Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | #ifndef _PARISC_PGTABLE_H |
| 2 | #define _PARISC_PGTABLE_H |
| 3 | |
| 4 | #include <asm-generic/4level-fixup.h> |
| 5 | |
| 6 | #include <linux/config.h> |
| 7 | #include <asm/fixmap.h> |
| 8 | |
| 9 | #ifndef __ASSEMBLY__ |
| 10 | /* |
| 11 | * we simulate an x86-style page table for the linux mm code |
| 12 | */ |
| 13 | |
| 14 | #include <linux/spinlock.h> |
| 15 | #include <asm/processor.h> |
| 16 | #include <asm/cache.h> |
| 17 | #include <asm/bitops.h> |
| 18 | |
| 19 | /* |
| 20 | * kern_addr_valid(ADDR) tests if ADDR is pointing to valid kernel |
| 21 | * memory. For the return value to be meaningful, ADDR must be >= |
| 22 | * PAGE_OFFSET. This operation can be relatively expensive (e.g., |
| 23 | * require a hash-, or multi-level tree-lookup or something of that |
| 24 | * sort) but it guarantees to return TRUE only if accessing the page |
| 25 | * at that address does not cause an error. Note that there may be |
| 26 | * addresses for which kern_addr_valid() returns FALSE even though an |
| 27 | * access would not cause an error (e.g., this is typically true for |
| 28 | * memory mapped I/O regions. |
| 29 | * |
| 30 | * XXX Need to implement this for parisc. |
| 31 | */ |
| 32 | #define kern_addr_valid(addr) (1) |
| 33 | |
| 34 | /* Certain architectures need to do special things when PTEs |
| 35 | * within a page table are directly modified. Thus, the following |
| 36 | * hook is made available. |
| 37 | */ |
| 38 | #define set_pte(pteptr, pteval) \ |
| 39 | do{ \ |
| 40 | *(pteptr) = (pteval); \ |
| 41 | } while(0) |
| 42 | #define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval) |
| 43 | |
| 44 | #endif /* !__ASSEMBLY__ */ |
| 45 | |
| 46 | #define pte_ERROR(e) \ |
| 47 | printk("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e)) |
| 48 | #define pmd_ERROR(e) \ |
| 49 | printk("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, (unsigned long)pmd_val(e)) |
| 50 | #define pgd_ERROR(e) \ |
| 51 | printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, (unsigned long)pgd_val(e)) |
| 52 | |
| 53 | /* Note: If you change ISTACK_SIZE, you need to change the corresponding |
| 54 | * values in vmlinux.lds and vmlinux64.lds (init_istack section). Also, |
| 55 | * the "order" and size need to agree. |
| 56 | */ |
| 57 | |
| 58 | #define ISTACK_SIZE 32768 /* Interrupt Stack Size */ |
| 59 | #define ISTACK_ORDER 3 |
| 60 | |
| 61 | /* This is the size of the initially mapped kernel memory (i.e. currently |
| 62 | * 0 to 1<<23 == 8MB */ |
| 63 | #ifdef CONFIG_64BIT |
| 64 | #define KERNEL_INITIAL_ORDER 24 |
| 65 | #else |
| 66 | #define KERNEL_INITIAL_ORDER 23 |
| 67 | #endif |
| 68 | #define KERNEL_INITIAL_SIZE (1 << KERNEL_INITIAL_ORDER) |
| 69 | |
| 70 | #ifdef CONFIG_64BIT |
| 71 | #define PT_NLEVELS 3 |
| 72 | #define PGD_ORDER 1 /* Number of pages per pgd */ |
| 73 | #define PMD_ORDER 1 /* Number of pages per pmd */ |
| 74 | #define PGD_ALLOC_ORDER 2 /* first pgd contains pmd */ |
| 75 | #else |
| 76 | #define PT_NLEVELS 2 |
| 77 | #define PGD_ORDER 1 /* Number of pages per pgd */ |
| 78 | #define PGD_ALLOC_ORDER PGD_ORDER |
| 79 | #endif |
| 80 | |
| 81 | /* Definitions for 3rd level (we use PLD here for Page Lower directory |
| 82 | * because PTE_SHIFT is used lower down to mean shift that has to be |
| 83 | * done to get usable bits out of the PTE) */ |
| 84 | #define PLD_SHIFT PAGE_SHIFT |
| 85 | #define PLD_SIZE PAGE_SIZE |
| 86 | #define BITS_PER_PTE (PAGE_SHIFT - BITS_PER_PTE_ENTRY) |
| 87 | #define PTRS_PER_PTE (1UL << BITS_PER_PTE) |
| 88 | |
| 89 | /* Definitions for 2nd level */ |
| 90 | #define pgtable_cache_init() do { } while (0) |
| 91 | |
| 92 | #define PMD_SHIFT (PLD_SHIFT + BITS_PER_PTE) |
| 93 | #define PMD_SIZE (1UL << PMD_SHIFT) |
| 94 | #define PMD_MASK (~(PMD_SIZE-1)) |
| 95 | #if PT_NLEVELS == 3 |
| 96 | #define BITS_PER_PMD (PAGE_SHIFT + PMD_ORDER - BITS_PER_PMD_ENTRY) |
| 97 | #else |
| 98 | #define BITS_PER_PMD 0 |
| 99 | #endif |
| 100 | #define PTRS_PER_PMD (1UL << BITS_PER_PMD) |
| 101 | |
| 102 | /* Definitions for 1st level */ |
| 103 | #define PGDIR_SHIFT (PMD_SHIFT + BITS_PER_PMD) |
| 104 | #define BITS_PER_PGD (PAGE_SHIFT + PGD_ORDER - BITS_PER_PGD_ENTRY) |
| 105 | #define PGDIR_SIZE (1UL << PGDIR_SHIFT) |
| 106 | #define PGDIR_MASK (~(PGDIR_SIZE-1)) |
| 107 | #define PTRS_PER_PGD (1UL << BITS_PER_PGD) |
| 108 | #define USER_PTRS_PER_PGD PTRS_PER_PGD |
| 109 | |
| 110 | #define MAX_ADDRBITS (PGDIR_SHIFT + BITS_PER_PGD) |
| 111 | #define MAX_ADDRESS (1UL << MAX_ADDRBITS) |
| 112 | |
| 113 | #define SPACEID_SHIFT (MAX_ADDRBITS - 32) |
| 114 | |
| 115 | /* This calculates the number of initial pages we need for the initial |
| 116 | * page tables */ |
| 117 | #define PT_INITIAL (1 << (KERNEL_INITIAL_ORDER - PMD_SHIFT)) |
| 118 | |
| 119 | /* |
| 120 | * pgd entries used up by user/kernel: |
| 121 | */ |
| 122 | |
Hugh Dickins | d455a36 | 2005-04-19 13:29:23 -0700 | [diff] [blame] | 123 | #define FIRST_USER_ADDRESS 0 |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 124 | |
| 125 | #ifndef __ASSEMBLY__ |
| 126 | extern void *vmalloc_start; |
| 127 | #define PCXL_DMA_MAP_SIZE (8*1024*1024) |
| 128 | #define VMALLOC_START ((unsigned long)vmalloc_start) |
| 129 | /* this is a fixmap remnant, see fixmap.h */ |
| 130 | #define VMALLOC_END (KERNEL_MAP_END) |
| 131 | #endif |
| 132 | |
| 133 | /* NB: The tlb miss handlers make certain assumptions about the order */ |
| 134 | /* of the following bits, so be careful (One example, bits 25-31 */ |
| 135 | /* are moved together in one instruction). */ |
| 136 | |
| 137 | #define _PAGE_READ_BIT 31 /* (0x001) read access allowed */ |
| 138 | #define _PAGE_WRITE_BIT 30 /* (0x002) write access allowed */ |
| 139 | #define _PAGE_EXEC_BIT 29 /* (0x004) execute access allowed */ |
| 140 | #define _PAGE_GATEWAY_BIT 28 /* (0x008) privilege promotion allowed */ |
| 141 | #define _PAGE_DMB_BIT 27 /* (0x010) Data Memory Break enable (B bit) */ |
| 142 | #define _PAGE_DIRTY_BIT 26 /* (0x020) Page Dirty (D bit) */ |
| 143 | #define _PAGE_FILE_BIT _PAGE_DIRTY_BIT /* overload this bit */ |
| 144 | #define _PAGE_REFTRAP_BIT 25 /* (0x040) Page Ref. Trap enable (T bit) */ |
| 145 | #define _PAGE_NO_CACHE_BIT 24 /* (0x080) Uncached Page (U bit) */ |
| 146 | #define _PAGE_ACCESSED_BIT 23 /* (0x100) Software: Page Accessed */ |
| 147 | #define _PAGE_PRESENT_BIT 22 /* (0x200) Software: translation valid */ |
| 148 | #define _PAGE_FLUSH_BIT 21 /* (0x400) Software: translation valid */ |
| 149 | /* for cache flushing only */ |
| 150 | #define _PAGE_USER_BIT 20 /* (0x800) Software: User accessible page */ |
| 151 | |
| 152 | /* N.B. The bits are defined in terms of a 32 bit word above, so the */ |
| 153 | /* following macro is ok for both 32 and 64 bit. */ |
| 154 | |
| 155 | #define xlate_pabit(x) (31 - x) |
| 156 | |
| 157 | /* this defines the shift to the usable bits in the PTE it is set so |
| 158 | * that the valid bits _PAGE_PRESENT_BIT and _PAGE_USER_BIT are set |
| 159 | * to zero */ |
| 160 | #define PTE_SHIFT xlate_pabit(_PAGE_USER_BIT) |
| 161 | |
| 162 | /* this is how many bits may be used by the file functions */ |
| 163 | #define PTE_FILE_MAX_BITS (BITS_PER_LONG - PTE_SHIFT) |
| 164 | |
| 165 | #define pte_to_pgoff(pte) (pte_val(pte) >> PTE_SHIFT) |
| 166 | #define pgoff_to_pte(off) ((pte_t) { ((off) << PTE_SHIFT) | _PAGE_FILE }) |
| 167 | |
| 168 | #define _PAGE_READ (1 << xlate_pabit(_PAGE_READ_BIT)) |
| 169 | #define _PAGE_WRITE (1 << xlate_pabit(_PAGE_WRITE_BIT)) |
| 170 | #define _PAGE_RW (_PAGE_READ | _PAGE_WRITE) |
| 171 | #define _PAGE_EXEC (1 << xlate_pabit(_PAGE_EXEC_BIT)) |
| 172 | #define _PAGE_GATEWAY (1 << xlate_pabit(_PAGE_GATEWAY_BIT)) |
| 173 | #define _PAGE_DMB (1 << xlate_pabit(_PAGE_DMB_BIT)) |
| 174 | #define _PAGE_DIRTY (1 << xlate_pabit(_PAGE_DIRTY_BIT)) |
| 175 | #define _PAGE_REFTRAP (1 << xlate_pabit(_PAGE_REFTRAP_BIT)) |
| 176 | #define _PAGE_NO_CACHE (1 << xlate_pabit(_PAGE_NO_CACHE_BIT)) |
| 177 | #define _PAGE_ACCESSED (1 << xlate_pabit(_PAGE_ACCESSED_BIT)) |
| 178 | #define _PAGE_PRESENT (1 << xlate_pabit(_PAGE_PRESENT_BIT)) |
| 179 | #define _PAGE_FLUSH (1 << xlate_pabit(_PAGE_FLUSH_BIT)) |
| 180 | #define _PAGE_USER (1 << xlate_pabit(_PAGE_USER_BIT)) |
| 181 | #define _PAGE_FILE (1 << xlate_pabit(_PAGE_FILE_BIT)) |
| 182 | |
| 183 | #define _PAGE_TABLE (_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | _PAGE_DIRTY | _PAGE_ACCESSED) |
| 184 | #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY) |
| 185 | #define _PAGE_KERNEL (_PAGE_PRESENT | _PAGE_EXEC | _PAGE_READ | _PAGE_WRITE | _PAGE_DIRTY | _PAGE_ACCESSED) |
| 186 | |
| 187 | /* The pgd/pmd contains a ptr (in phys addr space); since all pgds/pmds |
| 188 | * are page-aligned, we don't care about the PAGE_OFFSET bits, except |
| 189 | * for a few meta-information bits, so we shift the address to be |
| 190 | * able to effectively address 40-bits of physical address space. */ |
| 191 | #define _PxD_PRESENT_BIT 31 |
| 192 | #define _PxD_ATTACHED_BIT 30 |
| 193 | #define _PxD_VALID_BIT 29 |
| 194 | |
| 195 | #define PxD_FLAG_PRESENT (1 << xlate_pabit(_PxD_PRESENT_BIT)) |
| 196 | #define PxD_FLAG_ATTACHED (1 << xlate_pabit(_PxD_ATTACHED_BIT)) |
| 197 | #define PxD_FLAG_VALID (1 << xlate_pabit(_PxD_VALID_BIT)) |
| 198 | #define PxD_FLAG_MASK (0xf) |
| 199 | #define PxD_FLAG_SHIFT (4) |
| 200 | #define PxD_VALUE_SHIFT (8) |
| 201 | |
| 202 | #ifndef __ASSEMBLY__ |
| 203 | |
| 204 | #define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED) |
| 205 | #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | _PAGE_WRITE | _PAGE_ACCESSED) |
| 206 | /* Others seem to make this executable, I don't know if that's correct |
| 207 | or not. The stack is mapped this way though so this is necessary |
| 208 | in the short term - dhd@linuxcare.com, 2000-08-08 */ |
| 209 | #define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | _PAGE_ACCESSED) |
| 210 | #define PAGE_WRITEONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_WRITE | _PAGE_ACCESSED) |
| 211 | #define PAGE_EXECREAD __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | _PAGE_EXEC |_PAGE_ACCESSED) |
| 212 | #define PAGE_COPY PAGE_EXECREAD |
| 213 | #define PAGE_RWX __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | _PAGE_WRITE | _PAGE_EXEC |_PAGE_ACCESSED) |
| 214 | #define PAGE_KERNEL __pgprot(_PAGE_KERNEL) |
| 215 | #define PAGE_KERNEL_RO __pgprot(_PAGE_PRESENT | _PAGE_EXEC | _PAGE_READ | _PAGE_DIRTY | _PAGE_ACCESSED) |
| 216 | #define PAGE_KERNEL_UNC __pgprot(_PAGE_KERNEL | _PAGE_NO_CACHE) |
| 217 | #define PAGE_GATEWAY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | _PAGE_GATEWAY| _PAGE_READ) |
| 218 | #define PAGE_FLUSH __pgprot(_PAGE_FLUSH) |
| 219 | |
| 220 | |
| 221 | /* |
| 222 | * We could have an execute only page using "gateway - promote to priv |
| 223 | * level 3", but that is kind of silly. So, the way things are defined |
| 224 | * now, we must always have read permission for pages with execute |
| 225 | * permission. For the fun of it we'll go ahead and support write only |
| 226 | * pages. |
| 227 | */ |
| 228 | |
| 229 | /*xwr*/ |
| 230 | #define __P000 PAGE_NONE |
| 231 | #define __P001 PAGE_READONLY |
| 232 | #define __P010 __P000 /* copy on write */ |
| 233 | #define __P011 __P001 /* copy on write */ |
| 234 | #define __P100 PAGE_EXECREAD |
| 235 | #define __P101 PAGE_EXECREAD |
| 236 | #define __P110 __P100 /* copy on write */ |
| 237 | #define __P111 __P101 /* copy on write */ |
| 238 | |
| 239 | #define __S000 PAGE_NONE |
| 240 | #define __S001 PAGE_READONLY |
| 241 | #define __S010 PAGE_WRITEONLY |
| 242 | #define __S011 PAGE_SHARED |
| 243 | #define __S100 PAGE_EXECREAD |
| 244 | #define __S101 PAGE_EXECREAD |
| 245 | #define __S110 PAGE_RWX |
| 246 | #define __S111 PAGE_RWX |
| 247 | |
| 248 | extern pgd_t swapper_pg_dir[]; /* declared in init_task.c */ |
| 249 | |
| 250 | /* initial page tables for 0-8MB for kernel */ |
| 251 | |
| 252 | extern pte_t pg0[]; |
| 253 | |
| 254 | /* zero page used for uninitialized stuff */ |
| 255 | |
| 256 | extern unsigned long *empty_zero_page; |
| 257 | |
| 258 | /* |
| 259 | * ZERO_PAGE is a global shared page that is always zero: used |
| 260 | * for zero-mapped memory areas etc.. |
| 261 | */ |
| 262 | |
| 263 | #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page)) |
| 264 | |
| 265 | #define pte_none(x) ((pte_val(x) == 0) || (pte_val(x) & _PAGE_FLUSH)) |
| 266 | #define pte_present(x) (pte_val(x) & _PAGE_PRESENT) |
| 267 | #define pte_clear(mm,addr,xp) do { pte_val(*(xp)) = 0; } while (0) |
| 268 | |
| 269 | #define pmd_flag(x) (pmd_val(x) & PxD_FLAG_MASK) |
| 270 | #define pmd_address(x) ((unsigned long)(pmd_val(x) &~ PxD_FLAG_MASK) << PxD_VALUE_SHIFT) |
| 271 | #define pgd_flag(x) (pgd_val(x) & PxD_FLAG_MASK) |
| 272 | #define pgd_address(x) ((unsigned long)(pgd_val(x) &~ PxD_FLAG_MASK) << PxD_VALUE_SHIFT) |
| 273 | |
| 274 | #ifdef CONFIG_64BIT |
| 275 | /* The first entry of the permanent pmd is not there if it contains |
| 276 | * the gateway marker */ |
| 277 | #define pmd_none(x) (!pmd_val(x) || pmd_flag(x) == PxD_FLAG_ATTACHED) |
| 278 | #else |
| 279 | #define pmd_none(x) (!pmd_val(x)) |
| 280 | #endif |
| 281 | #define pmd_bad(x) (!(pmd_flag(x) & PxD_FLAG_VALID)) |
| 282 | #define pmd_present(x) (pmd_flag(x) & PxD_FLAG_PRESENT) |
| 283 | static inline void pmd_clear(pmd_t *pmd) { |
| 284 | #ifdef CONFIG_64BIT |
| 285 | if (pmd_flag(*pmd) & PxD_FLAG_ATTACHED) |
| 286 | /* This is the entry pointing to the permanent pmd |
| 287 | * attached to the pgd; cannot clear it */ |
| 288 | __pmd_val_set(*pmd, PxD_FLAG_ATTACHED); |
| 289 | else |
| 290 | #endif |
| 291 | __pmd_val_set(*pmd, 0); |
| 292 | } |
| 293 | |
| 294 | |
| 295 | |
| 296 | #if PT_NLEVELS == 3 |
| 297 | #define pgd_page(pgd) ((unsigned long) __va(pgd_address(pgd))) |
| 298 | |
| 299 | /* For 64 bit we have three level tables */ |
| 300 | |
| 301 | #define pgd_none(x) (!pgd_val(x)) |
| 302 | #define pgd_bad(x) (!(pgd_flag(x) & PxD_FLAG_VALID)) |
| 303 | #define pgd_present(x) (pgd_flag(x) & PxD_FLAG_PRESENT) |
| 304 | static inline void pgd_clear(pgd_t *pgd) { |
| 305 | #ifdef CONFIG_64BIT |
| 306 | if(pgd_flag(*pgd) & PxD_FLAG_ATTACHED) |
| 307 | /* This is the permanent pmd attached to the pgd; cannot |
| 308 | * free it */ |
| 309 | return; |
| 310 | #endif |
| 311 | __pgd_val_set(*pgd, 0); |
| 312 | } |
| 313 | #else |
| 314 | /* |
| 315 | * The "pgd_xxx()" functions here are trivial for a folded two-level |
| 316 | * setup: the pgd is never bad, and a pmd always exists (as it's folded |
| 317 | * into the pgd entry) |
| 318 | */ |
| 319 | extern inline int pgd_none(pgd_t pgd) { return 0; } |
| 320 | extern inline int pgd_bad(pgd_t pgd) { return 0; } |
| 321 | extern inline int pgd_present(pgd_t pgd) { return 1; } |
| 322 | extern inline void pgd_clear(pgd_t * pgdp) { } |
| 323 | #endif |
| 324 | |
| 325 | /* |
| 326 | * The following only work if pte_present() is true. |
| 327 | * Undefined behaviour if not.. |
| 328 | */ |
| 329 | extern inline int pte_read(pte_t pte) { return pte_val(pte) & _PAGE_READ; } |
| 330 | extern inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; } |
| 331 | extern inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; } |
| 332 | extern inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_WRITE; } |
| 333 | extern inline int pte_file(pte_t pte) { return pte_val(pte) & _PAGE_FILE; } |
| 334 | extern inline int pte_user(pte_t pte) { return pte_val(pte) & _PAGE_USER; } |
| 335 | |
| 336 | extern inline pte_t pte_rdprotect(pte_t pte) { pte_val(pte) &= ~_PAGE_READ; return pte; } |
| 337 | extern inline pte_t pte_mkclean(pte_t pte) { pte_val(pte) &= ~_PAGE_DIRTY; return pte; } |
| 338 | extern inline pte_t pte_mkold(pte_t pte) { pte_val(pte) &= ~_PAGE_ACCESSED; return pte; } |
| 339 | extern inline pte_t pte_wrprotect(pte_t pte) { pte_val(pte) &= ~_PAGE_WRITE; return pte; } |
| 340 | extern inline pte_t pte_mkread(pte_t pte) { pte_val(pte) |= _PAGE_READ; return pte; } |
| 341 | extern inline pte_t pte_mkdirty(pte_t pte) { pte_val(pte) |= _PAGE_DIRTY; return pte; } |
| 342 | extern inline pte_t pte_mkyoung(pte_t pte) { pte_val(pte) |= _PAGE_ACCESSED; return pte; } |
| 343 | extern inline pte_t pte_mkwrite(pte_t pte) { pte_val(pte) |= _PAGE_WRITE; return pte; } |
| 344 | |
| 345 | /* |
| 346 | * Conversion functions: convert a page and protection to a page entry, |
| 347 | * and a page entry and page directory to the page they refer to. |
| 348 | */ |
| 349 | #define __mk_pte(addr,pgprot) \ |
| 350 | ({ \ |
| 351 | pte_t __pte; \ |
| 352 | \ |
| 353 | pte_val(__pte) = ((addr)+pgprot_val(pgprot)); \ |
| 354 | \ |
| 355 | __pte; \ |
| 356 | }) |
| 357 | |
| 358 | #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot)) |
| 359 | |
| 360 | static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot) |
| 361 | { |
| 362 | pte_t pte; |
| 363 | pte_val(pte) = (pfn << PAGE_SHIFT) | pgprot_val(pgprot); |
| 364 | return pte; |
| 365 | } |
| 366 | |
| 367 | /* This takes a physical page address that is used by the remapping functions */ |
| 368 | #define mk_pte_phys(physpage, pgprot) \ |
| 369 | ({ pte_t __pte; pte_val(__pte) = physpage + pgprot_val(pgprot); __pte; }) |
| 370 | |
| 371 | extern inline pte_t pte_modify(pte_t pte, pgprot_t newprot) |
| 372 | { pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot); return pte; } |
| 373 | |
| 374 | /* Permanent address of a page. On parisc we don't have highmem. */ |
| 375 | |
| 376 | #define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT) |
| 377 | |
| 378 | #define pte_page(pte) (pfn_to_page(pte_pfn(pte))) |
| 379 | |
| 380 | #define pmd_page_kernel(pmd) ((unsigned long) __va(pmd_address(pmd))) |
| 381 | |
| 382 | #define __pmd_page(pmd) ((unsigned long) __va(pmd_address(pmd))) |
| 383 | #define pmd_page(pmd) virt_to_page((void *)__pmd_page(pmd)) |
| 384 | |
| 385 | #define pgd_index(address) ((address) >> PGDIR_SHIFT) |
| 386 | |
| 387 | /* to find an entry in a page-table-directory */ |
| 388 | #define pgd_offset(mm, address) \ |
| 389 | ((mm)->pgd + ((address) >> PGDIR_SHIFT)) |
| 390 | |
| 391 | /* to find an entry in a kernel page-table-directory */ |
| 392 | #define pgd_offset_k(address) pgd_offset(&init_mm, address) |
| 393 | |
| 394 | /* Find an entry in the second-level page table.. */ |
| 395 | |
| 396 | #if PT_NLEVELS == 3 |
| 397 | #define pmd_offset(dir,address) \ |
| 398 | ((pmd_t *) pgd_page(*(dir)) + (((address)>>PMD_SHIFT) & (PTRS_PER_PMD-1))) |
| 399 | #else |
| 400 | #define pmd_offset(dir,addr) ((pmd_t *) dir) |
| 401 | #endif |
| 402 | |
| 403 | /* Find an entry in the third-level page table.. */ |
| 404 | #define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1)) |
| 405 | #define pte_offset_kernel(pmd, address) \ |
| 406 | ((pte_t *) pmd_page_kernel(*(pmd)) + pte_index(address)) |
| 407 | #define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address) |
| 408 | #define pte_offset_map_nested(pmd, address) pte_offset_kernel(pmd, address) |
| 409 | #define pte_unmap(pte) do { } while (0) |
| 410 | #define pte_unmap_nested(pte) do { } while (0) |
| 411 | |
| 412 | #define pte_unmap(pte) do { } while (0) |
| 413 | #define pte_unmap_nested(pte) do { } while (0) |
| 414 | |
| 415 | extern void paging_init (void); |
| 416 | |
| 417 | /* Used for deferring calls to flush_dcache_page() */ |
| 418 | |
| 419 | #define PG_dcache_dirty PG_arch_1 |
| 420 | |
| 421 | struct vm_area_struct; /* forward declaration (include/linux/mm.h) */ |
| 422 | extern void update_mmu_cache(struct vm_area_struct *, unsigned long, pte_t); |
| 423 | |
| 424 | /* Encode and de-code a swap entry */ |
| 425 | |
| 426 | #define __swp_type(x) ((x).val & 0x1f) |
| 427 | #define __swp_offset(x) ( (((x).val >> 6) & 0x7) | \ |
| 428 | (((x).val >> 8) & ~0x7) ) |
| 429 | #define __swp_entry(type, offset) ((swp_entry_t) { (type) | \ |
| 430 | ((offset & 0x7) << 6) | \ |
| 431 | ((offset & ~0x7) << 8) }) |
| 432 | #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) |
| 433 | #define __swp_entry_to_pte(x) ((pte_t) { (x).val }) |
| 434 | |
| 435 | static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep) |
| 436 | { |
| 437 | #ifdef CONFIG_SMP |
| 438 | if (!pte_young(*ptep)) |
| 439 | return 0; |
| 440 | return test_and_clear_bit(xlate_pabit(_PAGE_ACCESSED_BIT), &pte_val(*ptep)); |
| 441 | #else |
| 442 | pte_t pte = *ptep; |
| 443 | if (!pte_young(pte)) |
| 444 | return 0; |
| 445 | set_pte_at(vma->vm_mm, addr, ptep, pte_mkold(pte)); |
| 446 | return 1; |
| 447 | #endif |
| 448 | } |
| 449 | |
| 450 | static inline int ptep_test_and_clear_dirty(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep) |
| 451 | { |
| 452 | #ifdef CONFIG_SMP |
| 453 | if (!pte_dirty(*ptep)) |
| 454 | return 0; |
| 455 | return test_and_clear_bit(xlate_pabit(_PAGE_DIRTY_BIT), &pte_val(*ptep)); |
| 456 | #else |
| 457 | pte_t pte = *ptep; |
| 458 | if (!pte_dirty(pte)) |
| 459 | return 0; |
| 460 | set_pte_at(vma->vm_mm, addr, ptep, pte_mkclean(pte)); |
| 461 | return 1; |
| 462 | #endif |
| 463 | } |
| 464 | |
| 465 | extern spinlock_t pa_dbit_lock; |
| 466 | |
| 467 | static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) |
| 468 | { |
| 469 | pte_t old_pte; |
| 470 | pte_t pte; |
| 471 | |
| 472 | spin_lock(&pa_dbit_lock); |
| 473 | pte = old_pte = *ptep; |
| 474 | pte_val(pte) &= ~_PAGE_PRESENT; |
| 475 | pte_val(pte) |= _PAGE_FLUSH; |
| 476 | set_pte_at(mm,addr,ptep,pte); |
| 477 | spin_unlock(&pa_dbit_lock); |
| 478 | |
| 479 | return old_pte; |
| 480 | } |
| 481 | |
| 482 | static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep) |
| 483 | { |
| 484 | #ifdef CONFIG_SMP |
| 485 | unsigned long new, old; |
| 486 | |
| 487 | do { |
| 488 | old = pte_val(*ptep); |
| 489 | new = pte_val(pte_wrprotect(__pte (old))); |
| 490 | } while (cmpxchg((unsigned long *) ptep, old, new) != old); |
| 491 | #else |
| 492 | pte_t old_pte = *ptep; |
| 493 | set_pte_at(mm, addr, ptep, pte_wrprotect(old_pte)); |
| 494 | #endif |
| 495 | } |
| 496 | |
| 497 | #define pte_same(A,B) (pte_val(A) == pte_val(B)) |
| 498 | |
| 499 | #endif /* !__ASSEMBLY__ */ |
| 500 | |
| 501 | #define io_remap_page_range(vma, vaddr, paddr, size, prot) \ |
| 502 | remap_pfn_range(vma, vaddr, (paddr) >> PAGE_SHIFT, size, prot) |
| 503 | |
| 504 | #define io_remap_pfn_range(vma, vaddr, pfn, size, prot) \ |
| 505 | remap_pfn_range(vma, vaddr, pfn, size, prot) |
| 506 | |
| 507 | #define MK_IOSPACE_PFN(space, pfn) (pfn) |
| 508 | #define GET_IOSPACE(pfn) 0 |
| 509 | #define GET_PFN(pfn) (pfn) |
| 510 | |
| 511 | /* We provide our own get_unmapped_area to provide cache coherency */ |
| 512 | |
| 513 | #define HAVE_ARCH_UNMAPPED_AREA |
| 514 | |
| 515 | #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG |
| 516 | #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_DIRTY |
| 517 | #define __HAVE_ARCH_PTEP_GET_AND_CLEAR |
| 518 | #define __HAVE_ARCH_PTEP_SET_WRPROTECT |
| 519 | #define __HAVE_ARCH_PTE_SAME |
| 520 | #include <asm-generic/pgtable.h> |
| 521 | |
| 522 | #endif /* _PARISC_PGTABLE_H */ |