blob: 0368d91b6805a98072ae22bfa65b08088cff3eaf [file] [log] [blame]
James Hogan27bce452014-11-13 15:32:21 -03001/*
2 * I2C adapter for the IMG Serial Control Bus (SCB) IP block.
3 *
4 * Copyright (C) 2009, 2010, 2012, 2014 Imagination Technologies Ltd.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 * There are three ways that this I2C controller can be driven:
11 *
12 * - Raw control of the SDA and SCK signals.
13 *
14 * This corresponds to MODE_RAW, which takes control of the signals
15 * directly for a certain number of clock cycles (the INT_TIMING
16 * interrupt can be used for timing).
17 *
18 * - Atomic commands. A low level I2C symbol (such as generate
19 * start/stop/ack/nack bit, generate byte, receive byte, and receive
20 * ACK) is given to the hardware, with detection of completion by bits
21 * in the LINESTAT register.
22 *
23 * This mode of operation is used by MODE_ATOMIC, which uses an I2C
24 * state machine in the interrupt handler to compose/react to I2C
25 * transactions using atomic mode commands, and also by MODE_SEQUENCE,
26 * which emits a simple fixed sequence of atomic mode commands.
27 *
28 * Due to software control, the use of atomic commands usually results
29 * in suboptimal use of the bus, with gaps between the I2C symbols while
30 * the driver decides what to do next.
31 *
32 * - Automatic mode. A bus address, and whether to read/write is
33 * specified, and the hardware takes care of the I2C state machine,
34 * using a FIFO to send/receive bytes of data to an I2C slave. The
35 * driver just has to keep the FIFO drained or filled in response to the
36 * appropriate FIFO interrupts.
37 *
38 * This corresponds to MODE_AUTOMATIC, which manages the FIFOs and deals
39 * with control of repeated start bits between I2C messages.
40 *
41 * Use of automatic mode and the FIFO can make much more efficient use
42 * of the bus compared to individual atomic commands, with potentially
43 * no wasted time between I2C symbols or I2C messages.
44 *
45 * In most cases MODE_AUTOMATIC is used, however if any of the messages in
46 * a transaction are zero byte writes (e.g. used by i2cdetect for probing
47 * the bus), MODE_ATOMIC must be used since automatic mode is normally
48 * started by the writing of data into the FIFO.
49 *
50 * The other modes are used in specific circumstances where MODE_ATOMIC and
51 * MODE_AUTOMATIC aren't appropriate. MODE_RAW is used to implement a bus
52 * recovery routine. MODE_SEQUENCE is used to reset the bus and make sure
53 * it is in a sane state.
54 *
55 * Notice that the driver implements a timer-based timeout mechanism.
56 * The reason for this mechanism is to reduce the number of interrupts
57 * received in automatic mode.
58 *
59 * The driver would get a slave event and transaction done interrupts for
60 * each atomic mode command that gets completed. However, these events are
61 * not needed in automatic mode, becase those atomic mode commands are
62 * managed automatically by the hardware.
63 *
64 * In practice, normal I2C transactions will be complete well before you
65 * get the timer interrupt, as the timer is re-scheduled during FIFO
66 * maintenance and disabled after the transaction is complete.
67 *
68 * In this way normal automatic mode operation isn't impacted by
69 * unnecessary interrupts, but the exceptional abort condition can still be
70 * detected (with a slight delay).
71 */
72
73#include <linux/bitops.h>
74#include <linux/clk.h>
75#include <linux/completion.h>
76#include <linux/err.h>
77#include <linux/i2c.h>
78#include <linux/init.h>
79#include <linux/interrupt.h>
80#include <linux/io.h>
81#include <linux/kernel.h>
82#include <linux/module.h>
83#include <linux/of_platform.h>
84#include <linux/platform_device.h>
85#include <linux/slab.h>
86#include <linux/timer.h>
87
88/* Register offsets */
89
90#define SCB_STATUS_REG 0x00
91#define SCB_OVERRIDE_REG 0x04
92#define SCB_READ_ADDR_REG 0x08
93#define SCB_READ_COUNT_REG 0x0c
94#define SCB_WRITE_ADDR_REG 0x10
95#define SCB_READ_DATA_REG 0x14
96#define SCB_WRITE_DATA_REG 0x18
97#define SCB_FIFO_STATUS_REG 0x1c
98#define SCB_CONTROL_SOFT_RESET 0x1f
99#define SCB_CLK_SET_REG 0x3c
100#define SCB_INT_STATUS_REG 0x40
101#define SCB_INT_CLEAR_REG 0x44
102#define SCB_INT_MASK_REG 0x48
103#define SCB_CONTROL_REG 0x4c
104#define SCB_TIME_TPL_REG 0x50
105#define SCB_TIME_TPH_REG 0x54
106#define SCB_TIME_TP2S_REG 0x58
107#define SCB_TIME_TBI_REG 0x60
108#define SCB_TIME_TSL_REG 0x64
109#define SCB_TIME_TDL_REG 0x68
110#define SCB_TIME_TSDL_REG 0x6c
111#define SCB_TIME_TSDH_REG 0x70
112#define SCB_READ_XADDR_REG 0x74
113#define SCB_WRITE_XADDR_REG 0x78
114#define SCB_WRITE_COUNT_REG 0x7c
115#define SCB_CORE_REV_REG 0x80
116#define SCB_TIME_TCKH_REG 0x84
117#define SCB_TIME_TCKL_REG 0x88
118#define SCB_FIFO_FLUSH_REG 0x8c
119#define SCB_READ_FIFO_REG 0x94
120#define SCB_CLEAR_REG 0x98
121
122/* SCB_CONTROL_REG bits */
123
124#define SCB_CONTROL_CLK_ENABLE 0x1e0
125#define SCB_CONTROL_TRANSACTION_HALT 0x200
126
127#define FIFO_READ_FULL BIT(0)
128#define FIFO_READ_EMPTY BIT(1)
129#define FIFO_WRITE_FULL BIT(2)
130#define FIFO_WRITE_EMPTY BIT(3)
131
132/* SCB_CLK_SET_REG bits */
133#define SCB_FILT_DISABLE BIT(31)
134#define SCB_FILT_BYPASS BIT(30)
135#define SCB_FILT_INC_MASK 0x7f
136#define SCB_FILT_INC_SHIFT 16
137#define SCB_INC_MASK 0x7f
138#define SCB_INC_SHIFT 8
139
140/* SCB_INT_*_REG bits */
141
142#define INT_BUS_INACTIVE BIT(0)
143#define INT_UNEXPECTED_START BIT(1)
144#define INT_SCLK_LOW_TIMEOUT BIT(2)
145#define INT_SDAT_LOW_TIMEOUT BIT(3)
146#define INT_WRITE_ACK_ERR BIT(4)
147#define INT_ADDR_ACK_ERR BIT(5)
148#define INT_FIFO_FULL BIT(9)
149#define INT_FIFO_FILLING BIT(10)
150#define INT_FIFO_EMPTY BIT(11)
151#define INT_FIFO_EMPTYING BIT(12)
152#define INT_TRANSACTION_DONE BIT(15)
153#define INT_SLAVE_EVENT BIT(16)
154#define INT_TIMING BIT(18)
155
156#define INT_FIFO_FULL_FILLING (INT_FIFO_FULL | INT_FIFO_FILLING)
157#define INT_FIFO_EMPTY_EMPTYING (INT_FIFO_EMPTY | INT_FIFO_EMPTYING)
158
159/* Level interrupts need clearing after handling instead of before */
160#define INT_LEVEL 0x01e00
161
162/* Don't allow any interrupts while the clock may be off */
163#define INT_ENABLE_MASK_INACTIVE 0x00000
164
165/* Interrupt masks for the different driver modes */
166
167#define INT_ENABLE_MASK_RAW INT_TIMING
168
169#define INT_ENABLE_MASK_ATOMIC (INT_TRANSACTION_DONE | \
170 INT_SLAVE_EVENT | \
171 INT_ADDR_ACK_ERR | \
172 INT_WRITE_ACK_ERR)
173
174#define INT_ENABLE_MASK_AUTOMATIC (INT_SCLK_LOW_TIMEOUT | \
175 INT_ADDR_ACK_ERR | \
176 INT_WRITE_ACK_ERR | \
177 INT_FIFO_FULL | \
178 INT_FIFO_FILLING | \
179 INT_FIFO_EMPTY | \
180 INT_FIFO_EMPTYING)
181
182#define INT_ENABLE_MASK_WAITSTOP (INT_SLAVE_EVENT | \
183 INT_ADDR_ACK_ERR | \
184 INT_WRITE_ACK_ERR)
185
186/* SCB_STATUS_REG fields */
187
188#define LINESTAT_SCLK_LINE_STATUS BIT(0)
189#define LINESTAT_SCLK_EN BIT(1)
190#define LINESTAT_SDAT_LINE_STATUS BIT(2)
191#define LINESTAT_SDAT_EN BIT(3)
192#define LINESTAT_DET_START_STATUS BIT(4)
193#define LINESTAT_DET_STOP_STATUS BIT(5)
194#define LINESTAT_DET_ACK_STATUS BIT(6)
195#define LINESTAT_DET_NACK_STATUS BIT(7)
196#define LINESTAT_BUS_IDLE BIT(8)
197#define LINESTAT_T_DONE_STATUS BIT(9)
198#define LINESTAT_SCLK_OUT_STATUS BIT(10)
199#define LINESTAT_SDAT_OUT_STATUS BIT(11)
200#define LINESTAT_GEN_LINE_MASK_STATUS BIT(12)
201#define LINESTAT_START_BIT_DET BIT(13)
202#define LINESTAT_STOP_BIT_DET BIT(14)
203#define LINESTAT_ACK_DET BIT(15)
204#define LINESTAT_NACK_DET BIT(16)
205#define LINESTAT_INPUT_HELD_V BIT(17)
206#define LINESTAT_ABORT_DET BIT(18)
207#define LINESTAT_ACK_OR_NACK_DET (LINESTAT_ACK_DET | LINESTAT_NACK_DET)
208#define LINESTAT_INPUT_DATA 0xff000000
209#define LINESTAT_INPUT_DATA_SHIFT 24
210
211#define LINESTAT_CLEAR_SHIFT 13
212#define LINESTAT_LATCHED (0x3f << LINESTAT_CLEAR_SHIFT)
213
214/* SCB_OVERRIDE_REG fields */
215
216#define OVERRIDE_SCLK_OVR BIT(0)
217#define OVERRIDE_SCLKEN_OVR BIT(1)
218#define OVERRIDE_SDAT_OVR BIT(2)
219#define OVERRIDE_SDATEN_OVR BIT(3)
220#define OVERRIDE_MASTER BIT(9)
221#define OVERRIDE_LINE_OVR_EN BIT(10)
222#define OVERRIDE_DIRECT BIT(11)
223#define OVERRIDE_CMD_SHIFT 4
224#define OVERRIDE_CMD_MASK 0x1f
225#define OVERRIDE_DATA_SHIFT 24
226
227#define OVERRIDE_SCLK_DOWN (OVERRIDE_LINE_OVR_EN | \
228 OVERRIDE_SCLKEN_OVR)
229#define OVERRIDE_SCLK_UP (OVERRIDE_LINE_OVR_EN | \
230 OVERRIDE_SCLKEN_OVR | \
231 OVERRIDE_SCLK_OVR)
232#define OVERRIDE_SDAT_DOWN (OVERRIDE_LINE_OVR_EN | \
233 OVERRIDE_SDATEN_OVR)
234#define OVERRIDE_SDAT_UP (OVERRIDE_LINE_OVR_EN | \
235 OVERRIDE_SDATEN_OVR | \
236 OVERRIDE_SDAT_OVR)
237
238/* OVERRIDE_CMD values */
239
240#define CMD_PAUSE 0x00
241#define CMD_GEN_DATA 0x01
242#define CMD_GEN_START 0x02
243#define CMD_GEN_STOP 0x03
244#define CMD_GEN_ACK 0x04
245#define CMD_GEN_NACK 0x05
246#define CMD_RET_DATA 0x08
247#define CMD_RET_ACK 0x09
248
249/* Fixed timing values */
250
251#define TIMEOUT_TBI 0x0
252#define TIMEOUT_TSL 0xffff
253#define TIMEOUT_TDL 0x0
254
255/* Transaction timeout */
256
257#define IMG_I2C_TIMEOUT (msecs_to_jiffies(1000))
258
259/*
260 * Worst incs are 1 (innacurate) and 16*256 (irregular).
261 * So a sensible inc is the logarithmic mean: 64 (2^6), which is
262 * in the middle of the valid range (0-127).
263 */
264#define SCB_OPT_INC 64
265
266/* Setup the clock enable filtering for 25 ns */
267#define SCB_FILT_GLITCH 25
268
269/*
270 * Bits to return from interrupt handler functions for different modes.
271 * This delays completion until we've finished with the registers, so that the
272 * function waiting for completion can safely disable the clock to save power.
273 */
274#define ISR_COMPLETE_M BIT(31)
275#define ISR_FATAL_M BIT(30)
276#define ISR_WAITSTOP BIT(29)
277#define ISR_STATUS_M 0x0000ffff /* contains +ve errno */
278#define ISR_COMPLETE(err) (ISR_COMPLETE_M | (ISR_STATUS_M & (err)))
279#define ISR_FATAL(err) (ISR_COMPLETE(err) | ISR_FATAL_M)
280
James Hogan27bce452014-11-13 15:32:21 -0300281enum img_i2c_mode {
282 MODE_INACTIVE,
283 MODE_RAW,
284 MODE_ATOMIC,
285 MODE_AUTOMATIC,
286 MODE_SEQUENCE,
287 MODE_FATAL,
288 MODE_WAITSTOP,
289 MODE_SUSPEND,
290};
291
292/* Timing parameters for i2c modes (in ns) */
293struct img_i2c_timings {
294 const char *name;
295 unsigned int max_bitrate;
296 unsigned int tckh, tckl, tsdh, tsdl;
297 unsigned int tp2s, tpl, tph;
298};
299
300/* The timings array must be ordered from slower to faster */
301static struct img_i2c_timings timings[] = {
302 /* Standard mode */
303 {
304 .name = "standard",
305 .max_bitrate = 100000,
306 .tckh = 4000,
307 .tckl = 4700,
308 .tsdh = 4700,
309 .tsdl = 8700,
310 .tp2s = 4700,
311 .tpl = 4700,
312 .tph = 4000,
313 },
314 /* Fast mode */
315 {
316 .name = "fast",
317 .max_bitrate = 400000,
318 .tckh = 600,
319 .tckl = 1300,
320 .tsdh = 600,
321 .tsdl = 1200,
322 .tp2s = 1300,
323 .tpl = 600,
324 .tph = 600,
325 },
326};
327
328/* Reset dance */
329static u8 img_i2c_reset_seq[] = { CMD_GEN_START,
330 CMD_GEN_DATA, 0xff,
331 CMD_RET_ACK,
332 CMD_GEN_START,
333 CMD_GEN_STOP,
334 0 };
335/* Just issue a stop (after an abort condition) */
336static u8 img_i2c_stop_seq[] = { CMD_GEN_STOP,
337 0 };
338
339/* We're interested in different interrupts depending on the mode */
340static unsigned int img_i2c_int_enable_by_mode[] = {
341 [MODE_INACTIVE] = INT_ENABLE_MASK_INACTIVE,
342 [MODE_RAW] = INT_ENABLE_MASK_RAW,
343 [MODE_ATOMIC] = INT_ENABLE_MASK_ATOMIC,
344 [MODE_AUTOMATIC] = INT_ENABLE_MASK_AUTOMATIC,
345 [MODE_SEQUENCE] = INT_ENABLE_MASK_ATOMIC,
346 [MODE_FATAL] = 0,
347 [MODE_WAITSTOP] = INT_ENABLE_MASK_WAITSTOP,
348 [MODE_SUSPEND] = 0,
349};
350
351/* Atomic command names */
352static const char * const img_i2c_atomic_cmd_names[] = {
353 [CMD_PAUSE] = "PAUSE",
354 [CMD_GEN_DATA] = "GEN_DATA",
355 [CMD_GEN_START] = "GEN_START",
356 [CMD_GEN_STOP] = "GEN_STOP",
357 [CMD_GEN_ACK] = "GEN_ACK",
358 [CMD_GEN_NACK] = "GEN_NACK",
359 [CMD_RET_DATA] = "RET_DATA",
360 [CMD_RET_ACK] = "RET_ACK",
361};
362
363struct img_i2c {
364 struct i2c_adapter adap;
365
366 void __iomem *base;
367
368 /*
369 * The scb core clock is used to get the input frequency, and to disable
370 * it after every set of transactions to save some power.
371 */
372 struct clk *scb_clk, *sys_clk;
373 unsigned int bitrate;
374 bool need_wr_rd_fence;
375
376 /* state */
377 struct completion msg_complete;
378 spinlock_t lock; /* lock before doing anything with the state */
379 struct i2c_msg msg;
380
381 /* After the last transaction, wait for a stop bit */
382 bool last_msg;
383 int msg_status;
384
385 enum img_i2c_mode mode;
386 u32 int_enable; /* depends on mode */
387 u32 line_status; /* line status over command */
388
389 /*
390 * To avoid slave event interrupts in automatic mode, use a timer to
391 * poll the abort condition if we don't get an interrupt for too long.
392 */
393 struct timer_list check_timer;
394 bool t_halt;
395
396 /* atomic mode state */
397 bool at_t_done;
398 bool at_slave_event;
399 int at_cur_cmd;
400 u8 at_cur_data;
401
402 /* Sequence: either reset or stop. See img_i2c_sequence. */
403 u8 *seq;
404
405 /* raw mode */
406 unsigned int raw_timeout;
407};
408
409static void img_i2c_writel(struct img_i2c *i2c, u32 offset, u32 value)
410{
411 writel(value, i2c->base + offset);
412}
413
414static u32 img_i2c_readl(struct img_i2c *i2c, u32 offset)
415{
416 return readl(i2c->base + offset);
417}
418
419/*
420 * The code to read from the master read fifo, and write to the master
421 * write fifo, checks a bit in an SCB register before every byte to
422 * ensure that the fifo is not full (write fifo) or empty (read fifo).
423 * Due to clock domain crossing inside the SCB block the updated value
424 * of this bit is only visible after 2 cycles.
425 *
426 * The scb_wr_rd_fence() function does 2 dummy writes (to the read-only
427 * revision register), and it's called after reading from or writing to the
428 * fifos to ensure that subsequent reads of the fifo status bits do not read
429 * stale values.
430 */
431static void img_i2c_wr_rd_fence(struct img_i2c *i2c)
432{
433 if (i2c->need_wr_rd_fence) {
434 img_i2c_writel(i2c, SCB_CORE_REV_REG, 0);
435 img_i2c_writel(i2c, SCB_CORE_REV_REG, 0);
436 }
437}
438
439static void img_i2c_switch_mode(struct img_i2c *i2c, enum img_i2c_mode mode)
440{
441 i2c->mode = mode;
442 i2c->int_enable = img_i2c_int_enable_by_mode[mode];
443 i2c->line_status = 0;
444}
445
446static void img_i2c_raw_op(struct img_i2c *i2c)
447{
448 i2c->raw_timeout = 0;
449 img_i2c_writel(i2c, SCB_OVERRIDE_REG,
450 OVERRIDE_SCLKEN_OVR |
451 OVERRIDE_SDATEN_OVR |
452 OVERRIDE_MASTER |
453 OVERRIDE_LINE_OVR_EN |
454 OVERRIDE_DIRECT |
455 ((i2c->at_cur_cmd & OVERRIDE_CMD_MASK) << OVERRIDE_CMD_SHIFT) |
456 (i2c->at_cur_data << OVERRIDE_DATA_SHIFT));
457}
458
459static const char *img_i2c_atomic_op_name(unsigned int cmd)
460{
461 if (unlikely(cmd >= ARRAY_SIZE(img_i2c_atomic_cmd_names)))
462 return "UNKNOWN";
463 return img_i2c_atomic_cmd_names[cmd];
464}
465
466/* Send a single atomic mode command to the hardware */
467static void img_i2c_atomic_op(struct img_i2c *i2c, int cmd, u8 data)
468{
469 i2c->at_cur_cmd = cmd;
470 i2c->at_cur_data = data;
471
472 /* work around lack of data setup time when generating data */
473 if (cmd == CMD_GEN_DATA && i2c->mode == MODE_ATOMIC) {
474 u32 line_status = img_i2c_readl(i2c, SCB_STATUS_REG);
475
476 if (line_status & LINESTAT_SDAT_LINE_STATUS && !(data & 0x80)) {
477 /* hold the data line down for a moment */
478 img_i2c_switch_mode(i2c, MODE_RAW);
479 img_i2c_raw_op(i2c);
480 return;
481 }
482 }
483
484 dev_dbg(i2c->adap.dev.parent,
485 "atomic cmd=%s (%d) data=%#x\n",
486 img_i2c_atomic_op_name(cmd), cmd, data);
487 i2c->at_t_done = (cmd == CMD_RET_DATA || cmd == CMD_RET_ACK);
488 i2c->at_slave_event = false;
489 i2c->line_status = 0;
490
491 img_i2c_writel(i2c, SCB_OVERRIDE_REG,
492 ((cmd & OVERRIDE_CMD_MASK) << OVERRIDE_CMD_SHIFT) |
493 OVERRIDE_MASTER |
494 OVERRIDE_DIRECT |
495 (data << OVERRIDE_DATA_SHIFT));
496}
497
498/* Start a transaction in atomic mode */
499static void img_i2c_atomic_start(struct img_i2c *i2c)
500{
501 img_i2c_switch_mode(i2c, MODE_ATOMIC);
502 img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
503 img_i2c_atomic_op(i2c, CMD_GEN_START, 0x00);
504}
505
506static void img_i2c_soft_reset(struct img_i2c *i2c)
507{
508 i2c->t_halt = false;
509 img_i2c_writel(i2c, SCB_CONTROL_REG, 0);
510 img_i2c_writel(i2c, SCB_CONTROL_REG,
511 SCB_CONTROL_CLK_ENABLE | SCB_CONTROL_SOFT_RESET);
512}
513
514/* enable or release transaction halt for control of repeated starts */
515static void img_i2c_transaction_halt(struct img_i2c *i2c, bool t_halt)
516{
517 u32 val;
518
519 if (i2c->t_halt == t_halt)
520 return;
521 i2c->t_halt = t_halt;
522 val = img_i2c_readl(i2c, SCB_CONTROL_REG);
523 if (t_halt)
524 val |= SCB_CONTROL_TRANSACTION_HALT;
525 else
526 val &= ~SCB_CONTROL_TRANSACTION_HALT;
527 img_i2c_writel(i2c, SCB_CONTROL_REG, val);
528}
529
530/* Drain data from the FIFO into the buffer (automatic mode) */
531static void img_i2c_read_fifo(struct img_i2c *i2c)
532{
533 while (i2c->msg.len) {
534 u32 fifo_status;
535 u8 data;
536
Sifan Naeem2aefb1b2015-09-10 15:50:02 +0100537 img_i2c_wr_rd_fence(i2c);
James Hogan27bce452014-11-13 15:32:21 -0300538 fifo_status = img_i2c_readl(i2c, SCB_FIFO_STATUS_REG);
539 if (fifo_status & FIFO_READ_EMPTY)
540 break;
541
542 data = img_i2c_readl(i2c, SCB_READ_DATA_REG);
543 *i2c->msg.buf = data;
544
545 img_i2c_writel(i2c, SCB_READ_FIFO_REG, 0xff);
James Hogan27bce452014-11-13 15:32:21 -0300546 i2c->msg.len--;
547 i2c->msg.buf++;
548 }
549}
550
551/* Fill the FIFO with data from the buffer (automatic mode) */
552static void img_i2c_write_fifo(struct img_i2c *i2c)
553{
554 while (i2c->msg.len) {
555 u32 fifo_status;
556
Sifan Naeem2aefb1b2015-09-10 15:50:02 +0100557 img_i2c_wr_rd_fence(i2c);
James Hogan27bce452014-11-13 15:32:21 -0300558 fifo_status = img_i2c_readl(i2c, SCB_FIFO_STATUS_REG);
559 if (fifo_status & FIFO_WRITE_FULL)
560 break;
561
562 img_i2c_writel(i2c, SCB_WRITE_DATA_REG, *i2c->msg.buf);
James Hogan27bce452014-11-13 15:32:21 -0300563 i2c->msg.len--;
564 i2c->msg.buf++;
565 }
566
567 /* Disable fifo emptying interrupt if nothing more to write */
568 if (!i2c->msg.len)
569 i2c->int_enable &= ~INT_FIFO_EMPTYING;
570}
571
572/* Start a read transaction in automatic mode */
573static void img_i2c_read(struct img_i2c *i2c)
574{
575 img_i2c_switch_mode(i2c, MODE_AUTOMATIC);
576 if (!i2c->last_msg)
577 i2c->int_enable |= INT_SLAVE_EVENT;
578
579 img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
580 img_i2c_writel(i2c, SCB_READ_ADDR_REG, i2c->msg.addr);
581 img_i2c_writel(i2c, SCB_READ_COUNT_REG, i2c->msg.len);
582
583 img_i2c_transaction_halt(i2c, false);
584 mod_timer(&i2c->check_timer, jiffies + msecs_to_jiffies(1));
585}
586
587/* Start a write transaction in automatic mode */
588static void img_i2c_write(struct img_i2c *i2c)
589{
590 img_i2c_switch_mode(i2c, MODE_AUTOMATIC);
591 if (!i2c->last_msg)
592 i2c->int_enable |= INT_SLAVE_EVENT;
593
594 img_i2c_writel(i2c, SCB_WRITE_ADDR_REG, i2c->msg.addr);
595 img_i2c_writel(i2c, SCB_WRITE_COUNT_REG, i2c->msg.len);
596
597 img_i2c_transaction_halt(i2c, false);
598 mod_timer(&i2c->check_timer, jiffies + msecs_to_jiffies(1));
599 img_i2c_write_fifo(i2c);
600
601 /* img_i2c_write_fifo() may modify int_enable */
602 img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
603}
604
605/*
606 * Indicate that the transaction is complete. This is called from the
607 * ISR to wake up the waiting thread, after which the ISR must not
608 * access any more SCB registers.
609 */
610static void img_i2c_complete_transaction(struct img_i2c *i2c, int status)
611{
612 img_i2c_switch_mode(i2c, MODE_INACTIVE);
613 if (status) {
614 i2c->msg_status = status;
615 img_i2c_transaction_halt(i2c, false);
616 }
617 complete(&i2c->msg_complete);
618}
619
620static unsigned int img_i2c_raw_atomic_delay_handler(struct img_i2c *i2c,
621 u32 int_status, u32 line_status)
622{
623 /* Stay in raw mode for this, so we don't just loop infinitely */
624 img_i2c_atomic_op(i2c, i2c->at_cur_cmd, i2c->at_cur_data);
625 img_i2c_switch_mode(i2c, MODE_ATOMIC);
626 return 0;
627}
628
629static unsigned int img_i2c_raw(struct img_i2c *i2c, u32 int_status,
630 u32 line_status)
631{
632 if (int_status & INT_TIMING) {
633 if (i2c->raw_timeout == 0)
634 return img_i2c_raw_atomic_delay_handler(i2c,
635 int_status, line_status);
636 --i2c->raw_timeout;
637 }
638 return 0;
639}
640
641static unsigned int img_i2c_sequence(struct img_i2c *i2c, u32 int_status)
642{
643 static const unsigned int continue_bits[] = {
644 [CMD_GEN_START] = LINESTAT_START_BIT_DET,
645 [CMD_GEN_DATA] = LINESTAT_INPUT_HELD_V,
646 [CMD_RET_ACK] = LINESTAT_ACK_DET | LINESTAT_NACK_DET,
647 [CMD_RET_DATA] = LINESTAT_INPUT_HELD_V,
648 [CMD_GEN_STOP] = LINESTAT_STOP_BIT_DET,
649 };
650 int next_cmd = -1;
651 u8 next_data = 0x00;
652
653 if (int_status & INT_SLAVE_EVENT)
654 i2c->at_slave_event = true;
655 if (int_status & INT_TRANSACTION_DONE)
656 i2c->at_t_done = true;
657
658 if (!i2c->at_slave_event || !i2c->at_t_done)
659 return 0;
660
661 /* wait if no continue bits are set */
662 if (i2c->at_cur_cmd >= 0 &&
663 i2c->at_cur_cmd < ARRAY_SIZE(continue_bits)) {
664 unsigned int cont_bits = continue_bits[i2c->at_cur_cmd];
665
666 if (cont_bits) {
667 cont_bits |= LINESTAT_ABORT_DET;
668 if (!(i2c->line_status & cont_bits))
669 return 0;
670 }
671 }
672
673 /* follow the sequence of commands in i2c->seq */
674 next_cmd = *i2c->seq;
675 /* stop on a nil */
676 if (!next_cmd) {
677 img_i2c_writel(i2c, SCB_OVERRIDE_REG, 0);
678 return ISR_COMPLETE(0);
679 }
680 /* when generating data, the next byte is the data */
681 if (next_cmd == CMD_GEN_DATA) {
682 ++i2c->seq;
683 next_data = *i2c->seq;
684 }
685 ++i2c->seq;
686 img_i2c_atomic_op(i2c, next_cmd, next_data);
687
688 return 0;
689}
690
691static void img_i2c_reset_start(struct img_i2c *i2c)
692{
693 /* Initiate the magic dance */
694 img_i2c_switch_mode(i2c, MODE_SEQUENCE);
695 img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
696 i2c->seq = img_i2c_reset_seq;
697 i2c->at_slave_event = true;
698 i2c->at_t_done = true;
699 i2c->at_cur_cmd = -1;
700
701 /* img_i2c_reset_seq isn't empty so the following won't fail */
702 img_i2c_sequence(i2c, 0);
703}
704
705static void img_i2c_stop_start(struct img_i2c *i2c)
706{
707 /* Initiate a stop bit sequence */
708 img_i2c_switch_mode(i2c, MODE_SEQUENCE);
709 img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
710 i2c->seq = img_i2c_stop_seq;
711 i2c->at_slave_event = true;
712 i2c->at_t_done = true;
713 i2c->at_cur_cmd = -1;
714
715 /* img_i2c_stop_seq isn't empty so the following won't fail */
716 img_i2c_sequence(i2c, 0);
717}
718
719static unsigned int img_i2c_atomic(struct img_i2c *i2c,
720 u32 int_status,
721 u32 line_status)
722{
723 int next_cmd = -1;
724 u8 next_data = 0x00;
725
726 if (int_status & INT_SLAVE_EVENT)
727 i2c->at_slave_event = true;
728 if (int_status & INT_TRANSACTION_DONE)
729 i2c->at_t_done = true;
730
731 if (!i2c->at_slave_event || !i2c->at_t_done)
732 goto next_atomic_cmd;
733 if (i2c->line_status & LINESTAT_ABORT_DET) {
734 dev_dbg(i2c->adap.dev.parent, "abort condition detected\n");
735 next_cmd = CMD_GEN_STOP;
736 i2c->msg_status = -EIO;
737 goto next_atomic_cmd;
738 }
739
740 /* i2c->at_cur_cmd may have completed */
741 switch (i2c->at_cur_cmd) {
742 case CMD_GEN_START:
743 next_cmd = CMD_GEN_DATA;
744 next_data = (i2c->msg.addr << 1);
745 if (i2c->msg.flags & I2C_M_RD)
746 next_data |= 0x1;
747 break;
748 case CMD_GEN_DATA:
749 if (i2c->line_status & LINESTAT_INPUT_HELD_V)
750 next_cmd = CMD_RET_ACK;
751 break;
752 case CMD_RET_ACK:
753 if (i2c->line_status & LINESTAT_ACK_DET) {
754 if (i2c->msg.len == 0) {
755 next_cmd = CMD_GEN_STOP;
756 } else if (i2c->msg.flags & I2C_M_RD) {
757 next_cmd = CMD_RET_DATA;
758 } else {
759 next_cmd = CMD_GEN_DATA;
760 next_data = *i2c->msg.buf;
761 --i2c->msg.len;
762 ++i2c->msg.buf;
763 }
764 } else if (i2c->line_status & LINESTAT_NACK_DET) {
765 i2c->msg_status = -EIO;
766 next_cmd = CMD_GEN_STOP;
767 }
768 break;
769 case CMD_RET_DATA:
770 if (i2c->line_status & LINESTAT_INPUT_HELD_V) {
771 *i2c->msg.buf = (i2c->line_status &
772 LINESTAT_INPUT_DATA)
773 >> LINESTAT_INPUT_DATA_SHIFT;
774 --i2c->msg.len;
775 ++i2c->msg.buf;
776 if (i2c->msg.len)
777 next_cmd = CMD_GEN_ACK;
778 else
779 next_cmd = CMD_GEN_NACK;
780 }
781 break;
782 case CMD_GEN_ACK:
783 if (i2c->line_status & LINESTAT_ACK_DET) {
784 next_cmd = CMD_RET_DATA;
785 } else {
786 i2c->msg_status = -EIO;
787 next_cmd = CMD_GEN_STOP;
788 }
789 break;
790 case CMD_GEN_NACK:
791 next_cmd = CMD_GEN_STOP;
792 break;
793 case CMD_GEN_STOP:
794 img_i2c_writel(i2c, SCB_OVERRIDE_REG, 0);
795 return ISR_COMPLETE(0);
796 default:
797 dev_err(i2c->adap.dev.parent, "bad atomic command %d\n",
798 i2c->at_cur_cmd);
799 i2c->msg_status = -EIO;
800 next_cmd = CMD_GEN_STOP;
801 break;
802 }
803
804next_atomic_cmd:
805 if (next_cmd != -1) {
806 /* don't actually stop unless we're the last transaction */
807 if (next_cmd == CMD_GEN_STOP && !i2c->msg_status &&
808 !i2c->last_msg)
809 return ISR_COMPLETE(0);
810 img_i2c_atomic_op(i2c, next_cmd, next_data);
811 }
812 return 0;
813}
814
815/*
816 * Timer function to check if something has gone wrong in automatic mode (so we
817 * don't have to handle so many interrupts just to catch an exception).
818 */
819static void img_i2c_check_timer(unsigned long arg)
820{
821 struct img_i2c *i2c = (struct img_i2c *)arg;
822 unsigned long flags;
823 unsigned int line_status;
824
825 spin_lock_irqsave(&i2c->lock, flags);
826 line_status = img_i2c_readl(i2c, SCB_STATUS_REG);
827
828 /* check for an abort condition */
829 if (line_status & LINESTAT_ABORT_DET) {
830 dev_dbg(i2c->adap.dev.parent,
831 "abort condition detected by check timer\n");
832 /* enable slave event interrupt mask to trigger irq */
833 img_i2c_writel(i2c, SCB_INT_MASK_REG,
834 i2c->int_enable | INT_SLAVE_EVENT);
835 }
836
837 spin_unlock_irqrestore(&i2c->lock, flags);
838}
839
840static unsigned int img_i2c_auto(struct img_i2c *i2c,
841 unsigned int int_status,
842 unsigned int line_status)
843{
844 if (int_status & (INT_WRITE_ACK_ERR | INT_ADDR_ACK_ERR))
845 return ISR_COMPLETE(EIO);
846
847 if (line_status & LINESTAT_ABORT_DET) {
848 dev_dbg(i2c->adap.dev.parent, "abort condition detected\n");
849 /* empty the read fifo */
850 if ((i2c->msg.flags & I2C_M_RD) &&
851 (int_status & INT_FIFO_FULL_FILLING))
852 img_i2c_read_fifo(i2c);
853 /* use atomic mode and try to force a stop bit */
854 i2c->msg_status = -EIO;
855 img_i2c_stop_start(i2c);
856 return 0;
857 }
858
859 /* Enable transaction halt on start bit */
860 if (!i2c->last_msg && i2c->line_status & LINESTAT_START_BIT_DET) {
861 img_i2c_transaction_halt(i2c, true);
862 /* we're no longer interested in the slave event */
863 i2c->int_enable &= ~INT_SLAVE_EVENT;
864 }
865
866 mod_timer(&i2c->check_timer, jiffies + msecs_to_jiffies(1));
867
868 if (i2c->msg.flags & I2C_M_RD) {
869 if (int_status & INT_FIFO_FULL_FILLING) {
870 img_i2c_read_fifo(i2c);
871 if (i2c->msg.len == 0)
872 return ISR_WAITSTOP;
873 }
874 } else {
875 if (int_status & INT_FIFO_EMPTY_EMPTYING) {
876 /*
877 * The write fifo empty indicates that we're in the
878 * last byte so it's safe to start a new write
879 * transaction without losing any bytes from the
880 * previous one.
881 * see 2.3.7 Repeated Start Transactions.
882 */
883 if ((int_status & INT_FIFO_EMPTY) &&
884 i2c->msg.len == 0)
885 return ISR_WAITSTOP;
886 img_i2c_write_fifo(i2c);
887 }
888 }
889
890 return 0;
891}
892
893static irqreturn_t img_i2c_isr(int irq, void *dev_id)
894{
895 struct img_i2c *i2c = (struct img_i2c *)dev_id;
896 u32 int_status, line_status;
897 /* We handle transaction completion AFTER accessing registers */
898 unsigned int hret;
899
900 /* Read interrupt status register. */
901 int_status = img_i2c_readl(i2c, SCB_INT_STATUS_REG);
902 /* Clear detected interrupts. */
903 img_i2c_writel(i2c, SCB_INT_CLEAR_REG, int_status);
904
905 /*
906 * Read line status and clear it until it actually is clear. We have
907 * to be careful not to lose any line status bits that get latched.
908 */
909 line_status = img_i2c_readl(i2c, SCB_STATUS_REG);
910 if (line_status & LINESTAT_LATCHED) {
911 img_i2c_writel(i2c, SCB_CLEAR_REG,
912 (line_status & LINESTAT_LATCHED)
913 >> LINESTAT_CLEAR_SHIFT);
914 img_i2c_wr_rd_fence(i2c);
915 }
916
917 spin_lock(&i2c->lock);
918
919 /* Keep track of line status bits received */
920 i2c->line_status &= ~LINESTAT_INPUT_DATA;
921 i2c->line_status |= line_status;
922
923 /*
924 * Certain interrupts indicate that sclk low timeout is not
925 * a problem. If any of these are set, just continue.
926 */
927 if ((int_status & INT_SCLK_LOW_TIMEOUT) &&
928 !(int_status & (INT_SLAVE_EVENT |
929 INT_FIFO_EMPTY |
930 INT_FIFO_FULL))) {
931 dev_crit(i2c->adap.dev.parent,
932 "fatal: clock low timeout occurred %s addr 0x%02x\n",
933 (i2c->msg.flags & I2C_M_RD) ? "reading" : "writing",
934 i2c->msg.addr);
935 hret = ISR_FATAL(EIO);
936 goto out;
937 }
938
939 if (i2c->mode == MODE_ATOMIC)
940 hret = img_i2c_atomic(i2c, int_status, line_status);
941 else if (i2c->mode == MODE_AUTOMATIC)
942 hret = img_i2c_auto(i2c, int_status, line_status);
943 else if (i2c->mode == MODE_SEQUENCE)
944 hret = img_i2c_sequence(i2c, int_status);
945 else if (i2c->mode == MODE_WAITSTOP && (int_status & INT_SLAVE_EVENT) &&
946 (line_status & LINESTAT_STOP_BIT_DET))
947 hret = ISR_COMPLETE(0);
948 else if (i2c->mode == MODE_RAW)
949 hret = img_i2c_raw(i2c, int_status, line_status);
950 else
951 hret = 0;
952
953 /* Clear detected level interrupts. */
954 img_i2c_writel(i2c, SCB_INT_CLEAR_REG, int_status & INT_LEVEL);
955
956out:
957 if (hret & ISR_WAITSTOP) {
958 /*
959 * Only wait for stop on last message.
960 * Also we may already have detected the stop bit.
961 */
962 if (!i2c->last_msg || i2c->line_status & LINESTAT_STOP_BIT_DET)
963 hret = ISR_COMPLETE(0);
964 else
965 img_i2c_switch_mode(i2c, MODE_WAITSTOP);
966 }
967
968 /* now we've finished using regs, handle transaction completion */
969 if (hret & ISR_COMPLETE_M) {
970 int status = -(hret & ISR_STATUS_M);
971
972 img_i2c_complete_transaction(i2c, status);
973 if (hret & ISR_FATAL_M)
974 img_i2c_switch_mode(i2c, MODE_FATAL);
975 }
976
977 /* Enable interrupts (int_enable may be altered by changing mode) */
978 img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
979
980 spin_unlock(&i2c->lock);
981
982 return IRQ_HANDLED;
983}
984
985/* Force a bus reset sequence and wait for it to complete */
986static int img_i2c_reset_bus(struct img_i2c *i2c)
987{
988 unsigned long flags;
Nicholas Mc Guire913b1d82015-02-09 10:15:21 -0500989 unsigned long time_left;
James Hogan27bce452014-11-13 15:32:21 -0300990
991 spin_lock_irqsave(&i2c->lock, flags);
992 reinit_completion(&i2c->msg_complete);
993 img_i2c_reset_start(i2c);
994 spin_unlock_irqrestore(&i2c->lock, flags);
995
Nicholas Mc Guire913b1d82015-02-09 10:15:21 -0500996 time_left = wait_for_completion_timeout(&i2c->msg_complete,
997 IMG_I2C_TIMEOUT);
998 if (time_left == 0)
James Hogan27bce452014-11-13 15:32:21 -0300999 return -ETIMEDOUT;
1000 return 0;
1001}
1002
1003static int img_i2c_xfer(struct i2c_adapter *adap, struct i2c_msg *msgs,
1004 int num)
1005{
1006 struct img_i2c *i2c = i2c_get_adapdata(adap);
1007 bool atomic = false;
1008 int i, ret;
Nicholas Mc Guire913b1d82015-02-09 10:15:21 -05001009 unsigned long time_left;
James Hogan27bce452014-11-13 15:32:21 -03001010
1011 if (i2c->mode == MODE_SUSPEND) {
1012 WARN(1, "refusing to service transaction in suspended state\n");
1013 return -EIO;
1014 }
1015
1016 if (i2c->mode == MODE_FATAL)
1017 return -EIO;
1018
1019 for (i = 0; i < num; i++) {
1020 if (likely(msgs[i].len))
1021 continue;
1022 /*
1023 * 0 byte reads are not possible because the slave could try
1024 * and pull the data line low, preventing a stop bit.
1025 */
1026 if (unlikely(msgs[i].flags & I2C_M_RD))
1027 return -EIO;
1028 /*
1029 * 0 byte writes are possible and used for probing, but we
1030 * cannot do them in automatic mode, so use atomic mode
1031 * instead.
1032 */
1033 atomic = true;
1034 }
1035
1036 ret = clk_prepare_enable(i2c->scb_clk);
1037 if (ret)
1038 return ret;
1039
1040 for (i = 0; i < num; i++) {
1041 struct i2c_msg *msg = &msgs[i];
1042 unsigned long flags;
1043
1044 spin_lock_irqsave(&i2c->lock, flags);
1045
1046 /*
1047 * Make a copy of the message struct. We mustn't modify the
1048 * original or we'll confuse drivers and i2c-dev.
1049 */
1050 i2c->msg = *msg;
1051 i2c->msg_status = 0;
1052
1053 /*
1054 * After the last message we must have waited for a stop bit.
1055 * Not waiting can cause problems when the clock is disabled
1056 * before the stop bit is sent, and the linux I2C interface
1057 * requires separate transfers not to joined with repeated
1058 * start.
1059 */
1060 i2c->last_msg = (i == num - 1);
1061 reinit_completion(&i2c->msg_complete);
1062
1063 if (atomic)
1064 img_i2c_atomic_start(i2c);
1065 else if (msg->flags & I2C_M_RD)
1066 img_i2c_read(i2c);
1067 else
1068 img_i2c_write(i2c);
1069 spin_unlock_irqrestore(&i2c->lock, flags);
1070
Nicholas Mc Guire913b1d82015-02-09 10:15:21 -05001071 time_left = wait_for_completion_timeout(&i2c->msg_complete,
1072 IMG_I2C_TIMEOUT);
James Hogan27bce452014-11-13 15:32:21 -03001073 del_timer_sync(&i2c->check_timer);
1074
Nicholas Mc Guire913b1d82015-02-09 10:15:21 -05001075 if (time_left == 0) {
James Hogan27bce452014-11-13 15:32:21 -03001076 dev_err(adap->dev.parent, "i2c transfer timed out\n");
1077 i2c->msg_status = -ETIMEDOUT;
1078 break;
1079 }
1080
1081 if (i2c->msg_status)
1082 break;
1083 }
1084
1085 clk_disable_unprepare(i2c->scb_clk);
1086
1087 return i2c->msg_status ? i2c->msg_status : num;
1088}
1089
1090static u32 img_i2c_func(struct i2c_adapter *adap)
1091{
1092 return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
1093}
1094
1095static const struct i2c_algorithm img_i2c_algo = {
1096 .master_xfer = img_i2c_xfer,
1097 .functionality = img_i2c_func,
1098};
1099
1100static int img_i2c_init(struct img_i2c *i2c)
1101{
1102 unsigned int clk_khz, bitrate_khz, clk_period, tckh, tckl, tsdh;
1103 unsigned int i, ret, data, prescale, inc, int_bitrate, filt;
1104 struct img_i2c_timings timing;
1105 u32 rev;
1106
1107 ret = clk_prepare_enable(i2c->scb_clk);
1108 if (ret)
1109 return ret;
1110
1111 rev = img_i2c_readl(i2c, SCB_CORE_REV_REG);
1112 if ((rev & 0x00ffffff) < 0x00020200) {
1113 dev_info(i2c->adap.dev.parent,
1114 "Unknown hardware revision (%d.%d.%d.%d)\n",
1115 (rev >> 24) & 0xff, (rev >> 16) & 0xff,
1116 (rev >> 8) & 0xff, rev & 0xff);
1117 clk_disable_unprepare(i2c->scb_clk);
1118 return -EINVAL;
1119 }
1120
Sifan Naeem0e593782015-09-10 15:50:01 +01001121 /* Fencing enabled by default. */
1122 i2c->need_wr_rd_fence = true;
James Hogan27bce452014-11-13 15:32:21 -03001123
1124 bitrate_khz = i2c->bitrate / 1000;
1125 clk_khz = clk_get_rate(i2c->scb_clk) / 1000;
1126
1127 /* Determine what mode we're in from the bitrate */
1128 timing = timings[0];
1129 for (i = 0; i < ARRAY_SIZE(timings); i++) {
1130 if (i2c->bitrate <= timings[i].max_bitrate) {
1131 timing = timings[i];
1132 break;
1133 }
1134 }
1135
1136 /* Find the prescale that would give us that inc (approx delay = 0) */
1137 prescale = SCB_OPT_INC * clk_khz / (256 * 16 * bitrate_khz);
1138 prescale = clamp_t(unsigned int, prescale, 1, 8);
1139 clk_khz /= prescale;
1140
1141 /* Setup the clock increment value */
1142 inc = (256 * 16 * bitrate_khz) / clk_khz;
1143
1144 /*
1145 * The clock generation logic allows to filter glitches on the bus.
1146 * This filter is able to remove bus glitches shorter than 50ns.
1147 * If the clock enable rate is greater than 20 MHz, no filtering
1148 * is required, so we need to disable it.
1149 * If it's between the 20-40 MHz range, there's no need to divide
1150 * the clock to get a filter.
1151 */
1152 if (clk_khz < 20000) {
1153 filt = SCB_FILT_DISABLE;
1154 } else if (clk_khz < 40000) {
1155 filt = SCB_FILT_BYPASS;
1156 } else {
1157 /* Calculate filter clock */
1158 filt = (64000 / ((clk_khz / 1000) * SCB_FILT_GLITCH));
1159
1160 /* Scale up if needed */
1161 if (64000 % ((clk_khz / 1000) * SCB_FILT_GLITCH))
1162 inc++;
1163
1164 if (filt > SCB_FILT_INC_MASK)
1165 filt = SCB_FILT_INC_MASK;
1166
1167 filt = (filt & SCB_FILT_INC_MASK) << SCB_FILT_INC_SHIFT;
1168 }
1169 data = filt | ((inc & SCB_INC_MASK) << SCB_INC_SHIFT) | (prescale - 1);
1170 img_i2c_writel(i2c, SCB_CLK_SET_REG, data);
1171
1172 /* Obtain the clock period of the fx16 clock in ns */
1173 clk_period = (256 * 1000000) / (clk_khz * inc);
1174
1175 /* Calculate the bitrate in terms of internal clock pulses */
1176 int_bitrate = 1000000 / (bitrate_khz * clk_period);
1177 if ((1000000 % (bitrate_khz * clk_period)) >=
1178 ((bitrate_khz * clk_period) / 2))
1179 int_bitrate++;
1180
1181 /* Setup TCKH value */
1182 tckh = timing.tckh / clk_period;
1183 if (timing.tckh % clk_period)
1184 tckh++;
1185
1186 if (tckh > 0)
1187 data = tckh - 1;
1188 else
1189 data = 0;
1190
1191 img_i2c_writel(i2c, SCB_TIME_TCKH_REG, data);
1192
1193 /* Setup TCKL value */
1194 tckl = int_bitrate - tckh;
1195
1196 if (tckl > 0)
1197 data = tckl - 1;
1198 else
1199 data = 0;
1200
1201 img_i2c_writel(i2c, SCB_TIME_TCKL_REG, data);
1202
1203 /* Setup TSDH value */
1204 tsdh = timing.tsdh / clk_period;
1205 if (timing.tsdh % clk_period)
1206 tsdh++;
1207
1208 if (tsdh > 1)
1209 data = tsdh - 1;
1210 else
1211 data = 0x01;
1212 img_i2c_writel(i2c, SCB_TIME_TSDH_REG, data);
1213
1214 /* This value is used later */
1215 tsdh = data;
1216
1217 /* Setup TPL value */
1218 data = timing.tpl / clk_period;
1219 if (data > 0)
1220 --data;
1221 img_i2c_writel(i2c, SCB_TIME_TPL_REG, data);
1222
1223 /* Setup TPH value */
1224 data = timing.tph / clk_period;
1225 if (data > 0)
1226 --data;
1227 img_i2c_writel(i2c, SCB_TIME_TPH_REG, data);
1228
1229 /* Setup TSDL value to TPL + TSDH + 2 */
1230 img_i2c_writel(i2c, SCB_TIME_TSDL_REG, data + tsdh + 2);
1231
1232 /* Setup TP2S value */
1233 data = timing.tp2s / clk_period;
1234 if (data > 0)
1235 --data;
1236 img_i2c_writel(i2c, SCB_TIME_TP2S_REG, data);
1237
1238 img_i2c_writel(i2c, SCB_TIME_TBI_REG, TIMEOUT_TBI);
1239 img_i2c_writel(i2c, SCB_TIME_TSL_REG, TIMEOUT_TSL);
1240 img_i2c_writel(i2c, SCB_TIME_TDL_REG, TIMEOUT_TDL);
1241
1242 /* Take module out of soft reset and enable clocks */
1243 img_i2c_soft_reset(i2c);
1244
1245 /* Disable all interrupts */
1246 img_i2c_writel(i2c, SCB_INT_MASK_REG, 0);
1247
1248 /* Clear all interrupts */
1249 img_i2c_writel(i2c, SCB_INT_CLEAR_REG, ~0);
1250
1251 /* Clear the scb_line_status events */
1252 img_i2c_writel(i2c, SCB_CLEAR_REG, ~0);
1253
1254 /* Enable interrupts */
1255 img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
1256
1257 /* Perform a synchronous sequence to reset the bus */
1258 ret = img_i2c_reset_bus(i2c);
1259
1260 clk_disable_unprepare(i2c->scb_clk);
1261
1262 return ret;
1263}
1264
1265static int img_i2c_probe(struct platform_device *pdev)
1266{
1267 struct device_node *node = pdev->dev.of_node;
1268 struct img_i2c *i2c;
1269 struct resource *res;
1270 int irq, ret;
1271 u32 val;
1272
1273 i2c = devm_kzalloc(&pdev->dev, sizeof(struct img_i2c), GFP_KERNEL);
1274 if (!i2c)
1275 return -ENOMEM;
1276
1277 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1278 i2c->base = devm_ioremap_resource(&pdev->dev, res);
1279 if (IS_ERR(i2c->base))
1280 return PTR_ERR(i2c->base);
1281
1282 irq = platform_get_irq(pdev, 0);
1283 if (irq < 0) {
1284 dev_err(&pdev->dev, "can't get irq number\n");
1285 return irq;
1286 }
1287
1288 i2c->sys_clk = devm_clk_get(&pdev->dev, "sys");
1289 if (IS_ERR(i2c->sys_clk)) {
1290 dev_err(&pdev->dev, "can't get system clock\n");
1291 return PTR_ERR(i2c->sys_clk);
1292 }
1293
1294 i2c->scb_clk = devm_clk_get(&pdev->dev, "scb");
1295 if (IS_ERR(i2c->scb_clk)) {
1296 dev_err(&pdev->dev, "can't get core clock\n");
1297 return PTR_ERR(i2c->scb_clk);
1298 }
1299
1300 ret = devm_request_irq(&pdev->dev, irq, img_i2c_isr, 0,
1301 pdev->name, i2c);
1302 if (ret) {
1303 dev_err(&pdev->dev, "can't request irq %d\n", irq);
1304 return ret;
1305 }
1306
1307 /* Set up the exception check timer */
1308 init_timer(&i2c->check_timer);
1309 i2c->check_timer.function = img_i2c_check_timer;
1310 i2c->check_timer.data = (unsigned long)i2c;
1311
1312 i2c->bitrate = timings[0].max_bitrate;
1313 if (!of_property_read_u32(node, "clock-frequency", &val))
1314 i2c->bitrate = val;
1315
1316 i2c_set_adapdata(&i2c->adap, i2c);
1317 i2c->adap.dev.parent = &pdev->dev;
1318 i2c->adap.dev.of_node = node;
1319 i2c->adap.owner = THIS_MODULE;
1320 i2c->adap.algo = &img_i2c_algo;
1321 i2c->adap.retries = 5;
1322 i2c->adap.nr = pdev->id;
1323 snprintf(i2c->adap.name, sizeof(i2c->adap.name), "IMG SCB I2C");
1324
1325 img_i2c_switch_mode(i2c, MODE_INACTIVE);
1326 spin_lock_init(&i2c->lock);
1327 init_completion(&i2c->msg_complete);
1328
1329 platform_set_drvdata(pdev, i2c);
1330
1331 ret = clk_prepare_enable(i2c->sys_clk);
1332 if (ret)
1333 return ret;
1334
1335 ret = img_i2c_init(i2c);
1336 if (ret)
1337 goto disable_clk;
1338
1339 ret = i2c_add_numbered_adapter(&i2c->adap);
1340 if (ret < 0) {
1341 dev_err(&pdev->dev, "failed to add adapter\n");
1342 goto disable_clk;
1343 }
1344
1345 return 0;
1346
1347disable_clk:
1348 clk_disable_unprepare(i2c->sys_clk);
1349 return ret;
1350}
1351
1352static int img_i2c_remove(struct platform_device *dev)
1353{
1354 struct img_i2c *i2c = platform_get_drvdata(dev);
1355
1356 i2c_del_adapter(&i2c->adap);
1357 clk_disable_unprepare(i2c->sys_clk);
1358
1359 return 0;
1360}
1361
1362#ifdef CONFIG_PM_SLEEP
1363static int img_i2c_suspend(struct device *dev)
1364{
1365 struct img_i2c *i2c = dev_get_drvdata(dev);
1366
1367 img_i2c_switch_mode(i2c, MODE_SUSPEND);
1368
1369 clk_disable_unprepare(i2c->sys_clk);
1370
1371 return 0;
1372}
1373
1374static int img_i2c_resume(struct device *dev)
1375{
1376 struct img_i2c *i2c = dev_get_drvdata(dev);
1377 int ret;
1378
1379 ret = clk_prepare_enable(i2c->sys_clk);
1380 if (ret)
1381 return ret;
1382
1383 img_i2c_init(i2c);
1384
1385 return 0;
1386}
1387#endif /* CONFIG_PM_SLEEP */
1388
1389static SIMPLE_DEV_PM_OPS(img_i2c_pm, img_i2c_suspend, img_i2c_resume);
1390
1391static const struct of_device_id img_scb_i2c_match[] = {
1392 { .compatible = "img,scb-i2c" },
1393 { }
1394};
1395MODULE_DEVICE_TABLE(of, img_scb_i2c_match);
1396
1397static struct platform_driver img_scb_i2c_driver = {
1398 .driver = {
1399 .name = "img-i2c-scb",
1400 .of_match_table = img_scb_i2c_match,
1401 .pm = &img_i2c_pm,
1402 },
1403 .probe = img_i2c_probe,
1404 .remove = img_i2c_remove,
1405};
1406module_platform_driver(img_scb_i2c_driver);
1407
1408MODULE_AUTHOR("James Hogan <james.hogan@imgtec.com>");
1409MODULE_DESCRIPTION("IMG host I2C driver");
1410MODULE_LICENSE("GPL v2");