Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame^] | 1 | /* |
| 2 | * pSeries NUMA support |
| 3 | * |
| 4 | * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM |
| 5 | * |
| 6 | * This program is free software; you can redistribute it and/or |
| 7 | * modify it under the terms of the GNU General Public License |
| 8 | * as published by the Free Software Foundation; either version |
| 9 | * 2 of the License, or (at your option) any later version. |
| 10 | */ |
| 11 | #include <linux/threads.h> |
| 12 | #include <linux/bootmem.h> |
| 13 | #include <linux/init.h> |
| 14 | #include <linux/mm.h> |
| 15 | #include <linux/mmzone.h> |
| 16 | #include <linux/module.h> |
| 17 | #include <linux/nodemask.h> |
| 18 | #include <linux/cpu.h> |
| 19 | #include <linux/notifier.h> |
| 20 | #include <asm/lmb.h> |
| 21 | #include <asm/machdep.h> |
| 22 | #include <asm/abs_addr.h> |
| 23 | |
| 24 | static int numa_enabled = 1; |
| 25 | |
| 26 | static int numa_debug; |
| 27 | #define dbg(args...) if (numa_debug) { printk(KERN_INFO args); } |
| 28 | |
| 29 | #ifdef DEBUG_NUMA |
| 30 | #define ARRAY_INITIALISER -1 |
| 31 | #else |
| 32 | #define ARRAY_INITIALISER 0 |
| 33 | #endif |
| 34 | |
| 35 | int numa_cpu_lookup_table[NR_CPUS] = { [ 0 ... (NR_CPUS - 1)] = |
| 36 | ARRAY_INITIALISER}; |
| 37 | char *numa_memory_lookup_table; |
| 38 | cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES]; |
| 39 | int nr_cpus_in_node[MAX_NUMNODES] = { [0 ... (MAX_NUMNODES -1)] = 0}; |
| 40 | |
| 41 | struct pglist_data *node_data[MAX_NUMNODES]; |
| 42 | bootmem_data_t __initdata plat_node_bdata[MAX_NUMNODES]; |
| 43 | static int min_common_depth; |
| 44 | |
| 45 | /* |
| 46 | * We need somewhere to store start/span for each node until we have |
| 47 | * allocated the real node_data structures. |
| 48 | */ |
| 49 | static struct { |
| 50 | unsigned long node_start_pfn; |
| 51 | unsigned long node_end_pfn; |
| 52 | unsigned long node_present_pages; |
| 53 | } init_node_data[MAX_NUMNODES] __initdata; |
| 54 | |
| 55 | EXPORT_SYMBOL(node_data); |
| 56 | EXPORT_SYMBOL(numa_cpu_lookup_table); |
| 57 | EXPORT_SYMBOL(numa_memory_lookup_table); |
| 58 | EXPORT_SYMBOL(numa_cpumask_lookup_table); |
| 59 | EXPORT_SYMBOL(nr_cpus_in_node); |
| 60 | |
| 61 | static inline void map_cpu_to_node(int cpu, int node) |
| 62 | { |
| 63 | numa_cpu_lookup_table[cpu] = node; |
| 64 | if (!(cpu_isset(cpu, numa_cpumask_lookup_table[node]))) { |
| 65 | cpu_set(cpu, numa_cpumask_lookup_table[node]); |
| 66 | nr_cpus_in_node[node]++; |
| 67 | } |
| 68 | } |
| 69 | |
| 70 | #ifdef CONFIG_HOTPLUG_CPU |
| 71 | static void unmap_cpu_from_node(unsigned long cpu) |
| 72 | { |
| 73 | int node = numa_cpu_lookup_table[cpu]; |
| 74 | |
| 75 | dbg("removing cpu %lu from node %d\n", cpu, node); |
| 76 | |
| 77 | if (cpu_isset(cpu, numa_cpumask_lookup_table[node])) { |
| 78 | cpu_clear(cpu, numa_cpumask_lookup_table[node]); |
| 79 | nr_cpus_in_node[node]--; |
| 80 | } else { |
| 81 | printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n", |
| 82 | cpu, node); |
| 83 | } |
| 84 | } |
| 85 | #endif /* CONFIG_HOTPLUG_CPU */ |
| 86 | |
| 87 | static struct device_node * __devinit find_cpu_node(unsigned int cpu) |
| 88 | { |
| 89 | unsigned int hw_cpuid = get_hard_smp_processor_id(cpu); |
| 90 | struct device_node *cpu_node = NULL; |
| 91 | unsigned int *interrupt_server, *reg; |
| 92 | int len; |
| 93 | |
| 94 | while ((cpu_node = of_find_node_by_type(cpu_node, "cpu")) != NULL) { |
| 95 | /* Try interrupt server first */ |
| 96 | interrupt_server = (unsigned int *)get_property(cpu_node, |
| 97 | "ibm,ppc-interrupt-server#s", &len); |
| 98 | |
| 99 | len = len / sizeof(u32); |
| 100 | |
| 101 | if (interrupt_server && (len > 0)) { |
| 102 | while (len--) { |
| 103 | if (interrupt_server[len] == hw_cpuid) |
| 104 | return cpu_node; |
| 105 | } |
| 106 | } else { |
| 107 | reg = (unsigned int *)get_property(cpu_node, |
| 108 | "reg", &len); |
| 109 | if (reg && (len > 0) && (reg[0] == hw_cpuid)) |
| 110 | return cpu_node; |
| 111 | } |
| 112 | } |
| 113 | |
| 114 | return NULL; |
| 115 | } |
| 116 | |
| 117 | /* must hold reference to node during call */ |
| 118 | static int *of_get_associativity(struct device_node *dev) |
| 119 | { |
| 120 | return (unsigned int *)get_property(dev, "ibm,associativity", NULL); |
| 121 | } |
| 122 | |
| 123 | static int of_node_numa_domain(struct device_node *device) |
| 124 | { |
| 125 | int numa_domain; |
| 126 | unsigned int *tmp; |
| 127 | |
| 128 | if (min_common_depth == -1) |
| 129 | return 0; |
| 130 | |
| 131 | tmp = of_get_associativity(device); |
| 132 | if (tmp && (tmp[0] >= min_common_depth)) { |
| 133 | numa_domain = tmp[min_common_depth]; |
| 134 | } else { |
| 135 | dbg("WARNING: no NUMA information for %s\n", |
| 136 | device->full_name); |
| 137 | numa_domain = 0; |
| 138 | } |
| 139 | return numa_domain; |
| 140 | } |
| 141 | |
| 142 | /* |
| 143 | * In theory, the "ibm,associativity" property may contain multiple |
| 144 | * associativity lists because a resource may be multiply connected |
| 145 | * into the machine. This resource then has different associativity |
| 146 | * characteristics relative to its multiple connections. We ignore |
| 147 | * this for now. We also assume that all cpu and memory sets have |
| 148 | * their distances represented at a common level. This won't be |
| 149 | * true for heirarchical NUMA. |
| 150 | * |
| 151 | * In any case the ibm,associativity-reference-points should give |
| 152 | * the correct depth for a normal NUMA system. |
| 153 | * |
| 154 | * - Dave Hansen <haveblue@us.ibm.com> |
| 155 | */ |
| 156 | static int __init find_min_common_depth(void) |
| 157 | { |
| 158 | int depth; |
| 159 | unsigned int *ref_points; |
| 160 | struct device_node *rtas_root; |
| 161 | unsigned int len; |
| 162 | |
| 163 | rtas_root = of_find_node_by_path("/rtas"); |
| 164 | |
| 165 | if (!rtas_root) |
| 166 | return -1; |
| 167 | |
| 168 | /* |
| 169 | * this property is 2 32-bit integers, each representing a level of |
| 170 | * depth in the associativity nodes. The first is for an SMP |
| 171 | * configuration (should be all 0's) and the second is for a normal |
| 172 | * NUMA configuration. |
| 173 | */ |
| 174 | ref_points = (unsigned int *)get_property(rtas_root, |
| 175 | "ibm,associativity-reference-points", &len); |
| 176 | |
| 177 | if ((len >= 1) && ref_points) { |
| 178 | depth = ref_points[1]; |
| 179 | } else { |
| 180 | dbg("WARNING: could not find NUMA " |
| 181 | "associativity reference point\n"); |
| 182 | depth = -1; |
| 183 | } |
| 184 | of_node_put(rtas_root); |
| 185 | |
| 186 | return depth; |
| 187 | } |
| 188 | |
| 189 | static int __init get_mem_addr_cells(void) |
| 190 | { |
| 191 | struct device_node *memory = NULL; |
| 192 | int rc; |
| 193 | |
| 194 | memory = of_find_node_by_type(memory, "memory"); |
| 195 | if (!memory) |
| 196 | return 0; /* it won't matter */ |
| 197 | |
| 198 | rc = prom_n_addr_cells(memory); |
| 199 | return rc; |
| 200 | } |
| 201 | |
| 202 | static int __init get_mem_size_cells(void) |
| 203 | { |
| 204 | struct device_node *memory = NULL; |
| 205 | int rc; |
| 206 | |
| 207 | memory = of_find_node_by_type(memory, "memory"); |
| 208 | if (!memory) |
| 209 | return 0; /* it won't matter */ |
| 210 | rc = prom_n_size_cells(memory); |
| 211 | return rc; |
| 212 | } |
| 213 | |
| 214 | static unsigned long read_n_cells(int n, unsigned int **buf) |
| 215 | { |
| 216 | unsigned long result = 0; |
| 217 | |
| 218 | while (n--) { |
| 219 | result = (result << 32) | **buf; |
| 220 | (*buf)++; |
| 221 | } |
| 222 | return result; |
| 223 | } |
| 224 | |
| 225 | /* |
| 226 | * Figure out to which domain a cpu belongs and stick it there. |
| 227 | * Return the id of the domain used. |
| 228 | */ |
| 229 | static int numa_setup_cpu(unsigned long lcpu) |
| 230 | { |
| 231 | int numa_domain = 0; |
| 232 | struct device_node *cpu = find_cpu_node(lcpu); |
| 233 | |
| 234 | if (!cpu) { |
| 235 | WARN_ON(1); |
| 236 | goto out; |
| 237 | } |
| 238 | |
| 239 | numa_domain = of_node_numa_domain(cpu); |
| 240 | |
| 241 | if (numa_domain >= num_online_nodes()) { |
| 242 | /* |
| 243 | * POWER4 LPAR uses 0xffff as invalid node, |
| 244 | * dont warn in this case. |
| 245 | */ |
| 246 | if (numa_domain != 0xffff) |
| 247 | printk(KERN_ERR "WARNING: cpu %ld " |
| 248 | "maps to invalid NUMA node %d\n", |
| 249 | lcpu, numa_domain); |
| 250 | numa_domain = 0; |
| 251 | } |
| 252 | out: |
| 253 | node_set_online(numa_domain); |
| 254 | |
| 255 | map_cpu_to_node(lcpu, numa_domain); |
| 256 | |
| 257 | of_node_put(cpu); |
| 258 | |
| 259 | return numa_domain; |
| 260 | } |
| 261 | |
| 262 | static int cpu_numa_callback(struct notifier_block *nfb, |
| 263 | unsigned long action, |
| 264 | void *hcpu) |
| 265 | { |
| 266 | unsigned long lcpu = (unsigned long)hcpu; |
| 267 | int ret = NOTIFY_DONE; |
| 268 | |
| 269 | switch (action) { |
| 270 | case CPU_UP_PREPARE: |
| 271 | if (min_common_depth == -1 || !numa_enabled) |
| 272 | map_cpu_to_node(lcpu, 0); |
| 273 | else |
| 274 | numa_setup_cpu(lcpu); |
| 275 | ret = NOTIFY_OK; |
| 276 | break; |
| 277 | #ifdef CONFIG_HOTPLUG_CPU |
| 278 | case CPU_DEAD: |
| 279 | case CPU_UP_CANCELED: |
| 280 | unmap_cpu_from_node(lcpu); |
| 281 | break; |
| 282 | ret = NOTIFY_OK; |
| 283 | #endif |
| 284 | } |
| 285 | return ret; |
| 286 | } |
| 287 | |
| 288 | /* |
| 289 | * Check and possibly modify a memory region to enforce the memory limit. |
| 290 | * |
| 291 | * Returns the size the region should have to enforce the memory limit. |
| 292 | * This will either be the original value of size, a truncated value, |
| 293 | * or zero. If the returned value of size is 0 the region should be |
| 294 | * discarded as it lies wholy above the memory limit. |
| 295 | */ |
| 296 | static unsigned long __init numa_enforce_memory_limit(unsigned long start, unsigned long size) |
| 297 | { |
| 298 | /* |
| 299 | * We use lmb_end_of_DRAM() in here instead of memory_limit because |
| 300 | * we've already adjusted it for the limit and it takes care of |
| 301 | * having memory holes below the limit. |
| 302 | */ |
| 303 | extern unsigned long memory_limit; |
| 304 | |
| 305 | if (! memory_limit) |
| 306 | return size; |
| 307 | |
| 308 | if (start + size <= lmb_end_of_DRAM()) |
| 309 | return size; |
| 310 | |
| 311 | if (start >= lmb_end_of_DRAM()) |
| 312 | return 0; |
| 313 | |
| 314 | return lmb_end_of_DRAM() - start; |
| 315 | } |
| 316 | |
| 317 | static int __init parse_numa_properties(void) |
| 318 | { |
| 319 | struct device_node *cpu = NULL; |
| 320 | struct device_node *memory = NULL; |
| 321 | int addr_cells, size_cells; |
| 322 | int max_domain = 0; |
| 323 | long entries = lmb_end_of_DRAM() >> MEMORY_INCREMENT_SHIFT; |
| 324 | unsigned long i; |
| 325 | |
| 326 | if (numa_enabled == 0) { |
| 327 | printk(KERN_WARNING "NUMA disabled by user\n"); |
| 328 | return -1; |
| 329 | } |
| 330 | |
| 331 | numa_memory_lookup_table = |
| 332 | (char *)abs_to_virt(lmb_alloc(entries * sizeof(char), 1)); |
| 333 | memset(numa_memory_lookup_table, 0, entries * sizeof(char)); |
| 334 | |
| 335 | for (i = 0; i < entries ; i++) |
| 336 | numa_memory_lookup_table[i] = ARRAY_INITIALISER; |
| 337 | |
| 338 | min_common_depth = find_min_common_depth(); |
| 339 | |
| 340 | dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth); |
| 341 | if (min_common_depth < 0) |
| 342 | return min_common_depth; |
| 343 | |
| 344 | max_domain = numa_setup_cpu(boot_cpuid); |
| 345 | |
| 346 | /* |
| 347 | * Even though we connect cpus to numa domains later in SMP init, |
| 348 | * we need to know the maximum node id now. This is because each |
| 349 | * node id must have NODE_DATA etc backing it. |
| 350 | * As a result of hotplug we could still have cpus appear later on |
| 351 | * with larger node ids. In that case we force the cpu into node 0. |
| 352 | */ |
| 353 | for_each_cpu(i) { |
| 354 | int numa_domain; |
| 355 | |
| 356 | cpu = find_cpu_node(i); |
| 357 | |
| 358 | if (cpu) { |
| 359 | numa_domain = of_node_numa_domain(cpu); |
| 360 | of_node_put(cpu); |
| 361 | |
| 362 | if (numa_domain < MAX_NUMNODES && |
| 363 | max_domain < numa_domain) |
| 364 | max_domain = numa_domain; |
| 365 | } |
| 366 | } |
| 367 | |
| 368 | addr_cells = get_mem_addr_cells(); |
| 369 | size_cells = get_mem_size_cells(); |
| 370 | memory = NULL; |
| 371 | while ((memory = of_find_node_by_type(memory, "memory")) != NULL) { |
| 372 | unsigned long start; |
| 373 | unsigned long size; |
| 374 | int numa_domain; |
| 375 | int ranges; |
| 376 | unsigned int *memcell_buf; |
| 377 | unsigned int len; |
| 378 | |
| 379 | memcell_buf = (unsigned int *)get_property(memory, "reg", &len); |
| 380 | if (!memcell_buf || len <= 0) |
| 381 | continue; |
| 382 | |
| 383 | ranges = memory->n_addrs; |
| 384 | new_range: |
| 385 | /* these are order-sensitive, and modify the buffer pointer */ |
| 386 | start = read_n_cells(addr_cells, &memcell_buf); |
| 387 | size = read_n_cells(size_cells, &memcell_buf); |
| 388 | |
| 389 | start = _ALIGN_DOWN(start, MEMORY_INCREMENT); |
| 390 | size = _ALIGN_UP(size, MEMORY_INCREMENT); |
| 391 | |
| 392 | numa_domain = of_node_numa_domain(memory); |
| 393 | |
| 394 | if (numa_domain >= MAX_NUMNODES) { |
| 395 | if (numa_domain != 0xffff) |
| 396 | printk(KERN_ERR "WARNING: memory at %lx maps " |
| 397 | "to invalid NUMA node %d\n", start, |
| 398 | numa_domain); |
| 399 | numa_domain = 0; |
| 400 | } |
| 401 | |
| 402 | if (max_domain < numa_domain) |
| 403 | max_domain = numa_domain; |
| 404 | |
| 405 | if (! (size = numa_enforce_memory_limit(start, size))) { |
| 406 | if (--ranges) |
| 407 | goto new_range; |
| 408 | else |
| 409 | continue; |
| 410 | } |
| 411 | |
| 412 | /* |
| 413 | * Initialize new node struct, or add to an existing one. |
| 414 | */ |
| 415 | if (init_node_data[numa_domain].node_end_pfn) { |
| 416 | if ((start / PAGE_SIZE) < |
| 417 | init_node_data[numa_domain].node_start_pfn) |
| 418 | init_node_data[numa_domain].node_start_pfn = |
| 419 | start / PAGE_SIZE; |
| 420 | if (((start / PAGE_SIZE) + (size / PAGE_SIZE)) > |
| 421 | init_node_data[numa_domain].node_end_pfn) |
| 422 | init_node_data[numa_domain].node_end_pfn = |
| 423 | (start / PAGE_SIZE) + |
| 424 | (size / PAGE_SIZE); |
| 425 | |
| 426 | init_node_data[numa_domain].node_present_pages += |
| 427 | size / PAGE_SIZE; |
| 428 | } else { |
| 429 | node_set_online(numa_domain); |
| 430 | |
| 431 | init_node_data[numa_domain].node_start_pfn = |
| 432 | start / PAGE_SIZE; |
| 433 | init_node_data[numa_domain].node_end_pfn = |
| 434 | init_node_data[numa_domain].node_start_pfn + |
| 435 | size / PAGE_SIZE; |
| 436 | init_node_data[numa_domain].node_present_pages = |
| 437 | size / PAGE_SIZE; |
| 438 | } |
| 439 | |
| 440 | for (i = start ; i < (start+size); i += MEMORY_INCREMENT) |
| 441 | numa_memory_lookup_table[i >> MEMORY_INCREMENT_SHIFT] = |
| 442 | numa_domain; |
| 443 | |
| 444 | if (--ranges) |
| 445 | goto new_range; |
| 446 | } |
| 447 | |
| 448 | for (i = 0; i <= max_domain; i++) |
| 449 | node_set_online(i); |
| 450 | |
| 451 | return 0; |
| 452 | } |
| 453 | |
| 454 | static void __init setup_nonnuma(void) |
| 455 | { |
| 456 | unsigned long top_of_ram = lmb_end_of_DRAM(); |
| 457 | unsigned long total_ram = lmb_phys_mem_size(); |
| 458 | unsigned long i; |
| 459 | |
| 460 | printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n", |
| 461 | top_of_ram, total_ram); |
| 462 | printk(KERN_INFO "Memory hole size: %ldMB\n", |
| 463 | (top_of_ram - total_ram) >> 20); |
| 464 | |
| 465 | if (!numa_memory_lookup_table) { |
| 466 | long entries = top_of_ram >> MEMORY_INCREMENT_SHIFT; |
| 467 | numa_memory_lookup_table = |
| 468 | (char *)abs_to_virt(lmb_alloc(entries * sizeof(char), 1)); |
| 469 | memset(numa_memory_lookup_table, 0, entries * sizeof(char)); |
| 470 | for (i = 0; i < entries ; i++) |
| 471 | numa_memory_lookup_table[i] = ARRAY_INITIALISER; |
| 472 | } |
| 473 | |
| 474 | map_cpu_to_node(boot_cpuid, 0); |
| 475 | |
| 476 | node_set_online(0); |
| 477 | |
| 478 | init_node_data[0].node_start_pfn = 0; |
| 479 | init_node_data[0].node_end_pfn = lmb_end_of_DRAM() / PAGE_SIZE; |
| 480 | init_node_data[0].node_present_pages = total_ram / PAGE_SIZE; |
| 481 | |
| 482 | for (i = 0 ; i < top_of_ram; i += MEMORY_INCREMENT) |
| 483 | numa_memory_lookup_table[i >> MEMORY_INCREMENT_SHIFT] = 0; |
| 484 | } |
| 485 | |
| 486 | static void __init dump_numa_topology(void) |
| 487 | { |
| 488 | unsigned int node; |
| 489 | unsigned int count; |
| 490 | |
| 491 | if (min_common_depth == -1 || !numa_enabled) |
| 492 | return; |
| 493 | |
| 494 | for_each_online_node(node) { |
| 495 | unsigned long i; |
| 496 | |
| 497 | printk(KERN_INFO "Node %d Memory:", node); |
| 498 | |
| 499 | count = 0; |
| 500 | |
| 501 | for (i = 0; i < lmb_end_of_DRAM(); i += MEMORY_INCREMENT) { |
| 502 | if (numa_memory_lookup_table[i >> MEMORY_INCREMENT_SHIFT] == node) { |
| 503 | if (count == 0) |
| 504 | printk(" 0x%lx", i); |
| 505 | ++count; |
| 506 | } else { |
| 507 | if (count > 0) |
| 508 | printk("-0x%lx", i); |
| 509 | count = 0; |
| 510 | } |
| 511 | } |
| 512 | |
| 513 | if (count > 0) |
| 514 | printk("-0x%lx", i); |
| 515 | printk("\n"); |
| 516 | } |
| 517 | return; |
| 518 | } |
| 519 | |
| 520 | /* |
| 521 | * Allocate some memory, satisfying the lmb or bootmem allocator where |
| 522 | * required. nid is the preferred node and end is the physical address of |
| 523 | * the highest address in the node. |
| 524 | * |
| 525 | * Returns the physical address of the memory. |
| 526 | */ |
| 527 | static unsigned long careful_allocation(int nid, unsigned long size, |
| 528 | unsigned long align, unsigned long end) |
| 529 | { |
| 530 | unsigned long ret = lmb_alloc_base(size, align, end); |
| 531 | |
| 532 | /* retry over all memory */ |
| 533 | if (!ret) |
| 534 | ret = lmb_alloc_base(size, align, lmb_end_of_DRAM()); |
| 535 | |
| 536 | if (!ret) |
| 537 | panic("numa.c: cannot allocate %lu bytes on node %d", |
| 538 | size, nid); |
| 539 | |
| 540 | /* |
| 541 | * If the memory came from a previously allocated node, we must |
| 542 | * retry with the bootmem allocator. |
| 543 | */ |
| 544 | if (pa_to_nid(ret) < nid) { |
| 545 | nid = pa_to_nid(ret); |
| 546 | ret = (unsigned long)__alloc_bootmem_node(NODE_DATA(nid), |
| 547 | size, align, 0); |
| 548 | |
| 549 | if (!ret) |
| 550 | panic("numa.c: cannot allocate %lu bytes on node %d", |
| 551 | size, nid); |
| 552 | |
| 553 | ret = virt_to_abs(ret); |
| 554 | |
| 555 | dbg("alloc_bootmem %lx %lx\n", ret, size); |
| 556 | } |
| 557 | |
| 558 | return ret; |
| 559 | } |
| 560 | |
| 561 | void __init do_init_bootmem(void) |
| 562 | { |
| 563 | int nid; |
| 564 | int addr_cells, size_cells; |
| 565 | struct device_node *memory = NULL; |
| 566 | static struct notifier_block ppc64_numa_nb = { |
| 567 | .notifier_call = cpu_numa_callback, |
| 568 | .priority = 1 /* Must run before sched domains notifier. */ |
| 569 | }; |
| 570 | |
| 571 | min_low_pfn = 0; |
| 572 | max_low_pfn = lmb_end_of_DRAM() >> PAGE_SHIFT; |
| 573 | max_pfn = max_low_pfn; |
| 574 | |
| 575 | if (parse_numa_properties()) |
| 576 | setup_nonnuma(); |
| 577 | else |
| 578 | dump_numa_topology(); |
| 579 | |
| 580 | register_cpu_notifier(&ppc64_numa_nb); |
| 581 | |
| 582 | for_each_online_node(nid) { |
| 583 | unsigned long start_paddr, end_paddr; |
| 584 | int i; |
| 585 | unsigned long bootmem_paddr; |
| 586 | unsigned long bootmap_pages; |
| 587 | |
| 588 | start_paddr = init_node_data[nid].node_start_pfn * PAGE_SIZE; |
| 589 | end_paddr = init_node_data[nid].node_end_pfn * PAGE_SIZE; |
| 590 | |
| 591 | /* Allocate the node structure node local if possible */ |
| 592 | NODE_DATA(nid) = (struct pglist_data *)careful_allocation(nid, |
| 593 | sizeof(struct pglist_data), |
| 594 | SMP_CACHE_BYTES, end_paddr); |
| 595 | NODE_DATA(nid) = abs_to_virt(NODE_DATA(nid)); |
| 596 | memset(NODE_DATA(nid), 0, sizeof(struct pglist_data)); |
| 597 | |
| 598 | dbg("node %d\n", nid); |
| 599 | dbg("NODE_DATA() = %p\n", NODE_DATA(nid)); |
| 600 | |
| 601 | NODE_DATA(nid)->bdata = &plat_node_bdata[nid]; |
| 602 | NODE_DATA(nid)->node_start_pfn = |
| 603 | init_node_data[nid].node_start_pfn; |
| 604 | NODE_DATA(nid)->node_spanned_pages = |
| 605 | end_paddr - start_paddr; |
| 606 | |
| 607 | if (NODE_DATA(nid)->node_spanned_pages == 0) |
| 608 | continue; |
| 609 | |
| 610 | dbg("start_paddr = %lx\n", start_paddr); |
| 611 | dbg("end_paddr = %lx\n", end_paddr); |
| 612 | |
| 613 | bootmap_pages = bootmem_bootmap_pages((end_paddr - start_paddr) >> PAGE_SHIFT); |
| 614 | |
| 615 | bootmem_paddr = careful_allocation(nid, |
| 616 | bootmap_pages << PAGE_SHIFT, |
| 617 | PAGE_SIZE, end_paddr); |
| 618 | memset(abs_to_virt(bootmem_paddr), 0, |
| 619 | bootmap_pages << PAGE_SHIFT); |
| 620 | dbg("bootmap_paddr = %lx\n", bootmem_paddr); |
| 621 | |
| 622 | init_bootmem_node(NODE_DATA(nid), bootmem_paddr >> PAGE_SHIFT, |
| 623 | start_paddr >> PAGE_SHIFT, |
| 624 | end_paddr >> PAGE_SHIFT); |
| 625 | |
| 626 | /* |
| 627 | * We need to do another scan of all memory sections to |
| 628 | * associate memory with the correct node. |
| 629 | */ |
| 630 | addr_cells = get_mem_addr_cells(); |
| 631 | size_cells = get_mem_size_cells(); |
| 632 | memory = NULL; |
| 633 | while ((memory = of_find_node_by_type(memory, "memory")) != NULL) { |
| 634 | unsigned long mem_start, mem_size; |
| 635 | int numa_domain, ranges; |
| 636 | unsigned int *memcell_buf; |
| 637 | unsigned int len; |
| 638 | |
| 639 | memcell_buf = (unsigned int *)get_property(memory, "reg", &len); |
| 640 | if (!memcell_buf || len <= 0) |
| 641 | continue; |
| 642 | |
| 643 | ranges = memory->n_addrs; /* ranges in cell */ |
| 644 | new_range: |
| 645 | mem_start = read_n_cells(addr_cells, &memcell_buf); |
| 646 | mem_size = read_n_cells(size_cells, &memcell_buf); |
| 647 | numa_domain = numa_enabled ? of_node_numa_domain(memory) : 0; |
| 648 | |
| 649 | if (numa_domain != nid) |
| 650 | continue; |
| 651 | |
| 652 | mem_size = numa_enforce_memory_limit(mem_start, mem_size); |
| 653 | if (mem_size) { |
| 654 | dbg("free_bootmem %lx %lx\n", mem_start, mem_size); |
| 655 | free_bootmem_node(NODE_DATA(nid), mem_start, mem_size); |
| 656 | } |
| 657 | |
| 658 | if (--ranges) /* process all ranges in cell */ |
| 659 | goto new_range; |
| 660 | } |
| 661 | |
| 662 | /* |
| 663 | * Mark reserved regions on this node |
| 664 | */ |
| 665 | for (i = 0; i < lmb.reserved.cnt; i++) { |
| 666 | unsigned long physbase = lmb.reserved.region[i].physbase; |
| 667 | unsigned long size = lmb.reserved.region[i].size; |
| 668 | |
| 669 | if (pa_to_nid(physbase) != nid && |
| 670 | pa_to_nid(physbase+size-1) != nid) |
| 671 | continue; |
| 672 | |
| 673 | if (physbase < end_paddr && |
| 674 | (physbase+size) > start_paddr) { |
| 675 | /* overlaps */ |
| 676 | if (physbase < start_paddr) { |
| 677 | size -= start_paddr - physbase; |
| 678 | physbase = start_paddr; |
| 679 | } |
| 680 | |
| 681 | if (size > end_paddr - physbase) |
| 682 | size = end_paddr - physbase; |
| 683 | |
| 684 | dbg("reserve_bootmem %lx %lx\n", physbase, |
| 685 | size); |
| 686 | reserve_bootmem_node(NODE_DATA(nid), physbase, |
| 687 | size); |
| 688 | } |
| 689 | } |
| 690 | } |
| 691 | } |
| 692 | |
| 693 | void __init paging_init(void) |
| 694 | { |
| 695 | unsigned long zones_size[MAX_NR_ZONES]; |
| 696 | unsigned long zholes_size[MAX_NR_ZONES]; |
| 697 | int nid; |
| 698 | |
| 699 | memset(zones_size, 0, sizeof(zones_size)); |
| 700 | memset(zholes_size, 0, sizeof(zholes_size)); |
| 701 | |
| 702 | for_each_online_node(nid) { |
| 703 | unsigned long start_pfn; |
| 704 | unsigned long end_pfn; |
| 705 | |
| 706 | start_pfn = init_node_data[nid].node_start_pfn; |
| 707 | end_pfn = init_node_data[nid].node_end_pfn; |
| 708 | |
| 709 | zones_size[ZONE_DMA] = end_pfn - start_pfn; |
| 710 | zholes_size[ZONE_DMA] = zones_size[ZONE_DMA] - |
| 711 | init_node_data[nid].node_present_pages; |
| 712 | |
| 713 | dbg("free_area_init node %d %lx %lx (hole: %lx)\n", nid, |
| 714 | zones_size[ZONE_DMA], start_pfn, zholes_size[ZONE_DMA]); |
| 715 | |
| 716 | free_area_init_node(nid, NODE_DATA(nid), zones_size, |
| 717 | start_pfn, zholes_size); |
| 718 | } |
| 719 | } |
| 720 | |
| 721 | static int __init early_numa(char *p) |
| 722 | { |
| 723 | if (!p) |
| 724 | return 0; |
| 725 | |
| 726 | if (strstr(p, "off")) |
| 727 | numa_enabled = 0; |
| 728 | |
| 729 | if (strstr(p, "debug")) |
| 730 | numa_debug = 1; |
| 731 | |
| 732 | return 0; |
| 733 | } |
| 734 | early_param("numa", early_numa); |