blob: 0bb66005338f0799efb8039790bea3a45de27091 [file] [log] [blame]
Alexander Grafd32154f2010-04-16 00:11:33 +02001/*
2 * Copyright (C) 2010 SUSE Linux Products GmbH. All rights reserved.
3 *
4 * Authors:
5 * Alexander Graf <agraf@suse.de>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License, version 2, as
9 * published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
19 */
20
21#include <linux/kvm_host.h>
22
23#include <asm/kvm_ppc.h>
24#include <asm/kvm_book3s.h>
25#include <asm/mmu-hash32.h>
26#include <asm/machdep.h>
27#include <asm/mmu_context.h>
28#include <asm/hw_irq.h>
29
30/* #define DEBUG_MMU */
31/* #define DEBUG_SR */
32
33#ifdef DEBUG_MMU
34#define dprintk_mmu(a, ...) printk(KERN_INFO a, __VA_ARGS__)
35#else
36#define dprintk_mmu(a, ...) do { } while(0)
37#endif
38
39#ifdef DEBUG_SR
40#define dprintk_sr(a, ...) printk(KERN_INFO a, __VA_ARGS__)
41#else
42#define dprintk_sr(a, ...) do { } while(0)
43#endif
44
45#if PAGE_SHIFT != 12
46#error Unknown page size
47#endif
48
49#ifdef CONFIG_SMP
50#error XXX need to grab mmu_hash_lock
51#endif
52
53#ifdef CONFIG_PTE_64BIT
54#error Only 32 bit pages are supported for now
55#endif
56
Alexander Graf251585b2010-04-20 02:49:53 +020057static ulong htab;
58static u32 htabmask;
59
Alexander Grafd32154f2010-04-16 00:11:33 +020060static void invalidate_pte(struct kvm_vcpu *vcpu, struct hpte_cache *pte)
61{
62 volatile u32 *pteg;
63
64 dprintk_mmu("KVM: Flushing SPTE: 0x%llx (0x%llx) -> 0x%llx\n",
65 pte->pte.eaddr, pte->pte.vpage, pte->host_va);
66
67 pteg = (u32*)pte->slot;
68
69 pteg[0] = 0;
70 asm volatile ("sync");
71 asm volatile ("tlbie %0" : : "r" (pte->pte.eaddr) : "memory");
72 asm volatile ("sync");
73 asm volatile ("tlbsync");
74
75 pte->host_va = 0;
76
77 if (pte->pte.may_write)
78 kvm_release_pfn_dirty(pte->pfn);
79 else
80 kvm_release_pfn_clean(pte->pfn);
81}
82
Alexander Grafaf7b4d12010-04-20 02:49:46 +020083void kvmppc_mmu_pte_flush(struct kvm_vcpu *vcpu, ulong guest_ea, ulong ea_mask)
Alexander Grafd32154f2010-04-16 00:11:33 +020084{
85 int i;
Alexander Grafd32154f2010-04-16 00:11:33 +020086
87 dprintk_mmu("KVM: Flushing %d Shadow PTEs: 0x%x & 0x%x\n",
88 vcpu->arch.hpte_cache_offset, guest_ea, ea_mask);
89 BUG_ON(vcpu->arch.hpte_cache_offset > HPTEG_CACHE_NUM);
90
91 guest_ea &= ea_mask;
92 for (i = 0; i < vcpu->arch.hpte_cache_offset; i++) {
93 struct hpte_cache *pte;
94
95 pte = &vcpu->arch.hpte_cache[i];
96 if (!pte->host_va)
97 continue;
98
99 if ((pte->pte.eaddr & ea_mask) == guest_ea) {
100 invalidate_pte(vcpu, pte);
101 }
102 }
103
104 /* Doing a complete flush -> start from scratch */
105 if (!ea_mask)
106 vcpu->arch.hpte_cache_offset = 0;
107}
108
109void kvmppc_mmu_pte_vflush(struct kvm_vcpu *vcpu, u64 guest_vp, u64 vp_mask)
110{
111 int i;
112
113 dprintk_mmu("KVM: Flushing %d Shadow vPTEs: 0x%llx & 0x%llx\n",
114 vcpu->arch.hpte_cache_offset, guest_vp, vp_mask);
115 BUG_ON(vcpu->arch.hpte_cache_offset > HPTEG_CACHE_NUM);
116
117 guest_vp &= vp_mask;
118 for (i = 0; i < vcpu->arch.hpte_cache_offset; i++) {
119 struct hpte_cache *pte;
120
121 pte = &vcpu->arch.hpte_cache[i];
122 if (!pte->host_va)
123 continue;
124
125 if ((pte->pte.vpage & vp_mask) == guest_vp) {
126 invalidate_pte(vcpu, pte);
127 }
128 }
129}
130
Alexander Grafaf7b4d12010-04-20 02:49:46 +0200131void kvmppc_mmu_pte_pflush(struct kvm_vcpu *vcpu, ulong pa_start, ulong pa_end)
Alexander Grafd32154f2010-04-16 00:11:33 +0200132{
133 int i;
134
135 dprintk_mmu("KVM: Flushing %d Shadow pPTEs: 0x%llx & 0x%llx\n",
136 vcpu->arch.hpte_cache_offset, pa_start, pa_end);
137 BUG_ON(vcpu->arch.hpte_cache_offset > HPTEG_CACHE_NUM);
138
139 for (i = 0; i < vcpu->arch.hpte_cache_offset; i++) {
140 struct hpte_cache *pte;
141
142 pte = &vcpu->arch.hpte_cache[i];
143 if (!pte->host_va)
144 continue;
145
146 if ((pte->pte.raddr >= pa_start) &&
147 (pte->pte.raddr < pa_end)) {
148 invalidate_pte(vcpu, pte);
149 }
150 }
151}
152
153struct kvmppc_pte *kvmppc_mmu_find_pte(struct kvm_vcpu *vcpu, u64 ea, bool data)
154{
155 int i;
156 u64 guest_vp;
157
158 guest_vp = vcpu->arch.mmu.ea_to_vp(vcpu, ea, false);
159 for (i=0; i<vcpu->arch.hpte_cache_offset; i++) {
160 struct hpte_cache *pte;
161
162 pte = &vcpu->arch.hpte_cache[i];
163 if (!pte->host_va)
164 continue;
165
166 if (pte->pte.vpage == guest_vp)
167 return &pte->pte;
168 }
169
170 return NULL;
171}
172
173static int kvmppc_mmu_hpte_cache_next(struct kvm_vcpu *vcpu)
174{
175 if (vcpu->arch.hpte_cache_offset == HPTEG_CACHE_NUM)
176 kvmppc_mmu_pte_flush(vcpu, 0, 0);
177
178 return vcpu->arch.hpte_cache_offset++;
179}
180
181/* We keep 512 gvsid->hvsid entries, mapping the guest ones to the array using
182 * a hash, so we don't waste cycles on looping */
183static u16 kvmppc_sid_hash(struct kvm_vcpu *vcpu, u64 gvsid)
184{
185 return (u16)(((gvsid >> (SID_MAP_BITS * 7)) & SID_MAP_MASK) ^
186 ((gvsid >> (SID_MAP_BITS * 6)) & SID_MAP_MASK) ^
187 ((gvsid >> (SID_MAP_BITS * 5)) & SID_MAP_MASK) ^
188 ((gvsid >> (SID_MAP_BITS * 4)) & SID_MAP_MASK) ^
189 ((gvsid >> (SID_MAP_BITS * 3)) & SID_MAP_MASK) ^
190 ((gvsid >> (SID_MAP_BITS * 2)) & SID_MAP_MASK) ^
191 ((gvsid >> (SID_MAP_BITS * 1)) & SID_MAP_MASK) ^
192 ((gvsid >> (SID_MAP_BITS * 0)) & SID_MAP_MASK));
193}
194
195
196static struct kvmppc_sid_map *find_sid_vsid(struct kvm_vcpu *vcpu, u64 gvsid)
197{
198 struct kvmppc_sid_map *map;
199 u16 sid_map_mask;
200
201 if (vcpu->arch.msr & MSR_PR)
202 gvsid |= VSID_PR;
203
204 sid_map_mask = kvmppc_sid_hash(vcpu, gvsid);
205 map = &to_book3s(vcpu)->sid_map[sid_map_mask];
206 if (map->guest_vsid == gvsid) {
207 dprintk_sr("SR: Searching 0x%llx -> 0x%llx\n",
208 gvsid, map->host_vsid);
209 return map;
210 }
211
212 map = &to_book3s(vcpu)->sid_map[SID_MAP_MASK - sid_map_mask];
213 if (map->guest_vsid == gvsid) {
214 dprintk_sr("SR: Searching 0x%llx -> 0x%llx\n",
215 gvsid, map->host_vsid);
216 return map;
217 }
218
219 dprintk_sr("SR: Searching 0x%llx -> not found\n", gvsid);
220 return NULL;
221}
222
Alexander Grafd32154f2010-04-16 00:11:33 +0200223static u32 *kvmppc_mmu_get_pteg(struct kvm_vcpu *vcpu, u32 vsid, u32 eaddr,
224 bool primary)
225{
Alexander Graf251585b2010-04-20 02:49:53 +0200226 u32 page, hash;
227 ulong pteg = htab;
Alexander Grafd32154f2010-04-16 00:11:33 +0200228
229 page = (eaddr & ~ESID_MASK) >> 12;
230
231 hash = ((vsid ^ page) << 6);
232 if (!primary)
233 hash = ~hash;
234
Alexander Grafd32154f2010-04-16 00:11:33 +0200235 hash &= htabmask;
236
237 pteg |= hash;
238
Alexander Graf251585b2010-04-20 02:49:53 +0200239 dprintk_mmu("htab: %lx | hash: %x | htabmask: %x | pteg: %lx\n",
240 htab, hash, htabmask, pteg);
Alexander Grafd32154f2010-04-16 00:11:33 +0200241
242 return (u32*)pteg;
243}
244
245extern char etext[];
246
247int kvmppc_mmu_map_page(struct kvm_vcpu *vcpu, struct kvmppc_pte *orig_pte)
248{
249 pfn_t hpaddr;
250 u64 va;
251 u64 vsid;
252 struct kvmppc_sid_map *map;
253 volatile u32 *pteg;
254 u32 eaddr = orig_pte->eaddr;
255 u32 pteg0, pteg1;
256 register int rr = 0;
257 bool primary = false;
258 bool evict = false;
259 int hpte_id;
260 struct hpte_cache *pte;
261
262 /* Get host physical address for gpa */
263 hpaddr = gfn_to_pfn(vcpu->kvm, orig_pte->raddr >> PAGE_SHIFT);
264 if (kvm_is_error_hva(hpaddr)) {
Alexander Grafaf7b4d12010-04-20 02:49:46 +0200265 printk(KERN_INFO "Couldn't get guest page for gfn %lx!\n",
Alexander Grafd32154f2010-04-16 00:11:33 +0200266 orig_pte->eaddr);
267 return -EINVAL;
268 }
269 hpaddr <<= PAGE_SHIFT;
270
271 /* and write the mapping ea -> hpa into the pt */
272 vcpu->arch.mmu.esid_to_vsid(vcpu, orig_pte->eaddr >> SID_SHIFT, &vsid);
273 map = find_sid_vsid(vcpu, vsid);
274 if (!map) {
275 kvmppc_mmu_map_segment(vcpu, eaddr);
276 map = find_sid_vsid(vcpu, vsid);
277 }
278 BUG_ON(!map);
279
280 vsid = map->host_vsid;
281 va = (vsid << SID_SHIFT) | (eaddr & ~ESID_MASK);
282
283next_pteg:
284 if (rr == 16) {
285 primary = !primary;
286 evict = true;
287 rr = 0;
288 }
289
290 pteg = kvmppc_mmu_get_pteg(vcpu, vsid, eaddr, primary);
291
292 /* not evicting yet */
293 if (!evict && (pteg[rr] & PTE_V)) {
294 rr += 2;
295 goto next_pteg;
296 }
297
298 dprintk_mmu("KVM: old PTEG: %p (%d)\n", pteg, rr);
299 dprintk_mmu("KVM: %08x - %08x\n", pteg[0], pteg[1]);
300 dprintk_mmu("KVM: %08x - %08x\n", pteg[2], pteg[3]);
301 dprintk_mmu("KVM: %08x - %08x\n", pteg[4], pteg[5]);
302 dprintk_mmu("KVM: %08x - %08x\n", pteg[6], pteg[7]);
303 dprintk_mmu("KVM: %08x - %08x\n", pteg[8], pteg[9]);
304 dprintk_mmu("KVM: %08x - %08x\n", pteg[10], pteg[11]);
305 dprintk_mmu("KVM: %08x - %08x\n", pteg[12], pteg[13]);
306 dprintk_mmu("KVM: %08x - %08x\n", pteg[14], pteg[15]);
307
308 pteg0 = ((eaddr & 0x0fffffff) >> 22) | (vsid << 7) | PTE_V |
309 (primary ? 0 : PTE_SEC);
310 pteg1 = hpaddr | PTE_M | PTE_R | PTE_C;
311
312 if (orig_pte->may_write) {
313 pteg1 |= PP_RWRW;
314 mark_page_dirty(vcpu->kvm, orig_pte->raddr >> PAGE_SHIFT);
315 } else {
316 pteg1 |= PP_RWRX;
317 }
318
319 local_irq_disable();
320
321 if (pteg[rr]) {
322 pteg[rr] = 0;
323 asm volatile ("sync");
324 }
325 pteg[rr + 1] = pteg1;
326 pteg[rr] = pteg0;
327 asm volatile ("sync");
328
329 local_irq_enable();
330
331 dprintk_mmu("KVM: new PTEG: %p\n", pteg);
332 dprintk_mmu("KVM: %08x - %08x\n", pteg[0], pteg[1]);
333 dprintk_mmu("KVM: %08x - %08x\n", pteg[2], pteg[3]);
334 dprintk_mmu("KVM: %08x - %08x\n", pteg[4], pteg[5]);
335 dprintk_mmu("KVM: %08x - %08x\n", pteg[6], pteg[7]);
336 dprintk_mmu("KVM: %08x - %08x\n", pteg[8], pteg[9]);
337 dprintk_mmu("KVM: %08x - %08x\n", pteg[10], pteg[11]);
338 dprintk_mmu("KVM: %08x - %08x\n", pteg[12], pteg[13]);
339 dprintk_mmu("KVM: %08x - %08x\n", pteg[14], pteg[15]);
340
341
342 /* Now tell our Shadow PTE code about the new page */
343
344 hpte_id = kvmppc_mmu_hpte_cache_next(vcpu);
345 pte = &vcpu->arch.hpte_cache[hpte_id];
346
347 dprintk_mmu("KVM: %c%c Map 0x%llx: [%lx] 0x%llx (0x%llx) -> %lx\n",
348 orig_pte->may_write ? 'w' : '-',
349 orig_pte->may_execute ? 'x' : '-',
350 orig_pte->eaddr, (ulong)pteg, va,
351 orig_pte->vpage, hpaddr);
352
353 pte->slot = (ulong)&pteg[rr];
354 pte->host_va = va;
355 pte->pte = *orig_pte;
356 pte->pfn = hpaddr >> PAGE_SHIFT;
357
358 return 0;
359}
360
361static struct kvmppc_sid_map *create_sid_map(struct kvm_vcpu *vcpu, u64 gvsid)
362{
363 struct kvmppc_sid_map *map;
364 struct kvmppc_vcpu_book3s *vcpu_book3s = to_book3s(vcpu);
365 u16 sid_map_mask;
366 static int backwards_map = 0;
367
368 if (vcpu->arch.msr & MSR_PR)
369 gvsid |= VSID_PR;
370
371 /* We might get collisions that trap in preceding order, so let's
372 map them differently */
373
374 sid_map_mask = kvmppc_sid_hash(vcpu, gvsid);
375 if (backwards_map)
376 sid_map_mask = SID_MAP_MASK - sid_map_mask;
377
378 map = &to_book3s(vcpu)->sid_map[sid_map_mask];
379
380 /* Make sure we're taking the other map next time */
381 backwards_map = !backwards_map;
382
383 /* Uh-oh ... out of mappings. Let's flush! */
384 if (vcpu_book3s->vsid_next >= vcpu_book3s->vsid_max) {
385 vcpu_book3s->vsid_next = vcpu_book3s->vsid_first;
386 memset(vcpu_book3s->sid_map, 0,
387 sizeof(struct kvmppc_sid_map) * SID_MAP_NUM);
388 kvmppc_mmu_pte_flush(vcpu, 0, 0);
389 kvmppc_mmu_flush_segments(vcpu);
390 }
391 map->host_vsid = vcpu_book3s->vsid_next;
392
393 /* Would have to be 111 to be completely aligned with the rest of
394 Linux, but that is just way too little space! */
395 vcpu_book3s->vsid_next+=1;
396
397 map->guest_vsid = gvsid;
398 map->valid = true;
399
400 return map;
401}
402
403int kvmppc_mmu_map_segment(struct kvm_vcpu *vcpu, ulong eaddr)
404{
405 u32 esid = eaddr >> SID_SHIFT;
406 u64 gvsid;
407 u32 sr;
408 struct kvmppc_sid_map *map;
409 struct kvmppc_book3s_shadow_vcpu *svcpu = to_svcpu(vcpu);
410
411 if (vcpu->arch.mmu.esid_to_vsid(vcpu, esid, &gvsid)) {
412 /* Invalidate an entry */
413 svcpu->sr[esid] = SR_INVALID;
414 return -ENOENT;
415 }
416
417 map = find_sid_vsid(vcpu, gvsid);
418 if (!map)
419 map = create_sid_map(vcpu, gvsid);
420
421 map->guest_esid = esid;
422 sr = map->host_vsid | SR_KP;
423 svcpu->sr[esid] = sr;
424
425 dprintk_sr("MMU: mtsr %d, 0x%x\n", esid, sr);
426
427 return 0;
428}
429
430void kvmppc_mmu_flush_segments(struct kvm_vcpu *vcpu)
431{
432 int i;
433 struct kvmppc_book3s_shadow_vcpu *svcpu = to_svcpu(vcpu);
434
435 dprintk_sr("MMU: flushing all segments (%d)\n", ARRAY_SIZE(svcpu->sr));
436 for (i = 0; i < ARRAY_SIZE(svcpu->sr); i++)
437 svcpu->sr[i] = SR_INVALID;
438}
439
440void kvmppc_mmu_destroy(struct kvm_vcpu *vcpu)
441{
442 kvmppc_mmu_pte_flush(vcpu, 0, 0);
443 preempt_disable();
444 __destroy_context(to_book3s(vcpu)->context_id);
445 preempt_enable();
446}
447
448/* From mm/mmu_context_hash32.c */
449#define CTX_TO_VSID(ctx) (((ctx) * (897 * 16)) & 0xffffff)
450
451int kvmppc_mmu_init(struct kvm_vcpu *vcpu)
452{
453 struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu);
454 int err;
Alexander Graf251585b2010-04-20 02:49:53 +0200455 ulong sdr1;
Alexander Grafd32154f2010-04-16 00:11:33 +0200456
457 err = __init_new_context();
458 if (err < 0)
459 return -1;
460 vcpu3s->context_id = err;
461
462 vcpu3s->vsid_max = CTX_TO_VSID(vcpu3s->context_id + 1) - 1;
463 vcpu3s->vsid_first = CTX_TO_VSID(vcpu3s->context_id);
464
465#if 0 /* XXX still doesn't guarantee uniqueness */
466 /* We could collide with the Linux vsid space because the vsid
467 * wraps around at 24 bits. We're safe if we do our own space
468 * though, so let's always set the highest bit. */
469
470 vcpu3s->vsid_max |= 0x00800000;
471 vcpu3s->vsid_first |= 0x00800000;
472#endif
473 BUG_ON(vcpu3s->vsid_max < vcpu3s->vsid_first);
474
475 vcpu3s->vsid_next = vcpu3s->vsid_first;
476
Alexander Graf251585b2010-04-20 02:49:53 +0200477 /* Remember where the HTAB is */
478 asm ( "mfsdr1 %0" : "=r"(sdr1) );
479 htabmask = ((sdr1 & 0x1FF) << 16) | 0xFFC0;
480 htab = (ulong)__va(sdr1 & 0xffff0000);
481
Alexander Grafd32154f2010-04-16 00:11:33 +0200482 return 0;
483}