blob: 9f118e2f350d656d423530c3a8b5a1c5a55d0b7f [file] [log] [blame]
Sheng Yang78376992008-01-28 05:10:22 +08001/*
2 * 8253/8254 interval timer emulation
3 *
4 * Copyright (c) 2003-2004 Fabrice Bellard
5 * Copyright (c) 2006 Intel Corporation
6 * Copyright (c) 2007 Keir Fraser, XenSource Inc
7 * Copyright (c) 2008 Intel Corporation
8 *
9 * Permission is hereby granted, free of charge, to any person obtaining a copy
10 * of this software and associated documentation files (the "Software"), to deal
11 * in the Software without restriction, including without limitation the rights
12 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
13 * copies of the Software, and to permit persons to whom the Software is
14 * furnished to do so, subject to the following conditions:
15 *
16 * The above copyright notice and this permission notice shall be included in
17 * all copies or substantial portions of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
24 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25 * THE SOFTWARE.
26 *
27 * Authors:
28 * Sheng Yang <sheng.yang@intel.com>
29 * Based on QEMU and Xen.
30 */
31
32#include <linux/kvm_host.h>
33
34#include "irq.h"
35#include "i8254.h"
36
37#ifndef CONFIG_X86_64
38#define mod_64(x, y) ((x) - (y) * div64_64(x, y))
39#else
40#define mod_64(x, y) ((x) % (y))
41#endif
42
43#define RW_STATE_LSB 1
44#define RW_STATE_MSB 2
45#define RW_STATE_WORD0 3
46#define RW_STATE_WORD1 4
47
48/* Compute with 96 bit intermediate result: (a*b)/c */
49static u64 muldiv64(u64 a, u32 b, u32 c)
50{
51 union {
52 u64 ll;
53 struct {
54 u32 low, high;
55 } l;
56 } u, res;
57 u64 rl, rh;
58
59 u.ll = a;
60 rl = (u64)u.l.low * (u64)b;
61 rh = (u64)u.l.high * (u64)b;
62 rh += (rl >> 32);
63 res.l.high = div64_64(rh, c);
64 res.l.low = div64_64(((mod_64(rh, c) << 32) + (rl & 0xffffffff)), c);
65 return res.ll;
66}
67
68static void pit_set_gate(struct kvm *kvm, int channel, u32 val)
69{
70 struct kvm_kpit_channel_state *c =
71 &kvm->arch.vpit->pit_state.channels[channel];
72
73 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
74
75 switch (c->mode) {
76 default:
77 case 0:
78 case 4:
79 /* XXX: just disable/enable counting */
80 break;
81 case 1:
82 case 2:
83 case 3:
84 case 5:
85 /* Restart counting on rising edge. */
86 if (c->gate < val)
87 c->count_load_time = ktime_get();
88 break;
89 }
90
91 c->gate = val;
92}
93
94int pit_get_gate(struct kvm *kvm, int channel)
95{
96 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
97
98 return kvm->arch.vpit->pit_state.channels[channel].gate;
99}
100
101static int pit_get_count(struct kvm *kvm, int channel)
102{
103 struct kvm_kpit_channel_state *c =
104 &kvm->arch.vpit->pit_state.channels[channel];
105 s64 d, t;
106 int counter;
107
108 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
109
110 t = ktime_to_ns(ktime_sub(ktime_get(), c->count_load_time));
111 d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC);
112
113 switch (c->mode) {
114 case 0:
115 case 1:
116 case 4:
117 case 5:
118 counter = (c->count - d) & 0xffff;
119 break;
120 case 3:
121 /* XXX: may be incorrect for odd counts */
122 counter = c->count - (mod_64((2 * d), c->count));
123 break;
124 default:
125 counter = c->count - mod_64(d, c->count);
126 break;
127 }
128 return counter;
129}
130
131static int pit_get_out(struct kvm *kvm, int channel)
132{
133 struct kvm_kpit_channel_state *c =
134 &kvm->arch.vpit->pit_state.channels[channel];
135 s64 d, t;
136 int out;
137
138 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
139
140 t = ktime_to_ns(ktime_sub(ktime_get(), c->count_load_time));
141 d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC);
142
143 switch (c->mode) {
144 default:
145 case 0:
146 out = (d >= c->count);
147 break;
148 case 1:
149 out = (d < c->count);
150 break;
151 case 2:
152 out = ((mod_64(d, c->count) == 0) && (d != 0));
153 break;
154 case 3:
155 out = (mod_64(d, c->count) < ((c->count + 1) >> 1));
156 break;
157 case 4:
158 case 5:
159 out = (d == c->count);
160 break;
161 }
162
163 return out;
164}
165
166static void pit_latch_count(struct kvm *kvm, int channel)
167{
168 struct kvm_kpit_channel_state *c =
169 &kvm->arch.vpit->pit_state.channels[channel];
170
171 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
172
173 if (!c->count_latched) {
174 c->latched_count = pit_get_count(kvm, channel);
175 c->count_latched = c->rw_mode;
176 }
177}
178
179static void pit_latch_status(struct kvm *kvm, int channel)
180{
181 struct kvm_kpit_channel_state *c =
182 &kvm->arch.vpit->pit_state.channels[channel];
183
184 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
185
186 if (!c->status_latched) {
187 /* TODO: Return NULL COUNT (bit 6). */
188 c->status = ((pit_get_out(kvm, channel) << 7) |
189 (c->rw_mode << 4) |
190 (c->mode << 1) |
191 c->bcd);
192 c->status_latched = 1;
193 }
194}
195
196int __pit_timer_fn(struct kvm_kpit_state *ps)
197{
198 struct kvm_vcpu *vcpu0 = ps->pit->kvm->vcpus[0];
199 struct kvm_kpit_timer *pt = &ps->pit_timer;
200
201 atomic_inc(&pt->pending);
202 smp_mb__after_atomic_inc();
203 /* FIXME: handle case where the guest is in guest mode */
204 if (vcpu0 && waitqueue_active(&vcpu0->wq)) {
205 vcpu0->arch.mp_state = VCPU_MP_STATE_RUNNABLE;
206 wake_up_interruptible(&vcpu0->wq);
207 }
208
209 pt->timer.expires = ktime_add_ns(pt->timer.expires, pt->period);
210 pt->scheduled = ktime_to_ns(pt->timer.expires);
211
212 return (pt->period == 0 ? 0 : 1);
213}
214
215static enum hrtimer_restart pit_timer_fn(struct hrtimer *data)
216{
217 struct kvm_kpit_state *ps;
218 int restart_timer = 0;
219
220 ps = container_of(data, struct kvm_kpit_state, pit_timer.timer);
221
222 restart_timer = __pit_timer_fn(ps);
223
224 if (restart_timer)
225 return HRTIMER_RESTART;
226 else
227 return HRTIMER_NORESTART;
228}
229
230static void destroy_pit_timer(struct kvm_kpit_timer *pt)
231{
232 pr_debug("pit: execute del timer!\n");
233 hrtimer_cancel(&pt->timer);
234}
235
236static void create_pit_timer(struct kvm_kpit_timer *pt, u32 val, int is_period)
237{
238 s64 interval;
239
240 interval = muldiv64(val, NSEC_PER_SEC, KVM_PIT_FREQ);
241
242 pr_debug("pit: create pit timer, interval is %llu nsec\n", interval);
243
244 /* TODO The new value only affected after the retriggered */
245 hrtimer_cancel(&pt->timer);
246 pt->period = (is_period == 0) ? 0 : interval;
247 pt->timer.function = pit_timer_fn;
248 atomic_set(&pt->pending, 0);
249
250 hrtimer_start(&pt->timer, ktime_add_ns(ktime_get(), interval),
251 HRTIMER_MODE_ABS);
252}
253
254static void pit_load_count(struct kvm *kvm, int channel, u32 val)
255{
256 struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state;
257
258 WARN_ON(!mutex_is_locked(&ps->lock));
259
260 pr_debug("pit: load_count val is %d, channel is %d\n", val, channel);
261
262 /*
263 * Though spec said the state of 8254 is undefined after power-up,
264 * seems some tricky OS like Windows XP depends on IRQ0 interrupt
265 * when booting up.
266 * So here setting initialize rate for it, and not a specific number
267 */
268 if (val == 0)
269 val = 0x10000;
270
271 ps->channels[channel].count_load_time = ktime_get();
272 ps->channels[channel].count = val;
273
274 if (channel != 0)
275 return;
276
277 /* Two types of timer
278 * mode 1 is one shot, mode 2 is period, otherwise del timer */
279 switch (ps->channels[0].mode) {
280 case 1:
281 create_pit_timer(&ps->pit_timer, val, 0);
282 break;
283 case 2:
284 create_pit_timer(&ps->pit_timer, val, 1);
285 break;
286 default:
287 destroy_pit_timer(&ps->pit_timer);
288 }
289}
290
Sheng Yange0f63cb2008-03-04 00:50:59 +0800291void kvm_pit_load_count(struct kvm *kvm, int channel, u32 val)
292{
293 mutex_lock(&kvm->arch.vpit->pit_state.lock);
294 pit_load_count(kvm, channel, val);
295 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
296}
297
Sheng Yang78376992008-01-28 05:10:22 +0800298static void pit_ioport_write(struct kvm_io_device *this,
299 gpa_t addr, int len, const void *data)
300{
301 struct kvm_pit *pit = (struct kvm_pit *)this->private;
302 struct kvm_kpit_state *pit_state = &pit->pit_state;
303 struct kvm *kvm = pit->kvm;
304 int channel, access;
305 struct kvm_kpit_channel_state *s;
306 u32 val = *(u32 *) data;
307
308 val &= 0xff;
309 addr &= KVM_PIT_CHANNEL_MASK;
310
311 mutex_lock(&pit_state->lock);
312
313 if (val != 0)
314 pr_debug("pit: write addr is 0x%x, len is %d, val is 0x%x\n",
315 (unsigned int)addr, len, val);
316
317 if (addr == 3) {
318 channel = val >> 6;
319 if (channel == 3) {
320 /* Read-Back Command. */
321 for (channel = 0; channel < 3; channel++) {
322 s = &pit_state->channels[channel];
323 if (val & (2 << channel)) {
324 if (!(val & 0x20))
325 pit_latch_count(kvm, channel);
326 if (!(val & 0x10))
327 pit_latch_status(kvm, channel);
328 }
329 }
330 } else {
331 /* Select Counter <channel>. */
332 s = &pit_state->channels[channel];
333 access = (val >> 4) & KVM_PIT_CHANNEL_MASK;
334 if (access == 0) {
335 pit_latch_count(kvm, channel);
336 } else {
337 s->rw_mode = access;
338 s->read_state = access;
339 s->write_state = access;
340 s->mode = (val >> 1) & 7;
341 if (s->mode > 5)
342 s->mode -= 4;
343 s->bcd = val & 1;
344 }
345 }
346 } else {
347 /* Write Count. */
348 s = &pit_state->channels[addr];
349 switch (s->write_state) {
350 default:
351 case RW_STATE_LSB:
352 pit_load_count(kvm, addr, val);
353 break;
354 case RW_STATE_MSB:
355 pit_load_count(kvm, addr, val << 8);
356 break;
357 case RW_STATE_WORD0:
358 s->write_latch = val;
359 s->write_state = RW_STATE_WORD1;
360 break;
361 case RW_STATE_WORD1:
362 pit_load_count(kvm, addr, s->write_latch | (val << 8));
363 s->write_state = RW_STATE_WORD0;
364 break;
365 }
366 }
367
368 mutex_unlock(&pit_state->lock);
369}
370
371static void pit_ioport_read(struct kvm_io_device *this,
372 gpa_t addr, int len, void *data)
373{
374 struct kvm_pit *pit = (struct kvm_pit *)this->private;
375 struct kvm_kpit_state *pit_state = &pit->pit_state;
376 struct kvm *kvm = pit->kvm;
377 int ret, count;
378 struct kvm_kpit_channel_state *s;
379
380 addr &= KVM_PIT_CHANNEL_MASK;
381 s = &pit_state->channels[addr];
382
383 mutex_lock(&pit_state->lock);
384
385 if (s->status_latched) {
386 s->status_latched = 0;
387 ret = s->status;
388 } else if (s->count_latched) {
389 switch (s->count_latched) {
390 default:
391 case RW_STATE_LSB:
392 ret = s->latched_count & 0xff;
393 s->count_latched = 0;
394 break;
395 case RW_STATE_MSB:
396 ret = s->latched_count >> 8;
397 s->count_latched = 0;
398 break;
399 case RW_STATE_WORD0:
400 ret = s->latched_count & 0xff;
401 s->count_latched = RW_STATE_MSB;
402 break;
403 }
404 } else {
405 switch (s->read_state) {
406 default:
407 case RW_STATE_LSB:
408 count = pit_get_count(kvm, addr);
409 ret = count & 0xff;
410 break;
411 case RW_STATE_MSB:
412 count = pit_get_count(kvm, addr);
413 ret = (count >> 8) & 0xff;
414 break;
415 case RW_STATE_WORD0:
416 count = pit_get_count(kvm, addr);
417 ret = count & 0xff;
418 s->read_state = RW_STATE_WORD1;
419 break;
420 case RW_STATE_WORD1:
421 count = pit_get_count(kvm, addr);
422 ret = (count >> 8) & 0xff;
423 s->read_state = RW_STATE_WORD0;
424 break;
425 }
426 }
427
428 if (len > sizeof(ret))
429 len = sizeof(ret);
430 memcpy(data, (char *)&ret, len);
431
432 mutex_unlock(&pit_state->lock);
433}
434
435static int pit_in_range(struct kvm_io_device *this, gpa_t addr)
436{
437 return ((addr >= KVM_PIT_BASE_ADDRESS) &&
438 (addr < KVM_PIT_BASE_ADDRESS + KVM_PIT_MEM_LENGTH));
439}
440
441static void speaker_ioport_write(struct kvm_io_device *this,
442 gpa_t addr, int len, const void *data)
443{
444 struct kvm_pit *pit = (struct kvm_pit *)this->private;
445 struct kvm_kpit_state *pit_state = &pit->pit_state;
446 struct kvm *kvm = pit->kvm;
447 u32 val = *(u32 *) data;
448
449 mutex_lock(&pit_state->lock);
450 pit_state->speaker_data_on = (val >> 1) & 1;
451 pit_set_gate(kvm, 2, val & 1);
452 mutex_unlock(&pit_state->lock);
453}
454
455static void speaker_ioport_read(struct kvm_io_device *this,
456 gpa_t addr, int len, void *data)
457{
458 struct kvm_pit *pit = (struct kvm_pit *)this->private;
459 struct kvm_kpit_state *pit_state = &pit->pit_state;
460 struct kvm *kvm = pit->kvm;
461 unsigned int refresh_clock;
462 int ret;
463
464 /* Refresh clock toggles at about 15us. We approximate as 2^14ns. */
465 refresh_clock = ((unsigned int)ktime_to_ns(ktime_get()) >> 14) & 1;
466
467 mutex_lock(&pit_state->lock);
468 ret = ((pit_state->speaker_data_on << 1) | pit_get_gate(kvm, 2) |
469 (pit_get_out(kvm, 2) << 5) | (refresh_clock << 4));
470 if (len > sizeof(ret))
471 len = sizeof(ret);
472 memcpy(data, (char *)&ret, len);
473 mutex_unlock(&pit_state->lock);
474}
475
476static int speaker_in_range(struct kvm_io_device *this, gpa_t addr)
477{
478 return (addr == KVM_SPEAKER_BASE_ADDRESS);
479}
480
Sheng Yang308b0f22008-03-13 10:22:26 +0800481void kvm_pit_reset(struct kvm_pit *pit)
Sheng Yang78376992008-01-28 05:10:22 +0800482{
483 int i;
Sheng Yang308b0f22008-03-13 10:22:26 +0800484 struct kvm_kpit_channel_state *c;
485
486 mutex_lock(&pit->pit_state.lock);
487 for (i = 0; i < 3; i++) {
488 c = &pit->pit_state.channels[i];
489 c->mode = 0xff;
490 c->gate = (i != 2);
491 pit_load_count(pit->kvm, i, 0);
492 }
493 mutex_unlock(&pit->pit_state.lock);
494
495 atomic_set(&pit->pit_state.pit_timer.pending, 0);
496 pit->pit_state.inject_pending = 1;
497}
498
499struct kvm_pit *kvm_create_pit(struct kvm *kvm)
500{
Sheng Yang78376992008-01-28 05:10:22 +0800501 struct kvm_pit *pit;
502 struct kvm_kpit_state *pit_state;
Sheng Yang78376992008-01-28 05:10:22 +0800503
504 pit = kzalloc(sizeof(struct kvm_pit), GFP_KERNEL);
505 if (!pit)
506 return NULL;
507
508 mutex_init(&pit->pit_state.lock);
509 mutex_lock(&pit->pit_state.lock);
510
511 /* Initialize PIO device */
512 pit->dev.read = pit_ioport_read;
513 pit->dev.write = pit_ioport_write;
514 pit->dev.in_range = pit_in_range;
515 pit->dev.private = pit;
516 kvm_io_bus_register_dev(&kvm->pio_bus, &pit->dev);
517
518 pit->speaker_dev.read = speaker_ioport_read;
519 pit->speaker_dev.write = speaker_ioport_write;
520 pit->speaker_dev.in_range = speaker_in_range;
521 pit->speaker_dev.private = pit;
522 kvm_io_bus_register_dev(&kvm->pio_bus, &pit->speaker_dev);
523
524 kvm->arch.vpit = pit;
525 pit->kvm = kvm;
526
527 pit_state = &pit->pit_state;
528 pit_state->pit = pit;
529 hrtimer_init(&pit_state->pit_timer.timer,
530 CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
Sheng Yang78376992008-01-28 05:10:22 +0800531 mutex_unlock(&pit->pit_state.lock);
532
Sheng Yang308b0f22008-03-13 10:22:26 +0800533 kvm_pit_reset(pit);
Sheng Yang78376992008-01-28 05:10:22 +0800534
535 return pit;
536}
537
538void kvm_free_pit(struct kvm *kvm)
539{
540 struct hrtimer *timer;
541
542 if (kvm->arch.vpit) {
543 mutex_lock(&kvm->arch.vpit->pit_state.lock);
544 timer = &kvm->arch.vpit->pit_state.pit_timer.timer;
545 hrtimer_cancel(timer);
546 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
547 kfree(kvm->arch.vpit);
548 }
549}
550
551void __inject_pit_timer_intr(struct kvm *kvm)
552{
553 mutex_lock(&kvm->lock);
554 kvm_ioapic_set_irq(kvm->arch.vioapic, 0, 1);
555 kvm_ioapic_set_irq(kvm->arch.vioapic, 0, 0);
556 kvm_pic_set_irq(pic_irqchip(kvm), 0, 1);
557 kvm_pic_set_irq(pic_irqchip(kvm), 0, 0);
558 mutex_unlock(&kvm->lock);
559}
560
561void kvm_inject_pit_timer_irqs(struct kvm_vcpu *vcpu)
562{
563 struct kvm_pit *pit = vcpu->kvm->arch.vpit;
564 struct kvm *kvm = vcpu->kvm;
565 struct kvm_kpit_state *ps;
566
567 if (vcpu && pit) {
568 ps = &pit->pit_state;
569
570 /* Try to inject pending interrupts when:
571 * 1. Pending exists
572 * 2. Last interrupt was accepted or waited for too long time*/
573 if (atomic_read(&ps->pit_timer.pending) &&
574 (ps->inject_pending ||
575 (jiffies - ps->last_injected_time
576 >= KVM_MAX_PIT_INTR_INTERVAL))) {
577 ps->inject_pending = 0;
578 __inject_pit_timer_intr(kvm);
579 ps->last_injected_time = jiffies;
580 }
581 }
582}
583
584void kvm_pit_timer_intr_post(struct kvm_vcpu *vcpu, int vec)
585{
586 struct kvm_arch *arch = &vcpu->kvm->arch;
587 struct kvm_kpit_state *ps;
588
589 if (vcpu && arch->vpit) {
590 ps = &arch->vpit->pit_state;
591 if (atomic_read(&ps->pit_timer.pending) &&
592 (((arch->vpic->pics[0].imr & 1) == 0 &&
593 arch->vpic->pics[0].irq_base == vec) ||
594 (arch->vioapic->redirtbl[0].fields.vector == vec &&
595 arch->vioapic->redirtbl[0].fields.mask != 1))) {
596 ps->inject_pending = 1;
597 atomic_dec(&ps->pit_timer.pending);
598 ps->channels[0].count_load_time = ktime_get();
599 }
600 }
601}