blob: 7122b7ba8d61f098e22bfb2fab4e6e527c1de629 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * acenic.c: Linux driver for the Alteon AceNIC Gigabit Ethernet card
3 * and other Tigon based cards.
4 *
5 * Copyright 1998-2002 by Jes Sorensen, <jes@trained-monkey.org>.
6 *
7 * Thanks to Alteon and 3Com for providing hardware and documentation
8 * enabling me to write this driver.
9 *
10 * A mailing list for discussing the use of this driver has been
11 * setup, please subscribe to the lists if you have any questions
12 * about the driver. Send mail to linux-acenic-help@sunsite.auc.dk to
13 * see how to subscribe.
14 *
15 * This program is free software; you can redistribute it and/or modify
16 * it under the terms of the GNU General Public License as published by
17 * the Free Software Foundation; either version 2 of the License, or
18 * (at your option) any later version.
19 *
20 * Additional credits:
21 * Pete Wyckoff <wyckoff@ca.sandia.gov>: Initial Linux/Alpha and trace
22 * dump support. The trace dump support has not been
23 * integrated yet however.
24 * Troy Benjegerdes: Big Endian (PPC) patches.
25 * Nate Stahl: Better out of memory handling and stats support.
26 * Aman Singla: Nasty race between interrupt handler and tx code dealing
27 * with 'testing the tx_ret_csm and setting tx_full'
28 * David S. Miller <davem@redhat.com>: conversion to new PCI dma mapping
29 * infrastructure and Sparc support
30 * Pierrick Pinasseau (CERN): For lending me an Ultra 5 to test the
31 * driver under Linux/Sparc64
32 * Matt Domsch <Matt_Domsch@dell.com>: Detect Alteon 1000baseT cards
33 * ETHTOOL_GDRVINFO support
34 * Chip Salzenberg <chip@valinux.com>: Fix race condition between tx
35 * handler and close() cleanup.
36 * Ken Aaker <kdaaker@rchland.vnet.ibm.com>: Correct check for whether
37 * memory mapped IO is enabled to
38 * make the driver work on RS/6000.
39 * Takayoshi Kouchi <kouchi@hpc.bs1.fc.nec.co.jp>: Identifying problem
40 * where the driver would disable
41 * bus master mode if it had to disable
42 * write and invalidate.
43 * Stephen Hack <stephen_hack@hp.com>: Fixed ace_set_mac_addr for little
44 * endian systems.
45 * Val Henson <vhenson@esscom.com>: Reset Jumbo skb producer and
46 * rx producer index when
47 * flushing the Jumbo ring.
48 * Hans Grobler <grobh@sun.ac.za>: Memory leak fixes in the
49 * driver init path.
50 * Grant Grundler <grundler@cup.hp.com>: PCI write posting fixes.
51 */
52
Linus Torvalds1da177e2005-04-16 15:20:36 -070053#include <linux/module.h>
54#include <linux/moduleparam.h>
55#include <linux/version.h>
56#include <linux/types.h>
57#include <linux/errno.h>
58#include <linux/ioport.h>
59#include <linux/pci.h>
Domen Puncer1e7f0bd2005-06-26 18:22:14 -040060#include <linux/dma-mapping.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070061#include <linux/kernel.h>
62#include <linux/netdevice.h>
63#include <linux/etherdevice.h>
64#include <linux/skbuff.h>
65#include <linux/init.h>
66#include <linux/delay.h>
67#include <linux/mm.h>
68#include <linux/highmem.h>
69#include <linux/sockios.h>
70
71#if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
72#include <linux/if_vlan.h>
73#endif
74
75#ifdef SIOCETHTOOL
76#include <linux/ethtool.h>
77#endif
78
79#include <net/sock.h>
80#include <net/ip.h>
81
82#include <asm/system.h>
83#include <asm/io.h>
84#include <asm/irq.h>
85#include <asm/byteorder.h>
86#include <asm/uaccess.h>
87
88
89#define DRV_NAME "acenic"
90
91#undef INDEX_DEBUG
92
93#ifdef CONFIG_ACENIC_OMIT_TIGON_I
94#define ACE_IS_TIGON_I(ap) 0
95#define ACE_TX_RING_ENTRIES(ap) MAX_TX_RING_ENTRIES
96#else
97#define ACE_IS_TIGON_I(ap) (ap->version == 1)
98#define ACE_TX_RING_ENTRIES(ap) ap->tx_ring_entries
99#endif
100
101#ifndef PCI_VENDOR_ID_ALTEON
Jeff Garzik6aa20a22006-09-13 13:24:59 -0400102#define PCI_VENDOR_ID_ALTEON 0x12ae
Linus Torvalds1da177e2005-04-16 15:20:36 -0700103#endif
104#ifndef PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE
105#define PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE 0x0001
106#define PCI_DEVICE_ID_ALTEON_ACENIC_COPPER 0x0002
107#endif
108#ifndef PCI_DEVICE_ID_3COM_3C985
109#define PCI_DEVICE_ID_3COM_3C985 0x0001
110#endif
111#ifndef PCI_VENDOR_ID_NETGEAR
112#define PCI_VENDOR_ID_NETGEAR 0x1385
113#define PCI_DEVICE_ID_NETGEAR_GA620 0x620a
114#endif
115#ifndef PCI_DEVICE_ID_NETGEAR_GA620T
116#define PCI_DEVICE_ID_NETGEAR_GA620T 0x630a
117#endif
118
119
120/*
121 * Farallon used the DEC vendor ID by mistake and they seem not
122 * to care - stinky!
123 */
124#ifndef PCI_DEVICE_ID_FARALLON_PN9000SX
125#define PCI_DEVICE_ID_FARALLON_PN9000SX 0x1a
126#endif
127#ifndef PCI_DEVICE_ID_FARALLON_PN9100T
128#define PCI_DEVICE_ID_FARALLON_PN9100T 0xfa
129#endif
130#ifndef PCI_VENDOR_ID_SGI
131#define PCI_VENDOR_ID_SGI 0x10a9
132#endif
133#ifndef PCI_DEVICE_ID_SGI_ACENIC
134#define PCI_DEVICE_ID_SGI_ACENIC 0x0009
135#endif
136
137static struct pci_device_id acenic_pci_tbl[] = {
138 { PCI_VENDOR_ID_ALTEON, PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE,
139 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
140 { PCI_VENDOR_ID_ALTEON, PCI_DEVICE_ID_ALTEON_ACENIC_COPPER,
141 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
142 { PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C985,
143 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
144 { PCI_VENDOR_ID_NETGEAR, PCI_DEVICE_ID_NETGEAR_GA620,
145 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
146 { PCI_VENDOR_ID_NETGEAR, PCI_DEVICE_ID_NETGEAR_GA620T,
147 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
148 /*
149 * Farallon used the DEC vendor ID on their cards incorrectly,
150 * then later Alteon's ID.
151 */
152 { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_FARALLON_PN9000SX,
153 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
154 { PCI_VENDOR_ID_ALTEON, PCI_DEVICE_ID_FARALLON_PN9100T,
155 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
156 { PCI_VENDOR_ID_SGI, PCI_DEVICE_ID_SGI_ACENIC,
157 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
158 { }
159};
160MODULE_DEVICE_TABLE(pci, acenic_pci_tbl);
161
162#ifndef SET_NETDEV_DEV
163#define SET_NETDEV_DEV(net, pdev) do{} while(0)
164#endif
165
Linus Torvalds1da177e2005-04-16 15:20:36 -0700166#define ace_sync_irq(irq) synchronize_irq(irq)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700167
168#ifndef offset_in_page
169#define offset_in_page(ptr) ((unsigned long)(ptr) & ~PAGE_MASK)
170#endif
171
172#define ACE_MAX_MOD_PARMS 8
173#define BOARD_IDX_STATIC 0
174#define BOARD_IDX_OVERFLOW -1
175
176#if (defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)) && \
177 defined(NETIF_F_HW_VLAN_RX)
178#define ACENIC_DO_VLAN 1
179#define ACE_RCB_VLAN_FLAG RCB_FLG_VLAN_ASSIST
180#else
181#define ACENIC_DO_VLAN 0
182#define ACE_RCB_VLAN_FLAG 0
183#endif
184
185#include "acenic.h"
186
187/*
188 * These must be defined before the firmware is included.
189 */
190#define MAX_TEXT_LEN 96*1024
191#define MAX_RODATA_LEN 8*1024
192#define MAX_DATA_LEN 2*1024
193
194#include "acenic_firmware.h"
195
196#ifndef tigon2FwReleaseLocal
197#define tigon2FwReleaseLocal 0
198#endif
199
200/*
201 * This driver currently supports Tigon I and Tigon II based cards
202 * including the Alteon AceNIC, the 3Com 3C985[B] and NetGear
203 * GA620. The driver should also work on the SGI, DEC and Farallon
204 * versions of the card, however I have not been able to test that
205 * myself.
206 *
207 * This card is really neat, it supports receive hardware checksumming
208 * and jumbo frames (up to 9000 bytes) and does a lot of work in the
209 * firmware. Also the programming interface is quite neat, except for
210 * the parts dealing with the i2c eeprom on the card ;-)
211 *
212 * Using jumbo frames:
213 *
214 * To enable jumbo frames, simply specify an mtu between 1500 and 9000
215 * bytes to ifconfig. Jumbo frames can be enabled or disabled at any time
216 * by running `ifconfig eth<X> mtu <MTU>' with <X> being the Ethernet
217 * interface number and <MTU> being the MTU value.
218 *
219 * Module parameters:
220 *
221 * When compiled as a loadable module, the driver allows for a number
222 * of module parameters to be specified. The driver supports the
223 * following module parameters:
224 *
225 * trace=<val> - Firmware trace level. This requires special traced
226 * firmware to replace the firmware supplied with
227 * the driver - for debugging purposes only.
228 *
229 * link=<val> - Link state. Normally you want to use the default link
230 * parameters set by the driver. This can be used to
231 * override these in case your switch doesn't negotiate
232 * the link properly. Valid values are:
233 * 0x0001 - Force half duplex link.
234 * 0x0002 - Do not negotiate line speed with the other end.
235 * 0x0010 - 10Mbit/sec link.
236 * 0x0020 - 100Mbit/sec link.
237 * 0x0040 - 1000Mbit/sec link.
238 * 0x0100 - Do not negotiate flow control.
239 * 0x0200 - Enable RX flow control Y
240 * 0x0400 - Enable TX flow control Y (Tigon II NICs only).
241 * Default value is 0x0270, ie. enable link+flow
242 * control negotiation. Negotiating the highest
243 * possible link speed with RX flow control enabled.
244 *
245 * When disabling link speed negotiation, only one link
246 * speed is allowed to be specified!
247 *
248 * tx_coal_tick=<val> - number of coalescing clock ticks (us) allowed
249 * to wait for more packets to arive before
250 * interrupting the host, from the time the first
251 * packet arrives.
252 *
253 * rx_coal_tick=<val> - number of coalescing clock ticks (us) allowed
254 * to wait for more packets to arive in the transmit ring,
255 * before interrupting the host, after transmitting the
256 * first packet in the ring.
257 *
258 * max_tx_desc=<val> - maximum number of transmit descriptors
259 * (packets) transmitted before interrupting the host.
260 *
261 * max_rx_desc=<val> - maximum number of receive descriptors
262 * (packets) received before interrupting the host.
263 *
264 * tx_ratio=<val> - 7 bit value (0 - 63) specifying the split in 64th
265 * increments of the NIC's on board memory to be used for
266 * transmit and receive buffers. For the 1MB NIC app. 800KB
267 * is available, on the 1/2MB NIC app. 300KB is available.
268 * 68KB will always be available as a minimum for both
269 * directions. The default value is a 50/50 split.
270 * dis_pci_mem_inval=<val> - disable PCI memory write and invalidate
271 * operations, default (1) is to always disable this as
272 * that is what Alteon does on NT. I have not been able
273 * to measure any real performance differences with
274 * this on my systems. Set <val>=0 if you want to
275 * enable these operations.
276 *
277 * If you use more than one NIC, specify the parameters for the
278 * individual NICs with a comma, ie. trace=0,0x00001fff,0 you want to
279 * run tracing on NIC #2 but not on NIC #1 and #3.
280 *
281 * TODO:
282 *
283 * - Proper multicast support.
284 * - NIC dump support.
285 * - More tuning parameters.
286 *
287 * The mini ring is not used under Linux and I am not sure it makes sense
288 * to actually use it.
289 *
290 * New interrupt handler strategy:
291 *
292 * The old interrupt handler worked using the traditional method of
293 * replacing an skbuff with a new one when a packet arrives. However
294 * the rx rings do not need to contain a static number of buffer
295 * descriptors, thus it makes sense to move the memory allocation out
296 * of the main interrupt handler and do it in a bottom half handler
297 * and only allocate new buffers when the number of buffers in the
298 * ring is below a certain threshold. In order to avoid starving the
299 * NIC under heavy load it is however necessary to force allocation
300 * when hitting a minimum threshold. The strategy for alloction is as
301 * follows:
302 *
303 * RX_LOW_BUF_THRES - allocate buffers in the bottom half
304 * RX_PANIC_LOW_THRES - we are very low on buffers, allocate
305 * the buffers in the interrupt handler
306 * RX_RING_THRES - maximum number of buffers in the rx ring
307 * RX_MINI_THRES - maximum number of buffers in the mini ring
308 * RX_JUMBO_THRES - maximum number of buffers in the jumbo ring
309 *
310 * One advantagous side effect of this allocation approach is that the
311 * entire rx processing can be done without holding any spin lock
312 * since the rx rings and registers are totally independent of the tx
313 * ring and its registers. This of course includes the kmalloc's of
314 * new skb's. Thus start_xmit can run in parallel with rx processing
315 * and the memory allocation on SMP systems.
316 *
317 * Note that running the skb reallocation in a bottom half opens up
318 * another can of races which needs to be handled properly. In
319 * particular it can happen that the interrupt handler tries to run
320 * the reallocation while the bottom half is either running on another
321 * CPU or was interrupted on the same CPU. To get around this the
322 * driver uses bitops to prevent the reallocation routines from being
323 * reentered.
324 *
325 * TX handling can also be done without holding any spin lock, wheee
326 * this is fun! since tx_ret_csm is only written to by the interrupt
327 * handler. The case to be aware of is when shutting down the device
328 * and cleaning up where it is necessary to make sure that
329 * start_xmit() is not running while this is happening. Well DaveM
330 * informs me that this case is already protected against ... bye bye
331 * Mr. Spin Lock, it was nice to know you.
332 *
333 * TX interrupts are now partly disabled so the NIC will only generate
334 * TX interrupts for the number of coal ticks, not for the number of
335 * TX packets in the queue. This should reduce the number of TX only,
336 * ie. when no RX processing is done, interrupts seen.
337 */
338
339/*
340 * Threshold values for RX buffer allocation - the low water marks for
341 * when to start refilling the rings are set to 75% of the ring
342 * sizes. It seems to make sense to refill the rings entirely from the
343 * intrrupt handler once it gets below the panic threshold, that way
344 * we don't risk that the refilling is moved to another CPU when the
345 * one running the interrupt handler just got the slab code hot in its
346 * cache.
347 */
348#define RX_RING_SIZE 72
349#define RX_MINI_SIZE 64
350#define RX_JUMBO_SIZE 48
351
352#define RX_PANIC_STD_THRES 16
353#define RX_PANIC_STD_REFILL (3*RX_PANIC_STD_THRES)/2
354#define RX_LOW_STD_THRES (3*RX_RING_SIZE)/4
355#define RX_PANIC_MINI_THRES 12
356#define RX_PANIC_MINI_REFILL (3*RX_PANIC_MINI_THRES)/2
357#define RX_LOW_MINI_THRES (3*RX_MINI_SIZE)/4
358#define RX_PANIC_JUMBO_THRES 6
359#define RX_PANIC_JUMBO_REFILL (3*RX_PANIC_JUMBO_THRES)/2
360#define RX_LOW_JUMBO_THRES (3*RX_JUMBO_SIZE)/4
361
362
363/*
364 * Size of the mini ring entries, basically these just should be big
365 * enough to take TCP ACKs
366 */
367#define ACE_MINI_SIZE 100
368
369#define ACE_MINI_BUFSIZE ACE_MINI_SIZE
370#define ACE_STD_BUFSIZE (ACE_STD_MTU + ETH_HLEN + 4)
371#define ACE_JUMBO_BUFSIZE (ACE_JUMBO_MTU + ETH_HLEN + 4)
372
373/*
374 * There seems to be a magic difference in the effect between 995 and 996
375 * but little difference between 900 and 995 ... no idea why.
376 *
377 * There is now a default set of tuning parameters which is set, depending
378 * on whether or not the user enables Jumbo frames. It's assumed that if
379 * Jumbo frames are enabled, the user wants optimal tuning for that case.
380 */
381#define DEF_TX_COAL 400 /* 996 */
382#define DEF_TX_MAX_DESC 60 /* was 40 */
383#define DEF_RX_COAL 120 /* 1000 */
384#define DEF_RX_MAX_DESC 25
385#define DEF_TX_RATIO 21 /* 24 */
386
387#define DEF_JUMBO_TX_COAL 20
388#define DEF_JUMBO_TX_MAX_DESC 60
389#define DEF_JUMBO_RX_COAL 30
390#define DEF_JUMBO_RX_MAX_DESC 6
391#define DEF_JUMBO_TX_RATIO 21
392
393#if tigon2FwReleaseLocal < 20001118
394/*
395 * Standard firmware and early modifications duplicate
396 * IRQ load without this flag (coal timer is never reset).
397 * Note that with this flag tx_coal should be less than
398 * time to xmit full tx ring.
399 * 400usec is not so bad for tx ring size of 128.
400 */
401#define TX_COAL_INTS_ONLY 1 /* worth it */
402#else
403/*
404 * With modified firmware, this is not necessary, but still useful.
405 */
406#define TX_COAL_INTS_ONLY 1
407#endif
408
409#define DEF_TRACE 0
410#define DEF_STAT (2 * TICKS_PER_SEC)
411
412
413static int link[ACE_MAX_MOD_PARMS];
414static int trace[ACE_MAX_MOD_PARMS];
415static int tx_coal_tick[ACE_MAX_MOD_PARMS];
416static int rx_coal_tick[ACE_MAX_MOD_PARMS];
417static int max_tx_desc[ACE_MAX_MOD_PARMS];
418static int max_rx_desc[ACE_MAX_MOD_PARMS];
419static int tx_ratio[ACE_MAX_MOD_PARMS];
420static int dis_pci_mem_inval[ACE_MAX_MOD_PARMS] = {1, 1, 1, 1, 1, 1, 1, 1};
421
422MODULE_AUTHOR("Jes Sorensen <jes@trained-monkey.org>");
423MODULE_LICENSE("GPL");
424MODULE_DESCRIPTION("AceNIC/3C985/GA620 Gigabit Ethernet driver");
425
426module_param_array(link, int, NULL, 0);
427module_param_array(trace, int, NULL, 0);
428module_param_array(tx_coal_tick, int, NULL, 0);
429module_param_array(max_tx_desc, int, NULL, 0);
430module_param_array(rx_coal_tick, int, NULL, 0);
431module_param_array(max_rx_desc, int, NULL, 0);
432module_param_array(tx_ratio, int, NULL, 0);
433MODULE_PARM_DESC(link, "AceNIC/3C985/NetGear link state");
434MODULE_PARM_DESC(trace, "AceNIC/3C985/NetGear firmware trace level");
435MODULE_PARM_DESC(tx_coal_tick, "AceNIC/3C985/GA620 max clock ticks to wait from first tx descriptor arrives");
436MODULE_PARM_DESC(max_tx_desc, "AceNIC/3C985/GA620 max number of transmit descriptors to wait");
437MODULE_PARM_DESC(rx_coal_tick, "AceNIC/3C985/GA620 max clock ticks to wait from first rx descriptor arrives");
438MODULE_PARM_DESC(max_rx_desc, "AceNIC/3C985/GA620 max number of receive descriptors to wait");
439MODULE_PARM_DESC(tx_ratio, "AceNIC/3C985/GA620 ratio of NIC memory used for TX/RX descriptors (range 0-63)");
440
441
Jeff Garzik6aa20a22006-09-13 13:24:59 -0400442static char version[] __devinitdata =
Linus Torvalds1da177e2005-04-16 15:20:36 -0700443 "acenic.c: v0.92 08/05/2002 Jes Sorensen, linux-acenic@SunSITE.dk\n"
444 " http://home.cern.ch/~jes/gige/acenic.html\n";
445
446static int ace_get_settings(struct net_device *, struct ethtool_cmd *);
447static int ace_set_settings(struct net_device *, struct ethtool_cmd *);
448static void ace_get_drvinfo(struct net_device *, struct ethtool_drvinfo *);
449
Jeff Garzik7282d492006-09-13 14:30:00 -0400450static const struct ethtool_ops ace_ethtool_ops = {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700451 .get_settings = ace_get_settings,
452 .set_settings = ace_set_settings,
453 .get_drvinfo = ace_get_drvinfo,
454};
455
456static void ace_watchdog(struct net_device *dev);
457
458static int __devinit acenic_probe_one(struct pci_dev *pdev,
459 const struct pci_device_id *id)
460{
461 struct net_device *dev;
462 struct ace_private *ap;
463 static int boards_found;
464
465 dev = alloc_etherdev(sizeof(struct ace_private));
466 if (dev == NULL) {
467 printk(KERN_ERR "acenic: Unable to allocate "
468 "net_device structure!\n");
469 return -ENOMEM;
470 }
471
472 SET_MODULE_OWNER(dev);
473 SET_NETDEV_DEV(dev, &pdev->dev);
474
475 ap = dev->priv;
476 ap->pdev = pdev;
477 ap->name = pci_name(pdev);
478
479 dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
480#if ACENIC_DO_VLAN
481 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
482 dev->vlan_rx_register = ace_vlan_rx_register;
483 dev->vlan_rx_kill_vid = ace_vlan_rx_kill_vid;
484#endif
485 if (1) {
486 dev->tx_timeout = &ace_watchdog;
487 dev->watchdog_timeo = 5*HZ;
488 }
489
490 dev->open = &ace_open;
491 dev->stop = &ace_close;
492 dev->hard_start_xmit = &ace_start_xmit;
493 dev->get_stats = &ace_get_stats;
494 dev->set_multicast_list = &ace_set_multicast_list;
495 SET_ETHTOOL_OPS(dev, &ace_ethtool_ops);
496 dev->set_mac_address = &ace_set_mac_addr;
497 dev->change_mtu = &ace_change_mtu;
498
499 /* we only display this string ONCE */
500 if (!boards_found)
501 printk(version);
502
503 if (pci_enable_device(pdev))
504 goto fail_free_netdev;
505
506 /*
507 * Enable master mode before we start playing with the
508 * pci_command word since pci_set_master() will modify
509 * it.
510 */
511 pci_set_master(pdev);
512
513 pci_read_config_word(pdev, PCI_COMMAND, &ap->pci_command);
514
Jeff Garzik6aa20a22006-09-13 13:24:59 -0400515 /* OpenFirmware on Mac's does not set this - DOH.. */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700516 if (!(ap->pci_command & PCI_COMMAND_MEMORY)) {
517 printk(KERN_INFO "%s: Enabling PCI Memory Mapped "
518 "access - was not enabled by BIOS/Firmware\n",
519 ap->name);
520 ap->pci_command = ap->pci_command | PCI_COMMAND_MEMORY;
521 pci_write_config_word(ap->pdev, PCI_COMMAND,
522 ap->pci_command);
523 wmb();
524 }
525
526 pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &ap->pci_latency);
527 if (ap->pci_latency <= 0x40) {
528 ap->pci_latency = 0x40;
529 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, ap->pci_latency);
530 }
531
532 /*
533 * Remap the regs into kernel space - this is abuse of
534 * dev->base_addr since it was means for I/O port
535 * addresses but who gives a damn.
536 */
537 dev->base_addr = pci_resource_start(pdev, 0);
538 ap->regs = ioremap(dev->base_addr, 0x4000);
539 if (!ap->regs) {
540 printk(KERN_ERR "%s: Unable to map I/O register, "
541 "AceNIC %i will be disabled.\n",
542 ap->name, boards_found);
543 goto fail_free_netdev;
544 }
545
546 switch(pdev->vendor) {
547 case PCI_VENDOR_ID_ALTEON:
548 if (pdev->device == PCI_DEVICE_ID_FARALLON_PN9100T) {
549 printk(KERN_INFO "%s: Farallon PN9100-T ",
550 ap->name);
551 } else {
552 printk(KERN_INFO "%s: Alteon AceNIC ",
553 ap->name);
554 }
555 break;
556 case PCI_VENDOR_ID_3COM:
557 printk(KERN_INFO "%s: 3Com 3C985 ", ap->name);
558 break;
559 case PCI_VENDOR_ID_NETGEAR:
560 printk(KERN_INFO "%s: NetGear GA620 ", ap->name);
561 break;
562 case PCI_VENDOR_ID_DEC:
563 if (pdev->device == PCI_DEVICE_ID_FARALLON_PN9000SX) {
564 printk(KERN_INFO "%s: Farallon PN9000-SX ",
565 ap->name);
566 break;
567 }
568 case PCI_VENDOR_ID_SGI:
569 printk(KERN_INFO "%s: SGI AceNIC ", ap->name);
570 break;
571 default:
572 printk(KERN_INFO "%s: Unknown AceNIC ", ap->name);
573 break;
574 }
575
576 printk("Gigabit Ethernet at 0x%08lx, ", dev->base_addr);
David S. Millerc6387a42006-06-20 01:21:29 -0700577 printk("irq %d\n", pdev->irq);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700578
579#ifdef CONFIG_ACENIC_OMIT_TIGON_I
580 if ((readl(&ap->regs->HostCtrl) >> 28) == 4) {
581 printk(KERN_ERR "%s: Driver compiled without Tigon I"
582 " support - NIC disabled\n", dev->name);
583 goto fail_uninit;
584 }
585#endif
586
587 if (ace_allocate_descriptors(dev))
588 goto fail_free_netdev;
589
590#ifdef MODULE
591 if (boards_found >= ACE_MAX_MOD_PARMS)
592 ap->board_idx = BOARD_IDX_OVERFLOW;
593 else
594 ap->board_idx = boards_found;
595#else
596 ap->board_idx = BOARD_IDX_STATIC;
597#endif
598
599 if (ace_init(dev))
600 goto fail_free_netdev;
601
602 if (register_netdev(dev)) {
603 printk(KERN_ERR "acenic: device registration failed\n");
604 goto fail_uninit;
605 }
606 ap->name = dev->name;
607
608 if (ap->pci_using_dac)
609 dev->features |= NETIF_F_HIGHDMA;
610
611 pci_set_drvdata(pdev, dev);
612
613 boards_found++;
614 return 0;
615
616 fail_uninit:
617 ace_init_cleanup(dev);
618 fail_free_netdev:
619 free_netdev(dev);
620 return -ENODEV;
621}
622
623static void __devexit acenic_remove_one(struct pci_dev *pdev)
624{
625 struct net_device *dev = pci_get_drvdata(pdev);
626 struct ace_private *ap = netdev_priv(dev);
627 struct ace_regs __iomem *regs = ap->regs;
628 short i;
629
630 unregister_netdev(dev);
631
632 writel(readl(&regs->CpuCtrl) | CPU_HALT, &regs->CpuCtrl);
633 if (ap->version >= 2)
634 writel(readl(&regs->CpuBCtrl) | CPU_HALT, &regs->CpuBCtrl);
Jeff Garzik6aa20a22006-09-13 13:24:59 -0400635
Linus Torvalds1da177e2005-04-16 15:20:36 -0700636 /*
637 * This clears any pending interrupts
638 */
639 writel(1, &regs->Mb0Lo);
640 readl(&regs->CpuCtrl); /* flush */
641
642 /*
643 * Make sure no other CPUs are processing interrupts
644 * on the card before the buffers are being released.
645 * Otherwise one might experience some `interesting'
646 * effects.
647 *
648 * Then release the RX buffers - jumbo buffers were
649 * already released in ace_close().
650 */
651 ace_sync_irq(dev->irq);
652
653 for (i = 0; i < RX_STD_RING_ENTRIES; i++) {
654 struct sk_buff *skb = ap->skb->rx_std_skbuff[i].skb;
655
656 if (skb) {
657 struct ring_info *ringp;
658 dma_addr_t mapping;
659
660 ringp = &ap->skb->rx_std_skbuff[i];
661 mapping = pci_unmap_addr(ringp, mapping);
662 pci_unmap_page(ap->pdev, mapping,
663 ACE_STD_BUFSIZE,
664 PCI_DMA_FROMDEVICE);
665
666 ap->rx_std_ring[i].size = 0;
667 ap->skb->rx_std_skbuff[i].skb = NULL;
668 dev_kfree_skb(skb);
669 }
670 }
671
672 if (ap->version >= 2) {
673 for (i = 0; i < RX_MINI_RING_ENTRIES; i++) {
674 struct sk_buff *skb = ap->skb->rx_mini_skbuff[i].skb;
675
676 if (skb) {
677 struct ring_info *ringp;
678 dma_addr_t mapping;
679
680 ringp = &ap->skb->rx_mini_skbuff[i];
681 mapping = pci_unmap_addr(ringp,mapping);
682 pci_unmap_page(ap->pdev, mapping,
683 ACE_MINI_BUFSIZE,
684 PCI_DMA_FROMDEVICE);
685
686 ap->rx_mini_ring[i].size = 0;
687 ap->skb->rx_mini_skbuff[i].skb = NULL;
688 dev_kfree_skb(skb);
689 }
690 }
691 }
692
693 for (i = 0; i < RX_JUMBO_RING_ENTRIES; i++) {
694 struct sk_buff *skb = ap->skb->rx_jumbo_skbuff[i].skb;
695 if (skb) {
696 struct ring_info *ringp;
697 dma_addr_t mapping;
698
699 ringp = &ap->skb->rx_jumbo_skbuff[i];
700 mapping = pci_unmap_addr(ringp, mapping);
701 pci_unmap_page(ap->pdev, mapping,
702 ACE_JUMBO_BUFSIZE,
703 PCI_DMA_FROMDEVICE);
704
705 ap->rx_jumbo_ring[i].size = 0;
706 ap->skb->rx_jumbo_skbuff[i].skb = NULL;
707 dev_kfree_skb(skb);
708 }
709 }
710
711 ace_init_cleanup(dev);
712 free_netdev(dev);
713}
714
715static struct pci_driver acenic_pci_driver = {
716 .name = "acenic",
717 .id_table = acenic_pci_tbl,
718 .probe = acenic_probe_one,
719 .remove = __devexit_p(acenic_remove_one),
720};
721
722static int __init acenic_init(void)
723{
Jeff Garzik29917622006-08-19 17:48:59 -0400724 return pci_register_driver(&acenic_pci_driver);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700725}
726
727static void __exit acenic_exit(void)
728{
729 pci_unregister_driver(&acenic_pci_driver);
730}
731
732module_init(acenic_init);
733module_exit(acenic_exit);
734
735static void ace_free_descriptors(struct net_device *dev)
736{
737 struct ace_private *ap = netdev_priv(dev);
738 int size;
739
740 if (ap->rx_std_ring != NULL) {
741 size = (sizeof(struct rx_desc) *
742 (RX_STD_RING_ENTRIES +
743 RX_JUMBO_RING_ENTRIES +
744 RX_MINI_RING_ENTRIES +
745 RX_RETURN_RING_ENTRIES));
746 pci_free_consistent(ap->pdev, size, ap->rx_std_ring,
747 ap->rx_ring_base_dma);
748 ap->rx_std_ring = NULL;
749 ap->rx_jumbo_ring = NULL;
750 ap->rx_mini_ring = NULL;
751 ap->rx_return_ring = NULL;
752 }
753 if (ap->evt_ring != NULL) {
754 size = (sizeof(struct event) * EVT_RING_ENTRIES);
755 pci_free_consistent(ap->pdev, size, ap->evt_ring,
756 ap->evt_ring_dma);
757 ap->evt_ring = NULL;
758 }
759 if (ap->tx_ring != NULL && !ACE_IS_TIGON_I(ap)) {
760 size = (sizeof(struct tx_desc) * MAX_TX_RING_ENTRIES);
761 pci_free_consistent(ap->pdev, size, ap->tx_ring,
762 ap->tx_ring_dma);
763 }
764 ap->tx_ring = NULL;
765
766 if (ap->evt_prd != NULL) {
767 pci_free_consistent(ap->pdev, sizeof(u32),
768 (void *)ap->evt_prd, ap->evt_prd_dma);
769 ap->evt_prd = NULL;
770 }
771 if (ap->rx_ret_prd != NULL) {
772 pci_free_consistent(ap->pdev, sizeof(u32),
773 (void *)ap->rx_ret_prd,
774 ap->rx_ret_prd_dma);
775 ap->rx_ret_prd = NULL;
776 }
777 if (ap->tx_csm != NULL) {
778 pci_free_consistent(ap->pdev, sizeof(u32),
779 (void *)ap->tx_csm, ap->tx_csm_dma);
780 ap->tx_csm = NULL;
781 }
782}
783
784
785static int ace_allocate_descriptors(struct net_device *dev)
786{
787 struct ace_private *ap = netdev_priv(dev);
788 int size;
789
790 size = (sizeof(struct rx_desc) *
791 (RX_STD_RING_ENTRIES +
792 RX_JUMBO_RING_ENTRIES +
793 RX_MINI_RING_ENTRIES +
794 RX_RETURN_RING_ENTRIES));
795
796 ap->rx_std_ring = pci_alloc_consistent(ap->pdev, size,
797 &ap->rx_ring_base_dma);
798 if (ap->rx_std_ring == NULL)
799 goto fail;
800
801 ap->rx_jumbo_ring = ap->rx_std_ring + RX_STD_RING_ENTRIES;
802 ap->rx_mini_ring = ap->rx_jumbo_ring + RX_JUMBO_RING_ENTRIES;
803 ap->rx_return_ring = ap->rx_mini_ring + RX_MINI_RING_ENTRIES;
804
805 size = (sizeof(struct event) * EVT_RING_ENTRIES);
806
807 ap->evt_ring = pci_alloc_consistent(ap->pdev, size, &ap->evt_ring_dma);
808
809 if (ap->evt_ring == NULL)
810 goto fail;
811
812 /*
813 * Only allocate a host TX ring for the Tigon II, the Tigon I
814 * has to use PCI registers for this ;-(
815 */
816 if (!ACE_IS_TIGON_I(ap)) {
817 size = (sizeof(struct tx_desc) * MAX_TX_RING_ENTRIES);
818
819 ap->tx_ring = pci_alloc_consistent(ap->pdev, size,
820 &ap->tx_ring_dma);
821
822 if (ap->tx_ring == NULL)
823 goto fail;
824 }
825
826 ap->evt_prd = pci_alloc_consistent(ap->pdev, sizeof(u32),
827 &ap->evt_prd_dma);
828 if (ap->evt_prd == NULL)
829 goto fail;
830
831 ap->rx_ret_prd = pci_alloc_consistent(ap->pdev, sizeof(u32),
832 &ap->rx_ret_prd_dma);
833 if (ap->rx_ret_prd == NULL)
834 goto fail;
835
836 ap->tx_csm = pci_alloc_consistent(ap->pdev, sizeof(u32),
837 &ap->tx_csm_dma);
838 if (ap->tx_csm == NULL)
839 goto fail;
840
841 return 0;
842
843fail:
844 /* Clean up. */
845 ace_init_cleanup(dev);
846 return 1;
847}
848
849
850/*
851 * Generic cleanup handling data allocated during init. Used when the
852 * module is unloaded or if an error occurs during initialization
853 */
854static void ace_init_cleanup(struct net_device *dev)
855{
856 struct ace_private *ap;
857
858 ap = netdev_priv(dev);
859
860 ace_free_descriptors(dev);
861
862 if (ap->info)
863 pci_free_consistent(ap->pdev, sizeof(struct ace_info),
864 ap->info, ap->info_dma);
Jesper Juhlb4558ea2005-10-28 16:53:13 -0400865 kfree(ap->skb);
866 kfree(ap->trace_buf);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700867
868 if (dev->irq)
869 free_irq(dev->irq, dev);
870
871 iounmap(ap->regs);
872}
873
874
875/*
876 * Commands are considered to be slow.
877 */
878static inline void ace_issue_cmd(struct ace_regs __iomem *regs, struct cmd *cmd)
879{
880 u32 idx;
881
882 idx = readl(&regs->CmdPrd);
883
884 writel(*(u32 *)(cmd), &regs->CmdRng[idx]);
885 idx = (idx + 1) % CMD_RING_ENTRIES;
886
887 writel(idx, &regs->CmdPrd);
888}
889
890
891static int __devinit ace_init(struct net_device *dev)
892{
893 struct ace_private *ap;
894 struct ace_regs __iomem *regs;
895 struct ace_info *info = NULL;
896 struct pci_dev *pdev;
897 unsigned long myjif;
898 u64 tmp_ptr;
899 u32 tig_ver, mac1, mac2, tmp, pci_state;
900 int board_idx, ecode = 0;
901 short i;
902 unsigned char cache_size;
903
904 ap = netdev_priv(dev);
905 regs = ap->regs;
906
907 board_idx = ap->board_idx;
908
909 /*
910 * aman@sgi.com - its useful to do a NIC reset here to
911 * address the `Firmware not running' problem subsequent
912 * to any crashes involving the NIC
913 */
914 writel(HW_RESET | (HW_RESET << 24), &regs->HostCtrl);
915 readl(&regs->HostCtrl); /* PCI write posting */
916 udelay(5);
917
918 /*
919 * Don't access any other registers before this point!
920 */
921#ifdef __BIG_ENDIAN
922 /*
923 * This will most likely need BYTE_SWAP once we switch
924 * to using __raw_writel()
925 */
926 writel((WORD_SWAP | CLR_INT | ((WORD_SWAP | CLR_INT) << 24)),
927 &regs->HostCtrl);
928#else
929 writel((CLR_INT | WORD_SWAP | ((CLR_INT | WORD_SWAP) << 24)),
930 &regs->HostCtrl);
931#endif
932 readl(&regs->HostCtrl); /* PCI write posting */
933
934 /*
935 * Stop the NIC CPU and clear pending interrupts
936 */
937 writel(readl(&regs->CpuCtrl) | CPU_HALT, &regs->CpuCtrl);
938 readl(&regs->CpuCtrl); /* PCI write posting */
939 writel(0, &regs->Mb0Lo);
940
941 tig_ver = readl(&regs->HostCtrl) >> 28;
942
943 switch(tig_ver){
944#ifndef CONFIG_ACENIC_OMIT_TIGON_I
945 case 4:
946 case 5:
947 printk(KERN_INFO " Tigon I (Rev. %i), Firmware: %i.%i.%i, ",
948 tig_ver, tigonFwReleaseMajor, tigonFwReleaseMinor,
949 tigonFwReleaseFix);
950 writel(0, &regs->LocalCtrl);
951 ap->version = 1;
952 ap->tx_ring_entries = TIGON_I_TX_RING_ENTRIES;
953 break;
954#endif
955 case 6:
956 printk(KERN_INFO " Tigon II (Rev. %i), Firmware: %i.%i.%i, ",
957 tig_ver, tigon2FwReleaseMajor, tigon2FwReleaseMinor,
958 tigon2FwReleaseFix);
959 writel(readl(&regs->CpuBCtrl) | CPU_HALT, &regs->CpuBCtrl);
960 readl(&regs->CpuBCtrl); /* PCI write posting */
961 /*
962 * The SRAM bank size does _not_ indicate the amount
963 * of memory on the card, it controls the _bank_ size!
964 * Ie. a 1MB AceNIC will have two banks of 512KB.
965 */
966 writel(SRAM_BANK_512K, &regs->LocalCtrl);
967 writel(SYNC_SRAM_TIMING, &regs->MiscCfg);
968 ap->version = 2;
969 ap->tx_ring_entries = MAX_TX_RING_ENTRIES;
970 break;
971 default:
972 printk(KERN_WARNING " Unsupported Tigon version detected "
973 "(%i)\n", tig_ver);
974 ecode = -ENODEV;
975 goto init_error;
976 }
977
978 /*
979 * ModeStat _must_ be set after the SRAM settings as this change
980 * seems to corrupt the ModeStat and possible other registers.
981 * The SRAM settings survive resets and setting it to the same
982 * value a second time works as well. This is what caused the
983 * `Firmware not running' problem on the Tigon II.
984 */
985#ifdef __BIG_ENDIAN
986 writel(ACE_BYTE_SWAP_DMA | ACE_WARN | ACE_FATAL | ACE_BYTE_SWAP_BD |
987 ACE_WORD_SWAP_BD | ACE_NO_JUMBO_FRAG, &regs->ModeStat);
988#else
989 writel(ACE_BYTE_SWAP_DMA | ACE_WARN | ACE_FATAL |
990 ACE_WORD_SWAP_BD | ACE_NO_JUMBO_FRAG, &regs->ModeStat);
991#endif
992 readl(&regs->ModeStat); /* PCI write posting */
993
994 mac1 = 0;
995 for(i = 0; i < 4; i++) {
Eric Sesterhenn6f9d4722006-01-20 23:32:56 +0300996 int tmp;
997
Linus Torvalds1da177e2005-04-16 15:20:36 -0700998 mac1 = mac1 << 8;
999 tmp = read_eeprom_byte(dev, 0x8c+i);
1000 if (tmp < 0) {
1001 ecode = -EIO;
1002 goto init_error;
1003 } else
1004 mac1 |= (tmp & 0xff);
1005 }
1006 mac2 = 0;
1007 for(i = 4; i < 8; i++) {
Eric Sesterhenn6f9d4722006-01-20 23:32:56 +03001008 int tmp;
1009
Linus Torvalds1da177e2005-04-16 15:20:36 -07001010 mac2 = mac2 << 8;
1011 tmp = read_eeprom_byte(dev, 0x8c+i);
1012 if (tmp < 0) {
1013 ecode = -EIO;
1014 goto init_error;
1015 } else
1016 mac2 |= (tmp & 0xff);
1017 }
1018
1019 writel(mac1, &regs->MacAddrHi);
1020 writel(mac2, &regs->MacAddrLo);
1021
1022 printk("MAC: %02x:%02x:%02x:%02x:%02x:%02x\n",
1023 (mac1 >> 8) & 0xff, mac1 & 0xff, (mac2 >> 24) &0xff,
1024 (mac2 >> 16) & 0xff, (mac2 >> 8) & 0xff, mac2 & 0xff);
1025
1026 dev->dev_addr[0] = (mac1 >> 8) & 0xff;
1027 dev->dev_addr[1] = mac1 & 0xff;
1028 dev->dev_addr[2] = (mac2 >> 24) & 0xff;
1029 dev->dev_addr[3] = (mac2 >> 16) & 0xff;
1030 dev->dev_addr[4] = (mac2 >> 8) & 0xff;
1031 dev->dev_addr[5] = mac2 & 0xff;
1032
1033 /*
1034 * Looks like this is necessary to deal with on all architectures,
1035 * even this %$#%$# N440BX Intel based thing doesn't get it right.
1036 * Ie. having two NICs in the machine, one will have the cache
1037 * line set at boot time, the other will not.
1038 */
1039 pdev = ap->pdev;
1040 pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, &cache_size);
1041 cache_size <<= 2;
1042 if (cache_size != SMP_CACHE_BYTES) {
1043 printk(KERN_INFO " PCI cache line size set incorrectly "
1044 "(%i bytes) by BIOS/FW, ", cache_size);
1045 if (cache_size > SMP_CACHE_BYTES)
1046 printk("expecting %i\n", SMP_CACHE_BYTES);
1047 else {
1048 printk("correcting to %i\n", SMP_CACHE_BYTES);
1049 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE,
1050 SMP_CACHE_BYTES >> 2);
1051 }
1052 }
1053
1054 pci_state = readl(&regs->PciState);
1055 printk(KERN_INFO " PCI bus width: %i bits, speed: %iMHz, "
1056 "latency: %i clks\n",
1057 (pci_state & PCI_32BIT) ? 32 : 64,
Jeff Garzik6aa20a22006-09-13 13:24:59 -04001058 (pci_state & PCI_66MHZ) ? 66 : 33,
Linus Torvalds1da177e2005-04-16 15:20:36 -07001059 ap->pci_latency);
1060
1061 /*
1062 * Set the max DMA transfer size. Seems that for most systems
1063 * the performance is better when no MAX parameter is
1064 * set. However for systems enabling PCI write and invalidate,
1065 * DMA writes must be set to the L1 cache line size to get
1066 * optimal performance.
1067 *
1068 * The default is now to turn the PCI write and invalidate off
1069 * - that is what Alteon does for NT.
1070 */
1071 tmp = READ_CMD_MEM | WRITE_CMD_MEM;
1072 if (ap->version >= 2) {
1073 tmp |= (MEM_READ_MULTIPLE | (pci_state & PCI_66MHZ));
1074 /*
1075 * Tuning parameters only supported for 8 cards
1076 */
1077 if (board_idx == BOARD_IDX_OVERFLOW ||
1078 dis_pci_mem_inval[board_idx]) {
1079 if (ap->pci_command & PCI_COMMAND_INVALIDATE) {
1080 ap->pci_command &= ~PCI_COMMAND_INVALIDATE;
1081 pci_write_config_word(pdev, PCI_COMMAND,
1082 ap->pci_command);
1083 printk(KERN_INFO " Disabling PCI memory "
1084 "write and invalidate\n");
1085 }
1086 } else if (ap->pci_command & PCI_COMMAND_INVALIDATE) {
1087 printk(KERN_INFO " PCI memory write & invalidate "
1088 "enabled by BIOS, enabling counter measures\n");
1089
1090 switch(SMP_CACHE_BYTES) {
1091 case 16:
1092 tmp |= DMA_WRITE_MAX_16;
1093 break;
1094 case 32:
1095 tmp |= DMA_WRITE_MAX_32;
1096 break;
1097 case 64:
1098 tmp |= DMA_WRITE_MAX_64;
1099 break;
1100 case 128:
1101 tmp |= DMA_WRITE_MAX_128;
1102 break;
1103 default:
1104 printk(KERN_INFO " Cache line size %i not "
1105 "supported, PCI write and invalidate "
1106 "disabled\n", SMP_CACHE_BYTES);
1107 ap->pci_command &= ~PCI_COMMAND_INVALIDATE;
1108 pci_write_config_word(pdev, PCI_COMMAND,
1109 ap->pci_command);
1110 }
1111 }
1112 }
1113
1114#ifdef __sparc__
1115 /*
1116 * On this platform, we know what the best dma settings
1117 * are. We use 64-byte maximum bursts, because if we
1118 * burst larger than the cache line size (or even cross
1119 * a 64byte boundary in a single burst) the UltraSparc
1120 * PCI controller will disconnect at 64-byte multiples.
1121 *
1122 * Read-multiple will be properly enabled above, and when
1123 * set will give the PCI controller proper hints about
1124 * prefetching.
1125 */
1126 tmp &= ~DMA_READ_WRITE_MASK;
1127 tmp |= DMA_READ_MAX_64;
1128 tmp |= DMA_WRITE_MAX_64;
1129#endif
1130#ifdef __alpha__
1131 tmp &= ~DMA_READ_WRITE_MASK;
1132 tmp |= DMA_READ_MAX_128;
1133 /*
1134 * All the docs say MUST NOT. Well, I did.
1135 * Nothing terrible happens, if we load wrong size.
1136 * Bit w&i still works better!
1137 */
1138 tmp |= DMA_WRITE_MAX_128;
1139#endif
1140 writel(tmp, &regs->PciState);
1141
1142#if 0
1143 /*
1144 * The Host PCI bus controller driver has to set FBB.
1145 * If all devices on that PCI bus support FBB, then the controller
1146 * can enable FBB support in the Host PCI Bus controller (or on
1147 * the PCI-PCI bridge if that applies).
1148 * -ggg
1149 */
1150 /*
1151 * I have received reports from people having problems when this
1152 * bit is enabled.
1153 */
1154 if (!(ap->pci_command & PCI_COMMAND_FAST_BACK)) {
1155 printk(KERN_INFO " Enabling PCI Fast Back to Back\n");
1156 ap->pci_command |= PCI_COMMAND_FAST_BACK;
1157 pci_write_config_word(pdev, PCI_COMMAND, ap->pci_command);
1158 }
1159#endif
Jeff Garzik6aa20a22006-09-13 13:24:59 -04001160
Linus Torvalds1da177e2005-04-16 15:20:36 -07001161 /*
1162 * Configure DMA attributes.
1163 */
Domen Puncer1e7f0bd2005-06-26 18:22:14 -04001164 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001165 ap->pci_using_dac = 1;
Domen Puncer1e7f0bd2005-06-26 18:22:14 -04001166 } else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001167 ap->pci_using_dac = 0;
1168 } else {
1169 ecode = -ENODEV;
1170 goto init_error;
1171 }
1172
1173 /*
1174 * Initialize the generic info block and the command+event rings
1175 * and the control blocks for the transmit and receive rings
1176 * as they need to be setup once and for all.
1177 */
1178 if (!(info = pci_alloc_consistent(ap->pdev, sizeof(struct ace_info),
1179 &ap->info_dma))) {
1180 ecode = -EAGAIN;
1181 goto init_error;
1182 }
1183 ap->info = info;
1184
1185 /*
1186 * Get the memory for the skb rings.
1187 */
1188 if (!(ap->skb = kmalloc(sizeof(struct ace_skb), GFP_KERNEL))) {
1189 ecode = -EAGAIN;
1190 goto init_error;
1191 }
1192
Thomas Gleixner1fb9df52006-07-01 19:29:39 -07001193 ecode = request_irq(pdev->irq, ace_interrupt, IRQF_SHARED,
Linus Torvalds1da177e2005-04-16 15:20:36 -07001194 DRV_NAME, dev);
1195 if (ecode) {
1196 printk(KERN_WARNING "%s: Requested IRQ %d is busy\n",
1197 DRV_NAME, pdev->irq);
1198 goto init_error;
1199 } else
1200 dev->irq = pdev->irq;
1201
1202#ifdef INDEX_DEBUG
1203 spin_lock_init(&ap->debug_lock);
1204 ap->last_tx = ACE_TX_RING_ENTRIES(ap) - 1;
1205 ap->last_std_rx = 0;
1206 ap->last_mini_rx = 0;
1207#endif
1208
1209 memset(ap->info, 0, sizeof(struct ace_info));
1210 memset(ap->skb, 0, sizeof(struct ace_skb));
1211
1212 ace_load_firmware(dev);
1213 ap->fw_running = 0;
1214
1215 tmp_ptr = ap->info_dma;
1216 writel(tmp_ptr >> 32, &regs->InfoPtrHi);
1217 writel(tmp_ptr & 0xffffffff, &regs->InfoPtrLo);
1218
1219 memset(ap->evt_ring, 0, EVT_RING_ENTRIES * sizeof(struct event));
1220
1221 set_aceaddr(&info->evt_ctrl.rngptr, ap->evt_ring_dma);
1222 info->evt_ctrl.flags = 0;
1223
1224 *(ap->evt_prd) = 0;
1225 wmb();
1226 set_aceaddr(&info->evt_prd_ptr, ap->evt_prd_dma);
1227 writel(0, &regs->EvtCsm);
1228
1229 set_aceaddr(&info->cmd_ctrl.rngptr, 0x100);
1230 info->cmd_ctrl.flags = 0;
1231 info->cmd_ctrl.max_len = 0;
1232
1233 for (i = 0; i < CMD_RING_ENTRIES; i++)
1234 writel(0, &regs->CmdRng[i]);
1235
1236 writel(0, &regs->CmdPrd);
1237 writel(0, &regs->CmdCsm);
1238
1239 tmp_ptr = ap->info_dma;
1240 tmp_ptr += (unsigned long) &(((struct ace_info *)0)->s.stats);
1241 set_aceaddr(&info->stats2_ptr, (dma_addr_t) tmp_ptr);
1242
1243 set_aceaddr(&info->rx_std_ctrl.rngptr, ap->rx_ring_base_dma);
1244 info->rx_std_ctrl.max_len = ACE_STD_BUFSIZE;
1245 info->rx_std_ctrl.flags =
1246 RCB_FLG_TCP_UDP_SUM | RCB_FLG_NO_PSEUDO_HDR | ACE_RCB_VLAN_FLAG;
1247
1248 memset(ap->rx_std_ring, 0,
1249 RX_STD_RING_ENTRIES * sizeof(struct rx_desc));
1250
1251 for (i = 0; i < RX_STD_RING_ENTRIES; i++)
1252 ap->rx_std_ring[i].flags = BD_FLG_TCP_UDP_SUM;
1253
1254 ap->rx_std_skbprd = 0;
1255 atomic_set(&ap->cur_rx_bufs, 0);
1256
1257 set_aceaddr(&info->rx_jumbo_ctrl.rngptr,
1258 (ap->rx_ring_base_dma +
1259 (sizeof(struct rx_desc) * RX_STD_RING_ENTRIES)));
1260 info->rx_jumbo_ctrl.max_len = 0;
1261 info->rx_jumbo_ctrl.flags =
1262 RCB_FLG_TCP_UDP_SUM | RCB_FLG_NO_PSEUDO_HDR | ACE_RCB_VLAN_FLAG;
1263
1264 memset(ap->rx_jumbo_ring, 0,
1265 RX_JUMBO_RING_ENTRIES * sizeof(struct rx_desc));
1266
1267 for (i = 0; i < RX_JUMBO_RING_ENTRIES; i++)
1268 ap->rx_jumbo_ring[i].flags = BD_FLG_TCP_UDP_SUM | BD_FLG_JUMBO;
1269
1270 ap->rx_jumbo_skbprd = 0;
1271 atomic_set(&ap->cur_jumbo_bufs, 0);
1272
1273 memset(ap->rx_mini_ring, 0,
1274 RX_MINI_RING_ENTRIES * sizeof(struct rx_desc));
1275
1276 if (ap->version >= 2) {
1277 set_aceaddr(&info->rx_mini_ctrl.rngptr,
1278 (ap->rx_ring_base_dma +
1279 (sizeof(struct rx_desc) *
1280 (RX_STD_RING_ENTRIES +
1281 RX_JUMBO_RING_ENTRIES))));
1282 info->rx_mini_ctrl.max_len = ACE_MINI_SIZE;
Jeff Garzik6aa20a22006-09-13 13:24:59 -04001283 info->rx_mini_ctrl.flags =
Linus Torvalds1da177e2005-04-16 15:20:36 -07001284 RCB_FLG_TCP_UDP_SUM|RCB_FLG_NO_PSEUDO_HDR|ACE_RCB_VLAN_FLAG;
1285
1286 for (i = 0; i < RX_MINI_RING_ENTRIES; i++)
1287 ap->rx_mini_ring[i].flags =
1288 BD_FLG_TCP_UDP_SUM | BD_FLG_MINI;
1289 } else {
1290 set_aceaddr(&info->rx_mini_ctrl.rngptr, 0);
1291 info->rx_mini_ctrl.flags = RCB_FLG_RNG_DISABLE;
1292 info->rx_mini_ctrl.max_len = 0;
1293 }
1294
1295 ap->rx_mini_skbprd = 0;
1296 atomic_set(&ap->cur_mini_bufs, 0);
1297
1298 set_aceaddr(&info->rx_return_ctrl.rngptr,
1299 (ap->rx_ring_base_dma +
1300 (sizeof(struct rx_desc) *
1301 (RX_STD_RING_ENTRIES +
1302 RX_JUMBO_RING_ENTRIES +
1303 RX_MINI_RING_ENTRIES))));
1304 info->rx_return_ctrl.flags = 0;
1305 info->rx_return_ctrl.max_len = RX_RETURN_RING_ENTRIES;
1306
1307 memset(ap->rx_return_ring, 0,
1308 RX_RETURN_RING_ENTRIES * sizeof(struct rx_desc));
1309
1310 set_aceaddr(&info->rx_ret_prd_ptr, ap->rx_ret_prd_dma);
1311 *(ap->rx_ret_prd) = 0;
1312
1313 writel(TX_RING_BASE, &regs->WinBase);
1314
1315 if (ACE_IS_TIGON_I(ap)) {
1316 ap->tx_ring = (struct tx_desc *) regs->Window;
Jeff Garzik6aa20a22006-09-13 13:24:59 -04001317 for (i = 0; i < (TIGON_I_TX_RING_ENTRIES
Linus Torvalds1da177e2005-04-16 15:20:36 -07001318 * sizeof(struct tx_desc)) / sizeof(u32); i++)
1319 writel(0, (void __iomem *)ap->tx_ring + i * 4);
1320
1321 set_aceaddr(&info->tx_ctrl.rngptr, TX_RING_BASE);
1322 } else {
1323 memset(ap->tx_ring, 0,
1324 MAX_TX_RING_ENTRIES * sizeof(struct tx_desc));
1325
1326 set_aceaddr(&info->tx_ctrl.rngptr, ap->tx_ring_dma);
1327 }
1328
1329 info->tx_ctrl.max_len = ACE_TX_RING_ENTRIES(ap);
1330 tmp = RCB_FLG_TCP_UDP_SUM | RCB_FLG_NO_PSEUDO_HDR | ACE_RCB_VLAN_FLAG;
1331
1332 /*
1333 * The Tigon I does not like having the TX ring in host memory ;-(
1334 */
1335 if (!ACE_IS_TIGON_I(ap))
1336 tmp |= RCB_FLG_TX_HOST_RING;
1337#if TX_COAL_INTS_ONLY
1338 tmp |= RCB_FLG_COAL_INT_ONLY;
1339#endif
1340 info->tx_ctrl.flags = tmp;
1341
1342 set_aceaddr(&info->tx_csm_ptr, ap->tx_csm_dma);
1343
1344 /*
1345 * Potential item for tuning parameter
1346 */
1347#if 0 /* NO */
1348 writel(DMA_THRESH_16W, &regs->DmaReadCfg);
1349 writel(DMA_THRESH_16W, &regs->DmaWriteCfg);
1350#else
1351 writel(DMA_THRESH_8W, &regs->DmaReadCfg);
1352 writel(DMA_THRESH_8W, &regs->DmaWriteCfg);
1353#endif
1354
1355 writel(0, &regs->MaskInt);
1356 writel(1, &regs->IfIdx);
1357#if 0
1358 /*
1359 * McKinley boxes do not like us fiddling with AssistState
1360 * this early
1361 */
1362 writel(1, &regs->AssistState);
1363#endif
1364
1365 writel(DEF_STAT, &regs->TuneStatTicks);
1366 writel(DEF_TRACE, &regs->TuneTrace);
1367
1368 ace_set_rxtx_parms(dev, 0);
1369
1370 if (board_idx == BOARD_IDX_OVERFLOW) {
1371 printk(KERN_WARNING "%s: more than %i NICs detected, "
1372 "ignoring module parameters!\n",
1373 ap->name, ACE_MAX_MOD_PARMS);
1374 } else if (board_idx >= 0) {
1375 if (tx_coal_tick[board_idx])
1376 writel(tx_coal_tick[board_idx],
1377 &regs->TuneTxCoalTicks);
1378 if (max_tx_desc[board_idx])
1379 writel(max_tx_desc[board_idx], &regs->TuneMaxTxDesc);
1380
1381 if (rx_coal_tick[board_idx])
1382 writel(rx_coal_tick[board_idx],
1383 &regs->TuneRxCoalTicks);
1384 if (max_rx_desc[board_idx])
1385 writel(max_rx_desc[board_idx], &regs->TuneMaxRxDesc);
1386
1387 if (trace[board_idx])
1388 writel(trace[board_idx], &regs->TuneTrace);
1389
1390 if ((tx_ratio[board_idx] > 0) && (tx_ratio[board_idx] < 64))
1391 writel(tx_ratio[board_idx], &regs->TxBufRat);
1392 }
1393
1394 /*
1395 * Default link parameters
1396 */
1397 tmp = LNK_ENABLE | LNK_FULL_DUPLEX | LNK_1000MB | LNK_100MB |
1398 LNK_10MB | LNK_RX_FLOW_CTL_Y | LNK_NEG_FCTL | LNK_NEGOTIATE;
1399 if(ap->version >= 2)
1400 tmp |= LNK_TX_FLOW_CTL_Y;
1401
1402 /*
1403 * Override link default parameters
1404 */
1405 if ((board_idx >= 0) && link[board_idx]) {
1406 int option = link[board_idx];
1407
1408 tmp = LNK_ENABLE;
1409
1410 if (option & 0x01) {
1411 printk(KERN_INFO "%s: Setting half duplex link\n",
1412 ap->name);
1413 tmp &= ~LNK_FULL_DUPLEX;
1414 }
1415 if (option & 0x02)
1416 tmp &= ~LNK_NEGOTIATE;
1417 if (option & 0x10)
1418 tmp |= LNK_10MB;
1419 if (option & 0x20)
1420 tmp |= LNK_100MB;
1421 if (option & 0x40)
1422 tmp |= LNK_1000MB;
1423 if ((option & 0x70) == 0) {
1424 printk(KERN_WARNING "%s: No media speed specified, "
1425 "forcing auto negotiation\n", ap->name);
1426 tmp |= LNK_NEGOTIATE | LNK_1000MB |
1427 LNK_100MB | LNK_10MB;
1428 }
1429 if ((option & 0x100) == 0)
1430 tmp |= LNK_NEG_FCTL;
1431 else
1432 printk(KERN_INFO "%s: Disabling flow control "
1433 "negotiation\n", ap->name);
1434 if (option & 0x200)
1435 tmp |= LNK_RX_FLOW_CTL_Y;
1436 if ((option & 0x400) && (ap->version >= 2)) {
1437 printk(KERN_INFO "%s: Enabling TX flow control\n",
1438 ap->name);
1439 tmp |= LNK_TX_FLOW_CTL_Y;
1440 }
1441 }
1442
1443 ap->link = tmp;
1444 writel(tmp, &regs->TuneLink);
1445 if (ap->version >= 2)
1446 writel(tmp, &regs->TuneFastLink);
1447
1448 if (ACE_IS_TIGON_I(ap))
1449 writel(tigonFwStartAddr, &regs->Pc);
1450 if (ap->version == 2)
1451 writel(tigon2FwStartAddr, &regs->Pc);
1452
1453 writel(0, &regs->Mb0Lo);
1454
1455 /*
1456 * Set tx_csm before we start receiving interrupts, otherwise
1457 * the interrupt handler might think it is supposed to process
1458 * tx ints before we are up and running, which may cause a null
1459 * pointer access in the int handler.
1460 */
1461 ap->cur_rx = 0;
1462 ap->tx_prd = *(ap->tx_csm) = ap->tx_ret_csm = 0;
1463
1464 wmb();
1465 ace_set_txprd(regs, ap, 0);
1466 writel(0, &regs->RxRetCsm);
1467
1468 /*
1469 * Zero the stats before starting the interface
1470 */
1471 memset(&ap->stats, 0, sizeof(ap->stats));
1472
1473 /*
1474 * Enable DMA engine now.
1475 * If we do this sooner, Mckinley box pukes.
1476 * I assume it's because Tigon II DMA engine wants to check
1477 * *something* even before the CPU is started.
1478 */
1479 writel(1, &regs->AssistState); /* enable DMA */
1480
1481 /*
1482 * Start the NIC CPU
1483 */
1484 writel(readl(&regs->CpuCtrl) & ~(CPU_HALT|CPU_TRACE), &regs->CpuCtrl);
1485 readl(&regs->CpuCtrl);
1486
1487 /*
1488 * Wait for the firmware to spin up - max 3 seconds.
1489 */
1490 myjif = jiffies + 3 * HZ;
1491 while (time_before(jiffies, myjif) && !ap->fw_running)
1492 cpu_relax();
1493
1494 if (!ap->fw_running) {
1495 printk(KERN_ERR "%s: Firmware NOT running!\n", ap->name);
1496
1497 ace_dump_trace(ap);
1498 writel(readl(&regs->CpuCtrl) | CPU_HALT, &regs->CpuCtrl);
1499 readl(&regs->CpuCtrl);
1500
1501 /* aman@sgi.com - account for badly behaving firmware/NIC:
1502 * - have observed that the NIC may continue to generate
1503 * interrupts for some reason; attempt to stop it - halt
1504 * second CPU for Tigon II cards, and also clear Mb0
1505 * - if we're a module, we'll fail to load if this was
1506 * the only GbE card in the system => if the kernel does
1507 * see an interrupt from the NIC, code to handle it is
1508 * gone and OOps! - so free_irq also
1509 */
1510 if (ap->version >= 2)
1511 writel(readl(&regs->CpuBCtrl) | CPU_HALT,
1512 &regs->CpuBCtrl);
1513 writel(0, &regs->Mb0Lo);
1514 readl(&regs->Mb0Lo);
1515
1516 ecode = -EBUSY;
1517 goto init_error;
1518 }
1519
1520 /*
1521 * We load the ring here as there seem to be no way to tell the
1522 * firmware to wipe the ring without re-initializing it.
1523 */
1524 if (!test_and_set_bit(0, &ap->std_refill_busy))
1525 ace_load_std_rx_ring(ap, RX_RING_SIZE);
1526 else
1527 printk(KERN_ERR "%s: Someone is busy refilling the RX ring\n",
1528 ap->name);
1529 if (ap->version >= 2) {
1530 if (!test_and_set_bit(0, &ap->mini_refill_busy))
1531 ace_load_mini_rx_ring(ap, RX_MINI_SIZE);
1532 else
1533 printk(KERN_ERR "%s: Someone is busy refilling "
1534 "the RX mini ring\n", ap->name);
1535 }
1536 return 0;
1537
1538 init_error:
1539 ace_init_cleanup(dev);
1540 return ecode;
1541}
1542
1543
1544static void ace_set_rxtx_parms(struct net_device *dev, int jumbo)
1545{
1546 struct ace_private *ap = netdev_priv(dev);
1547 struct ace_regs __iomem *regs = ap->regs;
1548 int board_idx = ap->board_idx;
1549
1550 if (board_idx >= 0) {
1551 if (!jumbo) {
1552 if (!tx_coal_tick[board_idx])
1553 writel(DEF_TX_COAL, &regs->TuneTxCoalTicks);
1554 if (!max_tx_desc[board_idx])
1555 writel(DEF_TX_MAX_DESC, &regs->TuneMaxTxDesc);
1556 if (!rx_coal_tick[board_idx])
1557 writel(DEF_RX_COAL, &regs->TuneRxCoalTicks);
1558 if (!max_rx_desc[board_idx])
1559 writel(DEF_RX_MAX_DESC, &regs->TuneMaxRxDesc);
1560 if (!tx_ratio[board_idx])
1561 writel(DEF_TX_RATIO, &regs->TxBufRat);
1562 } else {
1563 if (!tx_coal_tick[board_idx])
1564 writel(DEF_JUMBO_TX_COAL,
1565 &regs->TuneTxCoalTicks);
1566 if (!max_tx_desc[board_idx])
1567 writel(DEF_JUMBO_TX_MAX_DESC,
1568 &regs->TuneMaxTxDesc);
1569 if (!rx_coal_tick[board_idx])
1570 writel(DEF_JUMBO_RX_COAL,
1571 &regs->TuneRxCoalTicks);
1572 if (!max_rx_desc[board_idx])
1573 writel(DEF_JUMBO_RX_MAX_DESC,
1574 &regs->TuneMaxRxDesc);
1575 if (!tx_ratio[board_idx])
1576 writel(DEF_JUMBO_TX_RATIO, &regs->TxBufRat);
1577 }
1578 }
1579}
1580
1581
1582static void ace_watchdog(struct net_device *data)
1583{
1584 struct net_device *dev = data;
1585 struct ace_private *ap = netdev_priv(dev);
1586 struct ace_regs __iomem *regs = ap->regs;
1587
1588 /*
1589 * We haven't received a stats update event for more than 2.5
1590 * seconds and there is data in the transmit queue, thus we
1591 * asume the card is stuck.
1592 */
1593 if (*ap->tx_csm != ap->tx_ret_csm) {
1594 printk(KERN_WARNING "%s: Transmitter is stuck, %08x\n",
1595 dev->name, (unsigned int)readl(&regs->HostCtrl));
1596 /* This can happen due to ieee flow control. */
1597 } else {
1598 printk(KERN_DEBUG "%s: BUG... transmitter died. Kicking it.\n",
1599 dev->name);
1600#if 0
1601 netif_wake_queue(dev);
1602#endif
1603 }
1604}
1605
1606
1607static void ace_tasklet(unsigned long dev)
1608{
1609 struct ace_private *ap = netdev_priv((struct net_device *)dev);
1610 int cur_size;
1611
1612 cur_size = atomic_read(&ap->cur_rx_bufs);
1613 if ((cur_size < RX_LOW_STD_THRES) &&
1614 !test_and_set_bit(0, &ap->std_refill_busy)) {
1615#ifdef DEBUG
1616 printk("refilling buffers (current %i)\n", cur_size);
1617#endif
1618 ace_load_std_rx_ring(ap, RX_RING_SIZE - cur_size);
1619 }
1620
1621 if (ap->version >= 2) {
1622 cur_size = atomic_read(&ap->cur_mini_bufs);
1623 if ((cur_size < RX_LOW_MINI_THRES) &&
1624 !test_and_set_bit(0, &ap->mini_refill_busy)) {
1625#ifdef DEBUG
1626 printk("refilling mini buffers (current %i)\n",
1627 cur_size);
1628#endif
1629 ace_load_mini_rx_ring(ap, RX_MINI_SIZE - cur_size);
1630 }
1631 }
1632
1633 cur_size = atomic_read(&ap->cur_jumbo_bufs);
1634 if (ap->jumbo && (cur_size < RX_LOW_JUMBO_THRES) &&
1635 !test_and_set_bit(0, &ap->jumbo_refill_busy)) {
1636#ifdef DEBUG
1637 printk("refilling jumbo buffers (current %i)\n", cur_size);
1638#endif
1639 ace_load_jumbo_rx_ring(ap, RX_JUMBO_SIZE - cur_size);
1640 }
1641 ap->tasklet_pending = 0;
1642}
1643
1644
1645/*
1646 * Copy the contents of the NIC's trace buffer to kernel memory.
1647 */
1648static void ace_dump_trace(struct ace_private *ap)
1649{
1650#if 0
1651 if (!ap->trace_buf)
1652 if (!(ap->trace_buf = kmalloc(ACE_TRACE_SIZE, GFP_KERNEL)))
1653 return;
1654#endif
1655}
1656
1657
1658/*
1659 * Load the standard rx ring.
1660 *
1661 * Loading rings is safe without holding the spin lock since this is
1662 * done only before the device is enabled, thus no interrupts are
1663 * generated and by the interrupt handler/tasklet handler.
1664 */
1665static void ace_load_std_rx_ring(struct ace_private *ap, int nr_bufs)
1666{
1667 struct ace_regs __iomem *regs = ap->regs;
1668 short i, idx;
Jeff Garzik6aa20a22006-09-13 13:24:59 -04001669
Linus Torvalds1da177e2005-04-16 15:20:36 -07001670
1671 prefetchw(&ap->cur_rx_bufs);
1672
1673 idx = ap->rx_std_skbprd;
1674
1675 for (i = 0; i < nr_bufs; i++) {
1676 struct sk_buff *skb;
1677 struct rx_desc *rd;
1678 dma_addr_t mapping;
1679
1680 skb = alloc_skb(ACE_STD_BUFSIZE + NET_IP_ALIGN, GFP_ATOMIC);
1681 if (!skb)
1682 break;
1683
1684 skb_reserve(skb, NET_IP_ALIGN);
1685 mapping = pci_map_page(ap->pdev, virt_to_page(skb->data),
1686 offset_in_page(skb->data),
1687 ACE_STD_BUFSIZE,
1688 PCI_DMA_FROMDEVICE);
1689 ap->skb->rx_std_skbuff[idx].skb = skb;
1690 pci_unmap_addr_set(&ap->skb->rx_std_skbuff[idx],
1691 mapping, mapping);
1692
1693 rd = &ap->rx_std_ring[idx];
1694 set_aceaddr(&rd->addr, mapping);
1695 rd->size = ACE_STD_BUFSIZE;
1696 rd->idx = idx;
1697 idx = (idx + 1) % RX_STD_RING_ENTRIES;
1698 }
1699
1700 if (!i)
1701 goto error_out;
1702
1703 atomic_add(i, &ap->cur_rx_bufs);
1704 ap->rx_std_skbprd = idx;
1705
1706 if (ACE_IS_TIGON_I(ap)) {
1707 struct cmd cmd;
1708 cmd.evt = C_SET_RX_PRD_IDX;
1709 cmd.code = 0;
1710 cmd.idx = ap->rx_std_skbprd;
1711 ace_issue_cmd(regs, &cmd);
1712 } else {
1713 writel(idx, &regs->RxStdPrd);
1714 wmb();
1715 }
1716
1717 out:
1718 clear_bit(0, &ap->std_refill_busy);
1719 return;
1720
1721 error_out:
1722 printk(KERN_INFO "Out of memory when allocating "
1723 "standard receive buffers\n");
1724 goto out;
1725}
1726
1727
1728static void ace_load_mini_rx_ring(struct ace_private *ap, int nr_bufs)
1729{
1730 struct ace_regs __iomem *regs = ap->regs;
1731 short i, idx;
1732
1733 prefetchw(&ap->cur_mini_bufs);
1734
1735 idx = ap->rx_mini_skbprd;
1736 for (i = 0; i < nr_bufs; i++) {
1737 struct sk_buff *skb;
1738 struct rx_desc *rd;
1739 dma_addr_t mapping;
1740
1741 skb = alloc_skb(ACE_MINI_BUFSIZE + NET_IP_ALIGN, GFP_ATOMIC);
1742 if (!skb)
1743 break;
1744
1745 skb_reserve(skb, NET_IP_ALIGN);
1746 mapping = pci_map_page(ap->pdev, virt_to_page(skb->data),
1747 offset_in_page(skb->data),
1748 ACE_MINI_BUFSIZE,
1749 PCI_DMA_FROMDEVICE);
1750 ap->skb->rx_mini_skbuff[idx].skb = skb;
1751 pci_unmap_addr_set(&ap->skb->rx_mini_skbuff[idx],
1752 mapping, mapping);
1753
1754 rd = &ap->rx_mini_ring[idx];
1755 set_aceaddr(&rd->addr, mapping);
1756 rd->size = ACE_MINI_BUFSIZE;
1757 rd->idx = idx;
1758 idx = (idx + 1) % RX_MINI_RING_ENTRIES;
1759 }
1760
1761 if (!i)
1762 goto error_out;
1763
1764 atomic_add(i, &ap->cur_mini_bufs);
1765
1766 ap->rx_mini_skbprd = idx;
1767
1768 writel(idx, &regs->RxMiniPrd);
1769 wmb();
1770
1771 out:
1772 clear_bit(0, &ap->mini_refill_busy);
1773 return;
1774 error_out:
1775 printk(KERN_INFO "Out of memory when allocating "
1776 "mini receive buffers\n");
1777 goto out;
1778}
1779
1780
1781/*
1782 * Load the jumbo rx ring, this may happen at any time if the MTU
1783 * is changed to a value > 1500.
1784 */
1785static void ace_load_jumbo_rx_ring(struct ace_private *ap, int nr_bufs)
1786{
1787 struct ace_regs __iomem *regs = ap->regs;
1788 short i, idx;
1789
1790 idx = ap->rx_jumbo_skbprd;
1791
1792 for (i = 0; i < nr_bufs; i++) {
1793 struct sk_buff *skb;
1794 struct rx_desc *rd;
1795 dma_addr_t mapping;
1796
1797 skb = alloc_skb(ACE_JUMBO_BUFSIZE + NET_IP_ALIGN, GFP_ATOMIC);
1798 if (!skb)
1799 break;
1800
1801 skb_reserve(skb, NET_IP_ALIGN);
1802 mapping = pci_map_page(ap->pdev, virt_to_page(skb->data),
1803 offset_in_page(skb->data),
1804 ACE_JUMBO_BUFSIZE,
1805 PCI_DMA_FROMDEVICE);
1806 ap->skb->rx_jumbo_skbuff[idx].skb = skb;
1807 pci_unmap_addr_set(&ap->skb->rx_jumbo_skbuff[idx],
1808 mapping, mapping);
1809
1810 rd = &ap->rx_jumbo_ring[idx];
1811 set_aceaddr(&rd->addr, mapping);
1812 rd->size = ACE_JUMBO_BUFSIZE;
1813 rd->idx = idx;
1814 idx = (idx + 1) % RX_JUMBO_RING_ENTRIES;
1815 }
1816
1817 if (!i)
1818 goto error_out;
1819
1820 atomic_add(i, &ap->cur_jumbo_bufs);
1821 ap->rx_jumbo_skbprd = idx;
1822
1823 if (ACE_IS_TIGON_I(ap)) {
1824 struct cmd cmd;
1825 cmd.evt = C_SET_RX_JUMBO_PRD_IDX;
1826 cmd.code = 0;
1827 cmd.idx = ap->rx_jumbo_skbprd;
1828 ace_issue_cmd(regs, &cmd);
1829 } else {
1830 writel(idx, &regs->RxJumboPrd);
1831 wmb();
1832 }
1833
1834 out:
1835 clear_bit(0, &ap->jumbo_refill_busy);
1836 return;
1837 error_out:
1838 if (net_ratelimit())
1839 printk(KERN_INFO "Out of memory when allocating "
1840 "jumbo receive buffers\n");
1841 goto out;
1842}
1843
1844
1845/*
1846 * All events are considered to be slow (RX/TX ints do not generate
1847 * events) and are handled here, outside the main interrupt handler,
1848 * to reduce the size of the handler.
1849 */
1850static u32 ace_handle_event(struct net_device *dev, u32 evtcsm, u32 evtprd)
1851{
1852 struct ace_private *ap;
1853
1854 ap = netdev_priv(dev);
1855
1856 while (evtcsm != evtprd) {
1857 switch (ap->evt_ring[evtcsm].evt) {
1858 case E_FW_RUNNING:
1859 printk(KERN_INFO "%s: Firmware up and running\n",
1860 ap->name);
1861 ap->fw_running = 1;
1862 wmb();
1863 break;
1864 case E_STATS_UPDATED:
1865 break;
1866 case E_LNK_STATE:
1867 {
1868 u16 code = ap->evt_ring[evtcsm].code;
1869 switch (code) {
1870 case E_C_LINK_UP:
1871 {
1872 u32 state = readl(&ap->regs->GigLnkState);
1873 printk(KERN_WARNING "%s: Optical link UP "
1874 "(%s Duplex, Flow Control: %s%s)\n",
1875 ap->name,
1876 state & LNK_FULL_DUPLEX ? "Full":"Half",
1877 state & LNK_TX_FLOW_CTL_Y ? "TX " : "",
1878 state & LNK_RX_FLOW_CTL_Y ? "RX" : "");
1879 break;
1880 }
1881 case E_C_LINK_DOWN:
1882 printk(KERN_WARNING "%s: Optical link DOWN\n",
1883 ap->name);
1884 break;
1885 case E_C_LINK_10_100:
1886 printk(KERN_WARNING "%s: 10/100BaseT link "
1887 "UP\n", ap->name);
1888 break;
1889 default:
1890 printk(KERN_ERR "%s: Unknown optical link "
1891 "state %02x\n", ap->name, code);
1892 }
1893 break;
1894 }
1895 case E_ERROR:
1896 switch(ap->evt_ring[evtcsm].code) {
1897 case E_C_ERR_INVAL_CMD:
1898 printk(KERN_ERR "%s: invalid command error\n",
1899 ap->name);
1900 break;
1901 case E_C_ERR_UNIMP_CMD:
1902 printk(KERN_ERR "%s: unimplemented command "
1903 "error\n", ap->name);
1904 break;
1905 case E_C_ERR_BAD_CFG:
1906 printk(KERN_ERR "%s: bad config error\n",
1907 ap->name);
1908 break;
1909 default:
1910 printk(KERN_ERR "%s: unknown error %02x\n",
1911 ap->name, ap->evt_ring[evtcsm].code);
1912 }
1913 break;
1914 case E_RESET_JUMBO_RNG:
1915 {
1916 int i;
1917 for (i = 0; i < RX_JUMBO_RING_ENTRIES; i++) {
1918 if (ap->skb->rx_jumbo_skbuff[i].skb) {
1919 ap->rx_jumbo_ring[i].size = 0;
1920 set_aceaddr(&ap->rx_jumbo_ring[i].addr, 0);
1921 dev_kfree_skb(ap->skb->rx_jumbo_skbuff[i].skb);
1922 ap->skb->rx_jumbo_skbuff[i].skb = NULL;
1923 }
1924 }
1925
1926 if (ACE_IS_TIGON_I(ap)) {
1927 struct cmd cmd;
1928 cmd.evt = C_SET_RX_JUMBO_PRD_IDX;
1929 cmd.code = 0;
1930 cmd.idx = 0;
1931 ace_issue_cmd(ap->regs, &cmd);
1932 } else {
1933 writel(0, &((ap->regs)->RxJumboPrd));
1934 wmb();
1935 }
1936
1937 ap->jumbo = 0;
1938 ap->rx_jumbo_skbprd = 0;
1939 printk(KERN_INFO "%s: Jumbo ring flushed\n",
1940 ap->name);
1941 clear_bit(0, &ap->jumbo_refill_busy);
1942 break;
1943 }
1944 default:
1945 printk(KERN_ERR "%s: Unhandled event 0x%02x\n",
1946 ap->name, ap->evt_ring[evtcsm].evt);
1947 }
1948 evtcsm = (evtcsm + 1) % EVT_RING_ENTRIES;
1949 }
1950
1951 return evtcsm;
1952}
1953
1954
1955static void ace_rx_int(struct net_device *dev, u32 rxretprd, u32 rxretcsm)
1956{
1957 struct ace_private *ap = netdev_priv(dev);
1958 u32 idx;
1959 int mini_count = 0, std_count = 0;
1960
1961 idx = rxretcsm;
1962
1963 prefetchw(&ap->cur_rx_bufs);
1964 prefetchw(&ap->cur_mini_bufs);
Jeff Garzik6aa20a22006-09-13 13:24:59 -04001965
Linus Torvalds1da177e2005-04-16 15:20:36 -07001966 while (idx != rxretprd) {
1967 struct ring_info *rip;
1968 struct sk_buff *skb;
1969 struct rx_desc *rxdesc, *retdesc;
1970 u32 skbidx;
1971 int bd_flags, desc_type, mapsize;
1972 u16 csum;
1973
1974
1975 /* make sure the rx descriptor isn't read before rxretprd */
Jeff Garzik6aa20a22006-09-13 13:24:59 -04001976 if (idx == rxretcsm)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001977 rmb();
1978
1979 retdesc = &ap->rx_return_ring[idx];
1980 skbidx = retdesc->idx;
1981 bd_flags = retdesc->flags;
1982 desc_type = bd_flags & (BD_FLG_JUMBO | BD_FLG_MINI);
1983
1984 switch(desc_type) {
1985 /*
1986 * Normal frames do not have any flags set
1987 *
1988 * Mini and normal frames arrive frequently,
1989 * so use a local counter to avoid doing
1990 * atomic operations for each packet arriving.
1991 */
1992 case 0:
1993 rip = &ap->skb->rx_std_skbuff[skbidx];
1994 mapsize = ACE_STD_BUFSIZE;
1995 rxdesc = &ap->rx_std_ring[skbidx];
1996 std_count++;
1997 break;
1998 case BD_FLG_JUMBO:
1999 rip = &ap->skb->rx_jumbo_skbuff[skbidx];
2000 mapsize = ACE_JUMBO_BUFSIZE;
2001 rxdesc = &ap->rx_jumbo_ring[skbidx];
2002 atomic_dec(&ap->cur_jumbo_bufs);
2003 break;
2004 case BD_FLG_MINI:
2005 rip = &ap->skb->rx_mini_skbuff[skbidx];
2006 mapsize = ACE_MINI_BUFSIZE;
2007 rxdesc = &ap->rx_mini_ring[skbidx];
Jeff Garzik6aa20a22006-09-13 13:24:59 -04002008 mini_count++;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002009 break;
2010 default:
2011 printk(KERN_INFO "%s: unknown frame type (0x%02x) "
2012 "returned by NIC\n", dev->name,
2013 retdesc->flags);
2014 goto error;
2015 }
2016
2017 skb = rip->skb;
2018 rip->skb = NULL;
2019 pci_unmap_page(ap->pdev,
2020 pci_unmap_addr(rip, mapping),
2021 mapsize,
2022 PCI_DMA_FROMDEVICE);
2023 skb_put(skb, retdesc->size);
2024
2025 /*
2026 * Fly baby, fly!
2027 */
2028 csum = retdesc->tcp_udp_csum;
2029
Linus Torvalds1da177e2005-04-16 15:20:36 -07002030 skb->protocol = eth_type_trans(skb, dev);
2031
2032 /*
2033 * Instead of forcing the poor tigon mips cpu to calculate
2034 * pseudo hdr checksum, we do this ourselves.
2035 */
2036 if (bd_flags & BD_FLG_TCP_UDP_SUM) {
2037 skb->csum = htons(csum);
Patrick McHardy84fa7932006-08-29 16:44:56 -07002038 skb->ip_summed = CHECKSUM_COMPLETE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002039 } else {
2040 skb->ip_summed = CHECKSUM_NONE;
2041 }
2042
2043 /* send it up */
2044#if ACENIC_DO_VLAN
2045 if (ap->vlgrp && (bd_flags & BD_FLG_VLAN_TAG)) {
2046 vlan_hwaccel_rx(skb, ap->vlgrp, retdesc->vlan);
2047 } else
2048#endif
2049 netif_rx(skb);
2050
2051 dev->last_rx = jiffies;
2052 ap->stats.rx_packets++;
2053 ap->stats.rx_bytes += retdesc->size;
2054
2055 idx = (idx + 1) % RX_RETURN_RING_ENTRIES;
2056 }
2057
2058 atomic_sub(std_count, &ap->cur_rx_bufs);
2059 if (!ACE_IS_TIGON_I(ap))
2060 atomic_sub(mini_count, &ap->cur_mini_bufs);
2061
2062 out:
2063 /*
2064 * According to the documentation RxRetCsm is obsolete with
2065 * the 12.3.x Firmware - my Tigon I NICs seem to disagree!
2066 */
2067 if (ACE_IS_TIGON_I(ap)) {
2068 writel(idx, &ap->regs->RxRetCsm);
2069 }
2070 ap->cur_rx = idx;
2071
2072 return;
2073 error:
2074 idx = rxretprd;
2075 goto out;
2076}
2077
2078
2079static inline void ace_tx_int(struct net_device *dev,
2080 u32 txcsm, u32 idx)
2081{
2082 struct ace_private *ap = netdev_priv(dev);
2083
2084 do {
2085 struct sk_buff *skb;
2086 dma_addr_t mapping;
2087 struct tx_ring_info *info;
2088
2089 info = ap->skb->tx_skbuff + idx;
2090 skb = info->skb;
2091 mapping = pci_unmap_addr(info, mapping);
2092
2093 if (mapping) {
2094 pci_unmap_page(ap->pdev, mapping,
2095 pci_unmap_len(info, maplen),
2096 PCI_DMA_TODEVICE);
2097 pci_unmap_addr_set(info, mapping, 0);
2098 }
2099
2100 if (skb) {
2101 ap->stats.tx_packets++;
2102 ap->stats.tx_bytes += skb->len;
2103 dev_kfree_skb_irq(skb);
2104 info->skb = NULL;
2105 }
2106
2107 idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap);
2108 } while (idx != txcsm);
2109
2110 if (netif_queue_stopped(dev))
2111 netif_wake_queue(dev);
2112
2113 wmb();
2114 ap->tx_ret_csm = txcsm;
2115
2116 /* So... tx_ret_csm is advanced _after_ check for device wakeup.
2117 *
2118 * We could try to make it before. In this case we would get
2119 * the following race condition: hard_start_xmit on other cpu
2120 * enters after we advanced tx_ret_csm and fills space,
2121 * which we have just freed, so that we make illegal device wakeup.
2122 * There is no good way to workaround this (at entry
2123 * to ace_start_xmit detects this condition and prevents
2124 * ring corruption, but it is not a good workaround.)
2125 *
2126 * When tx_ret_csm is advanced after, we wake up device _only_
2127 * if we really have some space in ring (though the core doing
2128 * hard_start_xmit can see full ring for some period and has to
2129 * synchronize.) Superb.
2130 * BUT! We get another subtle race condition. hard_start_xmit
2131 * may think that ring is full between wakeup and advancing
2132 * tx_ret_csm and will stop device instantly! It is not so bad.
2133 * We are guaranteed that there is something in ring, so that
2134 * the next irq will resume transmission. To speedup this we could
2135 * mark descriptor, which closes ring with BD_FLG_COAL_NOW
2136 * (see ace_start_xmit).
2137 *
2138 * Well, this dilemma exists in all lock-free devices.
2139 * We, following scheme used in drivers by Donald Becker,
2140 * select the least dangerous.
2141 * --ANK
2142 */
2143}
2144
2145
David Howells7d12e782006-10-05 14:55:46 +01002146static irqreturn_t ace_interrupt(int irq, void *dev_id)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002147{
2148 struct net_device *dev = (struct net_device *)dev_id;
2149 struct ace_private *ap = netdev_priv(dev);
2150 struct ace_regs __iomem *regs = ap->regs;
2151 u32 idx;
2152 u32 txcsm, rxretcsm, rxretprd;
2153 u32 evtcsm, evtprd;
2154
2155 /*
2156 * In case of PCI shared interrupts or spurious interrupts,
2157 * we want to make sure it is actually our interrupt before
2158 * spending any time in here.
2159 */
2160 if (!(readl(&regs->HostCtrl) & IN_INT))
2161 return IRQ_NONE;
2162
2163 /*
2164 * ACK intr now. Otherwise we will lose updates to rx_ret_prd,
2165 * which happened _after_ rxretprd = *ap->rx_ret_prd; but before
2166 * writel(0, &regs->Mb0Lo).
2167 *
2168 * "IRQ avoidance" recommended in docs applies to IRQs served
2169 * threads and it is wrong even for that case.
2170 */
2171 writel(0, &regs->Mb0Lo);
2172 readl(&regs->Mb0Lo);
2173
2174 /*
2175 * There is no conflict between transmit handling in
2176 * start_xmit and receive processing, thus there is no reason
2177 * to take a spin lock for RX handling. Wait until we start
2178 * working on the other stuff - hey we don't need a spin lock
2179 * anymore.
2180 */
2181 rxretprd = *ap->rx_ret_prd;
2182 rxretcsm = ap->cur_rx;
2183
2184 if (rxretprd != rxretcsm)
2185 ace_rx_int(dev, rxretprd, rxretcsm);
2186
2187 txcsm = *ap->tx_csm;
2188 idx = ap->tx_ret_csm;
2189
2190 if (txcsm != idx) {
2191 /*
2192 * If each skb takes only one descriptor this check degenerates
2193 * to identity, because new space has just been opened.
2194 * But if skbs are fragmented we must check that this index
2195 * update releases enough of space, otherwise we just
2196 * wait for device to make more work.
2197 */
2198 if (!tx_ring_full(ap, txcsm, ap->tx_prd))
2199 ace_tx_int(dev, txcsm, idx);
2200 }
2201
2202 evtcsm = readl(&regs->EvtCsm);
2203 evtprd = *ap->evt_prd;
2204
2205 if (evtcsm != evtprd) {
2206 evtcsm = ace_handle_event(dev, evtcsm, evtprd);
2207 writel(evtcsm, &regs->EvtCsm);
2208 }
2209
2210 /*
2211 * This has to go last in the interrupt handler and run with
2212 * the spin lock released ... what lock?
2213 */
2214 if (netif_running(dev)) {
2215 int cur_size;
2216 int run_tasklet = 0;
2217
2218 cur_size = atomic_read(&ap->cur_rx_bufs);
2219 if (cur_size < RX_LOW_STD_THRES) {
2220 if ((cur_size < RX_PANIC_STD_THRES) &&
2221 !test_and_set_bit(0, &ap->std_refill_busy)) {
2222#ifdef DEBUG
2223 printk("low on std buffers %i\n", cur_size);
2224#endif
2225 ace_load_std_rx_ring(ap,
2226 RX_RING_SIZE - cur_size);
2227 } else
2228 run_tasklet = 1;
2229 }
2230
2231 if (!ACE_IS_TIGON_I(ap)) {
2232 cur_size = atomic_read(&ap->cur_mini_bufs);
2233 if (cur_size < RX_LOW_MINI_THRES) {
2234 if ((cur_size < RX_PANIC_MINI_THRES) &&
2235 !test_and_set_bit(0,
2236 &ap->mini_refill_busy)) {
2237#ifdef DEBUG
2238 printk("low on mini buffers %i\n",
2239 cur_size);
2240#endif
2241 ace_load_mini_rx_ring(ap, RX_MINI_SIZE - cur_size);
2242 } else
2243 run_tasklet = 1;
2244 }
2245 }
2246
2247 if (ap->jumbo) {
2248 cur_size = atomic_read(&ap->cur_jumbo_bufs);
2249 if (cur_size < RX_LOW_JUMBO_THRES) {
2250 if ((cur_size < RX_PANIC_JUMBO_THRES) &&
2251 !test_and_set_bit(0,
2252 &ap->jumbo_refill_busy)){
2253#ifdef DEBUG
2254 printk("low on jumbo buffers %i\n",
2255 cur_size);
2256#endif
2257 ace_load_jumbo_rx_ring(ap, RX_JUMBO_SIZE - cur_size);
2258 } else
2259 run_tasklet = 1;
2260 }
2261 }
2262 if (run_tasklet && !ap->tasklet_pending) {
2263 ap->tasklet_pending = 1;
2264 tasklet_schedule(&ap->ace_tasklet);
2265 }
2266 }
2267
2268 return IRQ_HANDLED;
2269}
2270
2271
2272#if ACENIC_DO_VLAN
2273static void ace_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
2274{
2275 struct ace_private *ap = netdev_priv(dev);
2276 unsigned long flags;
2277
2278 local_irq_save(flags);
2279 ace_mask_irq(dev);
2280
2281 ap->vlgrp = grp;
2282
2283 ace_unmask_irq(dev);
2284 local_irq_restore(flags);
2285}
2286
2287
2288static void ace_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
2289{
2290 struct ace_private *ap = netdev_priv(dev);
2291 unsigned long flags;
2292
2293 local_irq_save(flags);
2294 ace_mask_irq(dev);
Dan Aloni5c15bde2007-03-02 20:44:51 -08002295 vlan_group_set_device(ap->vlgrp, vid, NULL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002296 ace_unmask_irq(dev);
2297 local_irq_restore(flags);
2298}
2299#endif /* ACENIC_DO_VLAN */
2300
2301
2302static int ace_open(struct net_device *dev)
2303{
2304 struct ace_private *ap = netdev_priv(dev);
2305 struct ace_regs __iomem *regs = ap->regs;
2306 struct cmd cmd;
2307
2308 if (!(ap->fw_running)) {
2309 printk(KERN_WARNING "%s: Firmware not running!\n", dev->name);
2310 return -EBUSY;
2311 }
2312
2313 writel(dev->mtu + ETH_HLEN + 4, &regs->IfMtu);
2314
2315 cmd.evt = C_CLEAR_STATS;
2316 cmd.code = 0;
2317 cmd.idx = 0;
2318 ace_issue_cmd(regs, &cmd);
2319
2320 cmd.evt = C_HOST_STATE;
2321 cmd.code = C_C_STACK_UP;
2322 cmd.idx = 0;
2323 ace_issue_cmd(regs, &cmd);
2324
2325 if (ap->jumbo &&
2326 !test_and_set_bit(0, &ap->jumbo_refill_busy))
2327 ace_load_jumbo_rx_ring(ap, RX_JUMBO_SIZE);
2328
2329 if (dev->flags & IFF_PROMISC) {
2330 cmd.evt = C_SET_PROMISC_MODE;
2331 cmd.code = C_C_PROMISC_ENABLE;
2332 cmd.idx = 0;
2333 ace_issue_cmd(regs, &cmd);
2334
2335 ap->promisc = 1;
2336 }else
2337 ap->promisc = 0;
2338 ap->mcast_all = 0;
2339
2340#if 0
2341 cmd.evt = C_LNK_NEGOTIATION;
2342 cmd.code = 0;
2343 cmd.idx = 0;
2344 ace_issue_cmd(regs, &cmd);
2345#endif
2346
2347 netif_start_queue(dev);
2348
2349 /*
2350 * Setup the bottom half rx ring refill handler
2351 */
2352 tasklet_init(&ap->ace_tasklet, ace_tasklet, (unsigned long)dev);
2353 return 0;
2354}
2355
2356
2357static int ace_close(struct net_device *dev)
2358{
2359 struct ace_private *ap = netdev_priv(dev);
2360 struct ace_regs __iomem *regs = ap->regs;
2361 struct cmd cmd;
2362 unsigned long flags;
2363 short i;
2364
2365 /*
2366 * Without (or before) releasing irq and stopping hardware, this
2367 * is an absolute non-sense, by the way. It will be reset instantly
2368 * by the first irq.
2369 */
2370 netif_stop_queue(dev);
2371
Jeff Garzik6aa20a22006-09-13 13:24:59 -04002372
Linus Torvalds1da177e2005-04-16 15:20:36 -07002373 if (ap->promisc) {
2374 cmd.evt = C_SET_PROMISC_MODE;
2375 cmd.code = C_C_PROMISC_DISABLE;
2376 cmd.idx = 0;
2377 ace_issue_cmd(regs, &cmd);
2378 ap->promisc = 0;
2379 }
2380
2381 cmd.evt = C_HOST_STATE;
2382 cmd.code = C_C_STACK_DOWN;
2383 cmd.idx = 0;
2384 ace_issue_cmd(regs, &cmd);
2385
2386 tasklet_kill(&ap->ace_tasklet);
2387
2388 /*
2389 * Make sure one CPU is not processing packets while
2390 * buffers are being released by another.
2391 */
2392
2393 local_irq_save(flags);
2394 ace_mask_irq(dev);
2395
2396 for (i = 0; i < ACE_TX_RING_ENTRIES(ap); i++) {
2397 struct sk_buff *skb;
2398 dma_addr_t mapping;
2399 struct tx_ring_info *info;
2400
2401 info = ap->skb->tx_skbuff + i;
2402 skb = info->skb;
2403 mapping = pci_unmap_addr(info, mapping);
2404
2405 if (mapping) {
2406 if (ACE_IS_TIGON_I(ap)) {
Jeff Garzik6aa20a22006-09-13 13:24:59 -04002407 struct tx_desc __iomem *tx
Linus Torvalds1da177e2005-04-16 15:20:36 -07002408 = (struct tx_desc __iomem *) &ap->tx_ring[i];
2409 writel(0, &tx->addr.addrhi);
2410 writel(0, &tx->addr.addrlo);
2411 writel(0, &tx->flagsize);
2412 } else
2413 memset(ap->tx_ring + i, 0,
2414 sizeof(struct tx_desc));
2415 pci_unmap_page(ap->pdev, mapping,
2416 pci_unmap_len(info, maplen),
2417 PCI_DMA_TODEVICE);
2418 pci_unmap_addr_set(info, mapping, 0);
2419 }
2420 if (skb) {
2421 dev_kfree_skb(skb);
2422 info->skb = NULL;
2423 }
2424 }
2425
2426 if (ap->jumbo) {
2427 cmd.evt = C_RESET_JUMBO_RNG;
2428 cmd.code = 0;
2429 cmd.idx = 0;
2430 ace_issue_cmd(regs, &cmd);
2431 }
2432
2433 ace_unmask_irq(dev);
2434 local_irq_restore(flags);
2435
2436 return 0;
2437}
2438
2439
2440static inline dma_addr_t
2441ace_map_tx_skb(struct ace_private *ap, struct sk_buff *skb,
2442 struct sk_buff *tail, u32 idx)
2443{
2444 dma_addr_t mapping;
2445 struct tx_ring_info *info;
2446
2447 mapping = pci_map_page(ap->pdev, virt_to_page(skb->data),
2448 offset_in_page(skb->data),
2449 skb->len, PCI_DMA_TODEVICE);
2450
2451 info = ap->skb->tx_skbuff + idx;
2452 info->skb = tail;
2453 pci_unmap_addr_set(info, mapping, mapping);
2454 pci_unmap_len_set(info, maplen, skb->len);
2455 return mapping;
2456}
2457
2458
2459static inline void
2460ace_load_tx_bd(struct ace_private *ap, struct tx_desc *desc, u64 addr,
2461 u32 flagsize, u32 vlan_tag)
2462{
2463#if !USE_TX_COAL_NOW
2464 flagsize &= ~BD_FLG_COAL_NOW;
2465#endif
2466
2467 if (ACE_IS_TIGON_I(ap)) {
2468 struct tx_desc __iomem *io = (struct tx_desc __iomem *) desc;
2469 writel(addr >> 32, &io->addr.addrhi);
2470 writel(addr & 0xffffffff, &io->addr.addrlo);
2471 writel(flagsize, &io->flagsize);
2472#if ACENIC_DO_VLAN
2473 writel(vlan_tag, &io->vlanres);
2474#endif
2475 } else {
2476 desc->addr.addrhi = addr >> 32;
2477 desc->addr.addrlo = addr;
2478 desc->flagsize = flagsize;
2479#if ACENIC_DO_VLAN
2480 desc->vlanres = vlan_tag;
2481#endif
2482 }
2483}
2484
2485
2486static int ace_start_xmit(struct sk_buff *skb, struct net_device *dev)
2487{
2488 struct ace_private *ap = netdev_priv(dev);
2489 struct ace_regs __iomem *regs = ap->regs;
2490 struct tx_desc *desc;
2491 u32 idx, flagsize;
2492 unsigned long maxjiff = jiffies + 3*HZ;
2493
2494restart:
2495 idx = ap->tx_prd;
2496
2497 if (tx_ring_full(ap, ap->tx_ret_csm, idx))
2498 goto overflow;
2499
2500 if (!skb_shinfo(skb)->nr_frags) {
2501 dma_addr_t mapping;
2502 u32 vlan_tag = 0;
2503
2504 mapping = ace_map_tx_skb(ap, skb, skb, idx);
2505 flagsize = (skb->len << 16) | (BD_FLG_END);
Patrick McHardy84fa7932006-08-29 16:44:56 -07002506 if (skb->ip_summed == CHECKSUM_PARTIAL)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002507 flagsize |= BD_FLG_TCP_UDP_SUM;
2508#if ACENIC_DO_VLAN
2509 if (vlan_tx_tag_present(skb)) {
2510 flagsize |= BD_FLG_VLAN_TAG;
2511 vlan_tag = vlan_tx_tag_get(skb);
2512 }
2513#endif
2514 desc = ap->tx_ring + idx;
2515 idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap);
2516
2517 /* Look at ace_tx_int for explanations. */
2518 if (tx_ring_full(ap, ap->tx_ret_csm, idx))
2519 flagsize |= BD_FLG_COAL_NOW;
2520
2521 ace_load_tx_bd(ap, desc, mapping, flagsize, vlan_tag);
2522 } else {
2523 dma_addr_t mapping;
2524 u32 vlan_tag = 0;
2525 int i, len = 0;
2526
2527 mapping = ace_map_tx_skb(ap, skb, NULL, idx);
2528 flagsize = (skb_headlen(skb) << 16);
Patrick McHardy84fa7932006-08-29 16:44:56 -07002529 if (skb->ip_summed == CHECKSUM_PARTIAL)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002530 flagsize |= BD_FLG_TCP_UDP_SUM;
2531#if ACENIC_DO_VLAN
2532 if (vlan_tx_tag_present(skb)) {
2533 flagsize |= BD_FLG_VLAN_TAG;
2534 vlan_tag = vlan_tx_tag_get(skb);
2535 }
2536#endif
2537
2538 ace_load_tx_bd(ap, ap->tx_ring + idx, mapping, flagsize, vlan_tag);
2539
2540 idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap);
2541
2542 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2543 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2544 struct tx_ring_info *info;
2545
2546 len += frag->size;
2547 info = ap->skb->tx_skbuff + idx;
2548 desc = ap->tx_ring + idx;
2549
2550 mapping = pci_map_page(ap->pdev, frag->page,
2551 frag->page_offset, frag->size,
2552 PCI_DMA_TODEVICE);
2553
2554 flagsize = (frag->size << 16);
Patrick McHardy84fa7932006-08-29 16:44:56 -07002555 if (skb->ip_summed == CHECKSUM_PARTIAL)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002556 flagsize |= BD_FLG_TCP_UDP_SUM;
2557 idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap);
2558
2559 if (i == skb_shinfo(skb)->nr_frags - 1) {
2560 flagsize |= BD_FLG_END;
2561 if (tx_ring_full(ap, ap->tx_ret_csm, idx))
2562 flagsize |= BD_FLG_COAL_NOW;
2563
2564 /*
2565 * Only the last fragment frees
2566 * the skb!
2567 */
2568 info->skb = skb;
2569 } else {
2570 info->skb = NULL;
2571 }
2572 pci_unmap_addr_set(info, mapping, mapping);
2573 pci_unmap_len_set(info, maplen, frag->size);
2574 ace_load_tx_bd(ap, desc, mapping, flagsize, vlan_tag);
2575 }
2576 }
2577
2578 wmb();
2579 ap->tx_prd = idx;
2580 ace_set_txprd(regs, ap, idx);
2581
2582 if (flagsize & BD_FLG_COAL_NOW) {
2583 netif_stop_queue(dev);
2584
2585 /*
2586 * A TX-descriptor producer (an IRQ) might have gotten
2587 * inbetween, making the ring free again. Since xmit is
2588 * serialized, this is the only situation we have to
2589 * re-test.
2590 */
2591 if (!tx_ring_full(ap, ap->tx_ret_csm, idx))
2592 netif_wake_queue(dev);
2593 }
2594
2595 dev->trans_start = jiffies;
2596 return NETDEV_TX_OK;
2597
2598overflow:
2599 /*
2600 * This race condition is unavoidable with lock-free drivers.
2601 * We wake up the queue _before_ tx_prd is advanced, so that we can
2602 * enter hard_start_xmit too early, while tx ring still looks closed.
2603 * This happens ~1-4 times per 100000 packets, so that we can allow
2604 * to loop syncing to other CPU. Probably, we need an additional
2605 * wmb() in ace_tx_intr as well.
2606 *
2607 * Note that this race is relieved by reserving one more entry
2608 * in tx ring than it is necessary (see original non-SG driver).
2609 * However, with SG we need to reserve 2*MAX_SKB_FRAGS+1, which
2610 * is already overkill.
2611 *
2612 * Alternative is to return with 1 not throttling queue. In this
2613 * case loop becomes longer, no more useful effects.
2614 */
2615 if (time_before(jiffies, maxjiff)) {
2616 barrier();
2617 cpu_relax();
2618 goto restart;
2619 }
Jeff Garzik6aa20a22006-09-13 13:24:59 -04002620
Linus Torvalds1da177e2005-04-16 15:20:36 -07002621 /* The ring is stuck full. */
2622 printk(KERN_WARNING "%s: Transmit ring stuck full\n", dev->name);
2623 return NETDEV_TX_BUSY;
2624}
2625
2626
2627static int ace_change_mtu(struct net_device *dev, int new_mtu)
2628{
2629 struct ace_private *ap = netdev_priv(dev);
2630 struct ace_regs __iomem *regs = ap->regs;
2631
2632 if (new_mtu > ACE_JUMBO_MTU)
2633 return -EINVAL;
2634
2635 writel(new_mtu + ETH_HLEN + 4, &regs->IfMtu);
2636 dev->mtu = new_mtu;
2637
2638 if (new_mtu > ACE_STD_MTU) {
2639 if (!(ap->jumbo)) {
2640 printk(KERN_INFO "%s: Enabling Jumbo frame "
2641 "support\n", dev->name);
2642 ap->jumbo = 1;
2643 if (!test_and_set_bit(0, &ap->jumbo_refill_busy))
2644 ace_load_jumbo_rx_ring(ap, RX_JUMBO_SIZE);
2645 ace_set_rxtx_parms(dev, 1);
2646 }
2647 } else {
2648 while (test_and_set_bit(0, &ap->jumbo_refill_busy));
2649 ace_sync_irq(dev->irq);
2650 ace_set_rxtx_parms(dev, 0);
2651 if (ap->jumbo) {
2652 struct cmd cmd;
2653
2654 cmd.evt = C_RESET_JUMBO_RNG;
2655 cmd.code = 0;
2656 cmd.idx = 0;
2657 ace_issue_cmd(regs, &cmd);
2658 }
2659 }
2660
2661 return 0;
2662}
2663
2664static int ace_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
2665{
2666 struct ace_private *ap = netdev_priv(dev);
2667 struct ace_regs __iomem *regs = ap->regs;
2668 u32 link;
2669
2670 memset(ecmd, 0, sizeof(struct ethtool_cmd));
2671 ecmd->supported =
2672 (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
2673 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2674 SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full |
2675 SUPPORTED_Autoneg | SUPPORTED_FIBRE);
2676
2677 ecmd->port = PORT_FIBRE;
2678 ecmd->transceiver = XCVR_INTERNAL;
2679
2680 link = readl(&regs->GigLnkState);
2681 if (link & LNK_1000MB)
2682 ecmd->speed = SPEED_1000;
2683 else {
2684 link = readl(&regs->FastLnkState);
2685 if (link & LNK_100MB)
2686 ecmd->speed = SPEED_100;
2687 else if (link & LNK_10MB)
2688 ecmd->speed = SPEED_10;
2689 else
2690 ecmd->speed = 0;
2691 }
2692 if (link & LNK_FULL_DUPLEX)
2693 ecmd->duplex = DUPLEX_FULL;
2694 else
2695 ecmd->duplex = DUPLEX_HALF;
2696
2697 if (link & LNK_NEGOTIATE)
2698 ecmd->autoneg = AUTONEG_ENABLE;
2699 else
2700 ecmd->autoneg = AUTONEG_DISABLE;
2701
2702#if 0
2703 /*
2704 * Current struct ethtool_cmd is insufficient
2705 */
2706 ecmd->trace = readl(&regs->TuneTrace);
2707
2708 ecmd->txcoal = readl(&regs->TuneTxCoalTicks);
2709 ecmd->rxcoal = readl(&regs->TuneRxCoalTicks);
2710#endif
2711 ecmd->maxtxpkt = readl(&regs->TuneMaxTxDesc);
2712 ecmd->maxrxpkt = readl(&regs->TuneMaxRxDesc);
2713
2714 return 0;
2715}
2716
2717static int ace_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
2718{
2719 struct ace_private *ap = netdev_priv(dev);
2720 struct ace_regs __iomem *regs = ap->regs;
2721 u32 link, speed;
2722
2723 link = readl(&regs->GigLnkState);
2724 if (link & LNK_1000MB)
2725 speed = SPEED_1000;
2726 else {
2727 link = readl(&regs->FastLnkState);
2728 if (link & LNK_100MB)
2729 speed = SPEED_100;
2730 else if (link & LNK_10MB)
2731 speed = SPEED_10;
2732 else
2733 speed = SPEED_100;
2734 }
2735
2736 link = LNK_ENABLE | LNK_1000MB | LNK_100MB | LNK_10MB |
2737 LNK_RX_FLOW_CTL_Y | LNK_NEG_FCTL;
2738 if (!ACE_IS_TIGON_I(ap))
2739 link |= LNK_TX_FLOW_CTL_Y;
2740 if (ecmd->autoneg == AUTONEG_ENABLE)
2741 link |= LNK_NEGOTIATE;
2742 if (ecmd->speed != speed) {
2743 link &= ~(LNK_1000MB | LNK_100MB | LNK_10MB);
2744 switch (speed) {
2745 case SPEED_1000:
2746 link |= LNK_1000MB;
2747 break;
2748 case SPEED_100:
2749 link |= LNK_100MB;
2750 break;
2751 case SPEED_10:
2752 link |= LNK_10MB;
2753 break;
2754 }
2755 }
2756
2757 if (ecmd->duplex == DUPLEX_FULL)
2758 link |= LNK_FULL_DUPLEX;
2759
2760 if (link != ap->link) {
2761 struct cmd cmd;
2762 printk(KERN_INFO "%s: Renegotiating link state\n",
2763 dev->name);
2764
2765 ap->link = link;
2766 writel(link, &regs->TuneLink);
2767 if (!ACE_IS_TIGON_I(ap))
2768 writel(link, &regs->TuneFastLink);
2769 wmb();
2770
2771 cmd.evt = C_LNK_NEGOTIATION;
2772 cmd.code = 0;
2773 cmd.idx = 0;
2774 ace_issue_cmd(regs, &cmd);
2775 }
2776 return 0;
2777}
2778
Jeff Garzik6aa20a22006-09-13 13:24:59 -04002779static void ace_get_drvinfo(struct net_device *dev,
Linus Torvalds1da177e2005-04-16 15:20:36 -07002780 struct ethtool_drvinfo *info)
2781{
2782 struct ace_private *ap = netdev_priv(dev);
2783
2784 strlcpy(info->driver, "acenic", sizeof(info->driver));
Jeff Garzik6aa20a22006-09-13 13:24:59 -04002785 snprintf(info->version, sizeof(info->version), "%i.%i.%i",
Linus Torvalds1da177e2005-04-16 15:20:36 -07002786 tigonFwReleaseMajor, tigonFwReleaseMinor,
2787 tigonFwReleaseFix);
2788
2789 if (ap->pdev)
Jeff Garzik6aa20a22006-09-13 13:24:59 -04002790 strlcpy(info->bus_info, pci_name(ap->pdev),
Linus Torvalds1da177e2005-04-16 15:20:36 -07002791 sizeof(info->bus_info));
2792
2793}
2794
2795/*
2796 * Set the hardware MAC address.
2797 */
2798static int ace_set_mac_addr(struct net_device *dev, void *p)
2799{
2800 struct ace_private *ap = netdev_priv(dev);
2801 struct ace_regs __iomem *regs = ap->regs;
2802 struct sockaddr *addr=p;
2803 u8 *da;
2804 struct cmd cmd;
2805
2806 if(netif_running(dev))
2807 return -EBUSY;
2808
2809 memcpy(dev->dev_addr, addr->sa_data,dev->addr_len);
2810
2811 da = (u8 *)dev->dev_addr;
2812
2813 writel(da[0] << 8 | da[1], &regs->MacAddrHi);
2814 writel((da[2] << 24) | (da[3] << 16) | (da[4] << 8) | da[5],
2815 &regs->MacAddrLo);
2816
2817 cmd.evt = C_SET_MAC_ADDR;
2818 cmd.code = 0;
2819 cmd.idx = 0;
2820 ace_issue_cmd(regs, &cmd);
2821
2822 return 0;
2823}
2824
2825
2826static void ace_set_multicast_list(struct net_device *dev)
2827{
2828 struct ace_private *ap = netdev_priv(dev);
2829 struct ace_regs __iomem *regs = ap->regs;
2830 struct cmd cmd;
2831
2832 if ((dev->flags & IFF_ALLMULTI) && !(ap->mcast_all)) {
2833 cmd.evt = C_SET_MULTICAST_MODE;
2834 cmd.code = C_C_MCAST_ENABLE;
2835 cmd.idx = 0;
2836 ace_issue_cmd(regs, &cmd);
2837 ap->mcast_all = 1;
2838 } else if (ap->mcast_all) {
2839 cmd.evt = C_SET_MULTICAST_MODE;
2840 cmd.code = C_C_MCAST_DISABLE;
2841 cmd.idx = 0;
2842 ace_issue_cmd(regs, &cmd);
2843 ap->mcast_all = 0;
2844 }
2845
2846 if ((dev->flags & IFF_PROMISC) && !(ap->promisc)) {
2847 cmd.evt = C_SET_PROMISC_MODE;
2848 cmd.code = C_C_PROMISC_ENABLE;
2849 cmd.idx = 0;
2850 ace_issue_cmd(regs, &cmd);
2851 ap->promisc = 1;
2852 }else if (!(dev->flags & IFF_PROMISC) && (ap->promisc)) {
2853 cmd.evt = C_SET_PROMISC_MODE;
2854 cmd.code = C_C_PROMISC_DISABLE;
2855 cmd.idx = 0;
2856 ace_issue_cmd(regs, &cmd);
2857 ap->promisc = 0;
2858 }
2859
2860 /*
2861 * For the time being multicast relies on the upper layers
2862 * filtering it properly. The Firmware does not allow one to
2863 * set the entire multicast list at a time and keeping track of
2864 * it here is going to be messy.
2865 */
2866 if ((dev->mc_count) && !(ap->mcast_all)) {
2867 cmd.evt = C_SET_MULTICAST_MODE;
2868 cmd.code = C_C_MCAST_ENABLE;
2869 cmd.idx = 0;
2870 ace_issue_cmd(regs, &cmd);
2871 }else if (!ap->mcast_all) {
2872 cmd.evt = C_SET_MULTICAST_MODE;
2873 cmd.code = C_C_MCAST_DISABLE;
2874 cmd.idx = 0;
2875 ace_issue_cmd(regs, &cmd);
2876 }
2877}
2878
2879
2880static struct net_device_stats *ace_get_stats(struct net_device *dev)
2881{
2882 struct ace_private *ap = netdev_priv(dev);
2883 struct ace_mac_stats __iomem *mac_stats =
2884 (struct ace_mac_stats __iomem *)ap->regs->Stats;
2885
2886 ap->stats.rx_missed_errors = readl(&mac_stats->drop_space);
2887 ap->stats.multicast = readl(&mac_stats->kept_mc);
2888 ap->stats.collisions = readl(&mac_stats->coll);
2889
2890 return &ap->stats;
2891}
2892
2893
2894static void __devinit ace_copy(struct ace_regs __iomem *regs, void *src,
2895 u32 dest, int size)
2896{
2897 void __iomem *tdest;
2898 u32 *wsrc;
2899 short tsize, i;
2900
2901 if (size <= 0)
2902 return;
2903
2904 while (size > 0) {
2905 tsize = min_t(u32, ((~dest & (ACE_WINDOW_SIZE - 1)) + 1),
2906 min_t(u32, size, ACE_WINDOW_SIZE));
Jeff Garzik6aa20a22006-09-13 13:24:59 -04002907 tdest = (void __iomem *) &regs->Window +
Linus Torvalds1da177e2005-04-16 15:20:36 -07002908 (dest & (ACE_WINDOW_SIZE - 1));
2909 writel(dest & ~(ACE_WINDOW_SIZE - 1), &regs->WinBase);
2910 /*
2911 * This requires byte swapping on big endian, however
2912 * writel does that for us
2913 */
2914 wsrc = src;
2915 for (i = 0; i < (tsize / 4); i++) {
2916 writel(wsrc[i], tdest + i*4);
2917 }
2918 dest += tsize;
2919 src += tsize;
2920 size -= tsize;
2921 }
2922
2923 return;
2924}
2925
2926
2927static void __devinit ace_clear(struct ace_regs __iomem *regs, u32 dest, int size)
2928{
2929 void __iomem *tdest;
2930 short tsize = 0, i;
2931
2932 if (size <= 0)
2933 return;
2934
2935 while (size > 0) {
2936 tsize = min_t(u32, ((~dest & (ACE_WINDOW_SIZE - 1)) + 1),
2937 min_t(u32, size, ACE_WINDOW_SIZE));
Jeff Garzik6aa20a22006-09-13 13:24:59 -04002938 tdest = (void __iomem *) &regs->Window +
Linus Torvalds1da177e2005-04-16 15:20:36 -07002939 (dest & (ACE_WINDOW_SIZE - 1));
2940 writel(dest & ~(ACE_WINDOW_SIZE - 1), &regs->WinBase);
2941
2942 for (i = 0; i < (tsize / 4); i++) {
2943 writel(0, tdest + i*4);
2944 }
2945
2946 dest += tsize;
2947 size -= tsize;
2948 }
2949
2950 return;
2951}
2952
2953
2954/*
2955 * Download the firmware into the SRAM on the NIC
2956 *
2957 * This operation requires the NIC to be halted and is performed with
2958 * interrupts disabled and with the spinlock hold.
2959 */
2960int __devinit ace_load_firmware(struct net_device *dev)
2961{
2962 struct ace_private *ap = netdev_priv(dev);
2963 struct ace_regs __iomem *regs = ap->regs;
2964
2965 if (!(readl(&regs->CpuCtrl) & CPU_HALTED)) {
2966 printk(KERN_ERR "%s: trying to download firmware while the "
2967 "CPU is running!\n", ap->name);
2968 return -EFAULT;
2969 }
2970
2971 /*
2972 * Do not try to clear more than 512KB or we end up seeing
2973 * funny things on NICs with only 512KB SRAM
2974 */
2975 ace_clear(regs, 0x2000, 0x80000-0x2000);
2976 if (ACE_IS_TIGON_I(ap)) {
2977 ace_copy(regs, tigonFwText, tigonFwTextAddr, tigonFwTextLen);
2978 ace_copy(regs, tigonFwData, tigonFwDataAddr, tigonFwDataLen);
2979 ace_copy(regs, tigonFwRodata, tigonFwRodataAddr,
2980 tigonFwRodataLen);
2981 ace_clear(regs, tigonFwBssAddr, tigonFwBssLen);
2982 ace_clear(regs, tigonFwSbssAddr, tigonFwSbssLen);
2983 }else if (ap->version == 2) {
2984 ace_clear(regs, tigon2FwBssAddr, tigon2FwBssLen);
2985 ace_clear(regs, tigon2FwSbssAddr, tigon2FwSbssLen);
2986 ace_copy(regs, tigon2FwText, tigon2FwTextAddr,tigon2FwTextLen);
2987 ace_copy(regs, tigon2FwRodata, tigon2FwRodataAddr,
2988 tigon2FwRodataLen);
2989 ace_copy(regs, tigon2FwData, tigon2FwDataAddr,tigon2FwDataLen);
2990 }
2991
2992 return 0;
2993}
2994
2995
2996/*
2997 * The eeprom on the AceNIC is an Atmel i2c EEPROM.
2998 *
2999 * Accessing the EEPROM is `interesting' to say the least - don't read
3000 * this code right after dinner.
3001 *
3002 * This is all about black magic and bit-banging the device .... I
3003 * wonder in what hospital they have put the guy who designed the i2c
3004 * specs.
3005 *
3006 * Oh yes, this is only the beginning!
3007 *
3008 * Thanks to Stevarino Webinski for helping tracking down the bugs in the
3009 * code i2c readout code by beta testing all my hacks.
3010 */
3011static void __devinit eeprom_start(struct ace_regs __iomem *regs)
3012{
3013 u32 local;
3014
3015 readl(&regs->LocalCtrl);
3016 udelay(ACE_SHORT_DELAY);
3017 local = readl(&regs->LocalCtrl);
3018 local |= EEPROM_DATA_OUT | EEPROM_WRITE_ENABLE;
3019 writel(local, &regs->LocalCtrl);
3020 readl(&regs->LocalCtrl);
3021 mb();
3022 udelay(ACE_SHORT_DELAY);
3023 local |= EEPROM_CLK_OUT;
3024 writel(local, &regs->LocalCtrl);
3025 readl(&regs->LocalCtrl);
3026 mb();
3027 udelay(ACE_SHORT_DELAY);
3028 local &= ~EEPROM_DATA_OUT;
3029 writel(local, &regs->LocalCtrl);
3030 readl(&regs->LocalCtrl);
3031 mb();
3032 udelay(ACE_SHORT_DELAY);
3033 local &= ~EEPROM_CLK_OUT;
3034 writel(local, &regs->LocalCtrl);
3035 readl(&regs->LocalCtrl);
3036 mb();
3037}
3038
3039
3040static void __devinit eeprom_prep(struct ace_regs __iomem *regs, u8 magic)
3041{
3042 short i;
3043 u32 local;
3044
3045 udelay(ACE_SHORT_DELAY);
3046 local = readl(&regs->LocalCtrl);
3047 local &= ~EEPROM_DATA_OUT;
3048 local |= EEPROM_WRITE_ENABLE;
3049 writel(local, &regs->LocalCtrl);
3050 readl(&regs->LocalCtrl);
3051 mb();
3052
3053 for (i = 0; i < 8; i++, magic <<= 1) {
3054 udelay(ACE_SHORT_DELAY);
Jeff Garzik6aa20a22006-09-13 13:24:59 -04003055 if (magic & 0x80)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003056 local |= EEPROM_DATA_OUT;
3057 else
3058 local &= ~EEPROM_DATA_OUT;
3059 writel(local, &regs->LocalCtrl);
3060 readl(&regs->LocalCtrl);
3061 mb();
3062
3063 udelay(ACE_SHORT_DELAY);
3064 local |= EEPROM_CLK_OUT;
3065 writel(local, &regs->LocalCtrl);
3066 readl(&regs->LocalCtrl);
3067 mb();
3068 udelay(ACE_SHORT_DELAY);
3069 local &= ~(EEPROM_CLK_OUT | EEPROM_DATA_OUT);
3070 writel(local, &regs->LocalCtrl);
3071 readl(&regs->LocalCtrl);
3072 mb();
3073 }
3074}
3075
3076
3077static int __devinit eeprom_check_ack(struct ace_regs __iomem *regs)
3078{
3079 int state;
3080 u32 local;
3081
3082 local = readl(&regs->LocalCtrl);
3083 local &= ~EEPROM_WRITE_ENABLE;
3084 writel(local, &regs->LocalCtrl);
3085 readl(&regs->LocalCtrl);
3086 mb();
3087 udelay(ACE_LONG_DELAY);
3088 local |= EEPROM_CLK_OUT;
3089 writel(local, &regs->LocalCtrl);
3090 readl(&regs->LocalCtrl);
3091 mb();
3092 udelay(ACE_SHORT_DELAY);
3093 /* sample data in middle of high clk */
3094 state = (readl(&regs->LocalCtrl) & EEPROM_DATA_IN) != 0;
3095 udelay(ACE_SHORT_DELAY);
3096 mb();
3097 writel(readl(&regs->LocalCtrl) & ~EEPROM_CLK_OUT, &regs->LocalCtrl);
3098 readl(&regs->LocalCtrl);
3099 mb();
3100
3101 return state;
3102}
3103
3104
3105static void __devinit eeprom_stop(struct ace_regs __iomem *regs)
3106{
3107 u32 local;
3108
3109 udelay(ACE_SHORT_DELAY);
3110 local = readl(&regs->LocalCtrl);
3111 local |= EEPROM_WRITE_ENABLE;
3112 writel(local, &regs->LocalCtrl);
3113 readl(&regs->LocalCtrl);
3114 mb();
3115 udelay(ACE_SHORT_DELAY);
3116 local &= ~EEPROM_DATA_OUT;
3117 writel(local, &regs->LocalCtrl);
3118 readl(&regs->LocalCtrl);
3119 mb();
3120 udelay(ACE_SHORT_DELAY);
3121 local |= EEPROM_CLK_OUT;
3122 writel(local, &regs->LocalCtrl);
3123 readl(&regs->LocalCtrl);
3124 mb();
3125 udelay(ACE_SHORT_DELAY);
3126 local |= EEPROM_DATA_OUT;
3127 writel(local, &regs->LocalCtrl);
3128 readl(&regs->LocalCtrl);
3129 mb();
3130 udelay(ACE_LONG_DELAY);
3131 local &= ~EEPROM_CLK_OUT;
3132 writel(local, &regs->LocalCtrl);
3133 mb();
3134}
3135
3136
3137/*
3138 * Read a whole byte from the EEPROM.
3139 */
3140static int __devinit read_eeprom_byte(struct net_device *dev,
3141 unsigned long offset)
3142{
3143 struct ace_private *ap = netdev_priv(dev);
3144 struct ace_regs __iomem *regs = ap->regs;
3145 unsigned long flags;
3146 u32 local;
3147 int result = 0;
3148 short i;
3149
3150 if (!dev) {
3151 printk(KERN_ERR "No device!\n");
3152 result = -ENODEV;
3153 goto out;
3154 }
3155
3156 /*
3157 * Don't take interrupts on this CPU will bit banging
3158 * the %#%#@$ I2C device
3159 */
3160 local_irq_save(flags);
3161
3162 eeprom_start(regs);
3163
3164 eeprom_prep(regs, EEPROM_WRITE_SELECT);
3165 if (eeprom_check_ack(regs)) {
3166 local_irq_restore(flags);
3167 printk(KERN_ERR "%s: Unable to sync eeprom\n", ap->name);
3168 result = -EIO;
3169 goto eeprom_read_error;
3170 }
3171
3172 eeprom_prep(regs, (offset >> 8) & 0xff);
3173 if (eeprom_check_ack(regs)) {
3174 local_irq_restore(flags);
3175 printk(KERN_ERR "%s: Unable to set address byte 0\n",
3176 ap->name);
3177 result = -EIO;
3178 goto eeprom_read_error;
3179 }
3180
3181 eeprom_prep(regs, offset & 0xff);
3182 if (eeprom_check_ack(regs)) {
3183 local_irq_restore(flags);
3184 printk(KERN_ERR "%s: Unable to set address byte 1\n",
3185 ap->name);
3186 result = -EIO;
3187 goto eeprom_read_error;
3188 }
3189
3190 eeprom_start(regs);
3191 eeprom_prep(regs, EEPROM_READ_SELECT);
3192 if (eeprom_check_ack(regs)) {
3193 local_irq_restore(flags);
3194 printk(KERN_ERR "%s: Unable to set READ_SELECT\n",
3195 ap->name);
3196 result = -EIO;
3197 goto eeprom_read_error;
3198 }
3199
3200 for (i = 0; i < 8; i++) {
3201 local = readl(&regs->LocalCtrl);
3202 local &= ~EEPROM_WRITE_ENABLE;
3203 writel(local, &regs->LocalCtrl);
3204 readl(&regs->LocalCtrl);
3205 udelay(ACE_LONG_DELAY);
3206 mb();
3207 local |= EEPROM_CLK_OUT;
3208 writel(local, &regs->LocalCtrl);
3209 readl(&regs->LocalCtrl);
3210 mb();
3211 udelay(ACE_SHORT_DELAY);
3212 /* sample data mid high clk */
3213 result = (result << 1) |
3214 ((readl(&regs->LocalCtrl) & EEPROM_DATA_IN) != 0);
3215 udelay(ACE_SHORT_DELAY);
3216 mb();
3217 local = readl(&regs->LocalCtrl);
3218 local &= ~EEPROM_CLK_OUT;
3219 writel(local, &regs->LocalCtrl);
3220 readl(&regs->LocalCtrl);
3221 udelay(ACE_SHORT_DELAY);
3222 mb();
3223 if (i == 7) {
3224 local |= EEPROM_WRITE_ENABLE;
3225 writel(local, &regs->LocalCtrl);
3226 readl(&regs->LocalCtrl);
3227 mb();
3228 udelay(ACE_SHORT_DELAY);
3229 }
3230 }
3231
3232 local |= EEPROM_DATA_OUT;
3233 writel(local, &regs->LocalCtrl);
3234 readl(&regs->LocalCtrl);
3235 mb();
3236 udelay(ACE_SHORT_DELAY);
3237 writel(readl(&regs->LocalCtrl) | EEPROM_CLK_OUT, &regs->LocalCtrl);
3238 readl(&regs->LocalCtrl);
3239 udelay(ACE_LONG_DELAY);
3240 writel(readl(&regs->LocalCtrl) & ~EEPROM_CLK_OUT, &regs->LocalCtrl);
3241 readl(&regs->LocalCtrl);
3242 mb();
3243 udelay(ACE_SHORT_DELAY);
3244 eeprom_stop(regs);
3245
3246 local_irq_restore(flags);
3247 out:
3248 return result;
3249
3250 eeprom_read_error:
3251 printk(KERN_ERR "%s: Unable to read eeprom byte 0x%02lx\n",
3252 ap->name, offset);
3253 goto out;
3254}
3255
3256
3257/*
3258 * Local variables:
3259 * compile-command: "gcc -D__SMP__ -D__KERNEL__ -DMODULE -I../../include -Wall -Wstrict-prototypes -O2 -fomit-frame-pointer -pipe -fno-strength-reduce -DMODVERSIONS -include ../../include/linux/modversions.h -c -o acenic.o acenic.c"
3260 * End:
3261 */