923 | udelay(20); |
| 924 | |
| 925 | /* Lettuce, tomato, buggy hardware (no extra charge)? */ |
| 926 | if (!tries) |
| 927 | printk(KERN_ERR "happy meal: Transceiver BigMac ATTACK!"); |
| 928 | |
| 929 | /* Take care. */ |
| 930 | HMD(("done\n")); |
| 931 | } |
| 932 | |
| 933 | /* hp->happy_lock must be held */ |
| 934 | static void happy_meal_rx_reset(struct happy_meal *hp, void __iomem *bregs) |
| 935 | { |
| 936 | int tries = RX_RESET_TRIES; |
| 937 | |
| 938 | HMD(("happy_meal_rx_reset: reset, ")); |
| 939 | |
| 940 | /* We have a special on GNU/Viking hardware bugs today. */ |
| 941 | hme_write32(hp, bregs + BMAC_RXSWRESET, 0); |
| 942 | while ((hme_read32(hp, bregs + BMAC_RXSWRESET) & 1) && --tries) |
| 943 | udelay(20); |
| 944 | |
| 945 | /* Will that be all? */ |
| 946 | if (!tries) |
| 947 | printk(KERN_ERR "happy meal: Receiver BigMac ATTACK!"); |
| 948 | |
| 949 | /* Don't forget your vik_1137125_wa. Have a nice day. */ |
| 950 | HMD(("done\n")); |
| 951 | } |
| 952 | |
| 953 | #define STOP_TRIES 16 |
| 954 | |
| 955 | /* hp->happy_lock must be held */ |
| 956 | static void happy_meal_stop(struct happy_meal *hp, void __iomem *gregs) |
| 957 | { |
| 958 | int tries = STOP_TRIES; |
| 959 | |
| 960 | HMD(("happy_meal_stop: reset, ")); |
| 961 | |
| 962 | /* We're consolidating our STB products, it's your lucky day. */ |
| 963 | hme_write32(hp, gregs + GREG_SWRESET, GREG_RESET_ALL); |
| 964 | while (hme_read32(hp, gregs + GREG_SWRESET) && --tries) |
| 965 | udelay(20); |
| 966 | |
| 967 | /* Come back next week when we are "Sun Microelectronics". */ |
| 968 | if (!tries) |
| 969 | printk(KERN_ERR "happy meal: Fry guys."); |
| 970 | |
| 971 | /* Remember: "Different name, same old buggy as shit hardware." */ |
| 972 | HMD(("done\n")); |
| 973 | } |
| 974 | |
| 975 | /* hp->happy_lock must be held */ |
| 976 | static void happy_meal_get_counters(struct happy_meal *hp, void __iomem *bregs) |
| 977 | { |
| 978 | struct net_device_stats *stats = &hp->net_stats; |
| 979 | |
| 980 | stats->rx_crc_errors += hme_read32(hp, bregs + BMAC_RCRCECTR); |
| 981 | hme_write32(hp, bregs + BMAC_RCRCECTR, 0); |
| 982 | |
| 983 | stats->rx_frame_errors += hme_read32(hp, bregs + BMAC_UNALECTR); |
| 984 | hme_write32(hp, bregs + BMAC_UNALECTR, 0); |
| 985 | |
| 986 | stats->rx_length_errors += hme_read32(hp, bregs + BMAC_GLECTR); |
| 987 | hme_write32(hp, bregs + BMAC_GLECTR, 0); |
| 988 | |
| 989 | stats->tx_aborted_errors += hme_read32(hp, bregs + BMAC_EXCTR); |
| 990 | |
| 991 | stats->collisions += |
| 992 | (hme_read32(hp, bregs + BMAC_EXCTR) + |
| 993 | hme_read32(hp, bregs + BMAC_LTCTR)); |
| 994 | hme_write32(hp, bregs + BMAC_EXCTR, 0); |
| 995 | hme_write32(hp, bregs + BMAC_LTCTR, 0); |
| 996 | } |
| 997 | |
| 998 | /* hp->happy_lock must be held */ |
| 999 | static void happy_meal_poll_stop(struct happy_meal *hp, void __iomem *tregs) |
| 1000 | { |
| 1001 | ASD(("happy_meal_poll_stop: ")); |
| 1002 | |
| 1003 | /* If polling disabled or not polling already, nothing to do. */ |
| 1004 | if ((hp->happy_flags & (HFLAG_POLLENABLE | HFLAG_POLL)) != |
| 1005 | (HFLAG_POLLENABLE | HFLAG_POLL)) { |
| 1006 | HMD(("not polling, return\n")); |
| 1007 | return; |
| 1008 | } |
| 1009 | |
| 1010 | /* Shut up the MIF. */ |
| 1011 | ASD(("were polling, mif ints off, ")); |
| 1012 | hme_write32(hp, tregs + TCVR_IMASK, 0xffff); |
| 1013 | |
| 1014 | /* Turn off polling. */ |
| 1015 | ASD(("polling off, ")); |
| 1016 | hme_write32(hp, tregs + TCVR_CFG, |
| 1017 | hme_read32(hp, tregs + TCVR_CFG) & ~(TCV_CFG_PENABLE)); |
| 1018 | |
| 1019 | /* We are no longer polling. */ |
| 1020 | hp->happy_flags &= ~(HFLAG_POLL); |
| 1021 | |
| 1022 | /* Let the bits set. */ |
| 1023 | udelay(200); |
| 1024 | ASD(("done\n")); |
| 1025 | } |
| 1026 | |
| 1027 | /* Only Sun can take such nice parts and fuck up the programming interface |
| 1028 | * like this. Good job guys... |
| 1029 | */ |
| 1030 | #define TCVR_RESET_TRIES 16 /* It should reset quickly */ |
| 1031 | #define TCVR_UNISOLATE_TRIES 32 /* Dis-isolation can take longer. */ |
| 1032 | |
| 1033 | /* hp->happy_lock must be held */ |
| 1034 | static int happy_meal_tcvr_reset(struct happy_meal *hp, void __iomem *tregs) |
| 1035 | { |
| 1036 | u32 tconfig; |
| 1037 | int result, tries = TCVR_RESET_TRIES; |
| 1038 | |
| 1039 | tconfig = hme_read32(hp, tregs + TCVR_CFG); |
| 1040 | ASD(("happy_meal_tcvr_reset: tcfg<%08lx> ", tconfig)); |
| 1041 | if (hp->tcvr_type == external) { |
| 1042 | ASD(("external<")); |
| 1043 | hme_write32(hp, tregs + TCVR_CFG, tconfig & ~(TCV_CFG_PSELECT)); |
| 1044 | hp->tcvr_type = internal; |
| 1045 | hp->paddr = TCV_PADDR_ITX; |
| 1046 | ASD(("ISOLATE,")); |
| 1047 | happy_meal_tcvr_write(hp, tregs, MII_BMCR, |
| 1048 | (BMCR_LOOPBACK|BMCR_PDOWN|BMCR_ISOLATE)); |
| 1049 | result = happy_meal_tcvr_read(hp, tregs, MII_BMCR); |
| 1050 | if (result == TCVR_FAILURE) { |
| 1051 | ASD(("phyread_fail>\n")); |
| 1052 | return -1; |
| 1053 | } |
| 1054 | ASD(("phyread_ok,PSELECT>")); |
| 1055 | hme_write32(hp, tregs + TCVR_CFG, tconfig | TCV_CFG_PSELECT); |
| 1056 | hp->tcvr_type = external; |
| 1057 | hp->paddr = TCV_PADDR_ETX; |
| 1058 | } else { |
| 1059 | if (tconfig & TCV_CFG_MDIO1) { |
| 1060 | ASD(("internal<PSELECT,")); |
| 1061 | hme_write32(hp, tregs + TCVR_CFG, (tconfig | TCV_CFG_PSELECT)); |
| 1062 | ASD(("ISOLATE,")); |
| 1063 | happy_meal_tcvr_write(hp, tregs, MII_BMCR, |
| 1064 | (BMCR_LOOPBACK|BMCR_PDOWN|BMCR_ISOLATE)); |
| 1065 | result = happy_meal_tcvr_read(hp, tregs, MII_BMCR); |
| 1066 | if (result == TCVR_FAILURE) { |
| 1067 | ASD(("phyread_fail>\n")); |
| 1068 | return -1; |
| 1069 | } |
| 1070 | ASD(("phyread_ok,~PSELECT>")); |
| 1071 | hme_write32(hp, tregs + TCVR_CFG, (tconfig & ~(TCV_CFG_PSELECT))); |
| 1072 | hp->tcvr_type = internal; |
| 1073 | hp->paddr = TCV_PADDR_ITX; |
| 1074 | } |
| 1075 | } |
| 1076 | |
| 1077 | ASD(("BMCR_RESET ")); |
| 1078 | happy_meal_tcvr_write(hp, tregs, MII_BMCR, BMCR_RESET); |
| 1079 | |
| 1080 | while (--tries) { |
| 1081 | result = happy_meal_tcvr_read(hp, tregs, MII_BMCR); |
| 1082 | if (result == TCVR_FAILURE) |
| 1083 | return -1; |
| 1084 | hp->sw_bmcr = result; |
| 1085 | if (!(result & BMCR_RESET)) |
| 1086 | break; |
| 1087 | udelay(20); |
| 1088 | } |
| 1089 | if (!tries) { |
| 1090 | ASD(("BMCR RESET FAILED!\n")); |
| 1091 | return -1; |
| 1092 | } |
| 1093 | ASD(("RESET_OK\n")); |
| 1094 | |
| 1095 | /* Get fresh copies of the PHY registers. */ |
| 1096 | hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR); |
| 1097 | hp->sw_physid1 = happy_meal_tcvr_read(hp, tregs, MII_PHYSID1); |
| 1098 | hp->sw_physid2 = happy_meal_tcvr_read(hp, tregs, MII_PHYSID2); |
| 1099 | hp->sw_advertise = happy_meal_tcvr_read(hp, tregs, MII_ADVERTISE); |
| 1100 | |
| 1101 | ASD(("UNISOLATE")); |
| 1102 | hp->sw_bmcr &= ~(BMCR_ISOLATE); |
| 1103 | happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr); |
| 1104 | |
| 1105 | tries = TCVR_UNISOLATE_TRIES; |
| 1106 | while (--tries) { |
| 1107 | result = happy_meal_tcvr_read(hp, tregs, MII_BMCR); |
| 1108 | if (result == TCVR_FAILURE) |
| 1109 | return -1; |
| 1110 | if (!(result & BMCR_ISOLATE)) |
| 1111 | break; |
| 1112 | udelay(20); |
| 1113 | } |
| 1114 | if (!tries) { |
| 1115 | ASD((" FAILED!\n")); |
| 1116 | return -1; |
| 1117 | } |
| 1118 | ASD((" SUCCESS and CSCONFIG_DFBYPASS\n")); |
| 1119 | if (!is_lucent_phy(hp)) { |
| 1120 | result = happy_meal_tcvr_read(hp, tregs, |
| 1121 | DP83840_CSCONFIG); |
| 1122 | happy_meal_tcvr_write(hp, tregs, |
| 1123 | DP83840_CSCONFIG, (result | CSCONFIG_DFBYPASS)); |
| 1124 | } |
| 1125 | return 0; |
| 1126 | } |
| 1127 | |
| 1128 | /* Figure out whether we have an internal or external transceiver. |
| 1129 | * |
| 1130 | * hp->happy_lock must be held |
| 1131 | */ |
| 1132 | static void happy_meal_transceiver_check(struct happy_meal *hp, void __iomem *tregs) |
| 1133 | { |
| 1134 | unsigned long tconfig = hme_read32(hp, tregs + TCVR_CFG); |
| 1135 | |
| 1136 | ASD(("happy_meal_transceiver_check: tcfg=%08lx ", tconfig)); |
| 1137 | if (hp->happy_flags & HFLAG_POLL) { |
| 1138 | /* If we are polling, we must stop to get the transceiver type. */ |
| 1139 | ASD(("<polling> ")); |
| 1140 | if (hp->tcvr_type == internal) { |
| 1141 | if (tconfig & TCV_CFG_MDIO1) { |
| 1142 | ASD(("<internal> <poll stop> ")); |
| 1143 | happy_meal_poll_stop(hp, tregs); |
| 1144 | hp->paddr = TCV_PADDR_ETX; |
| 1145 | hp->tcvr_type = external; |
| 1146 | ASD(("<external>\n")); |
| 1147 | tconfig &= ~(TCV_CFG_PENABLE); |
| 1148 | tconfig |= TCV_CFG_PSELECT; |
| 1149 | hme_write32(hp, tregs + TCVR_CFG, tconfig); |
| 1150 | } |
| 1151 | } else { |
| 1152 | if (hp->tcvr_type == external) { |
| 1153 | ASD(("<external> ")); |
| 1154 | if (!(hme_read32(hp, tregs + TCVR_STATUS) >> 16)) { |
| 1155 | ASD(("<poll stop> ")); |
| 1156 | happy_meal_poll_stop(hp, tregs); |
| 1157 | hp->paddr = TCV_PADDR_ITX; |
| 1158 | hp->tcvr_type = internal; |
| 1159 | ASD(("<internal>\n")); |
| 1160 | hme_write32(hp, tregs + TCVR_CFG, |
| 1161 | hme_read32(hp, tregs + TCVR_CFG) & |
| 1162 | ~(TCV_CFG_PSELECT)); |
| 1163 | } |
| 1164 | ASD(("\n")); |
| 1165 | } else { |
| 1166 | ASD(("<none>\n")); |
| 1167 | } |
| 1168 | } |
| 1169 | } else { |
| 1170 | u32 reread = hme_read32(hp, tregs + TCVR_CFG); |
| 1171 | |
| 1172 | /* Else we can just work off of the MDIO bits. */ |
| 1173 | ASD(("<not polling> ")); |
| 1174 | if (reread & TCV_CFG_MDIO1) { |
| 1175 | hme_write32(hp, tregs + TCVR_CFG, tconfig | TCV_CFG_PSELECT); |
| 1176 | hp->paddr = TCV_PADDR_ETX; |
| 1177 | hp->tcvr_type = external; |
| 1178 | ASD(("<external>\n")); |
| 1179 | } else { |
| 1180 | if (reread & TCV_CFG_MDIO0) { |
| 1181 | hme_write32(hp, tregs + TCVR_CFG, |
| 1182 | tconfig & ~(TCV_CFG_PSELECT)); |
| 1183 | hp->paddr = TCV_PADDR_ITX; |
| 1184 | hp->tcvr_type = internal; |
| 1185 | ASD(("<internal>\n")); |
| 1186 | } else { |
| 1187 | printk(KERN_ERR "happy meal: Transceiver and a coke please."); |
| 1188 | hp->tcvr_type = none; /* Grrr... */ |
| 1189 | ASD(("<none>\n")); |
| 1190 | } |
| 1191 | } |
| 1192 | } |
| 1193 | } |
| 1194 | |
| 1195 | /* The receive ring buffers are a bit tricky to get right. Here goes... |
| 1196 | * |
| 1197 | * The buffers we dma into must be 64 byte aligned. So we use a special |
| 1198 | * alloc_skb() routine for the happy meal to allocate 64 bytes more than |
| 1199 | * we really need. |
| 1200 | * |
| 1201 | * We use skb_reserve() to align the data block we get in the skb. We |
| 1202 | * also program the etxregs->cfg register to use an offset of 2. This |
| 1203 | * imperical constant plus the ethernet header size will always leave |
| 1204 | * us with a nicely aligned ip header once we pass things up to the |
| 1205 | * protocol layers. |
| 1206 | * |
| 1207 | * The numbers work out to: |
| 1208 | * |
| 1209 | * Max ethernet frame size 1518 |
| 1210 | * Ethernet header size 14 |
| 1211 | * Happy Meal base offset 2 |
| 1212 | * |
| 1213 | * Say a skb data area is at 0xf001b010, and its size alloced is |
| 1214 | * (ETH_FRAME_LEN + 64 + 2) = (1514 + 64 + 2) = 1580 bytes. |
| 1215 | * |
| 1216 | * First our alloc_skb() routine aligns the data base to a 64 byte |
| 1217 | * boundary. We now have 0xf001b040 as our skb data address. We |
| 1218 | * plug this into the receive descriptor address. |
| 1219 | * |
| 1220 | * Next, we skb_reserve() 2 bytes to account for the Happy Meal offset. |
| 1221 | * So now the data we will end up looking at starts at 0xf001b042. When |
| 1222 | * the packet arrives, we will check out the size received and subtract |
| 1223 | * this from the skb->length. Then we just pass the packet up to the |
| 1224 | * protocols as is, and allocate a new skb to replace this slot we have |
| 1225 | * just received from. |
| 1226 | * |
| 1227 | * The ethernet layer will strip the ether header from the front of the |
| 1228 | * skb we just sent to it, this leaves us with the ip header sitting |
| 1229 | * nicely aligned at 0xf001b050. Also, for tcp and udp packets the |
| 1230 | * Happy Meal has even checksummed the tcp/udp data for us. The 16 |
| 1231 | * bit checksum is obtained from the low bits of the receive descriptor |
| 1232 | * flags, thus: |
| 1233 | * |
| 1234 | * skb->csum = rxd->rx_flags & 0xffff; |
| 1235 | * skb->ip_summed = CHECKSUM_HW; |
| 1236 | * |
| 1237 | * before sending off the skb to the protocols, and we are good as gold. |
| 1238 | */ |
| 1239 | static void happy_meal_clean_rings(struct happy_meal *hp) |
| 1240 | { |
| 1241 | int i; |
| 1242 | |
| 1243 | for (i = 0; i < RX_RING_SIZE; i++) { |
| 1244 | if (hp->rx_skbs[i] != NULL) { |
| 1245 | struct sk_buff *skb = hp->rx_skbs[i]; |
| 1246 | struct happy_meal_rxd *rxd; |
| 1247 | u32 dma_addr; |
| 1248 | |
| 1249 | rxd = &hp->happy_block->happy_meal_rxd[i]; |
| 1250 | dma_addr = hme_read_desc32(hp, &rxd->rx_addr); |
| 1251 | hme_dma_unmap(hp, dma_addr, RX_BUF_ALLOC_SIZE, DMA_FROMDEVICE); |
| 1252 | dev_kfree_skb_any(skb); |
| 1253 | hp->rx_skbs[i] = NULL; |
| 1254 | } |
| 1255 | } |
| 1256 | |
| 1257 | for (i = 0; i < TX_RING_SIZE; i++) { |
| 1258 | if (hp->tx_skbs[i] != NULL) { |
| 1259 | struct sk_buff *skb = hp->tx_skbs[i]; |
| 1260 | struct happy_meal_txd *txd; |
| 1261 | u32 dma_addr; |
| 1262 | int frag; |
| 1263 | |
| 1264 | hp->tx_skbs[i] = NULL; |
| 1265 | |
| 1266 | for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) { |
| 1267 | txd = &hp->happy_block->happy_meal_txd[i]; |
| 1268 | dma_addr = hme_read_desc32(hp, &txd->tx_addr); |
| 1269 | hme_dma_unmap(hp, dma_addr, |
| 1270 | (hme_read_desc32(hp, &txd->tx_flags) |
| 1271 | & TXFLAG_SIZE), |
| 1272 | DMA_TODEVICE); |
| 1273 | |
| 1274 | if (frag != skb_shinfo(skb)->nr_frags) |
| 1275 | i++; |
| 1276 | } |
| 1277 | |
| 1278 | dev_kfree_skb_any(skb); |
| 1279 | } |
| 1280 | } |
| 1281 | } |
| 1282 | |
| 1283 | /* hp->happy_lock must be held */ |
| 1284 | static void happy_meal_init_rings(struct happy_meal *hp) |
| 1285 | { |
| 1286 | struct hmeal_init_block *hb = hp->happy_block; |
| 1287 | struct net_device *dev = hp->dev; |
| 1288 | int i; |
| 1289 | |
| 1290 | HMD(("happy_meal_init_rings: counters to zero, ")); |
| 1291 | hp->rx_new = hp->rx_old = hp->tx_new = hp->tx_old = 0; |
| 1292 | |
| 1293 | /* Free any skippy bufs left around in the rings. */ |
| 1294 | HMD(("clean, ")); |
| 1295 | happy_meal_clean_rings(hp); |
| 1296 | |
| 1297 | /* Now get new skippy bufs for the receive ring. */ |
| 1298 | HMD(("init rxring, ")); |
| 1299 | for (i = 0; i < RX_RING_SIZE; i++) { |
| 1300 | struct sk_buff *skb; |
| 1301 | |
| 1302 | skb = happy_meal_alloc_skb(RX_BUF_ALLOC_SIZE, GFP_ATOMIC); |
| 1303 | if (!skb) { |
| 1304 | hme_write_rxd(hp, &hb->happy_meal_rxd[i], 0, 0); |
| 1305 | continue; |
| 1306 | } |
| 1307 | hp->rx_skbs[i] = skb; |
| 1308 | skb->dev = dev; |
| 1309 | |
| 1310 | /* Because we reserve afterwards. */ |
| 1311 | skb_put(skb, (ETH_FRAME_LEN + RX_OFFSET)); |
| 1312 | hme_write_rxd(hp, &hb->happy_meal_rxd[i], |
| 1313 | (RXFLAG_OWN | ((RX_BUF_ALLOC_SIZE - RX_OFFSET) << 16)), |
| 1314 | hme_dma_map(hp, skb->data, RX_BUF_ALLOC_SIZE, DMA_FROMDEVICE)); |
| 1315 | skb_reserve(skb, RX_OFFSET); |
| 1316 | } |
| 1317 | |
| 1318 | HMD(("init txring, ")); |
| 1319 | for (i = 0; i < TX_RING_SIZE; i++) |
| 1320 | hme_write_txd(hp, &hb->happy_meal_txd[i], 0, 0); |
| 1321 | |
| 1322 | HMD(("done\n")); |
| 1323 | } |
| 1324 | |
| 1325 | /* hp->happy_lock must be held */ |
| 1326 | static void happy_meal_begin_auto_negotiation(struct happy_meal *hp, |
| 1327 | void __iomem *tregs, |
| 1328 | struct ethtool_cmd *ep) |
| 1329 | { |
| 1330 | int timeout; |
| 1331 | |
| 1332 | /* Read all of the registers we are interested in now. */ |
| 1333 | hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR); |
| 1334 | hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR); |
| 1335 | hp->sw_physid1 = happy_meal_tcvr_read(hp, tregs, MII_PHYSID1); |
| 1336 | hp->sw_physid2 = happy_meal_tcvr_read(hp, tregs, MII_PHYSID2); |
| 1337 | |
| 1338 | /* XXX Check BMSR_ANEGCAPABLE, should not be necessary though. */ |
| 1339 | |
| 1340 | hp->sw_advertise = happy_meal_tcvr_read(hp, tregs, MII_ADVERTISE); |
| 1341 | if (ep == NULL || ep->autoneg == AUTONEG_ENABLE) { |
| 1342 | /* Advertise everything we can support. */ |
| 1343 | if (hp->sw_bmsr & BMSR_10HALF) |
| 1344 | hp->sw_advertise |= (ADVERTISE_10HALF); |
| 1345 | else |
| 1346 | hp->sw_advertise &= ~(ADVERTISE_10HALF); |
| 1347 | |
| 1348 | if (hp->sw_bmsr & BMSR_10FULL) |
| 1349 | hp->sw_advertise |= (ADVERTISE_10FULL); |
| 1350 | else |
| 1351 | hp->sw_advertise &= ~(ADVERTISE_10FULL); |
| 1352 | if (hp->sw_bmsr & BMSR_100HALF) |
| 1353 | hp->sw_advertise |= (ADVERTISE_100HALF); |
| 1354 | else |
| 1355 | hp->sw_advertise &= ~(ADVERTISE_100HALF); |
| 1356 | if (hp->sw_bmsr & BMSR_100FULL) |
| 1357 | hp->sw_advertise |= (ADVERTISE_100FULL); |
| 1358 | else |
| 1359 | hp->sw_advertise &= ~(ADVERTISE_100FULL); |
| 1360 | happy_meal_tcvr_write(hp, tregs, MII_ADVERTISE, hp->sw_advertise); |
| 1361 | |
| 1362 | /* XXX Currently no Happy Meal cards I know off support 100BaseT4, |
| 1363 | * XXX and this is because the DP83840 does not support it, changes |
| 1364 | * XXX would need to be made to the tx/rx logic in the driver as well |
| 1365 | * XXX so I completely skip checking for it in the BMSR for now. |
| 1366 | */ |
| 1367 | |
| 1368 | #ifdef AUTO_SWITCH_DEBUG |
| 1369 | ASD(("%s: Advertising [ ", hp->dev->name)); |
| 1370 | if (hp->sw_advertise & ADVERTISE_10HALF) |
| 1371 | ASD(("10H ")); |
| 1372 | if (hp->sw_advertise & ADVERTISE_10FULL) |
| 1373 | ASD(("10F ")); |
| 1374 | if (hp->sw_advertise & ADVERTISE_100HALF) |
| 1375 | ASD(("100H ")); |
| 1376 | if (hp->sw_advertise & ADVERTISE_100FULL) |
| 1377 | ASD(("100F ")); |
| 1378 | #endif |
| 1379 | |
| 1380 | /* Enable Auto-Negotiation, this is usually on already... */ |
| 1381 | hp->sw_bmcr |= BMCR_ANENABLE; |
| 1382 | happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr); |
| 1383 | |
| 1384 | /* Restart it to make sure it is going. */ |
| 1385 | hp->sw_bmcr |= BMCR_ANRESTART; |
| 1386 | happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr); |
| 1387 | |
| 1388 | /* BMCR_ANRESTART self clears when the process has begun. */ |
| 1389 | |
| 1390 | timeout = 64; /* More than enough. */ |
| 1391 | while (--timeout) { |
| 1392 | hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR); |
| 1393 | if (!(hp->sw_bmcr & BMCR_ANRESTART)) |
| 1394 | break; /* got it. */ |
| 1395 | udelay(10); |
| 1396 | } |
| 1397 | if (!timeout) { |
| 1398 | printk(KERN_ERR "%s: Happy Meal would not start auto negotiation " |
| 1399 | "BMCR=0x%04x\n", hp->dev->name, hp->sw_bmcr); |
| 1400 | printk(KERN_NOTICE "%s: Performing force link detection.\n", |
| 1401 | hp->dev->name); |
| 1402 | goto force_link; |
| 1403 | } else { |
| 1404 | hp->timer_state = arbwait; |
| 1405 | } |
| 1406 | } else { |
| 1407 | force_link: |
| 1408 | /* Force the link up, trying first a particular mode. |
| 1409 | * Either we are here at the request of ethtool or |
| 1410 | * because the Happy Meal would not start to autoneg. |
| 1411 | */ |
| 1412 | |
| 1413 | /* Disable auto-negotiation in BMCR, enable the duplex and |
| 1414 | * speed setting, init the timer state machine, and fire it off. |
| 1415 | */ |
| 1416 | if (ep == NULL || ep->autoneg == AUTONEG_ENABLE) { |
| 1417 | hp->sw_bmcr = BMCR_SPEED100; |
| 1418 | } else { |
| 1419 | if (ep->speed == SPEED_100) |
| 1420 | hp->sw_bmcr = BMCR_SPEED100; |
| 1421 | else |
| 1422 | hp->sw_bmcr = 0; |
| 1423 | if (ep->duplex == DUPLEX_FULL) |
| 1424 | hp->sw_bmcr |= BMCR_FULLDPLX; |
| 1425 | } |
| 1426 | happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr); |
| 1427 | |
| 1428 | if (!is_lucent_phy(hp)) { |
| 1429 | /* OK, seems we need do disable the transceiver for the first |
| 1430 | * tick to make sure we get an accurate link state at the |
| 1431 | * second tick. |
| 1432 | */ |
| 1433 | hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs, |
| 1434 | DP83840_CSCONFIG); |
| 1435 | hp->sw_csconfig &= ~(CSCONFIG_TCVDISAB); |
| 1436 | happy_meal_tcvr_write(hp, tregs, DP83840_CSCONFIG, |
| 1437 | hp->sw_csconfig); |
| 1438 | } |
| 1439 | hp->timer_state = ltrywait; |
| 1440 | } |
| 1441 | |
| 1442 | hp->timer_ticks = 0; |
| 1443 | hp->happy_timer.expires = jiffies + (12 * HZ)/10; /* 1.2 sec. */ |
| 1444 | hp->happy_timer.data = (unsigned long) hp; |
| 1445 | hp->happy_timer.function = &happy_meal_timer; |
| 1446 | add_timer(&hp->happy_timer); |
| 1447 | } |
| 1448 | |
| 1449 | /* hp->happy_lock must be held */ |
| 1450 | static int happy_meal_init(struct happy_meal *hp) |
| 1451 | { |
| 1452 | void __iomem *gregs = hp->gregs; |
| 1453 | void __iomem *etxregs = hp->etxregs; |
| 1454 | void __iomem *erxregs = hp->erxregs; |
| 1455 | void __iomem *bregs = hp->bigmacregs; |
| 1456 | void __iomem *tregs = hp->tcvregs; |
| 1457 | u32 regtmp, rxcfg; |
| 1458 | unsigned char *e = &hp->dev->dev_addr[0]; |
| 1459 | |
| 1460 | /* If auto-negotiation timer is running, kill it. */ |
| 1461 | del_timer(&hp->happy_timer); |
| 1462 | |
| 1463 | HMD(("happy_meal_init: happy_flags[%08x] ", |
| 1464 | hp->happy_flags)); |
| 1465 | if (!(hp->happy_flags & HFLAG_INIT)) { |
| 1466 | HMD(("set HFLAG_INIT, ")); |
| 1467 | hp->happy_flags |= HFLAG_INIT; |
| 1468 | happy_meal_get_counters(hp, bregs); |
| 1469 | } |
| 1470 | |
| 1471 | /* Stop polling. */ |
| 1472 | HMD(("to happy_meal_poll_stop\n")); |
| 1473 | happy_meal_poll_stop(hp, tregs); |
| 1474 | |
| 1475 | /* Stop transmitter and receiver. */ |
| 1476 | HMD(("happy_meal_init: to happy_meal_stop\n")); |
| 1477 | happy_meal_stop(hp, gregs); |
| 1478 | |
| 1479 | /* Alloc and reset the tx/rx descriptor chains. */ |
| 1480 | HMD(("happy_meal_init: to happy_meal_init_rings\n")); |
| 1481 | happy_meal_init_rings(hp); |
| 1482 | |
| 1483 | /* Shut up the MIF. */ |
| 1484 | HMD(("happy_meal_init: Disable all MIF irqs (old[%08x]), ", |
| 1485 | hme_read32(hp, tregs + TCVR_IMASK))); |
| 1486 | hme_write32(hp, tregs + TCVR_IMASK, 0xffff); |
| 1487 | |
| 1488 | /* See if we can enable the MIF frame on this card to speak to the DP83840. */ |
| 1489 | if (hp->happy_flags & HFLAG_FENABLE) { |
| 1490 | HMD(("use frame old[%08x], ", |
| 1491 | hme_read32(hp, tregs + TCVR_CFG))); |
| 1492 | hme_write32(hp, tregs + TCVR_CFG, |
| 1493 | hme_read32(hp, tregs + TCVR_CFG) & ~(TCV_CFG_BENABLE)); |
| 1494 | } else { |
| 1495 | HMD(("use bitbang old[%08x], ", |
| 1496 | hme_read32(hp, tregs + TCVR_CFG))); |
| 1497 | hme_write32(hp, tregs + TCVR_CFG, |
| 1498 | hme_read32(hp, tregs + TCVR_CFG) | TCV_CFG_BENABLE); |
| 1499 | } |
| 1500 | |
| 1501 | /* Check the state of the transceiver. */ |
| 1502 | HMD(("to happy_meal_transceiver_check\n")); |
| 1503 | happy_meal_transceiver_check(hp, tregs); |
| 1504 | |
| 1505 | /* Put the Big Mac into a sane state. */ |
| 1506 | HMD(("happy_meal_init: ")); |
| 1507 | switch(hp->tcvr_type) { |
| 1508 | case none: |
| 1509 | /* Cannot operate if we don't know the transceiver type! */ |
| 1510 | HMD(("AAIEEE no transceiver type, EAGAIN")); |
| 1511 | return -EAGAIN; |
| 1512 | |
| 1513 | case internal: |
| 1514 | /* Using the MII buffers. */ |
| 1515 | HMD(("internal, using MII, ")); |
| 1516 | hme_write32(hp, bregs + BMAC_XIFCFG, 0); |
| 1517 | break; |
| 1518 | |
| 1519 | case external: |
| 1520 | /* Not using the MII, disable it. */ |
| 1521 | HMD(("external, disable MII, ")); |
| 1522 | hme_write32(hp, bregs + BMAC_XIFCFG, BIGMAC_XCFG_MIIDISAB); |
| 1523 | break; |
| 1524 | }; |
| 1525 | |
| 1526 | if (happy_meal_tcvr_reset(hp, tregs)) |
| 1527 | return -EAGAIN; |
| 1528 | |
| 1529 | /* Reset the Happy Meal Big Mac transceiver and the receiver. */ |
| 1530 | HMD(("tx/rx reset, ")); |
| 1531 | happy_meal_tx_reset(hp, bregs); |
| 1532 | happy_meal_rx_reset(hp, bregs); |
| 1533 | |
| 1534 | /* Set jam size and inter-packet gaps to reasonable defaults. */ |
| 1535 | HMD(("jsize/ipg1/ipg2, ")); |
| 1536 | hme_write32(hp, bregs + BMAC_JSIZE, DEFAULT_JAMSIZE); |
| 1537 | hme_write32(hp, bregs + BMAC_IGAP1, DEFAULT_IPG1); |
| 1538 | hme_write32(hp, bregs + BMAC_IGAP2, DEFAULT_IPG2); |
| 1539 | |
| 1540 | /* Load up the MAC address and random seed. */ |
| 1541 | HMD(("rseed/macaddr, ")); |
| 1542 | |
| 1543 | /* The docs recommend to use the 10LSB of our MAC here. */ |
| 1544 | hme_write32(hp, bregs + BMAC_RSEED, ((e[5] | e[4]<<8)&0x3ff)); |
| 1545 | |
| 1546 | hme_write32(hp, bregs + BMAC_MACADDR2, ((e[4] << 8) | e[5])); |
| 1547 | hme_write32(hp, bregs + BMAC_MACADDR1, ((e[2] << 8) | e[3])); |
| 1548 | hme_write32(hp, bregs + BMAC_MACADDR0, ((e[0] << 8) | e[1])); |
| 1549 | |
| 1550 | HMD(("htable, ")); |
| 1551 | if ((hp->dev->flags & IFF_ALLMULTI) || |
| 1552 | (hp->dev->mc_count > 64)) { |
| 1553 | hme_write32(hp, bregs + BMAC_HTABLE0, 0xffff); |
| 1554 | hme_write32(hp, bregs + BMAC_HTABLE1, 0xffff); |
| 1555 | hme_write32(hp, bregs + BMAC_HTABLE2, 0xffff); |
| 1556 | hme_write32(hp, bregs + BMAC_HTABLE3, 0xffff); |
| 1557 | } else if ((hp->dev->flags & IFF_PROMISC) == 0) { |
| 1558 | u16 hash_table[4]; |
| 1559 | struct dev_mc_list *dmi = hp->dev->mc_list; |
| 1560 | char *addrs; |
| 1561 | int i; |
| 1562 | u32 crc; |
| 1563 | |
| 1564 | for (i = 0; i < 4; i++) |
| 1565 | hash_table[i] = 0; |
| 1566 | |
| 1567 | for (i = 0; i < hp->dev->mc_count; i++) { |
| 1568 | addrs = dmi->dmi_addr; |
| 1569 | dmi = dmi->next; |
| 1570 | |
| 1571 | if (!(*addrs & 1)) |
| 1572 | continue; |
| 1573 | |
| 1574 | crc = ether_crc_le(6, addrs); |
| 1575 | crc >>= 26; |
| 1576 | hash_table[crc >> 4] |= 1 << (crc & 0xf); |
| 1577 | } |
| 1578 | hme_write32(hp, bregs + BMAC_HTABLE0, hash_table[0]); |
| 1579 | hme_write32(hp, bregs + BMAC_HTABLE1, hash_table[1]); |
| 1580 | hme_write32(hp, bregs + BMAC_HTABLE2, hash_table[2]); |
| 1581 | hme_write32(hp, bregs + BMAC_HTABLE3, hash_table[3]); |
| 1582 | } else { |
| 1583 | hme_write32(hp, bregs + BMAC_HTABLE3, 0); |
| 1584 | hme_write32(hp, bregs + BMAC_HTABLE2, 0); |
| 1585 | hme_write32(hp, bregs + BMAC_HTABLE1, 0); |
| 1586 | hme_write32(hp, bregs + BMAC_HTABLE0, 0); |
| 1587 | } |
| 1588 | |
| 1589 | /* Set the RX and TX ring ptrs. */ |
| 1590 | HMD(("ring ptrs rxr[%08x] txr[%08x]\n", |
| 1591 | ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0)), |
| 1592 | ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_txd, 0)))); |
| 1593 | hme_write32(hp, erxregs + ERX_RING, |
| 1594 | ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0))); |
| 1595 | hme_write32(hp, etxregs + ETX_RING, |
| 1596 | ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_txd, 0))); |
| 1597 | |
| 1598 | /* Parity issues in the ERX unit of some HME revisions can cause some |
| 1599 | * registers to not be written unless their parity is even. Detect such |
| 1600 | * lost writes and simply rewrite with a low bit set (which will be ignored |
| 1601 | * since the rxring needs to be 2K aligned). |
| 1602 | */ |
| 1603 | if (hme_read32(hp, erxregs + ERX_RING) != |
| 1604 | ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0))) |
| 1605 | hme_write32(hp, erxregs + ERX_RING, |
| 1606 | ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0)) |
| 1607 | | 0x4); |
| 1608 | |
| 1609 | /* Set the supported burst sizes. */ |
| 1610 | HMD(("happy_meal_init: old[%08x] bursts<", |
| 1611 | hme_read32(hp, gregs + GREG_CFG))); |
| 1612 | |
| 1613 | #ifndef __sparc__ |
| 1614 | /* It is always PCI and can handle 64byte bursts. */ |
| 1615 | hme_write32(hp, gregs + GREG_CFG, GREG_CFG_BURST64); |
| 1616 | #else |
| 1617 | if ((hp->happy_bursts & DMA_BURST64) && |
| 1618 | ((hp->happy_flags & HFLAG_PCI) != 0 |
| 1619 | #ifdef CONFIG_SBUS |
| 1620 | || sbus_can_burst64(hp->happy_dev) |
| 1621 | #endif |
| 1622 | || 0)) { |
| 1623 | u32 gcfg = GREG_CFG_BURST64; |
| 1624 | |
| 1625 | /* I have no idea if I should set the extended |
| 1626 | * transfer mode bit for Cheerio, so for now I |
| 1627 | * do not. -DaveM |
| 1628 | */ |
| 1629 | #ifdef CONFIG_SBUS |
| 1630 | if ((hp->happy_flags & HFLAG_PCI) == 0 && |
| 1631 | sbus_can_dma_64bit(hp->happy_dev)) { |
| 1632 | sbus_set_sbus64(hp->happy_dev, |
| 1633 | hp->happy_bursts); |
| 1634 | gcfg |= GREG_CFG_64BIT; |
| 1635 | } |
| 1636 | #endif |
| 1637 | |
| 1638 | HMD(("64>")); |
| 1639 | hme_write32(hp, gregs + GREG_CFG, gcfg); |
| 1640 | } else if (hp->happy_bursts & DMA_BURST32) { |
| 1641 | HMD(("32>")); |
| 1642 | hme_write32(hp, gregs + GREG_CFG, GREG_CFG_BURST32); |
| 1643 | } else if (hp->happy_bursts & DMA_BURST16) { |
| 1644 | HMD(("16>")); |
| 1645 | hme_write32(hp, gregs + GREG_CFG, GREG_CFG_BURST16); |
| 1646 | } else { |
| 1647 | HMD(("XXX>")); |
| 1648 | hme_write32(hp, gregs + GREG_CFG, 0); |
| 1649 | } |
| 1650 | #endif /* __sparc__ */ |
| 1651 | |
| 1652 | /* Turn off interrupts we do not want to hear. */ |
| 1653 | HMD((", enable global interrupts, ")); |
| 1654 | hme_write32(hp, gregs + GREG_IMASK, |
| 1655 | (GREG_IMASK_GOTFRAME | GREG_IMASK_RCNTEXP | |
| 1656 | GREG_IMASK_SENTFRAME | GREG_IMASK_TXPERR)); |
| 1657 | |
| 1658 | /* Set the transmit ring buffer size. */ |
| 1659 | HMD(("tx rsize=%d oreg[%08x], ", (int)TX_RING_SIZE, |
| 1660 | hme_read32(hp, etxregs + ETX_RSIZE))); |
| 1661 | hme_write32(hp, etxregs + ETX_RSIZE, (TX_RING_SIZE >> ETX_RSIZE_SHIFT) - 1); |
| 1662 | |
| 1663 | /* Enable transmitter DVMA. */ |
| 1664 | HMD(("tx dma enable old[%08x], ", |
| 1665 | hme_read32(hp, etxregs + ETX_CFG))); |
| 1666 | hme_write32(hp, etxregs + ETX_CFG, |
| 1667 | hme_read32(hp, etxregs + ETX_CFG) | ETX_CFG_DMAENABLE); |
| 1668 | |
| 1669 | /* This chip really rots, for the receiver sometimes when you |
| 1670 | * write to its control registers not all the bits get there |
| 1671 | * properly. I cannot think of a sane way to provide complete |
| 1672 | * coverage for this hardware bug yet. |
| 1673 | */ |
| 1674 | HMD(("erx regs bug old[%08x]\n", |
| 1675 | hme_read32(hp, erxregs + ERX_CFG))); |
| 1676 | hme_write32(hp, erxregs + ERX_CFG, ERX_CFG_DEFAULT(RX_OFFSET)); |
| 1677 | regtmp = hme_read32(hp, erxregs + ERX_CFG); |
| 1678 | hme_write32(hp, erxregs + ERX_CFG, ERX_CFG_DEFAULT(RX_OFFSET)); |
| 1679 | if (hme_read32(hp, erxregs + ERX_CFG) != ERX_CFG_DEFAULT(RX_OFFSET)) { |
| 1680 | printk(KERN_ERR "happy meal: Eieee, rx config register gets greasy fries.\n"); |
| 1681 | printk(KERN_ERR "happy meal: Trying to set %08x, reread gives %08x\n", |
| 1682 | ERX_CFG_DEFAULT(RX_OFFSET), regtmp); |
| 1683 | /* XXX Should return failure here... */ |
| 1684 | } |
| 1685 | |
| 1686 | /* Enable Big Mac hash table filter. */ |
| 1687 | HMD(("happy_meal_init: enable hash rx_cfg_old[%08x], ", |
| 1688 | hme_read32(hp, bregs + BMAC_RXCFG))); |
| 1689 | rxcfg = BIGMAC_RXCFG_HENABLE | BIGMAC_RXCFG_REJME; |
| 1690 | if (hp->dev->flags & IFF_PROMISC) |
| 1691 | rxcfg |= BIGMAC_RXCFG_PMISC; |
| 1692 | hme_write32(hp, bregs + BMAC_RXCFG, rxcfg); |
| 1693 | |
| 1694 | /* Let the bits settle in the chip. */ |
| 1695 | udelay(10); |
| 1696 | |
| 1697 | /* Ok, configure the Big Mac transmitter. */ |
| 1698 | HMD(("BIGMAC init, ")); |
| 1699 | regtmp = 0; |
| 1700 | if (hp->happy_flags & HFLAG_FULL) |
| 1701 | regtmp |= BIGMAC_TXCFG_FULLDPLX; |
| 1702 | |
| 1703 | /* Don't turn on the "don't give up" bit for now. It could cause hme |
| 1704 | * to deadlock with the PHY if a Jabber occurs. |
| 1705 | */ |
| 1706 | hme_write32(hp, bregs + BMAC_TXCFG, regtmp /*| BIGMAC_TXCFG_DGIVEUP*/); |
| 1707 | |
| 1708 | /* Give up after 16 TX attempts. */ |
| 1709 | hme_write32(hp, bregs + BMAC_ALIMIT, 16); |
| 1710 | |
| 1711 | /* Enable the output drivers no matter what. */ |
| 1712 | regtmp = BIGMAC_XCFG_ODENABLE; |
| 1713 | |
| 1714 | /* If card can do lance mode, enable it. */ |
| 1715 | if (hp->happy_flags & HFLAG_LANCE) |
| 1716 | regtmp |= (DEFAULT_IPG0 << 5) | BIGMAC_XCFG_LANCE; |
| 1717 | |
| 1718 | /* Disable the MII buffers if using external transceiver. */ |
| 1719 | if (hp->tcvr_type == external) |
| 1720 | regtmp |= BIGMAC_XCFG_MIIDISAB; |
| 1721 | |
| 1722 | HMD(("XIF config old[%08x], ", |
| 1723 | hme_read32(hp, bregs + BMAC_XIFCFG))); |
| 1724 | hme_write32(hp, bregs + BMAC_XIFCFG, regtmp); |
| 1725 | |
| 1726 | /* Start things up. */ |
| 1727 | HMD(("tx old[%08x] and rx [%08x] ON!\n", |
| 1728 | hme_read32(hp, bregs + BMAC_TXCFG), |
| 1729 | hme_read32(hp, bregs + BMAC_RXCFG))); |
| 1730 | hme_write32(hp, bregs + BMAC_TXCFG, |
| 1731 | hme_read32(hp, bregs + BMAC_TXCFG) | BIGMAC_TXCFG_ENABLE); |
| 1732 | hme_write32(hp, bregs + BMAC_RXCFG, |
| 1733 | hme_read32(hp, bregs + BMAC_RXCFG) | BIGMAC_RXCFG_ENABLE); |
| 1734 | |
| 1735 | /* Get the autonegotiation started, and the watch timer ticking. */ |
| 1736 | happy_meal_begin_auto_negotiation(hp, tregs, NULL); |
| 1737 | |
| 1738 | /* Success. */ |
| 1739 | return 0; |
| 1740 | } |
| 1741 | |
| 1742 | /* hp->happy_lock must be held */ |
| 1743 | static void happy_meal_set_initial_advertisement(struct happy_meal *hp) |
| 1744 | { |
| 1745 | void __iomem *tregs = hp->tcvregs; |
| 1746 | void __iomem *bregs = hp->bigmacregs; |
| 1747 | void __iomem *gregs = hp->gregs; |
| 1748 | |
| 1749 | happy_meal_stop(hp, gregs); |
| 1750 | hme_write32(hp, tregs + TCVR_IMASK, 0xffff); |
| 1751 | if (hp->happy_flags & HFLAG_FENABLE) |
| 1752 | hme_write32(hp, tregs + TCVR_CFG, |
| 1753 | hme_read32(hp, tregs + TCVR_CFG) & ~(TCV_CFG_BENABLE)); |
| 1754 | else |
| 1755 | hme_write32(hp, tregs + TCVR_CFG, |
| 1756 | hme_read32(hp, tregs + TCVR_CFG) | TCV_CFG_BENABLE); |
| 1757 | happy_meal_transceiver_check(hp, tregs); |
| 1758 | switch(hp->tcvr_type) { |
| 1759 | case none: |
| 1760 | return; |
| 1761 | case internal: |
| 1762 | hme_write32(hp, bregs + BMAC_XIFCFG, 0); |
| 1763 | break; |
| 1764 | case external: |
| 1765 | hme_write32(hp, bregs + BMAC_XIFCFG, BIGMAC_XCFG_MIIDISAB); |
| 1766 | break; |
| 1767 | }; |
| 1768 | if (happy_meal_tcvr_reset(hp, tregs)) |
| 1769 | return; |
| 1770 | |
| 1771 | /* Latch PHY registers as of now. */ |
| 1772 | hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR); |
| 1773 | hp->sw_advertise = happy_meal_tcvr_read(hp, tregs, MII_ADVERTISE); |
| 1774 | |
| 1775 | /* Advertise everything we can support. */ |
| 1776 | if (hp->sw_bmsr & BMSR_10HALF) |
| 1777 | hp->sw_advertise |= (ADVERTISE_10HALF); |
| 1778 | else |
| 1779 | hp->sw_advertise &= ~(ADVERTISE_10HALF); |
| 1780 | |
| 1781 | if (hp->sw_bmsr & BMSR_10FULL) |
| 1782 | hp->sw_advertise |= (ADVERTISE_10FULL); |
| 1783 | else |
| 1784 | hp->sw_advertise &= ~(ADVERTISE_10FULL); |
| 1785 | if (hp->sw_bmsr & BMSR_100HALF) |
| 1786 | hp->sw_advertise |= (ADVERTISE_100HALF); |
| 1787 | else |
| 1788 | hp->sw_advertise &= ~(ADVERTISE_100HALF); |
| 1789 | if (hp->sw_bmsr & BMSR_100FULL) |
| 1790 | hp->sw_advertise |= (ADVERTISE_100FULL); |
| 1791 | else |
| 1792 | hp->sw_advertise &= ~(ADVERTISE_100FULL); |
| 1793 | |
| 1794 | /* Update the PHY advertisement register. */ |
| 1795 | happy_meal_tcvr_write(hp, tregs, MII_ADVERTISE, hp->sw_advertise); |
| 1796 | } |
| 1797 | |
| 1798 | /* Once status is latched (by happy_meal_interrupt) it is cleared by |
| 1799 | * the hardware, so we cannot re-read it and get a correct value. |
| 1800 | * |
| 1801 | * hp->happy_lock must be held |
| 1802 | */ |
| 1803 | static int happy_meal_is_not_so_happy(struct happy_meal *hp, u32 status) |
| 1804 | { |
| 1805 | int reset = 0; |
| 1806 | |
| 1807 | /* Only print messages for non-counter related interrupts. */ |
| 1808 | if (status & (GREG_STAT_STSTERR | GREG_STAT_TFIFO_UND | |
| 1809 | GREG_STAT_MAXPKTERR | GREG_STAT_RXERR | |
| 1810 | GREG_STAT_RXPERR | GREG_STAT_RXTERR | GREG_STAT_EOPERR | |
| 1811 | GREG_STAT_MIFIRQ | GREG_STAT_TXEACK | GREG_STAT_TXLERR | |
| 1812 | GREG_STAT_TXPERR | GREG_STAT_TXTERR | GREG_STAT_SLVERR | |
| 1813 | GREG_STAT_SLVPERR)) |
| 1814 | printk(KERN_ERR "%s: Error interrupt for happy meal, status = %08x\n", |
| 1815 | hp->dev->name, status); |
| 1816 | |
| 1817 | if (status & GREG_STAT_RFIFOVF) { |
| 1818 | /* Receive FIFO overflow is harmless and the hardware will take |
| 1819 | care of it, just some packets are lost. Who cares. */ |
| 1820 | printk(KERN_DEBUG "%s: Happy Meal receive FIFO overflow.\n", hp->dev->name); |
| 1821 | } |
| 1822 | |
| 1823 | if (status & GREG_STAT_STSTERR) { |
| 1824 | /* BigMAC SQE link test failed. */ |
| 1825 | printk(KERN_ERR "%s: Happy Meal BigMAC SQE test failed.\n", hp->dev->name); |
| 1826 | reset = 1; |
| 1827 | } |
| 1828 | |
| 1829 | if (status & GREG_STAT_TFIFO_UND) { |
| 1830 | /* Transmit FIFO underrun, again DMA error likely. */ |
| 1831 | printk(KERN_ERR "%s: Happy Meal transmitter FIFO underrun, DMA error.\n", |
| 1832 | hp->dev->name); |
| 1833 | reset = 1; |
| 1834 | } |
| 1835 | |
| 1836 | if (status & GREG_STAT_MAXPKTERR) { |
| 1837 | /* Driver error, tried to transmit something larger |
| 1838 | * than ethernet max mtu. |
| 1839 | */ |
| 1840 | printk(KERN_ERR "%s: Happy Meal MAX Packet size error.\n", hp->dev->name); |
| 1841 | reset = 1; |
| 1842 | } |
| 1843 | |
| 1844 | if (status & GREG_STAT_NORXD) { |
| 1845 | /* This is harmless, it just means the system is |
| 1846 | * quite loaded and the incoming packet rate was |
| 1847 | * faster than the interrupt handler could keep up |
| 1848 | * with. |
| 1849 | */ |
| 1850 | printk(KERN_INFO "%s: Happy Meal out of receive " |
| 1851 | "descriptors, packet dropped.\n", |
| 1852 | hp->dev->name); |
| 1853 | } |
| 1854 | |
| 1855 | if (status & (GREG_STAT_RXERR|GREG_STAT_RXPERR|GREG_STAT_RXTERR)) { |
| 1856 | /* All sorts of DMA receive errors. */ |
| 1857 | printk(KERN_ERR "%s: Happy Meal rx DMA errors [ ", hp->dev->name); |
| 1858 | if (status & GREG_STAT_RXERR) |
| 1859 | printk("GenericError "); |
| 1860 | if (status & GREG_STAT_RXPERR) |
| 1861 | printk("ParityError "); |
| 1862 | if (status & GREG_STAT_RXTERR) |
| 1863 | printk("RxTagBotch "); |
| 1864 | printk("]\n"); |
| 1865 | reset = 1; |
| 1866 | } |
| 1867 | |
| 1868 | if (status & GREG_STAT_EOPERR) { |
| 1869 | /* Driver bug, didn't set EOP bit in tx descriptor given |
| 1870 | * to the happy meal. |
| 1871 | */ |
| 1872 | printk(KERN_ERR "%s: EOP not set in happy meal transmit descriptor!\n", |
| 1873 | hp->dev->name); |
| 1874 | reset = 1; |
| 1875 | } |
| 1876 | |
| 1877 | if (status & GREG_STAT_MIFIRQ) { |
| 1878 | /* MIF signalled an interrupt, were we polling it? */ |
| 1879 | printk(KERN_ERR "%s: Happy Meal MIF interrupt.\n", hp->dev->name); |
| 1880 | } |
| 1881 | |
| 1882 | if (status & |
| 1883 | (GREG_STAT_TXEACK|GREG_STAT_TXLERR|GREG_STAT_TXPERR|GREG_STAT_TXTERR)) { |
| 1884 | /* All sorts of transmit DMA errors. */ |
| 1885 | printk(KERN_ERR "%s: Happy Meal tx DMA errors [ ", hp->dev->name); |
| 1886 | if (status & GREG_STAT_TXEACK) |
| 1887 | printk("GenericError "); |
| 1888 | if (status & GREG_STAT_TXLERR) |
| 1889 | printk("LateError "); |
| 1890 | if (status & GREG_STAT_TXPERR) |
| 1891 | printk("ParityErro "); |
| 1892 | if (status & GREG_STAT_TXTERR) |
| 1893 | printk("TagBotch "); |
| 1894 | printk("]\n"); |
| 1895 | reset = 1; |
| 1896 | } |
| 1897 | |
| 1898 | if (status & (GREG_STAT_SLVERR|GREG_STAT_SLVPERR)) { |
| 1899 | /* Bus or parity error when cpu accessed happy meal registers |
| 1900 | * or it's internal FIFO's. Should never see this. |
| 1901 | */ |
| 1902 | printk(KERN_ERR "%s: Happy Meal register access SBUS slave (%s) error.\n", |
| 1903 | hp->dev->name, |
| 1904 | (status & GREG_STAT_SLVPERR) ? "parity" : "generic"); |
| 1905 | reset = 1; |
| 1906 | } |
| 1907 | |
| 1908 | if (reset) { |
| 1909 | printk(KERN_NOTICE "%s: Resetting...\n", hp->dev->name); |
| 1910 | happy_meal_init(hp); |
| 1911 | return 1; |
| 1912 | } |
| 1913 | return 0; |
| 1914 | } |
| 1915 | |
| 1916 | /* hp->happy_lock must be held */ |
| 1917 | static void happy_meal_mif_interrupt(struct happy_meal *hp) |
| 1918 | { |
| 1919 | void __iomem *tregs = hp->tcvregs; |
| 1920 | |
| 1921 | printk(KERN_INFO "%s: Link status change.\n", hp->dev->name); |
| 1922 | hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR); |
| 1923 | hp->sw_lpa = happy_meal_tcvr_read(hp, tregs, MII_LPA); |
| 1924 | |
| 1925 | /* Use the fastest transmission protocol possible. */ |
| 1926 | if (hp->sw_lpa & LPA_100FULL) { |
| 1927 | printk(KERN_INFO "%s: Switching to 100Mbps at full duplex.", hp->dev->name); |
| 1928 | hp->sw_bmcr |= (BMCR_FULLDPLX | BMCR_SPEED100); |
| 1929 | } else if (hp->sw_lpa & LPA_100HALF) { |
| 1930 | printk(KERN_INFO "%s: Switching to 100MBps at half duplex.", hp->dev->name); |
| 1931 | hp->sw_bmcr |= BMCR_SPEED100; |
| 1932 | } else if (hp->sw_lpa & LPA_10FULL) { |
| 1933 | printk(KERN_INFO "%s: Switching to 10MBps at full duplex.", hp->dev->name); |
| 1934 | hp->sw_bmcr |= BMCR_FULLDPLX; |
| 1935 | } else { |
| 1936 | printk(KERN_INFO "%s: Using 10Mbps at half duplex.", hp->dev->name); |
| 1937 | } |
| 1938 | happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr); |
| 1939 | |
| 1940 | /* Finally stop polling and shut up the MIF. */ |
| 1941 | happy_meal_poll_stop(hp, tregs); |
| 1942 | } |
| 1943 | |
| 1944 | #ifdef TXDEBUG |
| 1945 | #define TXD(x) printk x |
| 1946 | #else |
| 1947 | #define TXD(x) |
| 1948 | #endif |
| 1949 | |
| 1950 | /* hp->happy_lock must be held */ |
| 1951 | static void happy_meal_tx(struct happy_meal *hp) |
| 1952 | { |
| 1953 | struct happy_meal_txd *txbase = &hp->happy_block->happy_meal_txd[0]; |
| 1954 | struct happy_meal_txd *this; |
| 1955 | struct net_device *dev = hp->dev; |
| 1956 | int elem; |
| 1957 | |
| 1958 | elem = hp->tx_old; |
| 1959 | TXD(("TX<")); |
| 1960 | while (elem != hp->tx_new) { |
| 1961 | struct sk_buff *skb; |
| 1962 | u32 flags, dma_addr, dma_len; |
| 1963 | int frag; |
| 1964 | |
| 1965 | TXD(("[%d]", elem)); |
| 1966 | this = &txbase[elem]; |
| 1967 | flags = hme_read_desc32(hp, &this->tx_flags); |
| 1968 | if (flags & TXFLAG_OWN) |
| 1969 | break; |
| 1970 | skb = hp->tx_skbs[elem]; |
| 1971 | if (skb_shinfo(skb)->nr_frags) { |
| 1972 | int last; |
| 1973 | |
| 1974 | last = elem + skb_shinfo(skb)->nr_frags; |
| 1975 | last &= (TX_RING_SIZE - 1); |
| 1976 | flags = hme_read_desc32(hp, &txbase[last].tx_flags); |
| 1977 | if (flags & TXFLAG_OWN) |
| 1978 | break; |
| 1979 | } |
| 1980 | hp->tx_skbs[elem] = NULL; |
| 1981 | hp->net_stats.tx_bytes += skb->len; |
| 1982 | |
| 1983 | for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) { |
| 1984 | dma_addr = hme_read_desc32(hp, &this->tx_addr); |
| 1985 | dma_len = hme_read_desc32(hp, &this->tx_flags); |
| 1986 | |
| 1987 | dma_len &= TXFLAG_SIZE; |
| 1988 | hme_dma_unmap(hp, dma_addr, dma_len, DMA_TODEVICE); |
| 1989 | |
| 1990 | elem = NEXT_TX(elem); |
| 1991 | this = &txbase[elem]; |
| 1992 | } |
| 1993 | |
| 1994 | dev_kfree_skb_irq(skb); |
| 1995 | hp->net_stats.tx_packets++; |
| 1996 | } |
| 1997 | hp->tx_old = elem; |
| 1998 | TXD((">")); |
| 1999 | |
| 2000 | if (netif_queue_stopped(dev) && |
| 2001 | TX_BUFFS_AVAIL(hp) > (MAX_SKB_FRAGS + 1)) |
| 2002 | netif_wake_queue(dev); |
| 2003 | } |
| 2004 | |
| 2005 | #ifdef RXDEBUG |
| 2006 | #define RXD(x) printk x |
| 2007 | #else |
| 2008 | #define RXD(x) |
| 2009 | #endif |
| 2010 | |
| 2011 | /* Originally I used to handle the allocation failure by just giving back just |
| 2012 | * that one ring buffer to the happy meal. Problem is that usually when that |
| 2013 | * condition is triggered, the happy meal expects you to do something reasonable |
| 2014 | * with all of the packets it has DMA'd in. So now I just drop the entire |
| 2015 | * ring when we cannot get a new skb and give them all back to the happy meal, |
| 2016 | * maybe things will be "happier" now. |
| 2017 | * |
| 2018 | * hp->happy_lock must be held |
| 2019 | */ |
| 2020 | static void happy_meal_rx(struct happy_meal *hp, struct net_device *dev) |
| 2021 | { |
| 2022 | struct happy_meal_rxd *rxbase = &hp->happy_block->happy_meal_rxd[0]; |
| 2023 | struct happy_meal_rxd *this; |
| 2024 | int elem = hp->rx_new, drops = 0; |
| 2025 | u32 flags; |
| 2026 | |
| 2027 | RXD(("RX<")); |
| 2028 | this = &rxbase[elem]; |
| 2029 | while (!((flags = hme_read_desc32(hp, &this->rx_flags)) & RXFLAG_OWN)) { |
| 2030 | struct sk_buff *skb; |
| 2031 | int len = flags >> 16; |
| 2032 | u16 csum = flags & RXFLAG_CSUM; |
| 2033 | u32 dma_addr = hme_read_desc32(hp, &this->rx_addr); |
| 2034 | |
| 2035 | RXD(("[%d ", elem)); |
| 2036 | |
| 2037 | /* Check for errors. */ |
| 2038 | if ((len < ETH_ZLEN) || (flags & RXFLAG_OVERFLOW)) { |
| 2039 | RXD(("ERR(%08x)]", flags)); |
| 2040 | hp->net_stats.rx_errors++; |
| 2041 | if (len < ETH_ZLEN) |
| 2042 | hp->net_stats.rx_length_errors++; |
| 2043 | if (len & (RXFLAG_OVERFLOW >> 16)) { |
| 2044 | hp->net_stats.rx_over_errors++; |
| 2045 | hp->net_stats.rx_fifo_errors++; |
| 2046 | } |
| 2047 | |
| 2048 | /* Return it to the Happy meal. */ |
| 2049 | drop_it: |
| 2050 | hp->net_stats.rx_dropped++; |
| 2051 | hme_write_rxd(hp, this, |
| 2052 | (RXFLAG_OWN|((RX_BUF_ALLOC_SIZE-RX_OFFSET)<<16)), |
| 2053 | dma_addr); |
| 2054 | goto next; |
| 2055 | } |
| 2056 | skb = hp->rx_skbs[elem]; |
| 2057 | if (len > RX_COPY_THRESHOLD) { |
| 2058 | struct sk_buff *new_skb; |
| 2059 | |
| 2060 | /* Now refill the entry, if we can. */ |
| 2061 | new_skb = happy_meal_alloc_skb(RX_BUF_ALLOC_SIZE, GFP_ATOMIC); |
| 2062 | if (new_skb == NULL) { |
| 2063 | drops++; |
| 2064 | goto drop_it; |
| 2065 | } |
| 2066 | hme_dma_unmap(hp, dma_addr, RX_BUF_ALLOC_SIZE, DMA_FROMDEVICE); |
| 2067 | hp->rx_skbs[elem] = new_skb; |
| 2068 | new_skb->dev = dev; |
| 2069 | skb_put(new_skb, (ETH_FRAME_LEN + RX_OFFSET)); |
| 2070 | hme_write_rxd(hp, this, |
| 2071 | (RXFLAG_OWN|((RX_BUF_ALLOC_SIZE-RX_OFFSET)<<16)), |
| 2072 | hme_dma_map(hp, new_skb->data, RX_BUF_ALLOC_SIZE, DMA_FROMDEVICE)); |
| 2073 | skb_reserve(new_skb, RX_OFFSET); |
| 2074 | |
| 2075 | /* Trim the original skb for the netif. */ |
| 2076 | skb_trim(skb, len); |
| 2077 | } else { |
| 2078 | struct sk_buff *copy_skb = dev_alloc_skb(len + 2); |
| 2079 | |
| 2080 | if (copy_skb == NULL) { |
| 2081 | drops++; |
| 2082 | goto drop_it; |
| 2083 | } |
| 2084 | |
| 2085 | copy_skb->dev = dev; |
| 2086 | skb_reserve(copy_skb, 2); |
| 2087 | skb_put(copy_skb, len); |
| 2088 | hme_dma_sync_for_cpu(hp, dma_addr, len, DMA_FROMDEVICE); |
| 2089 | memcpy(copy_skb->data, skb->data, len); |
| 2090 | hme_dma_sync_for_device(hp, dma_addr, len, DMA_FROMDEVICE); |
| 2091 | |
| 2092 | /* Reuse original ring buffer. */ |
| 2093 | hme_write_rxd(hp, this, |
| 2094 | (RXFLAG_OWN|((RX_BUF_ALLOC_SIZE-RX_OFFSET)<<16)), |
| 2095 | dma_addr); |
| 2096 | |
| 2097 | skb = copy_skb; |
| 2098 | } |
| 2099 | |
| 2100 | /* This card is _fucking_ hot... */ |
| 2101 | skb->csum = ntohs(csum ^ 0xffff); |
| 2102 | skb->ip_summed = CHECKSUM_HW; |
| 2103 | |
| 2104 | RXD(("len=%d csum=%4x]", len, csum)); |
| 2105 | skb->protocol = eth_type_trans(skb, dev); |
| 2106 | netif_rx(skb); |
| 2107 | |
| 2108 | dev->last_rx = jiffies; |
| 2109 | hp->net_stats.rx_packets++; |
| 2110 | hp->net_stats.rx_bytes += len; |
| 2111 | next: |
| 2112 | elem = NEXT_RX(elem); |
| 2113 | this = &rxbase[elem]; |
| 2114 | } |
| 2115 | hp->rx_new = elem; |
| 2116 | if (drops) |
| 2117 | printk(KERN_INFO "%s: Memory squeeze, deferring packet.\n", hp->dev->name); |
| 2118 | RXD((">")); |
| 2119 | } |
| 2120 | |
| 2121 | static irqreturn_t happy_meal_interrupt(int irq, void *dev_id, struct pt_regs *regs) |
| 2122 | { |
| 2123 | struct net_device *dev = (struct net_device *) dev_id; |
| 2124 | struct happy_meal *hp = dev->priv; |
| 2125 | u32 happy_status = hme_read32(hp, hp->gregs + GREG_STAT); |
| 2126 | |
| 2127 | HMD(("happy_meal_interrupt: status=%08x ", happy_status)); |
| 2128 | |
| 2129 | spin_lock(&hp->happy_lock); |
| 2130 | |
| 2131 | if (happy_status & GREG_STAT_ERRORS) { |
| 2132 | HMD(("ERRORS ")); |
| 2133 | if (happy_meal_is_not_so_happy(hp, /* un- */ happy_status)) |
| 2134 | goto out; |
| 2135 | } |
| 2136 | |
| 2137 | if (happy_status & GREG_STAT_MIFIRQ) { |
| 2138 | HMD(("MIFIRQ ")); |
| 2139 | happy_meal_mif_interrupt(hp); |
| 2140 | } |
| 2141 | |
| 2142 | if (happy_status & GREG_STAT_TXALL) { |
| 2143 | HMD(("TXALL ")); |
| 2144 | happy_meal_tx(hp); |
| 2145 | } |
| 2146 | |
| 2147 | if (happy_status & GREG_STAT_RXTOHOST) { |
| 2148 | HMD(("RXTOHOST ")); |
| 2149 | happy_meal_rx(hp, dev); |
| 2150 | } |
| 2151 | |
| 2152 | HMD(("done\n")); |
| 2153 | out: |
| 2154 | spin_unlock(&hp->happy_lock); |
| 2155 | |
| 2156 | return IRQ_HANDLED; |
| 2157 | } |
| 2158 | |
| 2159 | #ifdef CONFIG_SBUS |
| 2160 | static irqreturn_t quattro_sbus_interrupt(int irq, void *cookie, struct pt_regs *ptregs) |
| 2161 | { |
| 2162 | struct quattro *qp = (struct quattro *) cookie; |
| 2163 | int i; |
| 2164 | |
| 2165 | for (i = 0; i < 4; i++) { |
| 2166 | struct net_device *dev = qp->happy_meals[i]; |
| 2167 | struct happy_meal *hp = dev->priv; |
| 2168 | u32 happy_status = hme_read32(hp, hp->gregs + GREG_STAT); |
| 2169 | |
| 2170 | HMD(("quattro_interrupt: status=%08x ", happy_status)); |
| 2171 | |
| 2172 | if (!(happy_status & (GREG_STAT_ERRORS | |
| 2173 | GREG_STAT_MIFIRQ | |
| 2174 | GREG_STAT_TXALL | |
| 2175 | GREG_STAT_RXTOHOST))) |
| 2176 | continue; |
| 2177 | |
| 2178 | spin_lock(&hp->happy_lock); |
| 2179 | |
| 2180 | if (happy_status & GREG_STAT_ERRORS) { |
| 2181 | HMD(("ERRORS ")); |
| 2182 | if (happy_meal_is_not_so_happy(hp, happy_status)) |
| 2183 | goto next; |
| 2184 | } |
| 2185 | |
| 2186 | if (happy_status & GREG_STAT_MIFIRQ) { |
| 2187 | HMD(("MIFIRQ ")); |
| 2188 | happy_meal_mif_interrupt(hp); |
| 2189 | } |
| 2190 | |
| 2191 | if (happy_status & GREG_STAT_TXALL) { |
| 2192 | HMD(("TXALL ")); |
| 2193 | happy_meal_tx(hp); |
| 2194 | } |
| 2195 | |
| 2196 | if (happy_status & GREG_STAT_RXTOHOST) { |
| 2197 | HMD(("RXTOHOST ")); |
| 2198 | happy_meal_rx(hp, dev); |
| 2199 | } |
| 2200 | |
| 2201 | next: |
| 2202 | spin_unlock(&hp->happy_lock); |
| 2203 | } |
| 2204 | HMD(("done\n")); |
| 2205 | |
| 2206 | return IRQ_HANDLED; |
| 2207 | } |
| 2208 | #endif |
| 2209 | |
| 2210 | static int happy_meal_open(struct net_device *dev) |
| 2211 | { |
| 2212 | struct happy_meal *hp = dev->priv; |
| 2213 | int res; |
| 2214 | |
| 2215 | HMD(("happy_meal_open: ")); |
| 2216 | |
| 2217 | /* On SBUS Quattro QFE cards, all hme interrupts are concentrated |
| 2218 | * into a single source which we register handling at probe time. |
| 2219 | */ |
| 2220 | if ((hp->happy_flags & (HFLAG_QUATTRO|HFLAG_PCI)) != HFLAG_QUATTRO) { |
| 2221 | if (request_irq(dev->irq, &happy_meal_interrupt, |
| 2222 | SA_SHIRQ, dev->name, (void *)dev)) { |
| 2223 | HMD(("EAGAIN\n")); |
| 2224 | #ifdef __sparc__ |
| 2225 | printk(KERN_ERR "happy_meal(SBUS): Can't order irq %s to go.\n", |
| 2226 | __irq_itoa(dev->irq)); |
| 2227 | #else |
| 2228 | printk(KERN_ERR "happy_meal(SBUS): Can't order irq %d to go.\n", |
| 2229 | dev->irq); |
| 2230 | #endif |
| 2231 | |
| 2232 | return -EAGAIN; |
| 2233 | } |
| 2234 | } |
| 2235 | |
| 2236 | HMD(("to happy_meal_init\n")); |
| 2237 | |
| 2238 | spin_lock_irq(&hp->happy_lock); |
| 2239 | res = happy_meal_init(hp); |
| 2240 | spin_unlock_irq(&hp->happy_lock); |
| 2241 | |
| 2242 | if (res && ((hp->happy_flags & (HFLAG_QUATTRO|HFLAG_PCI)) != HFLAG_QUATTRO)) |
| 2243 | free_irq(dev->irq, dev); |
| 2244 | return res; |
| 2245 | } |
| 2246 | |
| 2247 | static int happy_meal_close(struct net_device *dev) |
| 2248 | { |
| 2249 | struct happy_meal *hp = dev->priv; |
| 2250 | |
| 2251 | spin_lock_irq(&hp->happy_lock); |
| 2252 | happy_meal_stop(hp, hp->gregs); |
| 2253 | happy_meal_clean_rings(hp); |
| 2254 | |
| 2255 | /* If auto-negotiation timer is running, kill it. */ |
| 2256 | del_timer(&hp->happy_timer); |
| 2257 | |
| 2258 | spin_unlock_irq(&hp->happy_lock); |
| 2259 | |
| 2260 | /* On Quattro QFE cards, all hme interrupts are concentrated |
| 2261 | * into a single source which we register handling at probe |
| 2262 | * time and never unregister. |
| 2263 | */ |
| 2264 | if ((hp->happy_flags & (HFLAG_QUATTRO|HFLAG_PCI)) != HFLAG_QUATTRO) |
| 2265 | free_irq(dev->irq, dev); |
| 2266 | |
| 2267 | return 0; |
| 2268 | } |
| 2269 | |
| 2270 | #ifdef SXDEBUG |
| 2271 | #define SXD(x) printk x |
| 2272 | #else |
| 2273 | #define SXD(x) |
| 2274 | #endif |
| 2275 | |
| 2276 | static void happy_meal_tx_timeout(struct net_device *dev) |
| 2277 | { |
| 2278 | struct happy_meal *hp = dev->priv; |
| 2279 | |
| 2280 | printk (KERN_ERR "%s: transmit timed out, resetting\n", dev->name); |
| 2281 | tx_dump_log(); |
| 2282 | printk (KERN_ERR "%s: Happy Status %08x TX[%08x:%08x]\n", dev->name, |
| 2283 | hme_read32(hp, hp->gregs + GREG_STAT), |
| 2284 | hme_read32(hp, hp->etxregs + ETX_CFG), |
| 2285 | hme_read32(hp, hp->bigmacregs + BMAC_TXCFG)); |
| 2286 | |
| 2287 | spin_lock_irq(&hp->happy_lock); |
| 2288 | happy_meal_init(hp); |
| 2289 | spin_unlock_irq(&hp->happy_lock); |
| 2290 | |
| 2291 | netif_wake_queue(dev); |
| 2292 | } |
| 2293 | |
| 2294 | static int happy_meal_start_xmit(struct sk_buff *skb, struct net_device *dev) |
| 2295 | { |
| 2296 | struct happy_meal *hp = dev->priv; |
| 2297 | int entry; |
| 2298 | u32 tx_flags; |
| 2299 | |
| 2300 | tx_flags = TXFLAG_OWN; |
| 2301 | if (skb->ip_summed == CHECKSUM_HW) { |
| 2302 | u32 csum_start_off, csum_stuff_off; |
| 2303 | |
| 2304 | csum_start_off = (u32) (skb->h.raw - skb->data); |
| 2305 | csum_stuff_off = (u32) ((skb->h.raw + skb->csum) - skb->data); |
| 2306 | |
| 2307 | tx_flags = (TXFLAG_OWN | TXFLAG_CSENABLE | |
| 2308 | ((csum_start_off << 14) & TXFLAG_CSBUFBEGIN) | |
| 2309 | ((csum_stuff_off << 20) & TXFLAG_CSLOCATION)); |
| 2310 | } |
| 2311 | |
| 2312 | spin_lock_irq(&hp->happy_lock); |
| 2313 | |
| 2314 | if (TX_BUFFS_AVAIL(hp) <= (skb_shinfo(skb)->nr_frags + 1)) { |
| 2315 | netif_stop_queue(dev); |
| 2316 | spin_unlock_irq(&hp->happy_lock); |
| 2317 | printk(KERN_ERR "%s: BUG! Tx Ring full when queue awake!\n", |
| 2318 | dev->name); |
| 2319 | return 1; |
| 2320 | } |
| 2321 | |
| 2322 | entry = hp->tx_new; |
| 2323 | SXD(("SX<l[%d]e[%d]>", len, entry)); |
| 2324 | hp->tx_skbs[entry] = skb; |
| 2325 | |
| 2326 | if (skb_shinfo(skb)->nr_frags == 0) { |
| 2327 | u32 mapping, len; |
| 2328 | |
| 2329 | len = skb->len; |
| 2330 | mapping = hme_dma_map(hp, skb->data, len, DMA_TODEVICE); |
| 2331 | tx_flags |= (TXFLAG_SOP | TXFLAG_EOP); |
| 2332 | hme_write_txd(hp, &hp->happy_block->happy_meal_txd[entry], |
| 2333 | (tx_flags | (len & TXFLAG_SIZE)), |
| 2334 | mapping); |
| 2335 | entry = NEXT_TX(entry); |
| 2336 | } else { |
| 2337 | u32 first_len, first_mapping; |
| 2338 | int frag, first_entry = entry; |
| 2339 | |
| 2340 | /* We must give this initial chunk to the device last. |
| 2341 | * Otherwise we could race with the device. |
| 2342 | */ |
| 2343 | first_len = skb_headlen(skb); |
| 2344 | first_mapping = hme_dma_map(hp, skb->data, first_len, DMA_TODEVICE); |
| 2345 | entry = NEXT_TX(entry); |
| 2346 | |
| 2347 | for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) { |
| 2348 | skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag]; |
| 2349 | u32 len, mapping, this_txflags; |
| 2350 | |
| 2351 | len = this_frag->size; |
| 2352 | mapping = hme_dma_map(hp, |
| 2353 | ((void *) page_address(this_frag->page) + |
| 2354 | this_frag->page_offset), |
| 2355 | len, DMA_TODEVICE); |
| 2356 | this_txflags = tx_flags; |
| 2357 | if (frag == skb_shinfo(skb)->nr_frags - 1) |
| 2358 | this_txflags |= TXFLAG_EOP; |
| 2359 | hme_write_txd(hp, &hp->happy_block->happy_meal_txd[entry], |
| 2360 | (this_txflags | (len & TXFLAG_SIZE)), |
| 2361 | mapping); |
| 2362 | entry = NEXT_TX(entry); |
| 2363 | } |
| 2364 | hme_write_txd(hp, &hp->happy_block->happy_meal_txd[first_entry], |
| 2365 | (tx_flags | TXFLAG_SOP | (first_len & TXFLAG_SIZE)), |
| 2366 | first_mapping); |
| 2367 | } |
| 2368 | |
| 2369 | hp->tx_new = entry; |
| 2370 | |
| 2371 | if (TX_BUFFS_AVAIL(hp) <= (MAX_SKB_FRAGS + 1)) |
| 2372 | netif_stop_queue(dev); |
| 2373 | |
| 2374 | /* Get it going. */ |
| 2375 | hme_write32(hp, hp->etxregs + ETX_PENDING, ETX_TP_DMAWAKEUP); |
| 2376 | |
| 2377 | spin_unlock_irq(&hp->happy_lock); |
| 2378 | |
| 2379 | dev->trans_start = jiffies; |
| 2380 | |
| 2381 | tx_add_log(hp, TXLOG_ACTION_TXMIT, 0); |
| 2382 | return 0; |
| 2383 | } |
| 2384 | |
| 2385 | static struct net_device_stats *happy_meal_get_stats(struct net_device *dev) |
| 2386 | { |
| 2387 | struct happy_meal *hp = dev->priv; |
| 2388 | |
| 2389 | spin_lock_irq(&hp->happy_lock); |
| 2390 | happy_meal_get_counters(hp, hp->bigmacregs); |
| 2391 | spin_unlock_irq(&hp->happy_lock); |
| 2392 | |
| 2393 | return &hp->net_stats; |
| 2394 | } |
| 2395 | |
| 2396 | static void happy_meal_set_multicast(struct net_device *dev) |
| 2397 | { |
| 2398 | struct happy_meal *hp = dev->priv; |
| 2399 | void __iomem *bregs = hp->bigmacregs; |
| 2400 | struct dev_mc_list *dmi = dev->mc_list; |
| 2401 | char *addrs; |
| 2402 | int i; |
| 2403 | u32 crc; |
| 2404 | |
| 2405 | spin_lock_irq(&hp->happy_lock); |
| 2406 | |
| 2407 | netif_stop_queue(dev); |
| 2408 | |
| 2409 | if ((dev->flags & IFF_ALLMULTI) || (dev->mc_count > 64)) { |
| 2410 | hme_write32(hp, bregs + BMAC_HTABLE0, 0xffff); |
| 2411 | hme_write32(hp, bregs + BMAC_HTABLE1, 0xffff); |
| 2412 | hme_write32(hp, bregs + BMAC_HTABLE2, 0xffff); |
| 2413 | hme_write32(hp, bregs + BMAC_HTABLE3, 0xffff); |
| 2414 | } else if (dev->flags & IFF_PROMISC) { |
| 2415 | hme_write32(hp, bregs + BMAC_RXCFG, |
| 2416 | hme_read32(hp, bregs + BMAC_RXCFG) | BIGMAC_RXCFG_PMISC); |
| 2417 | } else { |
| 2418 | u16 hash_table[4]; |
| 2419 | |
| 2420 | for (i = 0; i < 4; i++) |
| 2421 | hash_table[i] = 0; |
| 2422 | |
| 2423 | for (i = 0; i < dev->mc_count; i++) { |
| 2424 | addrs = dmi->dmi_addr; |
| 2425 | dmi = dmi->next; |
| 2426 | |
| 2427 | if (!(*addrs & 1)) |
| 2428 | continue; |
| 2429 | |
| 2430 | crc = ether_crc_le(6, addrs); |
| 2431 | crc >>= 26; |
| 2432 | hash_table[crc >> 4] |= 1 << (crc & 0xf); |
| 2433 | } |
| 2434 | hme_write32(hp, bregs + BMAC_HTABLE0, hash_table[0]); |
| 2435 | hme_write32(hp, bregs + BMAC_HTABLE1, hash_table[1]); |
| 2436 | hme_write32(hp, bregs + BMAC_HTABLE2, hash_table[2]); |
| 2437 | hme_write32(hp, bregs + BMAC_HTABLE3, hash_table[3]); |
| 2438 | } |
| 2439 | |
| 2440 | netif_wake_queue(dev); |
| 2441 | |
| 2442 | spin_unlock_irq(&hp->happy_lock); |
| 2443 | } |
| 2444 | |
| 2445 | /* Ethtool support... */ |
| 2446 | static int hme_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) |
| 2447 | { |
| 2448 | struct happy_meal *hp = dev->priv; |
| 2449 | |
| 2450 | cmd->supported = |
| 2451 | (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | |
| 2452 | SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | |
| 2453 | SUPPORTED_Autoneg | SUPPORTED_TP | SUPPORTED_MII); |
| 2454 | |
| 2455 | /* XXX hardcoded stuff for now */ |
| 2456 | cmd->port = PORT_TP; /* XXX no MII support */ |
| 2457 | cmd->transceiver = XCVR_INTERNAL; /* XXX no external xcvr support */ |
| 2458 | cmd->phy_address = 0; /* XXX fixed PHYAD */ |
| 2459 | |
| 2460 | /* Record PHY settings. */ |
| 2461 | spin_lock_irq(&hp->happy_lock); |
| 2462 | hp->sw_bmcr = happy_meal_tcvr_read(hp, hp->tcvregs, MII_BMCR); |
| 2463 | hp->sw_lpa = happy_meal_tcvr_read(hp, hp->tcvregs, MII_LPA); |
| 2464 | spin_unlock_irq(&hp->happy_lock); |
| 2465 | |
| 2466 | if (hp->sw_bmcr & BMCR_ANENABLE) { |
| 2467 | cmd->autoneg = AUTONEG_ENABLE; |
| 2468 | cmd->speed = |
| 2469 | (hp->sw_lpa & (LPA_100HALF | LPA_100FULL)) ? |
| 2470 | SPEED_100 : SPEED_10; |
| 2471 | if (cmd->speed == SPEED_100) |
| 2472 | cmd->duplex = |
| 2473 | (hp->sw_lpa & (LPA_100FULL)) ? |
| 2474 | DUPLEX_FULL : DUPLEX_HALF; |
| 2475 | else |
| 2476 | cmd->duplex = |
| 2477 | (hp->sw_lpa & (LPA_10FULL)) ? |
| 2478 | DUPLEX_FULL : DUPLEX_HALF; |
| 2479 | } else { |
| 2480 | cmd->autoneg = AUTONEG_DISABLE; |
| 2481 | cmd->speed = |
| 2482 | (hp->sw_bmcr & BMCR_SPEED100) ? |
| 2483 | SPEED_100 : SPEED_10; |
| 2484 | cmd->duplex = |
| 2485 | (hp->sw_bmcr & BMCR_FULLDPLX) ? |
| 2486 | DUPLEX_FULL : DUPLEX_HALF; |
| 2487 | } |
| 2488 | return 0; |
| 2489 | } |
| 2490 | |
| 2491 | static int hme_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) |
| 2492 | { |
| 2493 | struct happy_meal *hp = dev->priv; |
| 2494 | |
| 2495 | /* Verify the settings we care about. */ |
| 2496 | if (cmd->autoneg != AUTONEG_ENABLE && |
| 2497 | cmd->autoneg != AUTONEG_DISABLE) |
| 2498 | return -EINVAL; |
| 2499 | if (cmd->autoneg == AUTONEG_DISABLE && |
| 2500 | ((cmd->speed != SPEED_100 && |
| 2501 | cmd->speed != SPEED_10) || |
| 2502 | (cmd->duplex != DUPLEX_HALF && |
| 2503 | cmd->duplex != DUPLEX_FULL))) |
| 2504 | return -EINVAL; |
| 2505 | |
| 2506 | /* Ok, do it to it. */ |
| 2507 | spin_lock_irq(&hp->happy_lock); |
| 2508 | del_timer(&hp->happy_timer); |
| 2509 | happy_meal_begin_auto_negotiation(hp, hp->tcvregs, cmd); |
| 2510 | spin_unlock_irq(&hp->happy_lock); |
| 2511 | |
| 2512 | return 0; |
| 2513 | } |
| 2514 | |
| 2515 | static void hme_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) |
| 2516 | { |
| 2517 | struct happy_meal *hp = dev->priv; |
| 2518 | |
| 2519 | strcpy(info->driver, "sunhme"); |
| 2520 | strcpy(info->version, "2.02"); |
| 2521 | if (hp->happy_flags & HFLAG_PCI) { |
| 2522 | struct pci_dev *pdev = hp->happy_dev; |
| 2523 | strcpy(info->bus_info, pci_name(pdev)); |
| 2524 | } |
| 2525 | #ifdef CONFIG_SBUS |
| 2526 | else { |
| 2527 | struct sbus_dev *sdev = hp->happy_dev; |
| 2528 | sprintf(info->bus_info, "SBUS:%d", |
| 2529 | sdev->slot); |
| 2530 | } |
| 2531 | #endif |
| 2532 | } |
| 2533 | |
| 2534 | static u32 hme_get_link(struct net_device *dev) |
| 2535 | { |
| 2536 | struct happy_meal *hp = dev->priv; |
| 2537 | |
| 2538 | spin_lock_irq(&hp->happy_lock); |
| 2539 | hp->sw_bmcr = happy_meal_tcvr_read(hp, hp->tcvregs, MII_BMCR); |
| 2540 | spin_unlock_irq(&hp->happy_lock); |
| 2541 | |
| 2542 | return (hp->sw_bmsr & BMSR_LSTATUS); |
| 2543 | } |
| 2544 | |
| 2545 | static struct ethtool_ops hme_ethtool_ops = { |
| 2546 | .get_settings = hme_get_settings, |
| 2547 | .set_settings = hme_set_settings, |
| 2548 | .get_drvinfo = hme_get_drvinfo, |
| 2549 | .get_link = hme_get_link, |
| 2550 | }; |
| 2551 | |
| 2552 | static int hme_version_printed; |
| 2553 | |
| 2554 | #ifdef CONFIG_SBUS |
| 2555 | void __init quattro_get_ranges(struct quattro *qp) |
| 2556 | { |
| 2557 | struct sbus_dev *sdev = qp->quattro_dev; |
| 2558 | int err; |
| 2559 | |
| 2560 | err = prom_getproperty(sdev->prom_node, |
| 2561 | "ranges", |
| 2562 | (char *)&qp->ranges[0], |
| 2563 | sizeof(qp->ranges)); |
| 2564 | if (err == 0 || err == -1) { |
| 2565 | qp->nranges = 0; |
| 2566 | return; |
| 2567 | } |
| 2568 | qp->nranges = (err / sizeof(struct linux_prom_ranges)); |
| 2569 | } |
| 2570 | |
| 2571 | static void __init quattro_apply_ranges(struct quattro *qp, struct happy_meal *hp) |
| 2572 | { |
| 2573 | struct sbus_dev *sdev = hp->happy_dev; |
| 2574 | int rng; |
| 2575 | |
| 2576 | for (rng = 0; rng < qp->nranges; rng++) { |
| 2577 | struct linux_prom_ranges *rngp = &qp->ranges[rng]; |
| 2578 | int reg; |
| 2579 | |
| 2580 | for (reg = 0; reg < 5; reg++) { |
| 2581 | if (sdev->reg_addrs[reg].which_io == |
| 2582 | rngp->ot_child_space) |
| 2583 | break; |
| 2584 | } |
| 2585 | if (reg == 5) |
| 2586 | continue; |
| 2587 | |
| 2588 | sdev->reg_addrs[reg].which_io = rngp->ot_parent_space; |
| 2589 | sdev->reg_addrs[reg].phys_addr += rngp->ot_parent_base; |
| 2590 | } |
| 2591 | } |
| 2592 | |
| 2593 | /* Given a happy meal sbus device, find it's quattro parent. |
| 2594 | * If none exist, allocate and return a new one. |
| 2595 | * |
| 2596 | * Return NULL on failure. |
| 2597 | */ |
| 2598 | static struct quattro * __init quattro_sbus_find(struct sbus_dev *goal_sdev) |
| 2599 | { |
| 2600 | struct sbus_bus *sbus; |
| 2601 | struct sbus_dev *sdev; |
| 2602 | struct quattro *qp; |
| 2603 | int i; |
| 2604 | |
| 2605 | if (qfe_sbus_list == NULL) |
| 2606 | goto found; |
| 2607 | |
| 2608 | for (qp = qfe_sbus_list; qp != NULL; qp = qp->next) { |
| 2609 | for (i = 0, sdev = qp->quattro_dev; |
| 2610 | (sdev != NULL) && (i < 4); |
| 2611 | sdev = sdev->next, i++) { |
| 2612 | if (sdev == goal_sdev) |
| 2613 | return qp; |
| 2614 | } |
| 2615 | } |
| 2616 | for_each_sbus(sbus) { |
| 2617 | for_each_sbusdev(sdev, sbus) { |
| 2618 | if (sdev == goal_sdev) |
| 2619 | goto found; |
| 2620 | } |
| 2621 | } |
| 2622 | |
| 2623 | /* Cannot find quattro parent, fail. */ |
| 2624 | return NULL; |
| 2625 | |
| 2626 | found: |
| 2627 | qp = kmalloc(sizeof(struct quattro), GFP_KERNEL); |
| 2628 | if (qp != NULL) { |
| 2629 | int i; |
| 2630 | |
| 2631 | for (i = 0; i < 4; i++) |
| 2632 | qp->happy_meals[i] = NULL; |
| 2633 | |
| 2634 | qp->quattro_dev = goal_sdev; |
| 2635 | qp->next = qfe_sbus_list; |
| 2636 | qfe_sbus_list = qp; |
| 2637 | quattro_get_ranges(qp); |
| 2638 | } |
| 2639 | return qp; |
| 2640 | } |
| 2641 | |
| 2642 | /* After all quattro cards have been probed, we call these functions |
| 2643 | * to register the IRQ handlers. |
| 2644 | */ |
| 2645 | static void __init quattro_sbus_register_irqs(void) |
| 2646 | { |
| 2647 | struct quattro *qp; |
| 2648 | |
| 2649 | for (qp = qfe_sbus_list; qp != NULL; qp = qp->next) { |
| 2650 | struct sbus_dev *sdev = qp->quattro_dev; |
| 2651 | int err; |
| 2652 | |
| 2653 | err = request_irq(sdev->irqs[0], |
| 2654 | quattro_sbus_interrupt, |
| 2655 | SA_SHIRQ, "Quattro", |
| 2656 | qp); |
| 2657 | if (err != 0) { |
| 2658 | printk(KERN_ERR "Quattro: Fatal IRQ registery error %d.\n", err); |
| 2659 | panic("QFE request irq"); |
| 2660 | } |
| 2661 | } |
| 2662 | } |
| 2663 | #endif /* CONFIG_SBUS */ |
| 2664 | |
| 2665 | #ifdef CONFIG_PCI |
| 2666 | static struct quattro * __init quattro_pci_find(struct pci_dev *pdev) |
| 2667 | { |
| 2668 | struct pci_dev *bdev = pdev->bus->self; |
| 2669 | struct quattro *qp; |
| 2670 | |
| 2671 | if (!bdev) return NULL; |
| 2672 | for (qp = qfe_pci_list; qp != NULL; qp = qp->next) { |
| 2673 | struct pci_dev *qpdev = qp->quattro_dev; |
| 2674 | |
| 2675 | if (qpdev == bdev) |
| 2676 | return qp; |
| 2677 | } |
| 2678 | qp = kmalloc(sizeof(struct quattro), GFP_KERNEL); |
| 2679 | if (qp != NULL) { |
| 2680 | int i; |
| 2681 | |
| 2682 | for (i = 0; i < 4; i++) |
| 2683 | qp->happy_meals[i] = NULL; |
| 2684 | |
| 2685 | qp->quattro_dev = bdev; |
| 2686 | qp->next = qfe_pci_list; |
| 2687 | qfe_pci_list = qp; |
| 2688 | |
| 2689 | /* No range tricks necessary on PCI. */ |
| 2690 | qp->nranges = 0; |
| 2691 | } |
| 2692 | return qp; |
| 2693 | } |
| 2694 | #endif /* CONFIG_PCI */ |
| 2695 | |
| 2696 | #ifdef CONFIG_SBUS |
| 2697 | static int __init happy_meal_sbus_init(struct sbus_dev *sdev, int is_qfe) |
| 2698 | { |
| 2699 | struct quattro *qp = NULL; |
| 2700 | struct happy_meal *hp; |
| 2701 | struct net_device *dev; |
| 2702 | int i, qfe_slot = -1; |
| 2703 | int err = -ENODEV; |
| 2704 | |
| 2705 | if (is_qfe) { |
| 2706 | qp = quattro_sbus_find(sdev); |
| 2707 | if (qp == NULL) |
| 2708 | goto err_out; |
| 2709 | for (qfe_slot = 0; qfe_slot < 4; qfe_slot++) |
| 2710 | if (qp->happy_meals[qfe_slot] == NULL) |
| 2711 | break; |
| 2712 | if (qfe_slot == 4) |
| 2713 | goto err_out; |
| 2714 | } |
| 2715 | |
| 2716 | err = -ENOMEM; |
| 2717 | dev = alloc_etherdev(sizeof(struct happy_meal)); |
| 2718 | if (!dev) |
| 2719 | goto err_out; |
| 2720 | SET_MODULE_OWNER(dev); |
| 2721 | |
| 2722 | if (hme_version_printed++ == 0) |
| 2723 | printk(KERN_INFO "%s", version); |
| 2724 | |
| 2725 | /* If user did not specify a MAC address specifically, use |
| 2726 | * the Quattro local-mac-address property... |
| 2727 | */ |
| 2728 | for (i = 0; i < 6; i++) { |
| 2729 | if (macaddr[i] != 0) |
| 2730 | break; |
| 2731 | } |
| 2732 | if (i < 6) { /* a mac address was given */ |
| 2733 | for (i = 0; i < 6; i++) |
| 2734 | dev->dev_addr[i] = macaddr[i]; |
| 2735 | macaddr[5]++; |
| 2736 | } else if (qfe_slot != -1 && |
| 2737 | prom_getproplen(sdev->prom_node, |
| 2738 | "local-mac-address") == 6) { |
| 2739 | prom_getproperty(sdev->prom_node, "local-mac-address", |
| 2740 | dev->dev_addr, 6); |
| 2741 | } else { |
| 2742 | memcpy(dev->dev_addr, idprom->id_ethaddr, 6); |
| 2743 | } |
| 2744 | |
| 2745 | hp = dev->priv; |
| 2746 | |
| 2747 | hp->happy_dev = sdev; |
| 2748 | |
| 2749 | spin_lock_init(&hp->happy_lock); |
| 2750 | |
| 2751 | err = -ENODEV; |
| 2752 | if (sdev->num_registers != 5) { |
| 2753 | printk(KERN_ERR "happymeal: Device does not have 5 regs, it has %d.\n", |
| 2754 | sdev->num_registers); |
| 2755 | printk(KERN_ERR "happymeal: Would you like that for here or to go?\n"); |
| 2756 | goto err_out_free_netdev; |
| 2757 | } |
| 2758 | |
| 2759 | if (qp != NULL) { |
| 2760 | hp->qfe_parent = qp; |
| 2761 | hp->qfe_ent = qfe_slot; |
| 2762 | qp->happy_meals[qfe_slot] = dev; |
| 2763 | quattro_apply_ranges(qp, hp); |
| 2764 | } |
| 2765 | |
| 2766 | hp->gregs = sbus_ioremap(&sdev->resource[0], 0, |
| 2767 | GREG_REG_SIZE, "HME Global Regs"); |
| 2768 | if (!hp->gregs) { |
| 2769 | printk(KERN_ERR "happymeal: Cannot map Happy Meal global registers.\n"); |
| 2770 | goto err_out_free_netdev; |
| 2771 | } |
| 2772 | |
| 2773 | hp->etxregs = sbus_ioremap(&sdev->resource[1], 0, |
| 2774 | ETX_REG_SIZE, "HME TX Regs"); |
| 2775 | if (!hp->etxregs) { |
| 2776 | printk(KERN_ERR "happymeal: Cannot map Happy Meal MAC Transmit registers.\n"); |
| 2777 | goto err_out_iounmap; |
| 2778 | } |
| 2779 | |
| 2780 | hp->erxregs = sbus_ioremap(&sdev->resource[2], 0, |
| 2781 | ERX_REG_SIZE, "HME RX Regs"); |
| 2782 | if (!hp->erxregs) { |
| 2783 | printk(KERN_ERR "happymeal: Cannot map Happy Meal MAC Receive registers.\n"); |
| 2784 | goto err_out_iounmap; |
| 2785 | } |
| 2786 | |
| 2787 | hp->bigmacregs = sbus_ioremap(&sdev->resource[3], 0, |
| 2788 | BMAC_REG_SIZE, "HME BIGMAC Regs"); |
| 2789 | if (!hp->bigmacregs) { |
| 2790 | printk(KERN_ERR "happymeal: Cannot map Happy Meal BIGMAC registers.\n"); |
| 2791 | goto err_out_iounmap; |
| 2792 | } |
| 2793 | |
| 2794 | hp->tcvregs = sbus_ioremap(&sdev->resource[4], 0, |
| 2795 | TCVR_REG_SIZE, "HME Tranceiver Regs"); |
| 2796 | if (!hp->tcvregs) { |
| 2797 | printk(KERN_ERR "happymeal: Cannot map Happy Meal Tranceiver registers.\n"); |
| 2798 | goto err_out_iounmap; |
| 2799 | } |
| 2800 | |
| 2801 | hp->hm_revision = prom_getintdefault(sdev->prom_node, "hm-rev", 0xff); |
| 2802 | if (hp->hm_revision == 0xff) |
| 2803 | hp->hm_revision = 0xa0; |
| 2804 | |
| 2805 | /* Now enable the feature flags we can. */ |
| 2806 | if (hp->hm_revision == 0x20 || hp->hm_revision == 0x21) |
| 2807 | hp->happy_flags = HFLAG_20_21; |
| 2808 | else if (hp->hm_revision != 0xa0) |
| 2809 | hp->happy_flags = HFLAG_NOT_A0; |
| 2810 | |
| 2811 | if (qp != NULL) |
| 2812 | hp->happy_flags |= HFLAG_QUATTRO; |
| 2813 | |
| 2814 | /* Get the supported DVMA burst sizes from our Happy SBUS. */ |
| 2815 | hp->happy_bursts = prom_getintdefault(sdev->bus->prom_node, |
| 2816 | "burst-sizes", 0x00); |
| 2817 | |
| 2818 | hp->happy_block = sbus_alloc_consistent(hp->happy_dev, |
| 2819 | PAGE_SIZE, |
| 2820 | &hp->hblock_dvma); |
| 2821 | err = -ENOMEM; |
| 2822 | if (!hp->happy_block) { |
| 2823 | printk(KERN_ERR "happymeal: Cannot allocate descriptors.\n"); |
| 2824 | goto err_out_iounmap; |
| 2825 | } |
| 2826 | |
| 2827 | /* Force check of the link first time we are brought up. */ |
| 2828 | hp->linkcheck = 0; |
| 2829 | |
| 2830 | /* Force timer state to 'asleep' with count of zero. */ |
| 2831 | hp->timer_state = asleep; |
| 2832 | hp->timer_ticks = 0; |
| 2833 | |
| 2834 | init_timer(&hp->happy_timer); |
| 2835 | |
| 2836 | hp->dev = dev; |
| 2837 | dev->open = &happy_meal_open; |
| 2838 | dev->stop = &happy_meal_close; |
| 2839 | dev->hard_start_xmit = &happy_meal_start_xmit; |
| 2840 | dev->get_stats = &happy_meal_get_stats; |
| 2841 | dev->set_multicast_list = &happy_meal_set_multicast; |
| 2842 | dev->tx_timeout = &happy_meal_tx_timeout; |
| 2843 | dev->watchdog_timeo = 5*HZ; |
| 2844 | dev->ethtool_ops = &hme_ethtool_ops; |
| 2845 | |
| 2846 | /* Happy Meal can do it all... except VLAN. */ |
| 2847 | dev->features |= NETIF_F_SG | NETIF_F_HW_CSUM | NETIF_F_VLAN_CHALLENGED; |
| 2848 | |
| 2849 | dev->irq = sdev->irqs[0]; |
| 2850 | |
| 2851 | #if defined(CONFIG_SBUS) && defined(CONFIG_PCI) |
| 2852 | /* Hook up PCI register/dma accessors. */ |
| 2853 | hp->read_desc32 = sbus_hme_read_desc32; |
| 2854 | hp->write_txd = sbus_hme_write_txd; |
| 2855 | hp->write_rxd = sbus_hme_write_rxd; |
| 2856 | hp->dma_map = (u32 (*)(void *, void *, long, int))sbus_map_single; |
| 2857 | hp->dma_unmap = (void (*)(void *, u32, long, int))sbus_unmap_single; |
| 2858 | hp->dma_sync_for_cpu = (void (*)(void *, u32, long, int)) |
| 2859 | sbus_dma_sync_single_for_cpu; |
| 2860 | hp->dma_sync_for_device = (void (*)(void *, u32, long, int)) |
| 2861 | sbus_dma_sync_single_for_device; |
| 2862 | hp->read32 = sbus_hme_read32; |
| 2863 | hp->write32 = sbus_hme_write32; |
| 2864 | #endif |
| 2865 | |
| 2866 | /* Grrr, Happy Meal comes up by default not advertising |
| 2867 | * full duplex 100baseT capabilities, fix this. |
| 2868 | */ |
| 2869 | spin_lock_irq(&hp->happy_lock); |
| 2870 | happy_meal_set_initial_advertisement(hp); |
| 2871 | spin_unlock_irq(&hp->happy_lock); |
| 2872 | |
| 2873 | if (register_netdev(hp->dev)) { |
| 2874 | printk(KERN_ERR "happymeal: Cannot register net device, " |
| 2875 | "aborting.\n"); |
| 2876 | goto err_out_free_consistent; |
| 2877 | } |
| 2878 | |
| 2879 | if (qfe_slot != -1) |
| 2880 | printk(KERN_INFO "%s: Quattro HME slot %d (SBUS) 10/100baseT Ethernet ", |
| 2881 | dev->name, qfe_slot); |
| 2882 | else |
| 2883 | printk(KERN_INFO "%s: HAPPY MEAL (SBUS) 10/100baseT Ethernet ", |
| 2884 | dev->name); |
| 2885 | |
| 2886 | for (i = 0; i < 6; i++) |
| 2887 | printk("%2.2x%c", |
| 2888 | dev->dev_addr[i], i == 5 ? ' ' : ':'); |
| 2889 | printk("\n"); |
| 2890 | |
| 2891 | /* We are home free at this point, link us in to the happy |
| 2892 | * device list. |
| 2893 | */ |
| 2894 | hp->next_module = root_happy_dev; |
| 2895 | root_happy_dev = hp; |
| 2896 | |
| 2897 | return 0; |
| 2898 | |
| 2899 | err_out_free_consistent: |
| 2900 | sbus_free_consistent(hp->happy_dev, |
| 2901 | PAGE_SIZE, |
| 2902 | hp->happy_block, |
| 2903 | hp->hblock_dvma); |
| 2904 | |
| 2905 | err_out_iounmap: |
| 2906 | if (hp->gregs) |
| 2907 | sbus_iounmap(hp->gregs, GREG_REG_SIZE); |
| 2908 | if (hp->etxregs) |
| 2909 | sbus_iounmap(hp->etxregs, ETX_REG_SIZE); |
| 2910 | if (hp->erxregs) |
| 2911 | sbus_iounmap(hp->erxregs, ERX_REG_SIZE); |
| 2912 | if (hp->bigmacregs) |
| 2913 | sbus_iounmap(hp->bigmacregs, BMAC_REG_SIZE); |
| 2914 | if (hp->tcvregs) |
| 2915 | sbus_iounmap(hp->tcvregs, TCVR_REG_SIZE); |
| 2916 | |
| 2917 | err_out_free_netdev: |
| 2918 | free_netdev(dev); |
| 2919 | |
| 2920 | err_out: |
| 2921 | return err; |
| 2922 | } |
| 2923 | #endif |
| 2924 | |
| 2925 | #ifdef CONFIG_PCI |
| 2926 | #ifndef __sparc__ |
| 2927 | static int is_quattro_p(struct pci_dev *pdev) |
| 2928 | { |
| 2929 | struct pci_dev *busdev = pdev->bus->self; |
| 2930 | struct list_head *tmp; |
| 2931 | int n_hmes; |
| 2932 | |
| 2933 | if (busdev == NULL || |
| 2934 | busdev->vendor != PCI_VENDOR_ID_DEC || |
| 2935 | busdev->device != PCI_DEVICE_ID_DEC_21153) |
| 2936 | return 0; |
| 2937 | |
| 2938 | n_hmes = 0; |
| 2939 | tmp = pdev->bus->devices.next; |
| 2940 | while (tmp != &pdev->bus->devices) { |
| 2941 | struct pci_dev *this_pdev = pci_dev_b(tmp); |
| 2942 | |
| 2943 | if (this_pdev->vendor == PCI_VENDOR_ID_SUN && |
| 2944 | this_pdev->device == PCI_DEVICE_ID_SUN_HAPPYMEAL) |
| 2945 | n_hmes++; |
| 2946 | |
| 2947 | tmp = tmp->next; |
| 2948 | } |
| 2949 | |
| 2950 | if (n_hmes != 4) |
| 2951 | return 0; |
| 2952 | |
| 2953 | return 1; |
| 2954 | } |
| 2955 | |
| 2956 | /* Fetch MAC address from vital product data of PCI ROM. */ |
| 2957 | static void find_eth_addr_in_vpd(void __iomem *rom_base, int len, int index, unsigned char *dev_addr) |
| 2958 | { |
| 2959 | int this_offset; |
| 2960 | |
| 2961 | for (this_offset = 0x20; this_offset < len; this_offset++) { |
| 2962 | void __iomem *p = rom_base + this_offset; |
| 2963 | |
| 2964 | if (readb(p + 0) != 0x90 || |
| 2965 | readb(p + 1) != 0x00 || |
| 2966 | readb(p + 2) != 0x09 || |
| 2967 | readb(p + 3) != 0x4e || |
| 2968 | readb(p + 4) != 0x41 || |
| 2969 | readb(p + 5) != 0x06) |
| 2970 | continue; |
| 2971 | |
| 2972 | this_offset += 6; |
| 2973 | p += 6; |
| 2974 | |
| 2975 | if (index == 0) { |
| 2976 | int i; |
| 2977 | |
| 2978 | for (i = 0; i < 6; i++) |
| 2979 | dev_addr[i] = readb(p + i); |
| 2980 | break; |
| 2981 | } |
| 2982 | index--; |
| 2983 | } |
| 2984 | } |
| 2985 | |
| 2986 | static void get_hme_mac_nonsparc(struct pci_dev *pdev, unsigned char *dev_addr) |
| 2987 | { |
| 2988 | u32 rom_reg_orig; |
| 2989 | void __iomem *p; |
| 2990 | int index; |
| 2991 | |
| 2992 | index = 0; |
| 2993 | if (is_quattro_p(pdev)) |
| 2994 | index = PCI_SLOT(pdev->devfn); |
| 2995 | |
| 2996 | if (pdev->resource[PCI_ROM_RESOURCE].parent == NULL) { |
| 2997 | if (pci_assign_resource(pdev, PCI_ROM_RESOURCE) < 0) |
| 2998 | goto use_random; |
| 2999 | } |
| 3000 | |
| 3001 | pci_read_config_dword(pdev, pdev->rom_base_reg, &rom_reg_orig); |
| 3002 | pci_write_config_dword(pdev, pdev->rom_base_reg, |
| 3003 | rom_reg_orig | PCI_ROM_ADDRESS_ENABLE); |
| 3004 | |
| 3005 | p = ioremap(pci_resource_start(pdev, PCI_ROM_RESOURCE), (64 * 1024)); |
| 3006 | if (p != NULL && readb(p) == 0x55 && readb(p + 1) == 0xaa) |
| 3007 | find_eth_addr_in_vpd(p, (64 * 1024), index, dev_addr); |
| 3008 | |
| 3009 | if (p != NULL) |
| 3010 | iounmap(p); |
| 3011 | |
| 3012 | pci_write_config_dword(pdev, pdev->rom_base_reg, rom_reg_orig); |
| 3013 | return; |
| 3014 | |
| 3015 | use_random: |
| 3016 | /* Sun MAC prefix then 3 random bytes. */ |
| 3017 | dev_addr[0] = 0x08; |
| 3018 | dev_addr[1] = 0x00; |
| 3019 | dev_addr[2] = 0x20; |
| 3020 | get_random_bytes(&dev_addr[3], 3); |
| 3021 | return; |
| 3022 | } |
| 3023 | #endif /* !(__sparc__) */ |
| 3024 | |
| 3025 | static int __init happy_meal_pci_init(struct pci_dev *pdev) |
| 3026 | { |
| 3027 | struct quattro *qp = NULL; |
| 3028 | #ifdef __sparc__ |
| 3029 | struct pcidev_cookie *pcp; |
| 3030 | int node; |
| 3031 | #endif |
| 3032 | struct happy_meal *hp; |
| 3033 | struct net_device *dev; |
| 3034 | void __iomem *hpreg_base; |
| 3035 | unsigned long hpreg_res; |
| 3036 | int i, qfe_slot = -1; |
| 3037 | char prom_name[64]; |
| 3038 | int err; |
| 3039 | |
| 3040 | /* Now make sure pci_dev cookie is there. */ |
| 3041 | #ifdef __sparc__ |
| 3042 | pcp = pdev->sysdata; |
| 3043 | if (pcp == NULL || pcp->prom_node == -1) { |
| 3044 | printk(KERN_ERR "happymeal(PCI): Some PCI device info missing\n"); |
| 3045 | return -ENODEV; |
| 3046 | } |
| 3047 | node = pcp->prom_node; |
| 3048 | |
| 3049 | prom_getstring(node, "name", prom_name, sizeof(prom_name)); |
| 3050 | #else |
| 3051 | if (is_quattro_p(pdev)) |
| 3052 | strcpy(prom_name, "SUNW,qfe"); |
| 3053 | else |
| 3054 | strcpy(prom_name, "SUNW,hme"); |
| 3055 | #endif |
| 3056 | |
| 3057 | err = -ENODEV; |
| 3058 | if (!strcmp(prom_name, "SUNW,qfe") || !strcmp(prom_name, "qfe")) { |
| 3059 | qp = quattro_pci_find(pdev); |
| 3060 | if (qp == NULL) |
| 3061 | goto err_out; |
| 3062 | for (qfe_slot = 0; qfe_slot < 4; qfe_slot++) |
| 3063 | if (qp->happy_meals[qfe_slot] == NULL) |
| 3064 | break; |
| 3065 | if (qfe_slot == 4) |
| 3066 | goto err_out; |
| 3067 | } |
| 3068 | |
| 3069 | dev = alloc_etherdev(sizeof(struct happy_meal)); |
| 3070 | err = -ENOMEM; |
| 3071 | if (!dev) |
| 3072 | goto err_out; |
| 3073 | SET_MODULE_OWNER(dev); |
| 3074 | SET_NETDEV_DEV(dev, &pdev->dev); |
| 3075 | |
| 3076 | if (hme_version_printed++ == 0) |
| 3077 | printk(KERN_INFO "%s", version); |
| 3078 | |
| 3079 | dev->base_addr = (long) pdev; |
| 3080 | |
| 3081 | hp = (struct happy_meal *)dev->priv; |
| 3082 | memset(hp, 0, sizeof(*hp)); |
| 3083 | |
| 3084 | hp->happy_dev = pdev; |
| 3085 | |
| 3086 | spin_lock_init(&hp->happy_lock); |
| 3087 | |
| 3088 | if (qp != NULL) { |
| 3089 | hp->qfe_parent = qp; |
| 3090 | hp->qfe_ent = qfe_slot; |
| 3091 | qp->happy_meals[qfe_slot] = dev; |
| 3092 | } |
| 3093 | |
| 3094 | hpreg_res = pci_resource_start(pdev, 0); |
| 3095 | err = -ENODEV; |
| 3096 | if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0) { |
| 3097 | printk(KERN_ERR "happymeal(PCI): Cannot find proper PCI device base address.\n"); |
| 3098 | goto err_out_clear_quattro; |
| 3099 | } |
| 3100 | if (pci_request_regions(pdev, DRV_NAME)) { |
| 3101 | printk(KERN_ERR "happymeal(PCI): Cannot obtain PCI resources, " |
| 3102 | "aborting.\n"); |
| 3103 | goto err_out_clear_quattro; |
| 3104 | } |
| 3105 | |
| 3106 | if ((hpreg_base = ioremap(hpreg_res, 0x8000)) == 0) { |
| 3107 | printk(KERN_ERR "happymeal(PCI): Unable to remap card memory.\n"); |
| 3108 | goto err_out_free_res; |
| 3109 | } |
| 3110 | |
| 3111 | for (i = 0; i < 6; i++) { |
| 3112 | if (macaddr[i] != 0) |
| 3113 | break; |
| 3114 | } |
| 3115 | if (i < 6) { /* a mac address was given */ |
| 3116 | for (i = 0; i < 6; i++) |
| 3117 | dev->dev_addr[i] = macaddr[i]; |
| 3118 | macaddr[5]++; |
| 3119 | } else { |
| 3120 | #ifdef __sparc__ |
| 3121 | if (qfe_slot != -1 && |
| 3122 | prom_getproplen(node, "local-mac-address") == 6) { |
| 3123 | prom_getproperty(node, "local-mac-address", |
| 3124 | dev->dev_addr, 6); |
| 3125 | } else { |
| 3126 | memcpy(dev->dev_addr, idprom->id_ethaddr, 6); |
| 3127 | } |
| 3128 | #else |
| 3129 | get_hme_mac_nonsparc(pdev, &dev->dev_addr[0]); |
| 3130 | #endif |
| 3131 | } |
| 3132 | |
| 3133 | /* Layout registers. */ |
| 3134 | hp->gregs = (hpreg_base + 0x0000UL); |
| 3135 | hp->etxregs = (hpreg_base + 0x2000UL); |
| 3136 | hp->erxregs = (hpreg_base + 0x4000UL); |
| 3137 | hp->bigmacregs = (hpreg_base + 0x6000UL); |
| 3138 | hp->tcvregs = (hpreg_base + 0x7000UL); |
| 3139 | |
| 3140 | #ifdef __sparc__ |
| 3141 | hp->hm_revision = prom_getintdefault(node, "hm-rev", 0xff); |
| 3142 | if (hp->hm_revision == 0xff) { |
| 3143 | unsigned char prev; |
| 3144 | |
| 3145 | pci_read_config_byte(pdev, PCI_REVISION_ID, &prev); |
| 3146 | hp->hm_revision = 0xc0 | (prev & 0x0f); |
| 3147 | } |
| 3148 | #else |
| 3149 | /* works with this on non-sparc hosts */ |
| 3150 | hp->hm_revision = 0x20; |
| 3151 | #endif |
| 3152 | |
| 3153 | /* Now enable the feature flags we can. */ |
| 3154 | if (hp->hm_revision == 0x20 || hp->hm_revision == 0x21) |
| 3155 | hp->happy_flags = HFLAG_20_21; |
| 3156 | else if (hp->hm_revision != 0xa0 && hp->hm_revision != 0xc0) |
| 3157 | hp->happy_flags = HFLAG_NOT_A0; |
| 3158 | |
| 3159 | if (qp != NULL) |
| 3160 | hp->happy_flags |= HFLAG_QUATTRO; |
| 3161 | |
| 3162 | /* And of course, indicate this is PCI. */ |
| 3163 | hp->happy_flags |= HFLAG_PCI; |
| 3164 | |
| 3165 | #ifdef __sparc__ |
| 3166 | /* Assume PCI happy meals can handle all burst sizes. */ |
| 3167 | hp->happy_bursts = DMA_BURSTBITS; |
| 3168 | #endif |
| 3169 | |
| 3170 | hp->happy_block = (struct hmeal_init_block *) |
| 3171 | pci_alloc_consistent(pdev, PAGE_SIZE, &hp->hblock_dvma); |
| 3172 | |
| 3173 | err = -ENODEV; |
| 3174 | if (!hp->happy_block) { |
| 3175 | printk(KERN_ERR "happymeal(PCI): Cannot get hme init block.\n"); |
| 3176 | goto err_out_iounmap; |
| 3177 | } |
| 3178 | |
| 3179 | hp->linkcheck = 0; |
| 3180 | hp->timer_state = asleep; |
| 3181 | hp->timer_ticks = 0; |
| 3182 | |
| 3183 | init_timer(&hp->happy_timer); |
| 3184 | |
| 3185 | hp->dev = dev; |
| 3186 | dev->open = &happy_meal_open; |
| 3187 | dev->stop = &happy_meal_close; |
| 3188 | dev->hard_start_xmit = &happy_meal_start_xmit; |
| 3189 | dev->get_stats = &happy_meal_get_stats; |
| 3190 | dev->set_multicast_list = &happy_meal_set_multicast; |
| 3191 | dev->tx_timeout = &happy_meal_tx_timeout; |
| 3192 | dev->watchdog_timeo = 5*HZ; |
| 3193 | dev->ethtool_ops = &hme_ethtool_ops; |
| 3194 | dev->irq = pdev->irq; |
| 3195 | dev->dma = 0; |
| 3196 | |
| 3197 | /* Happy Meal can do it all... */ |
| 3198 | dev->features |= NETIF_F_SG | NETIF_F_HW_CSUM; |
| 3199 | |
| 3200 | #if defined(CONFIG_SBUS) && defined(CONFIG_PCI) |
| 3201 | /* Hook up PCI register/dma accessors. */ |
| 3202 | hp->read_desc32 = pci_hme_read_desc32; |
| 3203 | hp->write_txd = pci_hme_write_txd; |
| 3204 | hp->write_rxd = pci_hme_write_rxd; |
| 3205 | hp->dma_map = (u32 (*)(void *, void *, long, int))pci_map_single; |
| 3206 | hp->dma_unmap = (void (*)(void *, u32, long, int))pci_unmap_single; |
| 3207 | hp->dma_sync_for_cpu = (void (*)(void *, u32, long, int)) |
| 3208 | pci_dma_sync_single_for_cpu; |
| 3209 | hp->dma_sync_for_device = (void (*)(void *, u32, long, int)) |
| 3210 | pci_dma_sync_single_for_device; |
| 3211 | hp->read32 = pci_hme_read32; |
| 3212 | hp->write32 = pci_hme_write32; |
| 3213 | #endif |
| 3214 | |
| 3215 | /* Grrr, Happy Meal comes up by default not advertising |
| 3216 | * full duplex 100baseT capabilities, fix this. |
| 3217 | */ |
| 3218 | spin_lock_irq(&hp->happy_lock); |
| 3219 | happy_meal_set_initial_advertisement(hp); |
| 3220 | spin_unlock_irq(&hp->happy_lock); |
| 3221 | |
| 3222 | if (register_netdev(hp->dev)) { |
| 3223 | printk(KERN_ERR "happymeal(PCI): Cannot register net device, " |
| 3224 | "aborting.\n"); |
| 3225 | goto err_out_iounmap; |
| 3226 | } |
| 3227 | |
| 3228 | if (!qfe_slot) { |
| 3229 | struct pci_dev *qpdev = qp->quattro_dev; |
| 3230 | |
| 3231 | prom_name[0] = 0; |
| 3232 | if (!strncmp(dev->name, "eth", 3)) { |
| 3233 | int i = simple_strtoul(dev->name + 3, NULL, 10); |
| 3234 | sprintf(prom_name, "-%d", i + 3); |
| 3235 | } |
| 3236 | printk(KERN_INFO "%s%s: Quattro HME (PCI/CheerIO) 10/100baseT Ethernet ", dev->name, prom_name); |
| 3237 | if (qpdev->vendor == PCI_VENDOR_ID_DEC && |
| 3238 | qpdev->device == PCI_DEVICE_ID_DEC_21153) |
| 3239 | printk("DEC 21153 PCI Bridge\n"); |
| 3240 | else |
| 3241 | printk("unknown bridge %04x.%04x\n", |
| 3242 | qpdev->vendor, qpdev->device); |
| 3243 | } |
| 3244 | |
| 3245 | if (qfe_slot != -1) |
| 3246 | printk(KERN_INFO "%s: Quattro HME slot %d (PCI/CheerIO) 10/100baseT Ethernet ", |
| 3247 | dev->name, qfe_slot); |
| 3248 | else |
| 3249 | printk(KERN_INFO "%s: HAPPY MEAL (PCI/CheerIO) 10/100BaseT Ethernet ", |
| 3250 | dev->name); |
| 3251 | |
| 3252 | for (i = 0; i < 6; i++) |
| 3253 | printk("%2.2x%c", dev->dev_addr[i], i == 5 ? ' ' : ':'); |
| 3254 | |
| 3255 | printk("\n"); |
| 3256 | |
| 3257 | /* We are home free at this point, link us in to the happy |
| 3258 | * device list. |
| 3259 | */ |
| 3260 | hp->next_module = root_happy_dev; |
| 3261 | root_happy_dev = hp; |
| 3262 | |
| 3263 | return 0; |
| 3264 | |
| 3265 | err_out_iounmap: |
| 3266 | iounmap(hp->gregs); |
| 3267 | |
| 3268 | err_out_free_res: |
| 3269 | pci_release_regions(pdev); |
| 3270 | |
| 3271 | err_out_clear_quattro: |
| 3272 | if (qp != NULL) |
| 3273 | qp->happy_meals[qfe_slot] = NULL; |
| 3274 | |
| 3275 | free_netdev(dev); |
| 3276 | |
| 3277 | err_out: |
| 3278 | return err; |
| 3279 | } |
| 3280 | #endif |
| 3281 | |
| 3282 | #ifdef CONFIG_SBUS |
| 3283 | static int __init happy_meal_sbus_probe(void) |
| 3284 | { |
| 3285 | struct sbus_bus *sbus; |
| 3286 | struct sbus_dev *sdev; |
| 3287 | int cards = 0; |
| 3288 | char model[128]; |
| 3289 | |
| 3290 | for_each_sbus(sbus) { |
| 3291 | for_each_sbusdev(sdev, sbus) { |
| 3292 | char *name = sdev->prom_name; |
| 3293 | |
| 3294 | if (!strcmp(name, "SUNW,hme")) { |
| 3295 | cards++; |
| 3296 | prom_getstring(sdev->prom_node, "model", |
| 3297 | model, sizeof(model)); |
| 3298 | if (!strcmp(model, "SUNW,sbus-qfe")) |
| 3299 | happy_meal_sbus_init(sdev, 1); |
| 3300 | else |
| 3301 | happy_meal_sbus_init(sdev, 0); |
| 3302 | } else if (!strcmp(name, "qfe") || |
| 3303 | !strcmp(name, "SUNW,qfe")) { |
| 3304 | cards++; |
| 3305 | happy_meal_sbus_init(sdev, 1); |
| 3306 | } |
| 3307 | } |
| 3308 | } |
| 3309 | if (cards != 0) |
| 3310 | quattro_sbus_register_irqs(); |
| 3311 | return cards; |
| 3312 | } |
| 3313 | #endif |
| 3314 | |
| 3315 | #ifdef CONFIG_PCI |
| 3316 | static int __init happy_meal_pci_probe(void) |
| 3317 | { |
| 3318 | struct pci_dev *pdev = NULL; |
| 3319 | int cards = 0; |
| 3320 | |
| 3321 | while ((pdev = pci_find_device(PCI_VENDOR_ID_SUN, |
| 3322 | PCI_DEVICE_ID_SUN_HAPPYMEAL, pdev)) != NULL) { |
| 3323 | if (pci_enable_device(pdev)) |
| 3324 | continue; |
| 3325 | pci_set_master(pdev); |
| 3326 | cards++; |
| 3327 | happy_meal_pci_init(pdev); |
| 3328 | } |
| 3329 | return cards; |
| 3330 | } |
| 3331 | #endif |
| 3332 | |
| 3333 | static int __init happy_meal_probe(void) |
| 3334 | { |
| 3335 | static int called = 0; |
| 3336 | int cards; |
| 3337 | |
| 3338 | root_happy_dev = NULL; |
| 3339 | |
| 3340 | if (called) |
| 3341 | return -ENODEV; |
| 3342 | called++; |
| 3343 | |
| 3344 | cards = 0; |
| 3345 | #ifdef CONFIG_SBUS |
| 3346 | cards += happy_meal_sbus_probe(); |
| 3347 | #endif |
| 3348 | #ifdef CONFIG_PCI |
| 3349 | cards += happy_meal_pci_probe(); |
| 3350 | #endif |
| 3351 | if (!cards) |
| 3352 | return -ENODEV; |
| 3353 | return 0; |
| 3354 | } |
| 3355 | |
| 3356 | |
| 3357 | static void __exit happy_meal_cleanup_module(void) |
| 3358 | { |
| 3359 | #ifdef CONFIG_SBUS |
| 3360 | struct quattro *last_seen_qfe = NULL; |
| 3361 | #endif |
| 3362 | |
| 3363 | while (root_happy_dev) { |
| 3364 | struct happy_meal *hp = root_happy_dev; |
| 3365 | struct happy_meal *next = root_happy_dev->next_module; |
| 3366 | struct net_device *dev = hp->dev; |
| 3367 | |
| 3368 | /* Unregister netdev before unmapping registers as this |
| 3369 | * call can end up trying to access those registers. |
| 3370 | */ |
| 3371 | unregister_netdev(dev); |
| 3372 | |
| 3373 | #ifdef CONFIG_SBUS |
| 3374 | if (!(hp->happy_flags & HFLAG_PCI)) { |
| 3375 | if (hp->happy_flags & HFLAG_QUATTRO) { |
| 3376 | if (hp->qfe_parent != last_seen_qfe) { |
| 3377 | free_irq(dev->irq, hp->qfe_parent); |
| 3378 | last_seen_qfe = hp->qfe_parent; |
| 3379 | } |
| 3380 | } |
| 3381 | |
| 3382 | sbus_iounmap(hp->gregs, GREG_REG_SIZE); |
| 3383 | sbus_iounmap(hp->etxregs, ETX_REG_SIZE); |
| 3384 | sbus_iounmap(hp->erxregs, ERX_REG_SIZE); |
| 3385 | sbus_iounmap(hp->bigmacregs, BMAC_REG_SIZE); |
| 3386 | sbus_iounmap(hp->tcvregs, TCVR_REG_SIZE); |
| 3387 | sbus_free_consistent(hp->happy_dev, |
| 3388 | PAGE_SIZE, |
| 3389 | hp->happy_block, |
| 3390 | hp->hblock_dvma); |
| 3391 | } |
| 3392 | #endif |
| 3393 | #ifdef CONFIG_PCI |
| 3394 | if ((hp->happy_flags & HFLAG_PCI)) { |
| 3395 | pci_free_consistent(hp->happy_dev, |
| 3396 | PAGE_SIZE, |
| 3397 | hp->happy_block, |
| 3398 | hp->hblock_dvma); |
| 3399 | iounmap(hp->gregs); |
| 3400 | pci_release_regions(hp->happy_dev); |
| 3401 | } |
| 3402 | #endif |
| 3403 | free_netdev(dev); |
| 3404 | |
| 3405 | root_happy_dev = next; |
| 3406 | } |
| 3407 | |
| 3408 | /* Now cleanup the quattro lists. */ |
| 3409 | #ifdef CONFIG_SBUS |
| 3410 | while (qfe_sbus_list) { |
| 3411 | struct quattro *qfe = qfe_sbus_list; |
| 3412 | struct quattro *next = qfe->next; |
| 3413 | |
| 3414 | kfree(qfe); |
| 3415 | |
| 3416 | qfe_sbus_list = next; |
| 3417 | } |
| 3418 | #endif |
| 3419 | #ifdef CONFIG_PCI |
| 3420 | while (qfe_pci_list) { |
| 3421 | struct quattro *qfe = qfe_pci_list; |
| 3422 | struct quattro *next = qfe->next; |
| 3423 | |
| 3424 | kfree(qfe); |
| 3425 | |
| 3426 | qfe_pci_list = next; |
| 3427 | } |
| 3428 | #endif |
| 3429 | } |
| 3430 | |
| 3431 | module_init(happy_meal_probe); |
| 3432 | module_exit(happy_meal_cleanup_module); |