blob: 7c077a9d97770c8faee45123b9c049eeb8b33465 [file] [log] [blame]
Sheng Yang78376992008-01-28 05:10:22 +08001/*
2 * 8253/8254 interval timer emulation
3 *
4 * Copyright (c) 2003-2004 Fabrice Bellard
5 * Copyright (c) 2006 Intel Corporation
6 * Copyright (c) 2007 Keir Fraser, XenSource Inc
7 * Copyright (c) 2008 Intel Corporation
8 *
9 * Permission is hereby granted, free of charge, to any person obtaining a copy
10 * of this software and associated documentation files (the "Software"), to deal
11 * in the Software without restriction, including without limitation the rights
12 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
13 * copies of the Software, and to permit persons to whom the Software is
14 * furnished to do so, subject to the following conditions:
15 *
16 * The above copyright notice and this permission notice shall be included in
17 * all copies or substantial portions of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
24 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25 * THE SOFTWARE.
26 *
27 * Authors:
28 * Sheng Yang <sheng.yang@intel.com>
29 * Based on QEMU and Xen.
30 */
31
32#include <linux/kvm_host.h>
33
34#include "irq.h"
35#include "i8254.h"
36
37#ifndef CONFIG_X86_64
Roman Zippel6f6d6a12008-05-01 04:34:28 -070038#define mod_64(x, y) ((x) - (y) * div64_u64(x, y))
Sheng Yang78376992008-01-28 05:10:22 +080039#else
40#define mod_64(x, y) ((x) % (y))
41#endif
42
43#define RW_STATE_LSB 1
44#define RW_STATE_MSB 2
45#define RW_STATE_WORD0 3
46#define RW_STATE_WORD1 4
47
48/* Compute with 96 bit intermediate result: (a*b)/c */
49static u64 muldiv64(u64 a, u32 b, u32 c)
50{
51 union {
52 u64 ll;
53 struct {
54 u32 low, high;
55 } l;
56 } u, res;
57 u64 rl, rh;
58
59 u.ll = a;
60 rl = (u64)u.l.low * (u64)b;
61 rh = (u64)u.l.high * (u64)b;
62 rh += (rl >> 32);
Roman Zippel6f6d6a12008-05-01 04:34:28 -070063 res.l.high = div64_u64(rh, c);
64 res.l.low = div64_u64(((mod_64(rh, c) << 32) + (rl & 0xffffffff)), c);
Sheng Yang78376992008-01-28 05:10:22 +080065 return res.ll;
66}
67
68static void pit_set_gate(struct kvm *kvm, int channel, u32 val)
69{
70 struct kvm_kpit_channel_state *c =
71 &kvm->arch.vpit->pit_state.channels[channel];
72
73 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
74
75 switch (c->mode) {
76 default:
77 case 0:
78 case 4:
79 /* XXX: just disable/enable counting */
80 break;
81 case 1:
82 case 2:
83 case 3:
84 case 5:
85 /* Restart counting on rising edge. */
86 if (c->gate < val)
87 c->count_load_time = ktime_get();
88 break;
89 }
90
91 c->gate = val;
92}
93
94int pit_get_gate(struct kvm *kvm, int channel)
95{
96 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
97
98 return kvm->arch.vpit->pit_state.channels[channel].gate;
99}
100
101static int pit_get_count(struct kvm *kvm, int channel)
102{
103 struct kvm_kpit_channel_state *c =
104 &kvm->arch.vpit->pit_state.channels[channel];
105 s64 d, t;
106 int counter;
107
108 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
109
110 t = ktime_to_ns(ktime_sub(ktime_get(), c->count_load_time));
111 d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC);
112
113 switch (c->mode) {
114 case 0:
115 case 1:
116 case 4:
117 case 5:
118 counter = (c->count - d) & 0xffff;
119 break;
120 case 3:
121 /* XXX: may be incorrect for odd counts */
122 counter = c->count - (mod_64((2 * d), c->count));
123 break;
124 default:
125 counter = c->count - mod_64(d, c->count);
126 break;
127 }
128 return counter;
129}
130
131static int pit_get_out(struct kvm *kvm, int channel)
132{
133 struct kvm_kpit_channel_state *c =
134 &kvm->arch.vpit->pit_state.channels[channel];
135 s64 d, t;
136 int out;
137
138 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
139
140 t = ktime_to_ns(ktime_sub(ktime_get(), c->count_load_time));
141 d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC);
142
143 switch (c->mode) {
144 default:
145 case 0:
146 out = (d >= c->count);
147 break;
148 case 1:
149 out = (d < c->count);
150 break;
151 case 2:
152 out = ((mod_64(d, c->count) == 0) && (d != 0));
153 break;
154 case 3:
155 out = (mod_64(d, c->count) < ((c->count + 1) >> 1));
156 break;
157 case 4:
158 case 5:
159 out = (d == c->count);
160 break;
161 }
162
163 return out;
164}
165
166static void pit_latch_count(struct kvm *kvm, int channel)
167{
168 struct kvm_kpit_channel_state *c =
169 &kvm->arch.vpit->pit_state.channels[channel];
170
171 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
172
173 if (!c->count_latched) {
174 c->latched_count = pit_get_count(kvm, channel);
175 c->count_latched = c->rw_mode;
176 }
177}
178
179static void pit_latch_status(struct kvm *kvm, int channel)
180{
181 struct kvm_kpit_channel_state *c =
182 &kvm->arch.vpit->pit_state.channels[channel];
183
184 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
185
186 if (!c->status_latched) {
187 /* TODO: Return NULL COUNT (bit 6). */
188 c->status = ((pit_get_out(kvm, channel) << 7) |
189 (c->rw_mode << 4) |
190 (c->mode << 1) |
191 c->bcd);
192 c->status_latched = 1;
193 }
194}
195
196int __pit_timer_fn(struct kvm_kpit_state *ps)
197{
198 struct kvm_vcpu *vcpu0 = ps->pit->kvm->vcpus[0];
199 struct kvm_kpit_timer *pt = &ps->pit_timer;
200
201 atomic_inc(&pt->pending);
202 smp_mb__after_atomic_inc();
203 /* FIXME: handle case where the guest is in guest mode */
204 if (vcpu0 && waitqueue_active(&vcpu0->wq)) {
Avi Kivitya4535292008-04-13 17:54:35 +0300205 vcpu0->arch.mp_state = KVM_MP_STATE_RUNNABLE;
Sheng Yang78376992008-01-28 05:10:22 +0800206 wake_up_interruptible(&vcpu0->wq);
207 }
208
209 pt->timer.expires = ktime_add_ns(pt->timer.expires, pt->period);
210 pt->scheduled = ktime_to_ns(pt->timer.expires);
211
212 return (pt->period == 0 ? 0 : 1);
213}
214
Marcelo Tosatti3d808402008-04-11 14:53:26 -0300215int pit_has_pending_timer(struct kvm_vcpu *vcpu)
216{
217 struct kvm_pit *pit = vcpu->kvm->arch.vpit;
218
Marcelo Tosattieedaa4e2008-05-06 13:32:54 -0300219 if (pit && vcpu->vcpu_id == 0 && pit->pit_state.inject_pending)
Marcelo Tosatti3d808402008-04-11 14:53:26 -0300220 return atomic_read(&pit->pit_state.pit_timer.pending);
221
222 return 0;
223}
224
Sheng Yang78376992008-01-28 05:10:22 +0800225static enum hrtimer_restart pit_timer_fn(struct hrtimer *data)
226{
227 struct kvm_kpit_state *ps;
228 int restart_timer = 0;
229
230 ps = container_of(data, struct kvm_kpit_state, pit_timer.timer);
231
232 restart_timer = __pit_timer_fn(ps);
233
234 if (restart_timer)
235 return HRTIMER_RESTART;
236 else
237 return HRTIMER_NORESTART;
238}
239
240static void destroy_pit_timer(struct kvm_kpit_timer *pt)
241{
242 pr_debug("pit: execute del timer!\n");
243 hrtimer_cancel(&pt->timer);
244}
245
246static void create_pit_timer(struct kvm_kpit_timer *pt, u32 val, int is_period)
247{
248 s64 interval;
249
250 interval = muldiv64(val, NSEC_PER_SEC, KVM_PIT_FREQ);
251
252 pr_debug("pit: create pit timer, interval is %llu nsec\n", interval);
253
254 /* TODO The new value only affected after the retriggered */
255 hrtimer_cancel(&pt->timer);
256 pt->period = (is_period == 0) ? 0 : interval;
257 pt->timer.function = pit_timer_fn;
258 atomic_set(&pt->pending, 0);
259
260 hrtimer_start(&pt->timer, ktime_add_ns(ktime_get(), interval),
261 HRTIMER_MODE_ABS);
262}
263
264static void pit_load_count(struct kvm *kvm, int channel, u32 val)
265{
266 struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state;
267
268 WARN_ON(!mutex_is_locked(&ps->lock));
269
270 pr_debug("pit: load_count val is %d, channel is %d\n", val, channel);
271
272 /*
273 * Though spec said the state of 8254 is undefined after power-up,
274 * seems some tricky OS like Windows XP depends on IRQ0 interrupt
275 * when booting up.
276 * So here setting initialize rate for it, and not a specific number
277 */
278 if (val == 0)
279 val = 0x10000;
280
281 ps->channels[channel].count_load_time = ktime_get();
282 ps->channels[channel].count = val;
283
284 if (channel != 0)
285 return;
286
287 /* Two types of timer
288 * mode 1 is one shot, mode 2 is period, otherwise del timer */
289 switch (ps->channels[0].mode) {
290 case 1:
Marcelo Tosattiece15ba2008-04-30 13:23:54 -0300291 /* FIXME: enhance mode 4 precision */
292 case 4:
Sheng Yang78376992008-01-28 05:10:22 +0800293 create_pit_timer(&ps->pit_timer, val, 0);
294 break;
295 case 2:
296 create_pit_timer(&ps->pit_timer, val, 1);
297 break;
298 default:
299 destroy_pit_timer(&ps->pit_timer);
300 }
301}
302
Sheng Yange0f63cb2008-03-04 00:50:59 +0800303void kvm_pit_load_count(struct kvm *kvm, int channel, u32 val)
304{
305 mutex_lock(&kvm->arch.vpit->pit_state.lock);
306 pit_load_count(kvm, channel, val);
307 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
308}
309
Sheng Yang78376992008-01-28 05:10:22 +0800310static void pit_ioport_write(struct kvm_io_device *this,
311 gpa_t addr, int len, const void *data)
312{
313 struct kvm_pit *pit = (struct kvm_pit *)this->private;
314 struct kvm_kpit_state *pit_state = &pit->pit_state;
315 struct kvm *kvm = pit->kvm;
316 int channel, access;
317 struct kvm_kpit_channel_state *s;
318 u32 val = *(u32 *) data;
319
320 val &= 0xff;
321 addr &= KVM_PIT_CHANNEL_MASK;
322
323 mutex_lock(&pit_state->lock);
324
325 if (val != 0)
326 pr_debug("pit: write addr is 0x%x, len is %d, val is 0x%x\n",
327 (unsigned int)addr, len, val);
328
329 if (addr == 3) {
330 channel = val >> 6;
331 if (channel == 3) {
332 /* Read-Back Command. */
333 for (channel = 0; channel < 3; channel++) {
334 s = &pit_state->channels[channel];
335 if (val & (2 << channel)) {
336 if (!(val & 0x20))
337 pit_latch_count(kvm, channel);
338 if (!(val & 0x10))
339 pit_latch_status(kvm, channel);
340 }
341 }
342 } else {
343 /* Select Counter <channel>. */
344 s = &pit_state->channels[channel];
345 access = (val >> 4) & KVM_PIT_CHANNEL_MASK;
346 if (access == 0) {
347 pit_latch_count(kvm, channel);
348 } else {
349 s->rw_mode = access;
350 s->read_state = access;
351 s->write_state = access;
352 s->mode = (val >> 1) & 7;
353 if (s->mode > 5)
354 s->mode -= 4;
355 s->bcd = val & 1;
356 }
357 }
358 } else {
359 /* Write Count. */
360 s = &pit_state->channels[addr];
361 switch (s->write_state) {
362 default:
363 case RW_STATE_LSB:
364 pit_load_count(kvm, addr, val);
365 break;
366 case RW_STATE_MSB:
367 pit_load_count(kvm, addr, val << 8);
368 break;
369 case RW_STATE_WORD0:
370 s->write_latch = val;
371 s->write_state = RW_STATE_WORD1;
372 break;
373 case RW_STATE_WORD1:
374 pit_load_count(kvm, addr, s->write_latch | (val << 8));
375 s->write_state = RW_STATE_WORD0;
376 break;
377 }
378 }
379
380 mutex_unlock(&pit_state->lock);
381}
382
383static void pit_ioport_read(struct kvm_io_device *this,
384 gpa_t addr, int len, void *data)
385{
386 struct kvm_pit *pit = (struct kvm_pit *)this->private;
387 struct kvm_kpit_state *pit_state = &pit->pit_state;
388 struct kvm *kvm = pit->kvm;
389 int ret, count;
390 struct kvm_kpit_channel_state *s;
391
392 addr &= KVM_PIT_CHANNEL_MASK;
393 s = &pit_state->channels[addr];
394
395 mutex_lock(&pit_state->lock);
396
397 if (s->status_latched) {
398 s->status_latched = 0;
399 ret = s->status;
400 } else if (s->count_latched) {
401 switch (s->count_latched) {
402 default:
403 case RW_STATE_LSB:
404 ret = s->latched_count & 0xff;
405 s->count_latched = 0;
406 break;
407 case RW_STATE_MSB:
408 ret = s->latched_count >> 8;
409 s->count_latched = 0;
410 break;
411 case RW_STATE_WORD0:
412 ret = s->latched_count & 0xff;
413 s->count_latched = RW_STATE_MSB;
414 break;
415 }
416 } else {
417 switch (s->read_state) {
418 default:
419 case RW_STATE_LSB:
420 count = pit_get_count(kvm, addr);
421 ret = count & 0xff;
422 break;
423 case RW_STATE_MSB:
424 count = pit_get_count(kvm, addr);
425 ret = (count >> 8) & 0xff;
426 break;
427 case RW_STATE_WORD0:
428 count = pit_get_count(kvm, addr);
429 ret = count & 0xff;
430 s->read_state = RW_STATE_WORD1;
431 break;
432 case RW_STATE_WORD1:
433 count = pit_get_count(kvm, addr);
434 ret = (count >> 8) & 0xff;
435 s->read_state = RW_STATE_WORD0;
436 break;
437 }
438 }
439
440 if (len > sizeof(ret))
441 len = sizeof(ret);
442 memcpy(data, (char *)&ret, len);
443
444 mutex_unlock(&pit_state->lock);
445}
446
447static int pit_in_range(struct kvm_io_device *this, gpa_t addr)
448{
449 return ((addr >= KVM_PIT_BASE_ADDRESS) &&
450 (addr < KVM_PIT_BASE_ADDRESS + KVM_PIT_MEM_LENGTH));
451}
452
453static void speaker_ioport_write(struct kvm_io_device *this,
454 gpa_t addr, int len, const void *data)
455{
456 struct kvm_pit *pit = (struct kvm_pit *)this->private;
457 struct kvm_kpit_state *pit_state = &pit->pit_state;
458 struct kvm *kvm = pit->kvm;
459 u32 val = *(u32 *) data;
460
461 mutex_lock(&pit_state->lock);
462 pit_state->speaker_data_on = (val >> 1) & 1;
463 pit_set_gate(kvm, 2, val & 1);
464 mutex_unlock(&pit_state->lock);
465}
466
467static void speaker_ioport_read(struct kvm_io_device *this,
468 gpa_t addr, int len, void *data)
469{
470 struct kvm_pit *pit = (struct kvm_pit *)this->private;
471 struct kvm_kpit_state *pit_state = &pit->pit_state;
472 struct kvm *kvm = pit->kvm;
473 unsigned int refresh_clock;
474 int ret;
475
476 /* Refresh clock toggles at about 15us. We approximate as 2^14ns. */
477 refresh_clock = ((unsigned int)ktime_to_ns(ktime_get()) >> 14) & 1;
478
479 mutex_lock(&pit_state->lock);
480 ret = ((pit_state->speaker_data_on << 1) | pit_get_gate(kvm, 2) |
481 (pit_get_out(kvm, 2) << 5) | (refresh_clock << 4));
482 if (len > sizeof(ret))
483 len = sizeof(ret);
484 memcpy(data, (char *)&ret, len);
485 mutex_unlock(&pit_state->lock);
486}
487
488static int speaker_in_range(struct kvm_io_device *this, gpa_t addr)
489{
490 return (addr == KVM_SPEAKER_BASE_ADDRESS);
491}
492
Sheng Yang308b0f22008-03-13 10:22:26 +0800493void kvm_pit_reset(struct kvm_pit *pit)
Sheng Yang78376992008-01-28 05:10:22 +0800494{
495 int i;
Sheng Yang308b0f22008-03-13 10:22:26 +0800496 struct kvm_kpit_channel_state *c;
497
498 mutex_lock(&pit->pit_state.lock);
499 for (i = 0; i < 3; i++) {
500 c = &pit->pit_state.channels[i];
501 c->mode = 0xff;
502 c->gate = (i != 2);
503 pit_load_count(pit->kvm, i, 0);
504 }
505 mutex_unlock(&pit->pit_state.lock);
506
507 atomic_set(&pit->pit_state.pit_timer.pending, 0);
508 pit->pit_state.inject_pending = 1;
509}
510
511struct kvm_pit *kvm_create_pit(struct kvm *kvm)
512{
Sheng Yang78376992008-01-28 05:10:22 +0800513 struct kvm_pit *pit;
514 struct kvm_kpit_state *pit_state;
Sheng Yang78376992008-01-28 05:10:22 +0800515
516 pit = kzalloc(sizeof(struct kvm_pit), GFP_KERNEL);
517 if (!pit)
518 return NULL;
519
520 mutex_init(&pit->pit_state.lock);
521 mutex_lock(&pit->pit_state.lock);
522
523 /* Initialize PIO device */
524 pit->dev.read = pit_ioport_read;
525 pit->dev.write = pit_ioport_write;
526 pit->dev.in_range = pit_in_range;
527 pit->dev.private = pit;
528 kvm_io_bus_register_dev(&kvm->pio_bus, &pit->dev);
529
530 pit->speaker_dev.read = speaker_ioport_read;
531 pit->speaker_dev.write = speaker_ioport_write;
532 pit->speaker_dev.in_range = speaker_in_range;
533 pit->speaker_dev.private = pit;
534 kvm_io_bus_register_dev(&kvm->pio_bus, &pit->speaker_dev);
535
536 kvm->arch.vpit = pit;
537 pit->kvm = kvm;
538
539 pit_state = &pit->pit_state;
540 pit_state->pit = pit;
541 hrtimer_init(&pit_state->pit_timer.timer,
542 CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
Sheng Yang78376992008-01-28 05:10:22 +0800543 mutex_unlock(&pit->pit_state.lock);
544
Sheng Yang308b0f22008-03-13 10:22:26 +0800545 kvm_pit_reset(pit);
Sheng Yang78376992008-01-28 05:10:22 +0800546
547 return pit;
548}
549
550void kvm_free_pit(struct kvm *kvm)
551{
552 struct hrtimer *timer;
553
554 if (kvm->arch.vpit) {
555 mutex_lock(&kvm->arch.vpit->pit_state.lock);
556 timer = &kvm->arch.vpit->pit_state.pit_timer.timer;
557 hrtimer_cancel(timer);
558 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
559 kfree(kvm->arch.vpit);
560 }
561}
562
563void __inject_pit_timer_intr(struct kvm *kvm)
564{
565 mutex_lock(&kvm->lock);
566 kvm_ioapic_set_irq(kvm->arch.vioapic, 0, 1);
567 kvm_ioapic_set_irq(kvm->arch.vioapic, 0, 0);
568 kvm_pic_set_irq(pic_irqchip(kvm), 0, 1);
569 kvm_pic_set_irq(pic_irqchip(kvm), 0, 0);
570 mutex_unlock(&kvm->lock);
571}
572
573void kvm_inject_pit_timer_irqs(struct kvm_vcpu *vcpu)
574{
575 struct kvm_pit *pit = vcpu->kvm->arch.vpit;
576 struct kvm *kvm = vcpu->kvm;
577 struct kvm_kpit_state *ps;
578
579 if (vcpu && pit) {
580 ps = &pit->pit_state;
581
582 /* Try to inject pending interrupts when:
583 * 1. Pending exists
584 * 2. Last interrupt was accepted or waited for too long time*/
585 if (atomic_read(&ps->pit_timer.pending) &&
586 (ps->inject_pending ||
587 (jiffies - ps->last_injected_time
588 >= KVM_MAX_PIT_INTR_INTERVAL))) {
589 ps->inject_pending = 0;
590 __inject_pit_timer_intr(kvm);
591 ps->last_injected_time = jiffies;
592 }
593 }
594}
595
596void kvm_pit_timer_intr_post(struct kvm_vcpu *vcpu, int vec)
597{
598 struct kvm_arch *arch = &vcpu->kvm->arch;
599 struct kvm_kpit_state *ps;
600
601 if (vcpu && arch->vpit) {
602 ps = &arch->vpit->pit_state;
603 if (atomic_read(&ps->pit_timer.pending) &&
604 (((arch->vpic->pics[0].imr & 1) == 0 &&
605 arch->vpic->pics[0].irq_base == vec) ||
606 (arch->vioapic->redirtbl[0].fields.vector == vec &&
607 arch->vioapic->redirtbl[0].fields.mask != 1))) {
608 ps->inject_pending = 1;
609 atomic_dec(&ps->pit_timer.pending);
610 ps->channels[0].count_load_time = ktime_get();
611 }
612 }
613}