Hendrik Brueckner | 19c9378 | 2015-04-28 12:29:06 +0200 | [diff] [blame] | 1 | /* |
| 2 | * Hardware-accelerated CRC-32 variants for Linux on z Systems |
| 3 | * |
| 4 | * Use the z/Architecture Vector Extension Facility to accelerate the |
| 5 | * computing of bitreflected CRC-32 checksums for IEEE 802.3 Ethernet |
| 6 | * and Castagnoli. |
| 7 | * |
| 8 | * This CRC-32 implementation algorithm is bitreflected and processes |
| 9 | * the least-significant bit first (Little-Endian). |
| 10 | * |
| 11 | * Copyright IBM Corp. 2015 |
| 12 | * Author(s): Hendrik Brueckner <brueckner@linux.vnet.ibm.com> |
| 13 | */ |
| 14 | |
| 15 | #include <linux/linkage.h> |
| 16 | #include <asm/vx-insn.h> |
| 17 | |
| 18 | /* Vector register range containing CRC-32 constants */ |
| 19 | #define CONST_PERM_LE2BE %v9 |
| 20 | #define CONST_R2R1 %v10 |
| 21 | #define CONST_R4R3 %v11 |
| 22 | #define CONST_R5 %v12 |
| 23 | #define CONST_RU_POLY %v13 |
| 24 | #define CONST_CRC_POLY %v14 |
| 25 | |
| 26 | .data |
| 27 | .align 8 |
| 28 | |
| 29 | /* |
| 30 | * The CRC-32 constant block contains reduction constants to fold and |
| 31 | * process particular chunks of the input data stream in parallel. |
| 32 | * |
| 33 | * For the CRC-32 variants, the constants are precomputed according to |
| 34 | * these definitions: |
| 35 | * |
| 36 | * R1 = [(x4*128+32 mod P'(x) << 32)]' << 1 |
| 37 | * R2 = [(x4*128-32 mod P'(x) << 32)]' << 1 |
| 38 | * R3 = [(x128+32 mod P'(x) << 32)]' << 1 |
| 39 | * R4 = [(x128-32 mod P'(x) << 32)]' << 1 |
| 40 | * R5 = [(x64 mod P'(x) << 32)]' << 1 |
| 41 | * R6 = [(x32 mod P'(x) << 32)]' << 1 |
| 42 | * |
| 43 | * The bitreflected Barret reduction constant, u', is defined as |
| 44 | * the bit reversal of floor(x**64 / P(x)). |
| 45 | * |
| 46 | * where P(x) is the polynomial in the normal domain and the P'(x) is the |
| 47 | * polynomial in the reversed (bitreflected) domain. |
| 48 | * |
| 49 | * CRC-32 (IEEE 802.3 Ethernet, ...) polynomials: |
| 50 | * |
| 51 | * P(x) = 0x04C11DB7 |
| 52 | * P'(x) = 0xEDB88320 |
| 53 | * |
| 54 | * CRC-32C (Castagnoli) polynomials: |
| 55 | * |
| 56 | * P(x) = 0x1EDC6F41 |
| 57 | * P'(x) = 0x82F63B78 |
| 58 | */ |
| 59 | |
| 60 | .Lconstants_CRC_32_LE: |
| 61 | .octa 0x0F0E0D0C0B0A09080706050403020100 # BE->LE mask |
| 62 | .quad 0x1c6e41596, 0x154442bd4 # R2, R1 |
| 63 | .quad 0x0ccaa009e, 0x1751997d0 # R4, R3 |
| 64 | .octa 0x163cd6124 # R5 |
| 65 | .octa 0x1F7011641 # u' |
| 66 | .octa 0x1DB710641 # P'(x) << 1 |
| 67 | |
| 68 | .Lconstants_CRC_32C_LE: |
| 69 | .octa 0x0F0E0D0C0B0A09080706050403020100 # BE->LE mask |
| 70 | .quad 0x09e4addf8, 0x740eef02 # R2, R1 |
| 71 | .quad 0x14cd00bd6, 0xf20c0dfe # R4, R3 |
| 72 | .octa 0x0dd45aab8 # R5 |
| 73 | .octa 0x0dea713f1 # u' |
| 74 | .octa 0x105ec76f0 # P'(x) << 1 |
| 75 | |
| 76 | .previous |
| 77 | |
| 78 | |
| 79 | .text |
| 80 | |
| 81 | /* |
| 82 | * The CRC-32 functions use these calling conventions: |
| 83 | * |
| 84 | * Parameters: |
| 85 | * |
| 86 | * %r2: Initial CRC value, typically ~0; and final CRC (return) value. |
| 87 | * %r3: Input buffer pointer, performance might be improved if the |
| 88 | * buffer is on a doubleword boundary. |
| 89 | * %r4: Length of the buffer, must be 64 bytes or greater. |
| 90 | * |
| 91 | * Register usage: |
| 92 | * |
| 93 | * %r5: CRC-32 constant pool base pointer. |
| 94 | * V0: Initial CRC value and intermediate constants and results. |
| 95 | * V1..V4: Data for CRC computation. |
| 96 | * V5..V8: Next data chunks that are fetched from the input buffer. |
| 97 | * V9: Constant for BE->LE conversion and shift operations |
| 98 | * |
| 99 | * V10..V14: CRC-32 constants. |
| 100 | */ |
| 101 | |
| 102 | ENTRY(crc32_le_vgfm_16) |
| 103 | larl %r5,.Lconstants_CRC_32_LE |
| 104 | j crc32_le_vgfm_generic |
| 105 | |
| 106 | ENTRY(crc32c_le_vgfm_16) |
| 107 | larl %r5,.Lconstants_CRC_32C_LE |
| 108 | j crc32_le_vgfm_generic |
| 109 | |
| 110 | |
| 111 | crc32_le_vgfm_generic: |
| 112 | /* Load CRC-32 constants */ |
| 113 | VLM CONST_PERM_LE2BE,CONST_CRC_POLY,0,%r5 |
| 114 | |
| 115 | /* |
| 116 | * Load the initial CRC value. |
| 117 | * |
| 118 | * The CRC value is loaded into the rightmost word of the |
| 119 | * vector register and is later XORed with the LSB portion |
| 120 | * of the loaded input data. |
| 121 | */ |
| 122 | VZERO %v0 /* Clear V0 */ |
| 123 | VLVGF %v0,%r2,3 /* Load CRC into rightmost word */ |
| 124 | |
| 125 | /* Load a 64-byte data chunk and XOR with CRC */ |
| 126 | VLM %v1,%v4,0,%r3 /* 64-bytes into V1..V4 */ |
| 127 | VPERM %v1,%v1,%v1,CONST_PERM_LE2BE |
| 128 | VPERM %v2,%v2,%v2,CONST_PERM_LE2BE |
| 129 | VPERM %v3,%v3,%v3,CONST_PERM_LE2BE |
| 130 | VPERM %v4,%v4,%v4,CONST_PERM_LE2BE |
| 131 | |
| 132 | VX %v1,%v0,%v1 /* V1 ^= CRC */ |
| 133 | aghi %r3,64 /* BUF = BUF + 64 */ |
| 134 | aghi %r4,-64 /* LEN = LEN - 64 */ |
| 135 | |
| 136 | cghi %r4,64 |
| 137 | jl .Lless_than_64bytes |
| 138 | |
| 139 | .Lfold_64bytes_loop: |
| 140 | /* Load the next 64-byte data chunk into V5 to V8 */ |
| 141 | VLM %v5,%v8,0,%r3 |
| 142 | VPERM %v5,%v5,%v5,CONST_PERM_LE2BE |
| 143 | VPERM %v6,%v6,%v6,CONST_PERM_LE2BE |
| 144 | VPERM %v7,%v7,%v7,CONST_PERM_LE2BE |
| 145 | VPERM %v8,%v8,%v8,CONST_PERM_LE2BE |
| 146 | |
| 147 | /* |
| 148 | * Perform a GF(2) multiplication of the doublewords in V1 with |
| 149 | * the R1 and R2 reduction constants in V0. The intermediate result |
| 150 | * is then folded (accumulated) with the next data chunk in V5 and |
| 151 | * stored in V1. Repeat this step for the register contents |
| 152 | * in V2, V3, and V4 respectively. |
| 153 | */ |
| 154 | VGFMAG %v1,CONST_R2R1,%v1,%v5 |
| 155 | VGFMAG %v2,CONST_R2R1,%v2,%v6 |
| 156 | VGFMAG %v3,CONST_R2R1,%v3,%v7 |
| 157 | VGFMAG %v4,CONST_R2R1,%v4,%v8 |
| 158 | |
| 159 | aghi %r3,64 /* BUF = BUF + 64 */ |
| 160 | aghi %r4,-64 /* LEN = LEN - 64 */ |
| 161 | |
| 162 | cghi %r4,64 |
| 163 | jnl .Lfold_64bytes_loop |
| 164 | |
| 165 | .Lless_than_64bytes: |
| 166 | /* |
| 167 | * Fold V1 to V4 into a single 128-bit value in V1. Multiply V1 with R3 |
| 168 | * and R4 and accumulating the next 128-bit chunk until a single 128-bit |
| 169 | * value remains. |
| 170 | */ |
| 171 | VGFMAG %v1,CONST_R4R3,%v1,%v2 |
| 172 | VGFMAG %v1,CONST_R4R3,%v1,%v3 |
| 173 | VGFMAG %v1,CONST_R4R3,%v1,%v4 |
| 174 | |
| 175 | cghi %r4,16 |
| 176 | jl .Lfinal_fold |
| 177 | |
| 178 | .Lfold_16bytes_loop: |
| 179 | |
| 180 | VL %v2,0,,%r3 /* Load next data chunk */ |
| 181 | VPERM %v2,%v2,%v2,CONST_PERM_LE2BE |
| 182 | VGFMAG %v1,CONST_R4R3,%v1,%v2 /* Fold next data chunk */ |
| 183 | |
| 184 | aghi %r3,16 |
| 185 | aghi %r4,-16 |
| 186 | |
| 187 | cghi %r4,16 |
| 188 | jnl .Lfold_16bytes_loop |
| 189 | |
| 190 | .Lfinal_fold: |
| 191 | /* |
| 192 | * Set up a vector register for byte shifts. The shift value must |
| 193 | * be loaded in bits 1-4 in byte element 7 of a vector register. |
| 194 | * Shift by 8 bytes: 0x40 |
| 195 | * Shift by 4 bytes: 0x20 |
| 196 | */ |
| 197 | VLEIB %v9,0x40,7 |
| 198 | |
| 199 | /* |
| 200 | * Prepare V0 for the next GF(2) multiplication: shift V0 by 8 bytes |
| 201 | * to move R4 into the rightmost doubleword and set the leftmost |
| 202 | * doubleword to 0x1. |
| 203 | */ |
| 204 | VSRLB %v0,CONST_R4R3,%v9 |
| 205 | VLEIG %v0,1,0 |
| 206 | |
| 207 | /* |
| 208 | * Compute GF(2) product of V1 and V0. The rightmost doubleword |
| 209 | * of V1 is multiplied with R4. The leftmost doubleword of V1 is |
| 210 | * multiplied by 0x1 and is then XORed with rightmost product. |
| 211 | * Implicitly, the intermediate leftmost product becomes padded |
| 212 | */ |
| 213 | VGFMG %v1,%v0,%v1 |
| 214 | |
| 215 | /* |
| 216 | * Now do the final 32-bit fold by multiplying the rightmost word |
| 217 | * in V1 with R5 and XOR the result with the remaining bits in V1. |
| 218 | * |
| 219 | * To achieve this by a single VGFMAG, right shift V1 by a word |
| 220 | * and store the result in V2 which is then accumulated. Use the |
| 221 | * vector unpack instruction to load the rightmost half of the |
| 222 | * doubleword into the rightmost doubleword element of V1; the other |
| 223 | * half is loaded in the leftmost doubleword. |
| 224 | * The vector register with CONST_R5 contains the R5 constant in the |
| 225 | * rightmost doubleword and the leftmost doubleword is zero to ignore |
| 226 | * the leftmost product of V1. |
| 227 | */ |
| 228 | VLEIB %v9,0x20,7 /* Shift by words */ |
| 229 | VSRLB %v2,%v1,%v9 /* Store remaining bits in V2 */ |
| 230 | VUPLLF %v1,%v1 /* Split rightmost doubleword */ |
| 231 | VGFMAG %v1,CONST_R5,%v1,%v2 /* V1 = (V1 * R5) XOR V2 */ |
| 232 | |
| 233 | /* |
| 234 | * Apply a Barret reduction to compute the final 32-bit CRC value. |
| 235 | * |
| 236 | * The input values to the Barret reduction are the degree-63 polynomial |
| 237 | * in V1 (R(x)), degree-32 generator polynomial, and the reduction |
| 238 | * constant u. The Barret reduction result is the CRC value of R(x) mod |
| 239 | * P(x). |
| 240 | * |
| 241 | * The Barret reduction algorithm is defined as: |
| 242 | * |
| 243 | * 1. T1(x) = floor( R(x) / x^32 ) GF2MUL u |
| 244 | * 2. T2(x) = floor( T1(x) / x^32 ) GF2MUL P(x) |
| 245 | * 3. C(x) = R(x) XOR T2(x) mod x^32 |
| 246 | * |
| 247 | * Note: The leftmost doubleword of vector register containing |
| 248 | * CONST_RU_POLY is zero and, thus, the intermediate GF(2) product |
| 249 | * is zero and does not contribute to the final result. |
| 250 | */ |
| 251 | |
| 252 | /* T1(x) = floor( R(x) / x^32 ) GF2MUL u */ |
| 253 | VUPLLF %v2,%v1 |
| 254 | VGFMG %v2,CONST_RU_POLY,%v2 |
| 255 | |
| 256 | /* |
| 257 | * Compute the GF(2) product of the CRC polynomial with T1(x) in |
| 258 | * V2 and XOR the intermediate result, T2(x), with the value in V1. |
| 259 | * The final result is stored in word element 2 of V2. |
| 260 | */ |
| 261 | VUPLLF %v2,%v2 |
| 262 | VGFMAG %v2,CONST_CRC_POLY,%v2,%v1 |
| 263 | |
| 264 | .Ldone: |
| 265 | VLGVF %r2,%v2,2 |
| 266 | br %r14 |
| 267 | |
| 268 | .previous |