Linus Walleij | 6c009ab | 2010-09-13 00:35:22 +0200 | [diff] [blame] | 1 | /* |
| 2 | * drivers/mtd/nand/fsmc_nand.c |
| 3 | * |
| 4 | * ST Microelectronics |
| 5 | * Flexible Static Memory Controller (FSMC) |
| 6 | * Driver for NAND portions |
| 7 | * |
| 8 | * Copyright © 2010 ST Microelectronics |
| 9 | * Vipin Kumar <vipin.kumar@st.com> |
| 10 | * Ashish Priyadarshi |
| 11 | * |
| 12 | * Based on drivers/mtd/nand/nomadik_nand.c |
| 13 | * |
| 14 | * This file is licensed under the terms of the GNU General Public |
| 15 | * License version 2. This program is licensed "as is" without any |
| 16 | * warranty of any kind, whether express or implied. |
| 17 | */ |
| 18 | |
| 19 | #include <linux/clk.h> |
| 20 | #include <linux/err.h> |
| 21 | #include <linux/init.h> |
| 22 | #include <linux/module.h> |
| 23 | #include <linux/resource.h> |
| 24 | #include <linux/sched.h> |
| 25 | #include <linux/types.h> |
| 26 | #include <linux/mtd/mtd.h> |
| 27 | #include <linux/mtd/nand.h> |
| 28 | #include <linux/mtd/nand_ecc.h> |
| 29 | #include <linux/platform_device.h> |
| 30 | #include <linux/mtd/partitions.h> |
| 31 | #include <linux/io.h> |
| 32 | #include <linux/slab.h> |
| 33 | #include <linux/mtd/fsmc.h> |
Linus Walleij | 593cd87 | 2010-11-29 13:52:19 +0100 | [diff] [blame] | 34 | #include <linux/amba/bus.h> |
Linus Walleij | 6c009ab | 2010-09-13 00:35:22 +0200 | [diff] [blame] | 35 | #include <mtd/mtd-abi.h> |
| 36 | |
| 37 | static struct nand_ecclayout fsmc_ecc1_layout = { |
| 38 | .eccbytes = 24, |
| 39 | .eccpos = {2, 3, 4, 18, 19, 20, 34, 35, 36, 50, 51, 52, |
| 40 | 66, 67, 68, 82, 83, 84, 98, 99, 100, 114, 115, 116}, |
| 41 | .oobfree = { |
| 42 | {.offset = 8, .length = 8}, |
| 43 | {.offset = 24, .length = 8}, |
| 44 | {.offset = 40, .length = 8}, |
| 45 | {.offset = 56, .length = 8}, |
| 46 | {.offset = 72, .length = 8}, |
| 47 | {.offset = 88, .length = 8}, |
| 48 | {.offset = 104, .length = 8}, |
| 49 | {.offset = 120, .length = 8} |
| 50 | } |
| 51 | }; |
| 52 | |
| 53 | static struct nand_ecclayout fsmc_ecc4_lp_layout = { |
| 54 | .eccbytes = 104, |
| 55 | .eccpos = { 2, 3, 4, 5, 6, 7, 8, |
| 56 | 9, 10, 11, 12, 13, 14, |
| 57 | 18, 19, 20, 21, 22, 23, 24, |
| 58 | 25, 26, 27, 28, 29, 30, |
| 59 | 34, 35, 36, 37, 38, 39, 40, |
| 60 | 41, 42, 43, 44, 45, 46, |
| 61 | 50, 51, 52, 53, 54, 55, 56, |
| 62 | 57, 58, 59, 60, 61, 62, |
| 63 | 66, 67, 68, 69, 70, 71, 72, |
| 64 | 73, 74, 75, 76, 77, 78, |
| 65 | 82, 83, 84, 85, 86, 87, 88, |
| 66 | 89, 90, 91, 92, 93, 94, |
| 67 | 98, 99, 100, 101, 102, 103, 104, |
| 68 | 105, 106, 107, 108, 109, 110, |
| 69 | 114, 115, 116, 117, 118, 119, 120, |
| 70 | 121, 122, 123, 124, 125, 126 |
| 71 | }, |
| 72 | .oobfree = { |
| 73 | {.offset = 15, .length = 3}, |
| 74 | {.offset = 31, .length = 3}, |
| 75 | {.offset = 47, .length = 3}, |
| 76 | {.offset = 63, .length = 3}, |
| 77 | {.offset = 79, .length = 3}, |
| 78 | {.offset = 95, .length = 3}, |
| 79 | {.offset = 111, .length = 3}, |
| 80 | {.offset = 127, .length = 1} |
| 81 | } |
| 82 | }; |
| 83 | |
| 84 | /* |
| 85 | * ECC placement definitions in oobfree type format. |
| 86 | * There are 13 bytes of ecc for every 512 byte block and it has to be read |
| 87 | * consecutively and immediately after the 512 byte data block for hardware to |
| 88 | * generate the error bit offsets in 512 byte data. |
| 89 | * Managing the ecc bytes in the following way makes it easier for software to |
| 90 | * read ecc bytes consecutive to data bytes. This way is similar to |
| 91 | * oobfree structure maintained already in generic nand driver |
| 92 | */ |
| 93 | static struct fsmc_eccplace fsmc_ecc4_lp_place = { |
| 94 | .eccplace = { |
| 95 | {.offset = 2, .length = 13}, |
| 96 | {.offset = 18, .length = 13}, |
| 97 | {.offset = 34, .length = 13}, |
| 98 | {.offset = 50, .length = 13}, |
| 99 | {.offset = 66, .length = 13}, |
| 100 | {.offset = 82, .length = 13}, |
| 101 | {.offset = 98, .length = 13}, |
| 102 | {.offset = 114, .length = 13} |
| 103 | } |
| 104 | }; |
| 105 | |
| 106 | static struct nand_ecclayout fsmc_ecc4_sp_layout = { |
| 107 | .eccbytes = 13, |
| 108 | .eccpos = { 0, 1, 2, 3, 6, 7, 8, |
| 109 | 9, 10, 11, 12, 13, 14 |
| 110 | }, |
| 111 | .oobfree = { |
| 112 | {.offset = 15, .length = 1}, |
| 113 | } |
| 114 | }; |
| 115 | |
| 116 | static struct fsmc_eccplace fsmc_ecc4_sp_place = { |
| 117 | .eccplace = { |
| 118 | {.offset = 0, .length = 4}, |
| 119 | {.offset = 6, .length = 9} |
| 120 | } |
| 121 | }; |
| 122 | |
Linus Walleij | 4ad916b | 2010-11-29 13:52:06 +0100 | [diff] [blame] | 123 | |
| 124 | #ifdef CONFIG_MTD_PARTITIONS |
Linus Walleij | 6c009ab | 2010-09-13 00:35:22 +0200 | [diff] [blame] | 125 | /* |
| 126 | * Default partition tables to be used if the partition information not |
Linus Walleij | 4ad916b | 2010-11-29 13:52:06 +0100 | [diff] [blame] | 127 | * provided through platform data. |
| 128 | * |
Linus Walleij | 6c009ab | 2010-09-13 00:35:22 +0200 | [diff] [blame] | 129 | * Default partition layout for small page(= 512 bytes) devices |
| 130 | * Size for "Root file system" is updated in driver based on actual device size |
| 131 | */ |
| 132 | static struct mtd_partition partition_info_16KB_blk[] = { |
Linus Walleij | 4ad916b | 2010-11-29 13:52:06 +0100 | [diff] [blame] | 133 | { |
| 134 | .name = "X-loader", |
| 135 | .offset = 0, |
| 136 | .size = 4*0x4000, |
| 137 | }, |
| 138 | { |
| 139 | .name = "U-Boot", |
| 140 | .offset = 0x10000, |
| 141 | .size = 20*0x4000, |
| 142 | }, |
| 143 | { |
| 144 | .name = "Kernel", |
| 145 | .offset = 0x60000, |
| 146 | .size = 256*0x4000, |
| 147 | }, |
| 148 | { |
| 149 | .name = "Root File System", |
| 150 | .offset = 0x460000, |
| 151 | .size = 0, |
| 152 | }, |
Linus Walleij | 6c009ab | 2010-09-13 00:35:22 +0200 | [diff] [blame] | 153 | }; |
| 154 | |
| 155 | /* |
| 156 | * Default partition layout for large page(> 512 bytes) devices |
| 157 | * Size for "Root file system" is updated in driver based on actual device size |
| 158 | */ |
| 159 | static struct mtd_partition partition_info_128KB_blk[] = { |
Linus Walleij | 4ad916b | 2010-11-29 13:52:06 +0100 | [diff] [blame] | 160 | { |
| 161 | .name = "X-loader", |
| 162 | .offset = 0, |
| 163 | .size = 4*0x20000, |
| 164 | }, |
| 165 | { |
| 166 | .name = "U-Boot", |
| 167 | .offset = 0x80000, |
| 168 | .size = 12*0x20000, |
| 169 | }, |
| 170 | { |
| 171 | .name = "Kernel", |
| 172 | .offset = 0x200000, |
| 173 | .size = 48*0x20000, |
| 174 | }, |
| 175 | { |
| 176 | .name = "Root File System", |
| 177 | .offset = 0x800000, |
| 178 | .size = 0, |
| 179 | }, |
Linus Walleij | 6c009ab | 2010-09-13 00:35:22 +0200 | [diff] [blame] | 180 | }; |
| 181 | |
| 182 | #ifdef CONFIG_MTD_CMDLINE_PARTS |
| 183 | const char *part_probes[] = { "cmdlinepart", NULL }; |
| 184 | #endif |
Linus Walleij | 4ad916b | 2010-11-29 13:52:06 +0100 | [diff] [blame] | 185 | #endif |
Linus Walleij | 6c009ab | 2010-09-13 00:35:22 +0200 | [diff] [blame] | 186 | |
| 187 | /** |
Linus Walleij | 593cd87 | 2010-11-29 13:52:19 +0100 | [diff] [blame] | 188 | * struct fsmc_nand_data - structure for FSMC NAND device state |
Linus Walleij | 6c009ab | 2010-09-13 00:35:22 +0200 | [diff] [blame] | 189 | * |
Linus Walleij | 593cd87 | 2010-11-29 13:52:19 +0100 | [diff] [blame] | 190 | * @pid: Part ID on the AMBA PrimeCell format |
Linus Walleij | 6c009ab | 2010-09-13 00:35:22 +0200 | [diff] [blame] | 191 | * @mtd: MTD info for a NAND flash. |
| 192 | * @nand: Chip related info for a NAND flash. |
| 193 | * @partitions: Partition info for a NAND Flash. |
| 194 | * @nr_partitions: Total number of partition of a NAND flash. |
| 195 | * |
| 196 | * @ecc_place: ECC placing locations in oobfree type format. |
| 197 | * @bank: Bank number for probed device. |
| 198 | * @clk: Clock structure for FSMC. |
| 199 | * |
| 200 | * @data_va: NAND port for Data. |
| 201 | * @cmd_va: NAND port for Command. |
| 202 | * @addr_va: NAND port for Address. |
| 203 | * @regs_va: FSMC regs base address. |
| 204 | */ |
| 205 | struct fsmc_nand_data { |
Linus Walleij | 593cd87 | 2010-11-29 13:52:19 +0100 | [diff] [blame] | 206 | u32 pid; |
Linus Walleij | 6c009ab | 2010-09-13 00:35:22 +0200 | [diff] [blame] | 207 | struct mtd_info mtd; |
| 208 | struct nand_chip nand; |
| 209 | struct mtd_partition *partitions; |
| 210 | unsigned int nr_partitions; |
| 211 | |
| 212 | struct fsmc_eccplace *ecc_place; |
| 213 | unsigned int bank; |
| 214 | struct clk *clk; |
| 215 | |
| 216 | struct resource *resregs; |
| 217 | struct resource *rescmd; |
| 218 | struct resource *resaddr; |
| 219 | struct resource *resdata; |
| 220 | |
| 221 | void __iomem *data_va; |
| 222 | void __iomem *cmd_va; |
| 223 | void __iomem *addr_va; |
| 224 | void __iomem *regs_va; |
| 225 | |
| 226 | void (*select_chip)(uint32_t bank, uint32_t busw); |
| 227 | }; |
| 228 | |
| 229 | /* Assert CS signal based on chipnr */ |
| 230 | static void fsmc_select_chip(struct mtd_info *mtd, int chipnr) |
| 231 | { |
| 232 | struct nand_chip *chip = mtd->priv; |
| 233 | struct fsmc_nand_data *host; |
| 234 | |
| 235 | host = container_of(mtd, struct fsmc_nand_data, mtd); |
| 236 | |
| 237 | switch (chipnr) { |
| 238 | case -1: |
| 239 | chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE); |
| 240 | break; |
| 241 | case 0: |
| 242 | case 1: |
| 243 | case 2: |
| 244 | case 3: |
| 245 | if (host->select_chip) |
| 246 | host->select_chip(chipnr, |
| 247 | chip->options & NAND_BUSWIDTH_16); |
| 248 | break; |
| 249 | |
| 250 | default: |
| 251 | BUG(); |
| 252 | } |
| 253 | } |
| 254 | |
| 255 | /* |
| 256 | * fsmc_cmd_ctrl - For facilitaing Hardware access |
| 257 | * This routine allows hardware specific access to control-lines(ALE,CLE) |
| 258 | */ |
| 259 | static void fsmc_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl) |
| 260 | { |
| 261 | struct nand_chip *this = mtd->priv; |
| 262 | struct fsmc_nand_data *host = container_of(mtd, |
| 263 | struct fsmc_nand_data, mtd); |
| 264 | struct fsmc_regs *regs = host->regs_va; |
| 265 | unsigned int bank = host->bank; |
| 266 | |
| 267 | if (ctrl & NAND_CTRL_CHANGE) { |
| 268 | if (ctrl & NAND_CLE) { |
| 269 | this->IO_ADDR_R = (void __iomem *)host->cmd_va; |
| 270 | this->IO_ADDR_W = (void __iomem *)host->cmd_va; |
| 271 | } else if (ctrl & NAND_ALE) { |
| 272 | this->IO_ADDR_R = (void __iomem *)host->addr_va; |
| 273 | this->IO_ADDR_W = (void __iomem *)host->addr_va; |
| 274 | } else { |
| 275 | this->IO_ADDR_R = (void __iomem *)host->data_va; |
| 276 | this->IO_ADDR_W = (void __iomem *)host->data_va; |
| 277 | } |
| 278 | |
| 279 | if (ctrl & NAND_NCE) { |
| 280 | writel(readl(®s->bank_regs[bank].pc) | FSMC_ENABLE, |
| 281 | ®s->bank_regs[bank].pc); |
| 282 | } else { |
| 283 | writel(readl(®s->bank_regs[bank].pc) & ~FSMC_ENABLE, |
| 284 | ®s->bank_regs[bank].pc); |
| 285 | } |
| 286 | } |
| 287 | |
| 288 | mb(); |
| 289 | |
| 290 | if (cmd != NAND_CMD_NONE) |
| 291 | writeb(cmd, this->IO_ADDR_W); |
| 292 | } |
| 293 | |
| 294 | /* |
| 295 | * fsmc_nand_setup - FSMC (Flexible Static Memory Controller) init routine |
| 296 | * |
| 297 | * This routine initializes timing parameters related to NAND memory access in |
| 298 | * FSMC registers |
| 299 | */ |
| 300 | static void __init fsmc_nand_setup(struct fsmc_regs *regs, uint32_t bank, |
| 301 | uint32_t busw) |
| 302 | { |
| 303 | uint32_t value = FSMC_DEVTYPE_NAND | FSMC_ENABLE | FSMC_WAITON; |
| 304 | |
| 305 | if (busw) |
| 306 | writel(value | FSMC_DEVWID_16, ®s->bank_regs[bank].pc); |
| 307 | else |
| 308 | writel(value | FSMC_DEVWID_8, ®s->bank_regs[bank].pc); |
| 309 | |
| 310 | writel(readl(®s->bank_regs[bank].pc) | FSMC_TCLR_1 | FSMC_TAR_1, |
| 311 | ®s->bank_regs[bank].pc); |
| 312 | writel(FSMC_THIZ_1 | FSMC_THOLD_4 | FSMC_TWAIT_6 | FSMC_TSET_0, |
| 313 | ®s->bank_regs[bank].comm); |
| 314 | writel(FSMC_THIZ_1 | FSMC_THOLD_4 | FSMC_TWAIT_6 | FSMC_TSET_0, |
| 315 | ®s->bank_regs[bank].attrib); |
| 316 | } |
| 317 | |
| 318 | /* |
| 319 | * fsmc_enable_hwecc - Enables Hardware ECC through FSMC registers |
| 320 | */ |
| 321 | static void fsmc_enable_hwecc(struct mtd_info *mtd, int mode) |
| 322 | { |
| 323 | struct fsmc_nand_data *host = container_of(mtd, |
| 324 | struct fsmc_nand_data, mtd); |
| 325 | struct fsmc_regs *regs = host->regs_va; |
| 326 | uint32_t bank = host->bank; |
| 327 | |
| 328 | writel(readl(®s->bank_regs[bank].pc) & ~FSMC_ECCPLEN_256, |
| 329 | ®s->bank_regs[bank].pc); |
| 330 | writel(readl(®s->bank_regs[bank].pc) & ~FSMC_ECCEN, |
| 331 | ®s->bank_regs[bank].pc); |
| 332 | writel(readl(®s->bank_regs[bank].pc) | FSMC_ECCEN, |
| 333 | ®s->bank_regs[bank].pc); |
| 334 | } |
| 335 | |
| 336 | /* |
| 337 | * fsmc_read_hwecc_ecc4 - Hardware ECC calculator for ecc4 option supported by |
Lucas De Marchi | 25985ed | 2011-03-30 22:57:33 -0300 | [diff] [blame^] | 338 | * FSMC. ECC is 13 bytes for 512 bytes of data (supports error correction up to |
Linus Walleij | 6c009ab | 2010-09-13 00:35:22 +0200 | [diff] [blame] | 339 | * max of 8-bits) |
| 340 | */ |
| 341 | static int fsmc_read_hwecc_ecc4(struct mtd_info *mtd, const uint8_t *data, |
| 342 | uint8_t *ecc) |
| 343 | { |
| 344 | struct fsmc_nand_data *host = container_of(mtd, |
| 345 | struct fsmc_nand_data, mtd); |
| 346 | struct fsmc_regs *regs = host->regs_va; |
| 347 | uint32_t bank = host->bank; |
| 348 | uint32_t ecc_tmp; |
| 349 | unsigned long deadline = jiffies + FSMC_BUSY_WAIT_TIMEOUT; |
| 350 | |
| 351 | do { |
| 352 | if (readl(®s->bank_regs[bank].sts) & FSMC_CODE_RDY) |
| 353 | break; |
| 354 | else |
| 355 | cond_resched(); |
| 356 | } while (!time_after_eq(jiffies, deadline)); |
| 357 | |
| 358 | ecc_tmp = readl(®s->bank_regs[bank].ecc1); |
| 359 | ecc[0] = (uint8_t) (ecc_tmp >> 0); |
| 360 | ecc[1] = (uint8_t) (ecc_tmp >> 8); |
| 361 | ecc[2] = (uint8_t) (ecc_tmp >> 16); |
| 362 | ecc[3] = (uint8_t) (ecc_tmp >> 24); |
| 363 | |
| 364 | ecc_tmp = readl(®s->bank_regs[bank].ecc2); |
| 365 | ecc[4] = (uint8_t) (ecc_tmp >> 0); |
| 366 | ecc[5] = (uint8_t) (ecc_tmp >> 8); |
| 367 | ecc[6] = (uint8_t) (ecc_tmp >> 16); |
| 368 | ecc[7] = (uint8_t) (ecc_tmp >> 24); |
| 369 | |
| 370 | ecc_tmp = readl(®s->bank_regs[bank].ecc3); |
| 371 | ecc[8] = (uint8_t) (ecc_tmp >> 0); |
| 372 | ecc[9] = (uint8_t) (ecc_tmp >> 8); |
| 373 | ecc[10] = (uint8_t) (ecc_tmp >> 16); |
| 374 | ecc[11] = (uint8_t) (ecc_tmp >> 24); |
| 375 | |
| 376 | ecc_tmp = readl(®s->bank_regs[bank].sts); |
| 377 | ecc[12] = (uint8_t) (ecc_tmp >> 16); |
| 378 | |
| 379 | return 0; |
| 380 | } |
| 381 | |
| 382 | /* |
| 383 | * fsmc_read_hwecc_ecc1 - Hardware ECC calculator for ecc1 option supported by |
Lucas De Marchi | 25985ed | 2011-03-30 22:57:33 -0300 | [diff] [blame^] | 384 | * FSMC. ECC is 3 bytes for 512 bytes of data (supports error correction up to |
Linus Walleij | 6c009ab | 2010-09-13 00:35:22 +0200 | [diff] [blame] | 385 | * max of 1-bit) |
| 386 | */ |
| 387 | static int fsmc_read_hwecc_ecc1(struct mtd_info *mtd, const uint8_t *data, |
| 388 | uint8_t *ecc) |
| 389 | { |
| 390 | struct fsmc_nand_data *host = container_of(mtd, |
| 391 | struct fsmc_nand_data, mtd); |
| 392 | struct fsmc_regs *regs = host->regs_va; |
| 393 | uint32_t bank = host->bank; |
| 394 | uint32_t ecc_tmp; |
| 395 | |
| 396 | ecc_tmp = readl(®s->bank_regs[bank].ecc1); |
| 397 | ecc[0] = (uint8_t) (ecc_tmp >> 0); |
| 398 | ecc[1] = (uint8_t) (ecc_tmp >> 8); |
| 399 | ecc[2] = (uint8_t) (ecc_tmp >> 16); |
| 400 | |
| 401 | return 0; |
| 402 | } |
| 403 | |
| 404 | /* |
| 405 | * fsmc_read_page_hwecc |
| 406 | * @mtd: mtd info structure |
| 407 | * @chip: nand chip info structure |
| 408 | * @buf: buffer to store read data |
| 409 | * @page: page number to read |
| 410 | * |
Lucas De Marchi | 25985ed | 2011-03-30 22:57:33 -0300 | [diff] [blame^] | 411 | * This routine is needed for fsmc version 8 as reading from NAND chip has to be |
Linus Walleij | 6c009ab | 2010-09-13 00:35:22 +0200 | [diff] [blame] | 412 | * performed in a strict sequence as follows: |
| 413 | * data(512 byte) -> ecc(13 byte) |
Lucas De Marchi | 25985ed | 2011-03-30 22:57:33 -0300 | [diff] [blame^] | 414 | * After this read, fsmc hardware generates and reports error data bits(up to a |
Linus Walleij | 6c009ab | 2010-09-13 00:35:22 +0200 | [diff] [blame] | 415 | * max of 8 bits) |
| 416 | */ |
| 417 | static int fsmc_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip, |
| 418 | uint8_t *buf, int page) |
| 419 | { |
| 420 | struct fsmc_nand_data *host = container_of(mtd, |
| 421 | struct fsmc_nand_data, mtd); |
| 422 | struct fsmc_eccplace *ecc_place = host->ecc_place; |
| 423 | int i, j, s, stat, eccsize = chip->ecc.size; |
| 424 | int eccbytes = chip->ecc.bytes; |
| 425 | int eccsteps = chip->ecc.steps; |
| 426 | uint8_t *p = buf; |
| 427 | uint8_t *ecc_calc = chip->buffers->ecccalc; |
| 428 | uint8_t *ecc_code = chip->buffers->ecccode; |
| 429 | int off, len, group = 0; |
| 430 | /* |
| 431 | * ecc_oob is intentionally taken as uint16_t. In 16bit devices, we |
| 432 | * end up reading 14 bytes (7 words) from oob. The local array is |
| 433 | * to maintain word alignment |
| 434 | */ |
| 435 | uint16_t ecc_oob[7]; |
| 436 | uint8_t *oob = (uint8_t *)&ecc_oob[0]; |
| 437 | |
| 438 | for (i = 0, s = 0; s < eccsteps; s++, i += eccbytes, p += eccsize) { |
| 439 | |
| 440 | chip->cmdfunc(mtd, NAND_CMD_READ0, s * eccsize, page); |
| 441 | chip->ecc.hwctl(mtd, NAND_ECC_READ); |
| 442 | chip->read_buf(mtd, p, eccsize); |
| 443 | |
| 444 | for (j = 0; j < eccbytes;) { |
| 445 | off = ecc_place->eccplace[group].offset; |
| 446 | len = ecc_place->eccplace[group].length; |
| 447 | group++; |
| 448 | |
| 449 | /* |
| 450 | * length is intentionally kept a higher multiple of 2 |
| 451 | * to read at least 13 bytes even in case of 16 bit NAND |
| 452 | * devices |
| 453 | */ |
| 454 | len = roundup(len, 2); |
| 455 | chip->cmdfunc(mtd, NAND_CMD_READOOB, off, page); |
| 456 | chip->read_buf(mtd, oob + j, len); |
| 457 | j += len; |
| 458 | } |
| 459 | |
| 460 | memcpy(&ecc_code[i], oob, 13); |
| 461 | chip->ecc.calculate(mtd, p, &ecc_calc[i]); |
| 462 | |
| 463 | stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]); |
| 464 | if (stat < 0) |
| 465 | mtd->ecc_stats.failed++; |
| 466 | else |
| 467 | mtd->ecc_stats.corrected += stat; |
| 468 | } |
| 469 | |
| 470 | return 0; |
| 471 | } |
| 472 | |
| 473 | /* |
| 474 | * fsmc_correct_data |
| 475 | * @mtd: mtd info structure |
| 476 | * @dat: buffer of read data |
| 477 | * @read_ecc: ecc read from device spare area |
| 478 | * @calc_ecc: ecc calculated from read data |
| 479 | * |
| 480 | * calc_ecc is a 104 bit information containing maximum of 8 error |
| 481 | * offset informations of 13 bits each in 512 bytes of read data. |
| 482 | */ |
| 483 | static int fsmc_correct_data(struct mtd_info *mtd, uint8_t *dat, |
| 484 | uint8_t *read_ecc, uint8_t *calc_ecc) |
| 485 | { |
| 486 | struct fsmc_nand_data *host = container_of(mtd, |
| 487 | struct fsmc_nand_data, mtd); |
| 488 | struct fsmc_regs *regs = host->regs_va; |
| 489 | unsigned int bank = host->bank; |
| 490 | uint16_t err_idx[8]; |
| 491 | uint64_t ecc_data[2]; |
| 492 | uint32_t num_err, i; |
| 493 | |
| 494 | /* The calculated ecc is actually the correction index in data */ |
| 495 | memcpy(ecc_data, calc_ecc, 13); |
| 496 | |
| 497 | /* |
| 498 | * ------------------- calc_ecc[] bit wise -----------|--13 bits--| |
| 499 | * |---idx[7]--|--.....-----|---idx[2]--||---idx[1]--||---idx[0]--| |
| 500 | * |
| 501 | * calc_ecc is a 104 bit information containing maximum of 8 error |
| 502 | * offset informations of 13 bits each. calc_ecc is copied into a |
| 503 | * uint64_t array and error offset indexes are populated in err_idx |
| 504 | * array |
| 505 | */ |
| 506 | for (i = 0; i < 8; i++) { |
| 507 | if (i == 4) { |
| 508 | err_idx[4] = ((ecc_data[1] & 0x1) << 12) | ecc_data[0]; |
| 509 | ecc_data[1] >>= 1; |
| 510 | continue; |
| 511 | } |
| 512 | err_idx[i] = (ecc_data[i/4] & 0x1FFF); |
| 513 | ecc_data[i/4] >>= 13; |
| 514 | } |
| 515 | |
| 516 | num_err = (readl(®s->bank_regs[bank].sts) >> 10) & 0xF; |
| 517 | |
| 518 | if (num_err == 0xF) |
| 519 | return -EBADMSG; |
| 520 | |
| 521 | i = 0; |
| 522 | while (num_err--) { |
| 523 | change_bit(0, (unsigned long *)&err_idx[i]); |
| 524 | change_bit(1, (unsigned long *)&err_idx[i]); |
| 525 | |
| 526 | if (err_idx[i] <= 512 * 8) { |
| 527 | change_bit(err_idx[i], (unsigned long *)dat); |
| 528 | i++; |
| 529 | } |
| 530 | } |
| 531 | return i; |
| 532 | } |
| 533 | |
| 534 | /* |
| 535 | * fsmc_nand_probe - Probe function |
| 536 | * @pdev: platform device structure |
| 537 | */ |
| 538 | static int __init fsmc_nand_probe(struct platform_device *pdev) |
| 539 | { |
| 540 | struct fsmc_nand_platform_data *pdata = dev_get_platdata(&pdev->dev); |
| 541 | struct fsmc_nand_data *host; |
| 542 | struct mtd_info *mtd; |
| 543 | struct nand_chip *nand; |
| 544 | struct fsmc_regs *regs; |
| 545 | struct resource *res; |
Linus Walleij | 4ad916b | 2010-11-29 13:52:06 +0100 | [diff] [blame] | 546 | int ret = 0; |
Linus Walleij | 593cd87 | 2010-11-29 13:52:19 +0100 | [diff] [blame] | 547 | u32 pid; |
| 548 | int i; |
Linus Walleij | 6c009ab | 2010-09-13 00:35:22 +0200 | [diff] [blame] | 549 | |
| 550 | if (!pdata) { |
| 551 | dev_err(&pdev->dev, "platform data is NULL\n"); |
| 552 | return -EINVAL; |
| 553 | } |
| 554 | |
| 555 | /* Allocate memory for the device structure (and zero it) */ |
| 556 | host = kzalloc(sizeof(*host), GFP_KERNEL); |
| 557 | if (!host) { |
| 558 | dev_err(&pdev->dev, "failed to allocate device structure\n"); |
| 559 | return -ENOMEM; |
| 560 | } |
| 561 | |
| 562 | res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_data"); |
| 563 | if (!res) { |
| 564 | ret = -EIO; |
| 565 | goto err_probe1; |
| 566 | } |
| 567 | |
| 568 | host->resdata = request_mem_region(res->start, resource_size(res), |
| 569 | pdev->name); |
| 570 | if (!host->resdata) { |
| 571 | ret = -EIO; |
| 572 | goto err_probe1; |
| 573 | } |
| 574 | |
| 575 | host->data_va = ioremap(res->start, resource_size(res)); |
| 576 | if (!host->data_va) { |
| 577 | ret = -EIO; |
| 578 | goto err_probe1; |
| 579 | } |
| 580 | |
| 581 | host->resaddr = request_mem_region(res->start + PLAT_NAND_ALE, |
| 582 | resource_size(res), pdev->name); |
| 583 | if (!host->resaddr) { |
| 584 | ret = -EIO; |
| 585 | goto err_probe1; |
| 586 | } |
| 587 | |
| 588 | host->addr_va = ioremap(res->start + PLAT_NAND_ALE, resource_size(res)); |
| 589 | if (!host->addr_va) { |
| 590 | ret = -EIO; |
| 591 | goto err_probe1; |
| 592 | } |
| 593 | |
| 594 | host->rescmd = request_mem_region(res->start + PLAT_NAND_CLE, |
| 595 | resource_size(res), pdev->name); |
| 596 | if (!host->rescmd) { |
| 597 | ret = -EIO; |
| 598 | goto err_probe1; |
| 599 | } |
| 600 | |
| 601 | host->cmd_va = ioremap(res->start + PLAT_NAND_CLE, resource_size(res)); |
| 602 | if (!host->cmd_va) { |
| 603 | ret = -EIO; |
| 604 | goto err_probe1; |
| 605 | } |
| 606 | |
| 607 | res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "fsmc_regs"); |
| 608 | if (!res) { |
| 609 | ret = -EIO; |
| 610 | goto err_probe1; |
| 611 | } |
| 612 | |
| 613 | host->resregs = request_mem_region(res->start, resource_size(res), |
| 614 | pdev->name); |
| 615 | if (!host->resregs) { |
| 616 | ret = -EIO; |
| 617 | goto err_probe1; |
| 618 | } |
| 619 | |
| 620 | host->regs_va = ioremap(res->start, resource_size(res)); |
| 621 | if (!host->regs_va) { |
| 622 | ret = -EIO; |
| 623 | goto err_probe1; |
| 624 | } |
| 625 | |
| 626 | host->clk = clk_get(&pdev->dev, NULL); |
| 627 | if (IS_ERR(host->clk)) { |
| 628 | dev_err(&pdev->dev, "failed to fetch block clock\n"); |
| 629 | ret = PTR_ERR(host->clk); |
| 630 | host->clk = NULL; |
| 631 | goto err_probe1; |
| 632 | } |
| 633 | |
| 634 | ret = clk_enable(host->clk); |
| 635 | if (ret) |
| 636 | goto err_probe1; |
| 637 | |
Linus Walleij | 593cd87 | 2010-11-29 13:52:19 +0100 | [diff] [blame] | 638 | /* |
| 639 | * This device ID is actually a common AMBA ID as used on the |
| 640 | * AMBA PrimeCell bus. However it is not a PrimeCell. |
| 641 | */ |
| 642 | for (pid = 0, i = 0; i < 4; i++) |
| 643 | pid |= (readl(host->regs_va + resource_size(res) - 0x20 + 4 * i) & 255) << (i * 8); |
| 644 | host->pid = pid; |
| 645 | dev_info(&pdev->dev, "FSMC device partno %03x, manufacturer %02x, " |
| 646 | "revision %02x, config %02x\n", |
| 647 | AMBA_PART_BITS(pid), AMBA_MANF_BITS(pid), |
| 648 | AMBA_REV_BITS(pid), AMBA_CONFIG_BITS(pid)); |
| 649 | |
Linus Walleij | 6c009ab | 2010-09-13 00:35:22 +0200 | [diff] [blame] | 650 | host->bank = pdata->bank; |
| 651 | host->select_chip = pdata->select_bank; |
| 652 | regs = host->regs_va; |
| 653 | |
| 654 | /* Link all private pointers */ |
| 655 | mtd = &host->mtd; |
| 656 | nand = &host->nand; |
| 657 | mtd->priv = nand; |
| 658 | nand->priv = host; |
| 659 | |
| 660 | host->mtd.owner = THIS_MODULE; |
| 661 | nand->IO_ADDR_R = host->data_va; |
| 662 | nand->IO_ADDR_W = host->data_va; |
| 663 | nand->cmd_ctrl = fsmc_cmd_ctrl; |
| 664 | nand->chip_delay = 30; |
| 665 | |
| 666 | nand->ecc.mode = NAND_ECC_HW; |
| 667 | nand->ecc.hwctl = fsmc_enable_hwecc; |
| 668 | nand->ecc.size = 512; |
| 669 | nand->options = pdata->options; |
| 670 | nand->select_chip = fsmc_select_chip; |
| 671 | |
| 672 | if (pdata->width == FSMC_NAND_BW16) |
| 673 | nand->options |= NAND_BUSWIDTH_16; |
| 674 | |
| 675 | fsmc_nand_setup(regs, host->bank, nand->options & NAND_BUSWIDTH_16); |
| 676 | |
Linus Walleij | 593cd87 | 2010-11-29 13:52:19 +0100 | [diff] [blame] | 677 | if (AMBA_REV_BITS(host->pid) >= 8) { |
Linus Walleij | 6c009ab | 2010-09-13 00:35:22 +0200 | [diff] [blame] | 678 | nand->ecc.read_page = fsmc_read_page_hwecc; |
| 679 | nand->ecc.calculate = fsmc_read_hwecc_ecc4; |
| 680 | nand->ecc.correct = fsmc_correct_data; |
| 681 | nand->ecc.bytes = 13; |
| 682 | } else { |
| 683 | nand->ecc.calculate = fsmc_read_hwecc_ecc1; |
| 684 | nand->ecc.correct = nand_correct_data; |
| 685 | nand->ecc.bytes = 3; |
| 686 | } |
| 687 | |
| 688 | /* |
Lucas De Marchi | 25985ed | 2011-03-30 22:57:33 -0300 | [diff] [blame^] | 689 | * Scan to find existence of the device |
Linus Walleij | 6c009ab | 2010-09-13 00:35:22 +0200 | [diff] [blame] | 690 | */ |
| 691 | if (nand_scan_ident(&host->mtd, 1, NULL)) { |
| 692 | ret = -ENXIO; |
| 693 | dev_err(&pdev->dev, "No NAND Device found!\n"); |
| 694 | goto err_probe; |
| 695 | } |
| 696 | |
Linus Walleij | 593cd87 | 2010-11-29 13:52:19 +0100 | [diff] [blame] | 697 | if (AMBA_REV_BITS(host->pid) >= 8) { |
Linus Walleij | 6c009ab | 2010-09-13 00:35:22 +0200 | [diff] [blame] | 698 | if (host->mtd.writesize == 512) { |
| 699 | nand->ecc.layout = &fsmc_ecc4_sp_layout; |
| 700 | host->ecc_place = &fsmc_ecc4_sp_place; |
| 701 | } else { |
| 702 | nand->ecc.layout = &fsmc_ecc4_lp_layout; |
| 703 | host->ecc_place = &fsmc_ecc4_lp_place; |
| 704 | } |
| 705 | } else { |
| 706 | nand->ecc.layout = &fsmc_ecc1_layout; |
| 707 | } |
| 708 | |
| 709 | /* Second stage of scan to fill MTD data-structures */ |
| 710 | if (nand_scan_tail(&host->mtd)) { |
| 711 | ret = -ENXIO; |
| 712 | goto err_probe; |
| 713 | } |
| 714 | |
| 715 | /* |
| 716 | * The partition information can is accessed by (in the same precedence) |
| 717 | * |
| 718 | * command line through Bootloader, |
| 719 | * platform data, |
| 720 | * default partition information present in driver. |
| 721 | */ |
| 722 | #ifdef CONFIG_MTD_PARTITIONS |
| 723 | #ifdef CONFIG_MTD_CMDLINE_PARTS |
| 724 | /* |
| 725 | * Check if partition info passed via command line |
| 726 | */ |
| 727 | host->mtd.name = "nand"; |
Linus Walleij | 4ad916b | 2010-11-29 13:52:06 +0100 | [diff] [blame] | 728 | host->nr_partitions = parse_mtd_partitions(&host->mtd, part_probes, |
Linus Walleij | 6c009ab | 2010-09-13 00:35:22 +0200 | [diff] [blame] | 729 | &host->partitions, 0); |
Linus Walleij | 4ad916b | 2010-11-29 13:52:06 +0100 | [diff] [blame] | 730 | if (host->nr_partitions <= 0) { |
Linus Walleij | 6c009ab | 2010-09-13 00:35:22 +0200 | [diff] [blame] | 731 | #endif |
| 732 | /* |
| 733 | * Check if partition info passed via command line |
| 734 | */ |
| 735 | if (pdata->partitions) { |
| 736 | host->partitions = pdata->partitions; |
| 737 | host->nr_partitions = pdata->nr_partitions; |
| 738 | } else { |
| 739 | struct mtd_partition *partition; |
| 740 | int i; |
| 741 | |
| 742 | /* Select the default partitions info */ |
| 743 | switch (host->mtd.size) { |
| 744 | case 0x01000000: |
| 745 | case 0x02000000: |
| 746 | case 0x04000000: |
| 747 | host->partitions = partition_info_16KB_blk; |
| 748 | host->nr_partitions = |
| 749 | sizeof(partition_info_16KB_blk) / |
| 750 | sizeof(struct mtd_partition); |
| 751 | break; |
| 752 | case 0x08000000: |
| 753 | case 0x10000000: |
| 754 | case 0x20000000: |
| 755 | case 0x40000000: |
| 756 | host->partitions = partition_info_128KB_blk; |
| 757 | host->nr_partitions = |
| 758 | sizeof(partition_info_128KB_blk) / |
| 759 | sizeof(struct mtd_partition); |
| 760 | break; |
| 761 | default: |
| 762 | ret = -ENXIO; |
| 763 | pr_err("Unsupported NAND size\n"); |
| 764 | goto err_probe; |
| 765 | } |
| 766 | |
| 767 | partition = host->partitions; |
| 768 | for (i = 0; i < host->nr_partitions; i++, partition++) { |
| 769 | if (partition->size == 0) { |
| 770 | partition->size = host->mtd.size - |
| 771 | partition->offset; |
| 772 | break; |
| 773 | } |
| 774 | } |
| 775 | } |
| 776 | #ifdef CONFIG_MTD_CMDLINE_PARTS |
| 777 | } |
| 778 | #endif |
| 779 | |
| 780 | if (host->partitions) { |
| 781 | ret = add_mtd_partitions(&host->mtd, host->partitions, |
| 782 | host->nr_partitions); |
| 783 | if (ret) |
| 784 | goto err_probe; |
| 785 | } |
| 786 | #else |
| 787 | dev_info(&pdev->dev, "Registering %s as whole device\n", mtd->name); |
| 788 | if (!add_mtd_device(mtd)) { |
| 789 | ret = -ENXIO; |
| 790 | goto err_probe; |
| 791 | } |
| 792 | #endif |
| 793 | |
| 794 | platform_set_drvdata(pdev, host); |
| 795 | dev_info(&pdev->dev, "FSMC NAND driver registration successful\n"); |
| 796 | return 0; |
| 797 | |
| 798 | err_probe: |
| 799 | clk_disable(host->clk); |
| 800 | err_probe1: |
| 801 | if (host->clk) |
| 802 | clk_put(host->clk); |
| 803 | if (host->regs_va) |
| 804 | iounmap(host->regs_va); |
| 805 | if (host->resregs) |
| 806 | release_mem_region(host->resregs->start, |
| 807 | resource_size(host->resregs)); |
| 808 | if (host->cmd_va) |
| 809 | iounmap(host->cmd_va); |
| 810 | if (host->rescmd) |
| 811 | release_mem_region(host->rescmd->start, |
| 812 | resource_size(host->rescmd)); |
| 813 | if (host->addr_va) |
| 814 | iounmap(host->addr_va); |
| 815 | if (host->resaddr) |
| 816 | release_mem_region(host->resaddr->start, |
| 817 | resource_size(host->resaddr)); |
| 818 | if (host->data_va) |
| 819 | iounmap(host->data_va); |
| 820 | if (host->resdata) |
| 821 | release_mem_region(host->resdata->start, |
| 822 | resource_size(host->resdata)); |
| 823 | |
| 824 | kfree(host); |
| 825 | return ret; |
| 826 | } |
| 827 | |
| 828 | /* |
| 829 | * Clean up routine |
| 830 | */ |
| 831 | static int fsmc_nand_remove(struct platform_device *pdev) |
| 832 | { |
| 833 | struct fsmc_nand_data *host = platform_get_drvdata(pdev); |
| 834 | |
| 835 | platform_set_drvdata(pdev, NULL); |
| 836 | |
| 837 | if (host) { |
| 838 | #ifdef CONFIG_MTD_PARTITIONS |
| 839 | del_mtd_partitions(&host->mtd); |
| 840 | #else |
| 841 | del_mtd_device(&host->mtd); |
| 842 | #endif |
| 843 | clk_disable(host->clk); |
| 844 | clk_put(host->clk); |
| 845 | |
| 846 | iounmap(host->regs_va); |
| 847 | release_mem_region(host->resregs->start, |
| 848 | resource_size(host->resregs)); |
| 849 | iounmap(host->cmd_va); |
| 850 | release_mem_region(host->rescmd->start, |
| 851 | resource_size(host->rescmd)); |
| 852 | iounmap(host->addr_va); |
| 853 | release_mem_region(host->resaddr->start, |
| 854 | resource_size(host->resaddr)); |
| 855 | iounmap(host->data_va); |
| 856 | release_mem_region(host->resdata->start, |
| 857 | resource_size(host->resdata)); |
| 858 | |
| 859 | kfree(host); |
| 860 | } |
| 861 | return 0; |
| 862 | } |
| 863 | |
| 864 | #ifdef CONFIG_PM |
| 865 | static int fsmc_nand_suspend(struct device *dev) |
| 866 | { |
| 867 | struct fsmc_nand_data *host = dev_get_drvdata(dev); |
| 868 | if (host) |
| 869 | clk_disable(host->clk); |
| 870 | return 0; |
| 871 | } |
| 872 | |
| 873 | static int fsmc_nand_resume(struct device *dev) |
| 874 | { |
| 875 | struct fsmc_nand_data *host = dev_get_drvdata(dev); |
| 876 | if (host) |
| 877 | clk_enable(host->clk); |
| 878 | return 0; |
| 879 | } |
| 880 | |
| 881 | static const struct dev_pm_ops fsmc_nand_pm_ops = { |
| 882 | .suspend = fsmc_nand_suspend, |
| 883 | .resume = fsmc_nand_resume, |
| 884 | }; |
| 885 | #endif |
| 886 | |
| 887 | static struct platform_driver fsmc_nand_driver = { |
| 888 | .remove = fsmc_nand_remove, |
| 889 | .driver = { |
| 890 | .owner = THIS_MODULE, |
| 891 | .name = "fsmc-nand", |
| 892 | #ifdef CONFIG_PM |
| 893 | .pm = &fsmc_nand_pm_ops, |
| 894 | #endif |
| 895 | }, |
| 896 | }; |
| 897 | |
| 898 | static int __init fsmc_nand_init(void) |
| 899 | { |
| 900 | return platform_driver_probe(&fsmc_nand_driver, |
| 901 | fsmc_nand_probe); |
| 902 | } |
| 903 | module_init(fsmc_nand_init); |
| 904 | |
| 905 | static void __exit fsmc_nand_exit(void) |
| 906 | { |
| 907 | platform_driver_unregister(&fsmc_nand_driver); |
| 908 | } |
| 909 | module_exit(fsmc_nand_exit); |
| 910 | |
| 911 | MODULE_LICENSE("GPL"); |
| 912 | MODULE_AUTHOR("Vipin Kumar <vipin.kumar@st.com>, Ashish Priyadarshi"); |
| 913 | MODULE_DESCRIPTION("NAND driver for SPEAr Platforms"); |