blob: 92999631c81966a7a310d6b718955b83fd378fbe [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/* $Id: pbm.h,v 1.27 2001/08/12 13:18:23 davem Exp $
2 * pbm.h: UltraSparc PCI controller software state.
3 *
4 * Copyright (C) 1997, 1998, 1999 David S. Miller (davem@redhat.com)
5 */
6
7#ifndef __SPARC64_PBM_H
8#define __SPARC64_PBM_H
9
10#include <linux/types.h>
11#include <linux/pci.h>
12#include <linux/ioport.h>
13#include <linux/spinlock.h>
14
15#include <asm/io.h>
16#include <asm/page.h>
17#include <asm/oplib.h>
18
19/* The abstraction used here is that there are PCI controllers,
20 * each with one (Sabre) or two (PSYCHO/SCHIZO) PCI bus modules
21 * underneath. Each PCI bus module uses an IOMMU (shared by both
22 * PBMs of a controller, or per-PBM), and if a streaming buffer
23 * is present, each PCI bus module has it's own. (ie. the IOMMU
24 * might be shared between PBMs, the STC is never shared)
25 * Furthermore, each PCI bus module controls it's own autonomous
26 * PCI bus.
27 */
28
29#define PBM_LOGCLUSTERS 3
30#define PBM_NCLUSTERS (1 << PBM_LOGCLUSTERS)
31
32struct pci_controller_info;
33
34/* This contains the software state necessary to drive a PCI
35 * controller's IOMMU.
36 */
37struct pci_iommu {
38 /* This protects the controller's IOMMU and all
39 * streaming buffers underneath.
40 */
41 spinlock_t lock;
42
43 /* Context allocator. */
44 unsigned int iommu_cur_ctx;
45
46 /* IOMMU page table, a linear array of ioptes. */
47 iopte_t *page_table; /* The page table itself. */
48 int page_table_sz_bits; /* log2 of ow many pages does it map? */
49
50 /* Base PCI memory space address where IOMMU mappings
51 * begin.
52 */
53 u32 page_table_map_base;
54
55 /* IOMMU Controller Registers */
56 unsigned long iommu_control; /* IOMMU control register */
57 unsigned long iommu_tsbbase; /* IOMMU page table base register */
58 unsigned long iommu_flush; /* IOMMU page flush register */
59 unsigned long iommu_ctxflush; /* IOMMU context flush register */
60
61 /* This is a register in the PCI controller, which if
62 * read will have no side-effects but will guarantee
63 * completion of all previous writes into IOMMU/STC.
64 */
65 unsigned long write_complete_reg;
66
67 /* The lowest used consistent mapping entry. Since
68 * we allocate consistent maps out of cluster 0 this
69 * is relative to the beginning of closter 0.
70 */
71 u32 lowest_consistent_map;
72
73 /* In order to deal with some buggy third-party PCI bridges that
74 * do wrong prefetching, we never mark valid mappings as invalid.
75 * Instead we point them at this dummy page.
76 */
77 unsigned long dummy_page;
78 unsigned long dummy_page_pa;
79
80 /* If PBM_NCLUSTERS is ever decreased to 4 or lower,
81 * or if largest supported page_table_sz * 8K goes above
82 * 2GB, you must increase the size of the type of
83 * these counters. You have been duly warned. -DaveM
84 */
85 struct {
86 u16 next;
87 u16 flush;
88 } alloc_info[PBM_NCLUSTERS];
89
90 /* Here a PCI controller driver describes the areas of
91 * PCI memory space where DMA to/from physical memory
92 * are addressed. Drivers interrogate the PCI layer
93 * if their device has addressing limitations. They
94 * do so via pci_dma_supported, and pass in a mask of
95 * DMA address bits their device can actually drive.
96 *
97 * The test for being usable is:
98 * (device_mask & dma_addr_mask) == dma_addr_mask
99 */
100 u32 dma_addr_mask;
101};
102
103extern void pci_iommu_table_init(struct pci_iommu *, int);
104
105/* This describes a PCI bus module's streaming buffer. */
106struct pci_strbuf {
107 int strbuf_enabled; /* Present and using it? */
108
109 /* Streaming Buffer Control Registers */
110 unsigned long strbuf_control; /* STC control register */
111 unsigned long strbuf_pflush; /* STC page flush register */
112 unsigned long strbuf_fsync; /* STC flush synchronization reg */
113 unsigned long strbuf_ctxflush; /* STC context flush register */
114 unsigned long strbuf_ctxmatch_base; /* STC context flush match reg */
115 unsigned long strbuf_flushflag_pa; /* Physical address of flush flag */
116 volatile unsigned long *strbuf_flushflag; /* The flush flag itself */
117
118 /* And this is the actual flush flag area.
119 * We allocate extra because the chips require
120 * a 64-byte aligned area.
121 */
122 volatile unsigned long __flushflag_buf[(64 + (64 - 1)) / sizeof(long)];
123};
124
125#define PCI_STC_FLUSHFLAG_INIT(STC) \
126 (*((STC)->strbuf_flushflag) = 0UL)
127#define PCI_STC_FLUSHFLAG_SET(STC) \
128 (*((STC)->strbuf_flushflag) != 0UL)
129
130/* There can be quite a few ranges and interrupt maps on a PCI
131 * segment. Thus...
132 */
133#define PROM_PCIRNG_MAX 64
134#define PROM_PCIIMAP_MAX 64
135
136struct pci_pbm_info {
137 /* PCI controller we sit under. */
138 struct pci_controller_info *parent;
139
140 /* Physical address base of controller registers. */
141 unsigned long controller_regs;
142
143 /* Physical address base of PBM registers. */
144 unsigned long pbm_regs;
145
146 /* Opaque 32-bit system bus Port ID. */
147 u32 portid;
148
149 /* Chipset version information. */
150 int chip_type;
151#define PBM_CHIP_TYPE_SABRE 1
152#define PBM_CHIP_TYPE_PSYCHO 2
153#define PBM_CHIP_TYPE_SCHIZO 3
154#define PBM_CHIP_TYPE_SCHIZO_PLUS 4
155#define PBM_CHIP_TYPE_TOMATILLO 5
156 int chip_version;
157 int chip_revision;
158
159 /* Name used for top-level resources. */
160 char name[64];
161
162 /* OBP specific information. */
163 int prom_node;
164 char prom_name[64];
165 struct linux_prom_pci_ranges pbm_ranges[PROM_PCIRNG_MAX];
166 int num_pbm_ranges;
167 struct linux_prom_pci_intmap pbm_intmap[PROM_PCIIMAP_MAX];
168 int num_pbm_intmap;
169 struct linux_prom_pci_intmask pbm_intmask;
170 u64 ino_bitmap;
171
172 /* PBM I/O and Memory space resources. */
173 struct resource io_space;
174 struct resource mem_space;
175
176 /* Base of PCI Config space, can be per-PBM or shared. */
177 unsigned long config_space;
178
179 /* State of 66MHz capabilities on this PBM. */
180 int is_66mhz_capable;
181 int all_devs_66mhz;
182
183 /* This PBM's streaming buffer. */
184 struct pci_strbuf stc;
185
186 /* IOMMU state, potentially shared by both PBM segments. */
187 struct pci_iommu *iommu;
188
189 /* PCI slot mapping. */
190 unsigned int pci_first_slot;
191
192 /* Now things for the actual PCI bus probes. */
193 unsigned int pci_first_busno;
194 unsigned int pci_last_busno;
195 struct pci_bus *pci_bus;
196};
197
198struct pci_controller_info {
199 /* List of all PCI controllers. */
200 struct pci_controller_info *next;
201
202 /* Each controller gets a unique index, used mostly for
203 * error logging purposes.
204 */
205 int index;
206
207 /* Do the PBMs both exist in the same PCI domain? */
208 int pbms_same_domain;
209
210 /* The PCI bus modules controlled by us. */
211 struct pci_pbm_info pbm_A;
212 struct pci_pbm_info pbm_B;
213
214 /* Operations which are controller specific. */
215 void (*scan_bus)(struct pci_controller_info *);
216 unsigned int (*irq_build)(struct pci_pbm_info *, struct pci_dev *, unsigned int);
217 void (*base_address_update)(struct pci_dev *, int);
218 void (*resource_adjust)(struct pci_dev *, struct resource *, struct resource *);
219
220 /* Now things for the actual PCI bus probes. */
221 struct pci_ops *pci_ops;
222 unsigned int pci_first_busno;
223 unsigned int pci_last_busno;
224
225 void *starfire_cookie;
226};
227
228/* PCI devices which are not bridges have this placed in their pci_dev
229 * sysdata member. This makes OBP aware PCI device drivers easier to
230 * code.
231 */
232struct pcidev_cookie {
233 struct pci_pbm_info *pbm;
234 char prom_name[64];
235 int prom_node;
236 struct linux_prom_pci_registers prom_regs[PROMREG_MAX];
237 int num_prom_regs;
238 struct linux_prom_pci_registers prom_assignments[PROMREG_MAX];
239 int num_prom_assignments;
240};
241
242/* Currently these are the same across all PCI controllers
243 * we support. Someday they may not be...
244 */
245#define PCI_IRQ_IGN 0x000007c0 /* Interrupt Group Number */
246#define PCI_IRQ_INO 0x0000003f /* Interrupt Number */
247
248#endif /* !(__SPARC64_PBM_H) */