blob: 17f2504c26334472be0d562c1ef38344f197075f [file] [log] [blame]
Hendrik Brueckner19c93782015-04-28 12:29:06 +02001/*
2 * Hardware-accelerated CRC-32 variants for Linux on z Systems
3 *
4 * Use the z/Architecture Vector Extension Facility to accelerate the
5 * computing of bitreflected CRC-32 checksums for IEEE 802.3 Ethernet
6 * and Castagnoli.
7 *
8 * This CRC-32 implementation algorithm is bitreflected and processes
9 * the least-significant bit first (Little-Endian).
10 *
11 * Copyright IBM Corp. 2015
12 * Author(s): Hendrik Brueckner <brueckner@linux.vnet.ibm.com>
13 */
14
15#include <linux/linkage.h>
16#include <asm/vx-insn.h>
17
18/* Vector register range containing CRC-32 constants */
19#define CONST_PERM_LE2BE %v9
20#define CONST_R2R1 %v10
21#define CONST_R4R3 %v11
22#define CONST_R5 %v12
23#define CONST_RU_POLY %v13
24#define CONST_CRC_POLY %v14
25
26.data
27.align 8
28
29/*
30 * The CRC-32 constant block contains reduction constants to fold and
31 * process particular chunks of the input data stream in parallel.
32 *
33 * For the CRC-32 variants, the constants are precomputed according to
34 * these definitions:
35 *
36 * R1 = [(x4*128+32 mod P'(x) << 32)]' << 1
37 * R2 = [(x4*128-32 mod P'(x) << 32)]' << 1
38 * R3 = [(x128+32 mod P'(x) << 32)]' << 1
39 * R4 = [(x128-32 mod P'(x) << 32)]' << 1
40 * R5 = [(x64 mod P'(x) << 32)]' << 1
41 * R6 = [(x32 mod P'(x) << 32)]' << 1
42 *
43 * The bitreflected Barret reduction constant, u', is defined as
44 * the bit reversal of floor(x**64 / P(x)).
45 *
46 * where P(x) is the polynomial in the normal domain and the P'(x) is the
47 * polynomial in the reversed (bitreflected) domain.
48 *
49 * CRC-32 (IEEE 802.3 Ethernet, ...) polynomials:
50 *
51 * P(x) = 0x04C11DB7
52 * P'(x) = 0xEDB88320
53 *
54 * CRC-32C (Castagnoli) polynomials:
55 *
56 * P(x) = 0x1EDC6F41
57 * P'(x) = 0x82F63B78
58 */
59
60.Lconstants_CRC_32_LE:
61 .octa 0x0F0E0D0C0B0A09080706050403020100 # BE->LE mask
62 .quad 0x1c6e41596, 0x154442bd4 # R2, R1
63 .quad 0x0ccaa009e, 0x1751997d0 # R4, R3
64 .octa 0x163cd6124 # R5
65 .octa 0x1F7011641 # u'
66 .octa 0x1DB710641 # P'(x) << 1
67
68.Lconstants_CRC_32C_LE:
69 .octa 0x0F0E0D0C0B0A09080706050403020100 # BE->LE mask
70 .quad 0x09e4addf8, 0x740eef02 # R2, R1
71 .quad 0x14cd00bd6, 0xf20c0dfe # R4, R3
72 .octa 0x0dd45aab8 # R5
73 .octa 0x0dea713f1 # u'
74 .octa 0x105ec76f0 # P'(x) << 1
75
76.previous
77
78
79.text
80
81/*
82 * The CRC-32 functions use these calling conventions:
83 *
84 * Parameters:
85 *
86 * %r2: Initial CRC value, typically ~0; and final CRC (return) value.
87 * %r3: Input buffer pointer, performance might be improved if the
88 * buffer is on a doubleword boundary.
89 * %r4: Length of the buffer, must be 64 bytes or greater.
90 *
91 * Register usage:
92 *
93 * %r5: CRC-32 constant pool base pointer.
94 * V0: Initial CRC value and intermediate constants and results.
95 * V1..V4: Data for CRC computation.
96 * V5..V8: Next data chunks that are fetched from the input buffer.
97 * V9: Constant for BE->LE conversion and shift operations
98 *
99 * V10..V14: CRC-32 constants.
100 */
101
102ENTRY(crc32_le_vgfm_16)
103 larl %r5,.Lconstants_CRC_32_LE
104 j crc32_le_vgfm_generic
105
106ENTRY(crc32c_le_vgfm_16)
107 larl %r5,.Lconstants_CRC_32C_LE
108 j crc32_le_vgfm_generic
109
110
111crc32_le_vgfm_generic:
112 /* Load CRC-32 constants */
113 VLM CONST_PERM_LE2BE,CONST_CRC_POLY,0,%r5
114
115 /*
116 * Load the initial CRC value.
117 *
118 * The CRC value is loaded into the rightmost word of the
119 * vector register and is later XORed with the LSB portion
120 * of the loaded input data.
121 */
122 VZERO %v0 /* Clear V0 */
123 VLVGF %v0,%r2,3 /* Load CRC into rightmost word */
124
125 /* Load a 64-byte data chunk and XOR with CRC */
126 VLM %v1,%v4,0,%r3 /* 64-bytes into V1..V4 */
127 VPERM %v1,%v1,%v1,CONST_PERM_LE2BE
128 VPERM %v2,%v2,%v2,CONST_PERM_LE2BE
129 VPERM %v3,%v3,%v3,CONST_PERM_LE2BE
130 VPERM %v4,%v4,%v4,CONST_PERM_LE2BE
131
132 VX %v1,%v0,%v1 /* V1 ^= CRC */
133 aghi %r3,64 /* BUF = BUF + 64 */
134 aghi %r4,-64 /* LEN = LEN - 64 */
135
136 cghi %r4,64
137 jl .Lless_than_64bytes
138
139.Lfold_64bytes_loop:
140 /* Load the next 64-byte data chunk into V5 to V8 */
141 VLM %v5,%v8,0,%r3
142 VPERM %v5,%v5,%v5,CONST_PERM_LE2BE
143 VPERM %v6,%v6,%v6,CONST_PERM_LE2BE
144 VPERM %v7,%v7,%v7,CONST_PERM_LE2BE
145 VPERM %v8,%v8,%v8,CONST_PERM_LE2BE
146
147 /*
148 * Perform a GF(2) multiplication of the doublewords in V1 with
149 * the R1 and R2 reduction constants in V0. The intermediate result
150 * is then folded (accumulated) with the next data chunk in V5 and
151 * stored in V1. Repeat this step for the register contents
152 * in V2, V3, and V4 respectively.
153 */
154 VGFMAG %v1,CONST_R2R1,%v1,%v5
155 VGFMAG %v2,CONST_R2R1,%v2,%v6
156 VGFMAG %v3,CONST_R2R1,%v3,%v7
157 VGFMAG %v4,CONST_R2R1,%v4,%v8
158
159 aghi %r3,64 /* BUF = BUF + 64 */
160 aghi %r4,-64 /* LEN = LEN - 64 */
161
162 cghi %r4,64
163 jnl .Lfold_64bytes_loop
164
165.Lless_than_64bytes:
166 /*
167 * Fold V1 to V4 into a single 128-bit value in V1. Multiply V1 with R3
168 * and R4 and accumulating the next 128-bit chunk until a single 128-bit
169 * value remains.
170 */
171 VGFMAG %v1,CONST_R4R3,%v1,%v2
172 VGFMAG %v1,CONST_R4R3,%v1,%v3
173 VGFMAG %v1,CONST_R4R3,%v1,%v4
174
175 cghi %r4,16
176 jl .Lfinal_fold
177
178.Lfold_16bytes_loop:
179
180 VL %v2,0,,%r3 /* Load next data chunk */
181 VPERM %v2,%v2,%v2,CONST_PERM_LE2BE
182 VGFMAG %v1,CONST_R4R3,%v1,%v2 /* Fold next data chunk */
183
184 aghi %r3,16
185 aghi %r4,-16
186
187 cghi %r4,16
188 jnl .Lfold_16bytes_loop
189
190.Lfinal_fold:
191 /*
192 * Set up a vector register for byte shifts. The shift value must
193 * be loaded in bits 1-4 in byte element 7 of a vector register.
194 * Shift by 8 bytes: 0x40
195 * Shift by 4 bytes: 0x20
196 */
197 VLEIB %v9,0x40,7
198
199 /*
200 * Prepare V0 for the next GF(2) multiplication: shift V0 by 8 bytes
201 * to move R4 into the rightmost doubleword and set the leftmost
202 * doubleword to 0x1.
203 */
204 VSRLB %v0,CONST_R4R3,%v9
205 VLEIG %v0,1,0
206
207 /*
208 * Compute GF(2) product of V1 and V0. The rightmost doubleword
209 * of V1 is multiplied with R4. The leftmost doubleword of V1 is
210 * multiplied by 0x1 and is then XORed with rightmost product.
211 * Implicitly, the intermediate leftmost product becomes padded
212 */
213 VGFMG %v1,%v0,%v1
214
215 /*
216 * Now do the final 32-bit fold by multiplying the rightmost word
217 * in V1 with R5 and XOR the result with the remaining bits in V1.
218 *
219 * To achieve this by a single VGFMAG, right shift V1 by a word
220 * and store the result in V2 which is then accumulated. Use the
221 * vector unpack instruction to load the rightmost half of the
222 * doubleword into the rightmost doubleword element of V1; the other
223 * half is loaded in the leftmost doubleword.
224 * The vector register with CONST_R5 contains the R5 constant in the
225 * rightmost doubleword and the leftmost doubleword is zero to ignore
226 * the leftmost product of V1.
227 */
228 VLEIB %v9,0x20,7 /* Shift by words */
229 VSRLB %v2,%v1,%v9 /* Store remaining bits in V2 */
230 VUPLLF %v1,%v1 /* Split rightmost doubleword */
231 VGFMAG %v1,CONST_R5,%v1,%v2 /* V1 = (V1 * R5) XOR V2 */
232
233 /*
234 * Apply a Barret reduction to compute the final 32-bit CRC value.
235 *
236 * The input values to the Barret reduction are the degree-63 polynomial
237 * in V1 (R(x)), degree-32 generator polynomial, and the reduction
238 * constant u. The Barret reduction result is the CRC value of R(x) mod
239 * P(x).
240 *
241 * The Barret reduction algorithm is defined as:
242 *
243 * 1. T1(x) = floor( R(x) / x^32 ) GF2MUL u
244 * 2. T2(x) = floor( T1(x) / x^32 ) GF2MUL P(x)
245 * 3. C(x) = R(x) XOR T2(x) mod x^32
246 *
247 * Note: The leftmost doubleword of vector register containing
248 * CONST_RU_POLY is zero and, thus, the intermediate GF(2) product
249 * is zero and does not contribute to the final result.
250 */
251
252 /* T1(x) = floor( R(x) / x^32 ) GF2MUL u */
253 VUPLLF %v2,%v1
254 VGFMG %v2,CONST_RU_POLY,%v2
255
256 /*
257 * Compute the GF(2) product of the CRC polynomial with T1(x) in
258 * V2 and XOR the intermediate result, T2(x), with the value in V1.
259 * The final result is stored in word element 2 of V2.
260 */
261 VUPLLF %v2,%v2
262 VGFMAG %v2,CONST_CRC_POLY,%v2,%v1
263
264.Ldone:
265 VLGVF %r2,%v2,2
266 br %r14
267
268.previous