Dmitry Kasatkin | cdec9cb | 2011-08-31 14:05:16 +0300 | [diff] [blame] | 1 | /* mpihelp-div.c - MPI helper functions |
| 2 | * Copyright (C) 1994, 1996 Free Software Foundation, Inc. |
| 3 | * Copyright (C) 1998, 1999 Free Software Foundation, Inc. |
| 4 | * |
| 5 | * This file is part of GnuPG. |
| 6 | * |
| 7 | * GnuPG is free software; you can redistribute it and/or modify |
| 8 | * it under the terms of the GNU General Public License as published by |
| 9 | * the Free Software Foundation; either version 2 of the License, or |
| 10 | * (at your option) any later version. |
| 11 | * |
| 12 | * GnuPG is distributed in the hope that it will be useful, |
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 15 | * GNU General Public License for more details. |
| 16 | * |
| 17 | * You should have received a copy of the GNU General Public License |
| 18 | * along with this program; if not, write to the Free Software |
| 19 | * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA |
| 20 | * |
| 21 | * Note: This code is heavily based on the GNU MP Library. |
| 22 | * Actually it's the same code with only minor changes in the |
| 23 | * way the data is stored; this is to support the abstraction |
| 24 | * of an optional secure memory allocation which may be used |
| 25 | * to avoid revealing of sensitive data due to paging etc. |
| 26 | * The GNU MP Library itself is published under the LGPL; |
| 27 | * however I decided to publish this code under the plain GPL. |
| 28 | */ |
| 29 | |
| 30 | #include "mpi-internal.h" |
| 31 | #include "longlong.h" |
| 32 | |
| 33 | #ifndef UMUL_TIME |
| 34 | #define UMUL_TIME 1 |
| 35 | #endif |
| 36 | #ifndef UDIV_TIME |
| 37 | #define UDIV_TIME UMUL_TIME |
| 38 | #endif |
| 39 | |
| 40 | /* FIXME: We should be using invert_limb (or invert_normalized_limb) |
| 41 | * here (not udiv_qrnnd). |
| 42 | */ |
| 43 | |
| 44 | mpi_limb_t |
| 45 | mpihelp_mod_1(mpi_ptr_t dividend_ptr, mpi_size_t dividend_size, |
| 46 | mpi_limb_t divisor_limb) |
| 47 | { |
| 48 | mpi_size_t i; |
| 49 | mpi_limb_t n1, n0, r; |
| 50 | int dummy; |
| 51 | |
| 52 | /* Botch: Should this be handled at all? Rely on callers? */ |
| 53 | if (!dividend_size) |
| 54 | return 0; |
| 55 | |
| 56 | /* If multiplication is much faster than division, and the |
| 57 | * dividend is large, pre-invert the divisor, and use |
| 58 | * only multiplications in the inner loop. |
| 59 | * |
| 60 | * This test should be read: |
| 61 | * Does it ever help to use udiv_qrnnd_preinv? |
| 62 | * && Does what we save compensate for the inversion overhead? |
| 63 | */ |
| 64 | if (UDIV_TIME > (2 * UMUL_TIME + 6) |
| 65 | && (UDIV_TIME - (2 * UMUL_TIME + 6)) * dividend_size > UDIV_TIME) { |
| 66 | int normalization_steps; |
| 67 | |
| 68 | count_leading_zeros(normalization_steps, divisor_limb); |
| 69 | if (normalization_steps) { |
| 70 | mpi_limb_t divisor_limb_inverted; |
| 71 | |
| 72 | divisor_limb <<= normalization_steps; |
| 73 | |
| 74 | /* Compute (2**2N - 2**N * DIVISOR_LIMB) / DIVISOR_LIMB. The |
| 75 | * result is a (N+1)-bit approximation to 1/DIVISOR_LIMB, with the |
| 76 | * most significant bit (with weight 2**N) implicit. |
| 77 | * |
| 78 | * Special case for DIVISOR_LIMB == 100...000. |
| 79 | */ |
| 80 | if (!(divisor_limb << 1)) |
| 81 | divisor_limb_inverted = ~(mpi_limb_t) 0; |
| 82 | else |
| 83 | udiv_qrnnd(divisor_limb_inverted, dummy, |
| 84 | -divisor_limb, 0, divisor_limb); |
| 85 | |
| 86 | n1 = dividend_ptr[dividend_size - 1]; |
| 87 | r = n1 >> (BITS_PER_MPI_LIMB - normalization_steps); |
| 88 | |
| 89 | /* Possible optimization: |
| 90 | * if (r == 0 |
| 91 | * && divisor_limb > ((n1 << normalization_steps) |
| 92 | * | (dividend_ptr[dividend_size - 2] >> ...))) |
| 93 | * ...one division less... |
| 94 | */ |
| 95 | for (i = dividend_size - 2; i >= 0; i--) { |
| 96 | n0 = dividend_ptr[i]; |
| 97 | UDIV_QRNND_PREINV(dummy, r, r, |
| 98 | ((n1 << normalization_steps) |
| 99 | | (n0 >> |
| 100 | (BITS_PER_MPI_LIMB - |
| 101 | normalization_steps))), |
| 102 | divisor_limb, |
| 103 | divisor_limb_inverted); |
| 104 | n1 = n0; |
| 105 | } |
| 106 | UDIV_QRNND_PREINV(dummy, r, r, |
| 107 | n1 << normalization_steps, |
| 108 | divisor_limb, divisor_limb_inverted); |
| 109 | return r >> normalization_steps; |
| 110 | } else { |
| 111 | mpi_limb_t divisor_limb_inverted; |
| 112 | |
| 113 | /* Compute (2**2N - 2**N * DIVISOR_LIMB) / DIVISOR_LIMB. The |
| 114 | * result is a (N+1)-bit approximation to 1/DIVISOR_LIMB, with the |
| 115 | * most significant bit (with weight 2**N) implicit. |
| 116 | * |
| 117 | * Special case for DIVISOR_LIMB == 100...000. |
| 118 | */ |
| 119 | if (!(divisor_limb << 1)) |
| 120 | divisor_limb_inverted = ~(mpi_limb_t) 0; |
| 121 | else |
| 122 | udiv_qrnnd(divisor_limb_inverted, dummy, |
| 123 | -divisor_limb, 0, divisor_limb); |
| 124 | |
| 125 | i = dividend_size - 1; |
| 126 | r = dividend_ptr[i]; |
| 127 | |
| 128 | if (r >= divisor_limb) |
| 129 | r = 0; |
| 130 | else |
| 131 | i--; |
| 132 | |
| 133 | for (; i >= 0; i--) { |
| 134 | n0 = dividend_ptr[i]; |
| 135 | UDIV_QRNND_PREINV(dummy, r, r, |
| 136 | n0, divisor_limb, |
| 137 | divisor_limb_inverted); |
| 138 | } |
| 139 | return r; |
| 140 | } |
| 141 | } else { |
| 142 | if (UDIV_NEEDS_NORMALIZATION) { |
| 143 | int normalization_steps; |
| 144 | |
| 145 | count_leading_zeros(normalization_steps, divisor_limb); |
| 146 | if (normalization_steps) { |
| 147 | divisor_limb <<= normalization_steps; |
| 148 | |
| 149 | n1 = dividend_ptr[dividend_size - 1]; |
| 150 | r = n1 >> (BITS_PER_MPI_LIMB - |
| 151 | normalization_steps); |
| 152 | |
| 153 | /* Possible optimization: |
| 154 | * if (r == 0 |
| 155 | * && divisor_limb > ((n1 << normalization_steps) |
| 156 | * | (dividend_ptr[dividend_size - 2] >> ...))) |
| 157 | * ...one division less... |
| 158 | */ |
| 159 | for (i = dividend_size - 2; i >= 0; i--) { |
| 160 | n0 = dividend_ptr[i]; |
| 161 | udiv_qrnnd(dummy, r, r, |
| 162 | ((n1 << normalization_steps) |
| 163 | | (n0 >> |
| 164 | (BITS_PER_MPI_LIMB - |
| 165 | normalization_steps))), |
| 166 | divisor_limb); |
| 167 | n1 = n0; |
| 168 | } |
| 169 | udiv_qrnnd(dummy, r, r, |
| 170 | n1 << normalization_steps, |
| 171 | divisor_limb); |
| 172 | return r >> normalization_steps; |
| 173 | } |
| 174 | } |
| 175 | /* No normalization needed, either because udiv_qrnnd doesn't require |
| 176 | * it, or because DIVISOR_LIMB is already normalized. */ |
| 177 | i = dividend_size - 1; |
| 178 | r = dividend_ptr[i]; |
| 179 | |
| 180 | if (r >= divisor_limb) |
| 181 | r = 0; |
| 182 | else |
| 183 | i--; |
| 184 | |
| 185 | for (; i >= 0; i--) { |
| 186 | n0 = dividend_ptr[i]; |
| 187 | udiv_qrnnd(dummy, r, r, n0, divisor_limb); |
| 188 | } |
| 189 | return r; |
| 190 | } |
| 191 | } |
| 192 | |
| 193 | /* Divide num (NP/NSIZE) by den (DP/DSIZE) and write |
| 194 | * the NSIZE-DSIZE least significant quotient limbs at QP |
| 195 | * and the DSIZE long remainder at NP. If QEXTRA_LIMBS is |
| 196 | * non-zero, generate that many fraction bits and append them after the |
| 197 | * other quotient limbs. |
| 198 | * Return the most significant limb of the quotient, this is always 0 or 1. |
| 199 | * |
| 200 | * Preconditions: |
| 201 | * 0. NSIZE >= DSIZE. |
| 202 | * 1. The most significant bit of the divisor must be set. |
| 203 | * 2. QP must either not overlap with the input operands at all, or |
| 204 | * QP + DSIZE >= NP must hold true. (This means that it's |
| 205 | * possible to put the quotient in the high part of NUM, right after the |
| 206 | * remainder in NUM. |
| 207 | * 3. NSIZE >= DSIZE, even if QEXTRA_LIMBS is non-zero. |
| 208 | */ |
| 209 | |
| 210 | mpi_limb_t |
| 211 | mpihelp_divrem(mpi_ptr_t qp, mpi_size_t qextra_limbs, |
| 212 | mpi_ptr_t np, mpi_size_t nsize, mpi_ptr_t dp, mpi_size_t dsize) |
| 213 | { |
| 214 | mpi_limb_t most_significant_q_limb = 0; |
| 215 | |
| 216 | switch (dsize) { |
| 217 | case 0: |
| 218 | /* We are asked to divide by zero, so go ahead and do it! (To make |
| 219 | the compiler not remove this statement, return the value.) */ |
Dmitry Kasatkin | a6d68ec | 2012-01-26 19:13:20 +0200 | [diff] [blame] | 220 | /* |
| 221 | * existing clients of this function have been modified |
| 222 | * not to call it with dsize == 0, so this should not happen |
| 223 | */ |
Dmitry Kasatkin | cdec9cb | 2011-08-31 14:05:16 +0300 | [diff] [blame] | 224 | return 1 / dsize; |
| 225 | |
| 226 | case 1: |
| 227 | { |
| 228 | mpi_size_t i; |
| 229 | mpi_limb_t n1; |
| 230 | mpi_limb_t d; |
| 231 | |
| 232 | d = dp[0]; |
| 233 | n1 = np[nsize - 1]; |
| 234 | |
| 235 | if (n1 >= d) { |
| 236 | n1 -= d; |
| 237 | most_significant_q_limb = 1; |
| 238 | } |
| 239 | |
| 240 | qp += qextra_limbs; |
| 241 | for (i = nsize - 2; i >= 0; i--) |
| 242 | udiv_qrnnd(qp[i], n1, n1, np[i], d); |
| 243 | qp -= qextra_limbs; |
| 244 | |
| 245 | for (i = qextra_limbs - 1; i >= 0; i--) |
| 246 | udiv_qrnnd(qp[i], n1, n1, 0, d); |
| 247 | |
| 248 | np[0] = n1; |
| 249 | } |
| 250 | break; |
| 251 | |
| 252 | case 2: |
| 253 | { |
| 254 | mpi_size_t i; |
| 255 | mpi_limb_t n1, n0, n2; |
| 256 | mpi_limb_t d1, d0; |
| 257 | |
| 258 | np += nsize - 2; |
| 259 | d1 = dp[1]; |
| 260 | d0 = dp[0]; |
| 261 | n1 = np[1]; |
| 262 | n0 = np[0]; |
| 263 | |
| 264 | if (n1 >= d1 && (n1 > d1 || n0 >= d0)) { |
| 265 | sub_ddmmss(n1, n0, n1, n0, d1, d0); |
| 266 | most_significant_q_limb = 1; |
| 267 | } |
| 268 | |
| 269 | for (i = qextra_limbs + nsize - 2 - 1; i >= 0; i--) { |
| 270 | mpi_limb_t q; |
| 271 | mpi_limb_t r; |
| 272 | |
| 273 | if (i >= qextra_limbs) |
| 274 | np--; |
| 275 | else |
| 276 | np[0] = 0; |
| 277 | |
| 278 | if (n1 == d1) { |
| 279 | /* Q should be either 111..111 or 111..110. Need special |
| 280 | * treatment of this rare case as normal division would |
| 281 | * give overflow. */ |
| 282 | q = ~(mpi_limb_t) 0; |
| 283 | |
| 284 | r = n0 + d1; |
| 285 | if (r < d1) { /* Carry in the addition? */ |
| 286 | add_ssaaaa(n1, n0, r - d0, |
| 287 | np[0], 0, d0); |
| 288 | qp[i] = q; |
| 289 | continue; |
| 290 | } |
| 291 | n1 = d0 - (d0 != 0 ? 1 : 0); |
| 292 | n0 = -d0; |
| 293 | } else { |
| 294 | udiv_qrnnd(q, r, n1, n0, d1); |
| 295 | umul_ppmm(n1, n0, d0, q); |
| 296 | } |
| 297 | |
| 298 | n2 = np[0]; |
| 299 | q_test: |
| 300 | if (n1 > r || (n1 == r && n0 > n2)) { |
| 301 | /* The estimated Q was too large. */ |
| 302 | q--; |
| 303 | sub_ddmmss(n1, n0, n1, n0, 0, d0); |
| 304 | r += d1; |
| 305 | if (r >= d1) /* If not carry, test Q again. */ |
| 306 | goto q_test; |
| 307 | } |
| 308 | |
| 309 | qp[i] = q; |
| 310 | sub_ddmmss(n1, n0, r, n2, n1, n0); |
| 311 | } |
| 312 | np[1] = n1; |
| 313 | np[0] = n0; |
| 314 | } |
| 315 | break; |
| 316 | |
| 317 | default: |
| 318 | { |
| 319 | mpi_size_t i; |
| 320 | mpi_limb_t dX, d1, n0; |
| 321 | |
| 322 | np += nsize - dsize; |
| 323 | dX = dp[dsize - 1]; |
| 324 | d1 = dp[dsize - 2]; |
| 325 | n0 = np[dsize - 1]; |
| 326 | |
| 327 | if (n0 >= dX) { |
| 328 | if (n0 > dX |
| 329 | || mpihelp_cmp(np, dp, dsize - 1) >= 0) { |
| 330 | mpihelp_sub_n(np, np, dp, dsize); |
| 331 | n0 = np[dsize - 1]; |
| 332 | most_significant_q_limb = 1; |
| 333 | } |
| 334 | } |
| 335 | |
| 336 | for (i = qextra_limbs + nsize - dsize - 1; i >= 0; i--) { |
| 337 | mpi_limb_t q; |
| 338 | mpi_limb_t n1, n2; |
| 339 | mpi_limb_t cy_limb; |
| 340 | |
| 341 | if (i >= qextra_limbs) { |
| 342 | np--; |
| 343 | n2 = np[dsize]; |
| 344 | } else { |
| 345 | n2 = np[dsize - 1]; |
| 346 | MPN_COPY_DECR(np + 1, np, dsize - 1); |
| 347 | np[0] = 0; |
| 348 | } |
| 349 | |
| 350 | if (n0 == dX) { |
| 351 | /* This might over-estimate q, but it's probably not worth |
| 352 | * the extra code here to find out. */ |
| 353 | q = ~(mpi_limb_t) 0; |
| 354 | } else { |
| 355 | mpi_limb_t r; |
| 356 | |
| 357 | udiv_qrnnd(q, r, n0, np[dsize - 1], dX); |
| 358 | umul_ppmm(n1, n0, d1, q); |
| 359 | |
| 360 | while (n1 > r |
| 361 | || (n1 == r |
| 362 | && n0 > np[dsize - 2])) { |
| 363 | q--; |
| 364 | r += dX; |
| 365 | if (r < dX) /* I.e. "carry in previous addition?" */ |
| 366 | break; |
| 367 | n1 -= n0 < d1; |
| 368 | n0 -= d1; |
| 369 | } |
| 370 | } |
| 371 | |
| 372 | /* Possible optimization: We already have (q * n0) and (1 * n1) |
| 373 | * after the calculation of q. Taking advantage of that, we |
| 374 | * could make this loop make two iterations less. */ |
| 375 | cy_limb = mpihelp_submul_1(np, dp, dsize, q); |
| 376 | |
| 377 | if (n2 != cy_limb) { |
| 378 | mpihelp_add_n(np, np, dp, dsize); |
| 379 | q--; |
| 380 | } |
| 381 | |
| 382 | qp[i] = q; |
| 383 | n0 = np[dsize - 1]; |
| 384 | } |
| 385 | } |
| 386 | } |
| 387 | |
| 388 | return most_significant_q_limb; |
| 389 | } |
| 390 | |
| 391 | /**************** |
| 392 | * Divide (DIVIDEND_PTR,,DIVIDEND_SIZE) by DIVISOR_LIMB. |
| 393 | * Write DIVIDEND_SIZE limbs of quotient at QUOT_PTR. |
| 394 | * Return the single-limb remainder. |
| 395 | * There are no constraints on the value of the divisor. |
| 396 | * |
| 397 | * QUOT_PTR and DIVIDEND_PTR might point to the same limb. |
| 398 | */ |
| 399 | |
| 400 | mpi_limb_t |
| 401 | mpihelp_divmod_1(mpi_ptr_t quot_ptr, |
| 402 | mpi_ptr_t dividend_ptr, mpi_size_t dividend_size, |
| 403 | mpi_limb_t divisor_limb) |
| 404 | { |
| 405 | mpi_size_t i; |
| 406 | mpi_limb_t n1, n0, r; |
| 407 | int dummy; |
| 408 | |
| 409 | if (!dividend_size) |
| 410 | return 0; |
| 411 | |
| 412 | /* If multiplication is much faster than division, and the |
| 413 | * dividend is large, pre-invert the divisor, and use |
| 414 | * only multiplications in the inner loop. |
| 415 | * |
| 416 | * This test should be read: |
| 417 | * Does it ever help to use udiv_qrnnd_preinv? |
| 418 | * && Does what we save compensate for the inversion overhead? |
| 419 | */ |
| 420 | if (UDIV_TIME > (2 * UMUL_TIME + 6) |
| 421 | && (UDIV_TIME - (2 * UMUL_TIME + 6)) * dividend_size > UDIV_TIME) { |
| 422 | int normalization_steps; |
| 423 | |
| 424 | count_leading_zeros(normalization_steps, divisor_limb); |
| 425 | if (normalization_steps) { |
| 426 | mpi_limb_t divisor_limb_inverted; |
| 427 | |
| 428 | divisor_limb <<= normalization_steps; |
| 429 | |
| 430 | /* Compute (2**2N - 2**N * DIVISOR_LIMB) / DIVISOR_LIMB. The |
| 431 | * result is a (N+1)-bit approximation to 1/DIVISOR_LIMB, with the |
| 432 | * most significant bit (with weight 2**N) implicit. |
| 433 | */ |
| 434 | /* Special case for DIVISOR_LIMB == 100...000. */ |
| 435 | if (!(divisor_limb << 1)) |
| 436 | divisor_limb_inverted = ~(mpi_limb_t) 0; |
| 437 | else |
| 438 | udiv_qrnnd(divisor_limb_inverted, dummy, |
| 439 | -divisor_limb, 0, divisor_limb); |
| 440 | |
| 441 | n1 = dividend_ptr[dividend_size - 1]; |
| 442 | r = n1 >> (BITS_PER_MPI_LIMB - normalization_steps); |
| 443 | |
| 444 | /* Possible optimization: |
| 445 | * if (r == 0 |
| 446 | * && divisor_limb > ((n1 << normalization_steps) |
| 447 | * | (dividend_ptr[dividend_size - 2] >> ...))) |
| 448 | * ...one division less... |
| 449 | */ |
| 450 | for (i = dividend_size - 2; i >= 0; i--) { |
| 451 | n0 = dividend_ptr[i]; |
| 452 | UDIV_QRNND_PREINV(quot_ptr[i + 1], r, r, |
| 453 | ((n1 << normalization_steps) |
| 454 | | (n0 >> |
| 455 | (BITS_PER_MPI_LIMB - |
| 456 | normalization_steps))), |
| 457 | divisor_limb, |
| 458 | divisor_limb_inverted); |
| 459 | n1 = n0; |
| 460 | } |
| 461 | UDIV_QRNND_PREINV(quot_ptr[0], r, r, |
| 462 | n1 << normalization_steps, |
| 463 | divisor_limb, divisor_limb_inverted); |
| 464 | return r >> normalization_steps; |
| 465 | } else { |
| 466 | mpi_limb_t divisor_limb_inverted; |
| 467 | |
| 468 | /* Compute (2**2N - 2**N * DIVISOR_LIMB) / DIVISOR_LIMB. The |
| 469 | * result is a (N+1)-bit approximation to 1/DIVISOR_LIMB, with the |
| 470 | * most significant bit (with weight 2**N) implicit. |
| 471 | */ |
| 472 | /* Special case for DIVISOR_LIMB == 100...000. */ |
| 473 | if (!(divisor_limb << 1)) |
| 474 | divisor_limb_inverted = ~(mpi_limb_t) 0; |
| 475 | else |
| 476 | udiv_qrnnd(divisor_limb_inverted, dummy, |
| 477 | -divisor_limb, 0, divisor_limb); |
| 478 | |
| 479 | i = dividend_size - 1; |
| 480 | r = dividend_ptr[i]; |
| 481 | |
| 482 | if (r >= divisor_limb) |
| 483 | r = 0; |
| 484 | else |
| 485 | quot_ptr[i--] = 0; |
| 486 | |
| 487 | for (; i >= 0; i--) { |
| 488 | n0 = dividend_ptr[i]; |
| 489 | UDIV_QRNND_PREINV(quot_ptr[i], r, r, |
| 490 | n0, divisor_limb, |
| 491 | divisor_limb_inverted); |
| 492 | } |
| 493 | return r; |
| 494 | } |
| 495 | } else { |
| 496 | if (UDIV_NEEDS_NORMALIZATION) { |
| 497 | int normalization_steps; |
| 498 | |
| 499 | count_leading_zeros(normalization_steps, divisor_limb); |
| 500 | if (normalization_steps) { |
| 501 | divisor_limb <<= normalization_steps; |
| 502 | |
| 503 | n1 = dividend_ptr[dividend_size - 1]; |
| 504 | r = n1 >> (BITS_PER_MPI_LIMB - |
| 505 | normalization_steps); |
| 506 | |
| 507 | /* Possible optimization: |
| 508 | * if (r == 0 |
| 509 | * && divisor_limb > ((n1 << normalization_steps) |
| 510 | * | (dividend_ptr[dividend_size - 2] >> ...))) |
| 511 | * ...one division less... |
| 512 | */ |
| 513 | for (i = dividend_size - 2; i >= 0; i--) { |
| 514 | n0 = dividend_ptr[i]; |
| 515 | udiv_qrnnd(quot_ptr[i + 1], r, r, |
| 516 | ((n1 << normalization_steps) |
| 517 | | (n0 >> |
| 518 | (BITS_PER_MPI_LIMB - |
| 519 | normalization_steps))), |
| 520 | divisor_limb); |
| 521 | n1 = n0; |
| 522 | } |
| 523 | udiv_qrnnd(quot_ptr[0], r, r, |
| 524 | n1 << normalization_steps, |
| 525 | divisor_limb); |
| 526 | return r >> normalization_steps; |
| 527 | } |
| 528 | } |
| 529 | /* No normalization needed, either because udiv_qrnnd doesn't require |
| 530 | * it, or because DIVISOR_LIMB is already normalized. */ |
| 531 | i = dividend_size - 1; |
| 532 | r = dividend_ptr[i]; |
| 533 | |
| 534 | if (r >= divisor_limb) |
| 535 | r = 0; |
| 536 | else |
| 537 | quot_ptr[i--] = 0; |
| 538 | |
| 539 | for (; i >= 0; i--) { |
| 540 | n0 = dividend_ptr[i]; |
| 541 | udiv_qrnnd(quot_ptr[i], r, r, n0, divisor_limb); |
| 542 | } |
| 543 | return r; |
| 544 | } |
| 545 | } |