Archit Taneja | c76b78d | 2016-02-03 14:29:50 +0530 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (c) 2016, The Linux Foundation. All rights reserved. |
| 3 | * |
| 4 | * This software is licensed under the terms of the GNU General Public |
| 5 | * License version 2, as published by the Free Software Foundation, and |
| 6 | * may be copied, distributed, and modified under those terms. |
| 7 | * |
| 8 | * This program is distributed in the hope that it will be useful, |
| 9 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 10 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 11 | * GNU General Public License for more details. |
| 12 | */ |
| 13 | |
| 14 | #include <linux/clk.h> |
| 15 | #include <linux/slab.h> |
| 16 | #include <linux/bitops.h> |
| 17 | #include <linux/dma-mapping.h> |
| 18 | #include <linux/dmaengine.h> |
| 19 | #include <linux/module.h> |
| 20 | #include <linux/mtd/nand.h> |
| 21 | #include <linux/mtd/partitions.h> |
| 22 | #include <linux/of.h> |
| 23 | #include <linux/of_device.h> |
Archit Taneja | c76b78d | 2016-02-03 14:29:50 +0530 | [diff] [blame] | 24 | #include <linux/delay.h> |
| 25 | |
| 26 | /* NANDc reg offsets */ |
| 27 | #define NAND_FLASH_CMD 0x00 |
| 28 | #define NAND_ADDR0 0x04 |
| 29 | #define NAND_ADDR1 0x08 |
| 30 | #define NAND_FLASH_CHIP_SELECT 0x0c |
| 31 | #define NAND_EXEC_CMD 0x10 |
| 32 | #define NAND_FLASH_STATUS 0x14 |
| 33 | #define NAND_BUFFER_STATUS 0x18 |
| 34 | #define NAND_DEV0_CFG0 0x20 |
| 35 | #define NAND_DEV0_CFG1 0x24 |
| 36 | #define NAND_DEV0_ECC_CFG 0x28 |
| 37 | #define NAND_DEV1_ECC_CFG 0x2c |
| 38 | #define NAND_DEV1_CFG0 0x30 |
| 39 | #define NAND_DEV1_CFG1 0x34 |
| 40 | #define NAND_READ_ID 0x40 |
| 41 | #define NAND_READ_STATUS 0x44 |
| 42 | #define NAND_DEV_CMD0 0xa0 |
| 43 | #define NAND_DEV_CMD1 0xa4 |
| 44 | #define NAND_DEV_CMD2 0xa8 |
| 45 | #define NAND_DEV_CMD_VLD 0xac |
| 46 | #define SFLASHC_BURST_CFG 0xe0 |
| 47 | #define NAND_ERASED_CW_DETECT_CFG 0xe8 |
| 48 | #define NAND_ERASED_CW_DETECT_STATUS 0xec |
| 49 | #define NAND_EBI2_ECC_BUF_CFG 0xf0 |
| 50 | #define FLASH_BUF_ACC 0x100 |
| 51 | |
| 52 | #define NAND_CTRL 0xf00 |
| 53 | #define NAND_VERSION 0xf08 |
| 54 | #define NAND_READ_LOCATION_0 0xf20 |
| 55 | #define NAND_READ_LOCATION_1 0xf24 |
| 56 | |
| 57 | /* dummy register offsets, used by write_reg_dma */ |
| 58 | #define NAND_DEV_CMD1_RESTORE 0xdead |
| 59 | #define NAND_DEV_CMD_VLD_RESTORE 0xbeef |
| 60 | |
| 61 | /* NAND_FLASH_CMD bits */ |
| 62 | #define PAGE_ACC BIT(4) |
| 63 | #define LAST_PAGE BIT(5) |
| 64 | |
| 65 | /* NAND_FLASH_CHIP_SELECT bits */ |
| 66 | #define NAND_DEV_SEL 0 |
| 67 | #define DM_EN BIT(2) |
| 68 | |
| 69 | /* NAND_FLASH_STATUS bits */ |
| 70 | #define FS_OP_ERR BIT(4) |
| 71 | #define FS_READY_BSY_N BIT(5) |
| 72 | #define FS_MPU_ERR BIT(8) |
| 73 | #define FS_DEVICE_STS_ERR BIT(16) |
| 74 | #define FS_DEVICE_WP BIT(23) |
| 75 | |
| 76 | /* NAND_BUFFER_STATUS bits */ |
| 77 | #define BS_UNCORRECTABLE_BIT BIT(8) |
| 78 | #define BS_CORRECTABLE_ERR_MSK 0x1f |
| 79 | |
| 80 | /* NAND_DEVn_CFG0 bits */ |
| 81 | #define DISABLE_STATUS_AFTER_WRITE 4 |
| 82 | #define CW_PER_PAGE 6 |
| 83 | #define UD_SIZE_BYTES 9 |
| 84 | #define ECC_PARITY_SIZE_BYTES_RS 19 |
| 85 | #define SPARE_SIZE_BYTES 23 |
| 86 | #define NUM_ADDR_CYCLES 27 |
| 87 | #define STATUS_BFR_READ 30 |
| 88 | #define SET_RD_MODE_AFTER_STATUS 31 |
| 89 | |
| 90 | /* NAND_DEVn_CFG0 bits */ |
| 91 | #define DEV0_CFG1_ECC_DISABLE 0 |
| 92 | #define WIDE_FLASH 1 |
| 93 | #define NAND_RECOVERY_CYCLES 2 |
| 94 | #define CS_ACTIVE_BSY 5 |
| 95 | #define BAD_BLOCK_BYTE_NUM 6 |
| 96 | #define BAD_BLOCK_IN_SPARE_AREA 16 |
| 97 | #define WR_RD_BSY_GAP 17 |
| 98 | #define ENABLE_BCH_ECC 27 |
| 99 | |
| 100 | /* NAND_DEV0_ECC_CFG bits */ |
| 101 | #define ECC_CFG_ECC_DISABLE 0 |
| 102 | #define ECC_SW_RESET 1 |
| 103 | #define ECC_MODE 4 |
| 104 | #define ECC_PARITY_SIZE_BYTES_BCH 8 |
| 105 | #define ECC_NUM_DATA_BYTES 16 |
| 106 | #define ECC_FORCE_CLK_OPEN 30 |
| 107 | |
| 108 | /* NAND_DEV_CMD1 bits */ |
| 109 | #define READ_ADDR 0 |
| 110 | |
| 111 | /* NAND_DEV_CMD_VLD bits */ |
| 112 | #define READ_START_VLD 0 |
| 113 | |
| 114 | /* NAND_EBI2_ECC_BUF_CFG bits */ |
| 115 | #define NUM_STEPS 0 |
| 116 | |
| 117 | /* NAND_ERASED_CW_DETECT_CFG bits */ |
| 118 | #define ERASED_CW_ECC_MASK 1 |
| 119 | #define AUTO_DETECT_RES 0 |
| 120 | #define MASK_ECC (1 << ERASED_CW_ECC_MASK) |
| 121 | #define RESET_ERASED_DET (1 << AUTO_DETECT_RES) |
| 122 | #define ACTIVE_ERASED_DET (0 << AUTO_DETECT_RES) |
| 123 | #define CLR_ERASED_PAGE_DET (RESET_ERASED_DET | MASK_ECC) |
| 124 | #define SET_ERASED_PAGE_DET (ACTIVE_ERASED_DET | MASK_ECC) |
| 125 | |
| 126 | /* NAND_ERASED_CW_DETECT_STATUS bits */ |
| 127 | #define PAGE_ALL_ERASED BIT(7) |
| 128 | #define CODEWORD_ALL_ERASED BIT(6) |
| 129 | #define PAGE_ERASED BIT(5) |
| 130 | #define CODEWORD_ERASED BIT(4) |
| 131 | #define ERASED_PAGE (PAGE_ALL_ERASED | PAGE_ERASED) |
| 132 | #define ERASED_CW (CODEWORD_ALL_ERASED | CODEWORD_ERASED) |
| 133 | |
| 134 | /* Version Mask */ |
| 135 | #define NAND_VERSION_MAJOR_MASK 0xf0000000 |
| 136 | #define NAND_VERSION_MAJOR_SHIFT 28 |
| 137 | #define NAND_VERSION_MINOR_MASK 0x0fff0000 |
| 138 | #define NAND_VERSION_MINOR_SHIFT 16 |
| 139 | |
| 140 | /* NAND OP_CMDs */ |
| 141 | #define PAGE_READ 0x2 |
| 142 | #define PAGE_READ_WITH_ECC 0x3 |
| 143 | #define PAGE_READ_WITH_ECC_SPARE 0x4 |
| 144 | #define PROGRAM_PAGE 0x6 |
| 145 | #define PAGE_PROGRAM_WITH_ECC 0x7 |
| 146 | #define PROGRAM_PAGE_SPARE 0x9 |
| 147 | #define BLOCK_ERASE 0xa |
| 148 | #define FETCH_ID 0xb |
| 149 | #define RESET_DEVICE 0xd |
| 150 | |
| 151 | /* |
| 152 | * the NAND controller performs reads/writes with ECC in 516 byte chunks. |
| 153 | * the driver calls the chunks 'step' or 'codeword' interchangeably |
| 154 | */ |
| 155 | #define NANDC_STEP_SIZE 512 |
| 156 | |
| 157 | /* |
| 158 | * the largest page size we support is 8K, this will have 16 steps/codewords |
| 159 | * of 512 bytes each |
| 160 | */ |
| 161 | #define MAX_NUM_STEPS (SZ_8K / NANDC_STEP_SIZE) |
| 162 | |
| 163 | /* we read at most 3 registers per codeword scan */ |
| 164 | #define MAX_REG_RD (3 * MAX_NUM_STEPS) |
| 165 | |
| 166 | /* ECC modes supported by the controller */ |
| 167 | #define ECC_NONE BIT(0) |
| 168 | #define ECC_RS_4BIT BIT(1) |
| 169 | #define ECC_BCH_4BIT BIT(2) |
| 170 | #define ECC_BCH_8BIT BIT(3) |
| 171 | |
| 172 | struct desc_info { |
| 173 | struct list_head node; |
| 174 | |
| 175 | enum dma_data_direction dir; |
| 176 | struct scatterlist sgl; |
| 177 | struct dma_async_tx_descriptor *dma_desc; |
| 178 | }; |
| 179 | |
| 180 | /* |
| 181 | * holds the current register values that we want to write. acts as a contiguous |
| 182 | * chunk of memory which we use to write the controller registers through DMA. |
| 183 | */ |
| 184 | struct nandc_regs { |
| 185 | __le32 cmd; |
| 186 | __le32 addr0; |
| 187 | __le32 addr1; |
| 188 | __le32 chip_sel; |
| 189 | __le32 exec; |
| 190 | |
| 191 | __le32 cfg0; |
| 192 | __le32 cfg1; |
| 193 | __le32 ecc_bch_cfg; |
| 194 | |
| 195 | __le32 clrflashstatus; |
| 196 | __le32 clrreadstatus; |
| 197 | |
| 198 | __le32 cmd1; |
| 199 | __le32 vld; |
| 200 | |
| 201 | __le32 orig_cmd1; |
| 202 | __le32 orig_vld; |
| 203 | |
| 204 | __le32 ecc_buf_cfg; |
| 205 | }; |
| 206 | |
| 207 | /* |
| 208 | * NAND controller data struct |
| 209 | * |
| 210 | * @controller: base controller structure |
| 211 | * @host_list: list containing all the chips attached to the |
| 212 | * controller |
| 213 | * @dev: parent device |
| 214 | * @base: MMIO base |
| 215 | * @base_dma: physical base address of controller registers |
| 216 | * @core_clk: controller clock |
| 217 | * @aon_clk: another controller clock |
| 218 | * |
| 219 | * @chan: dma channel |
| 220 | * @cmd_crci: ADM DMA CRCI for command flow control |
| 221 | * @data_crci: ADM DMA CRCI for data flow control |
| 222 | * @desc_list: DMA descriptor list (list of desc_infos) |
| 223 | * |
| 224 | * @data_buffer: our local DMA buffer for page read/writes, |
| 225 | * used when we can't use the buffer provided |
| 226 | * by upper layers directly |
| 227 | * @buf_size/count/start: markers for chip->read_buf/write_buf functions |
| 228 | * @reg_read_buf: local buffer for reading back registers via DMA |
| 229 | * @reg_read_pos: marker for data read in reg_read_buf |
| 230 | * |
| 231 | * @regs: a contiguous chunk of memory for DMA register |
| 232 | * writes. contains the register values to be |
| 233 | * written to controller |
| 234 | * @cmd1/vld: some fixed controller register values |
| 235 | * @ecc_modes: supported ECC modes by the current controller, |
| 236 | * initialized via DT match data |
| 237 | */ |
| 238 | struct qcom_nand_controller { |
| 239 | struct nand_hw_control controller; |
| 240 | struct list_head host_list; |
| 241 | |
| 242 | struct device *dev; |
| 243 | |
| 244 | void __iomem *base; |
| 245 | dma_addr_t base_dma; |
| 246 | |
| 247 | struct clk *core_clk; |
| 248 | struct clk *aon_clk; |
| 249 | |
| 250 | struct dma_chan *chan; |
| 251 | unsigned int cmd_crci; |
| 252 | unsigned int data_crci; |
| 253 | struct list_head desc_list; |
| 254 | |
| 255 | u8 *data_buffer; |
| 256 | int buf_size; |
| 257 | int buf_count; |
| 258 | int buf_start; |
| 259 | |
| 260 | __le32 *reg_read_buf; |
| 261 | int reg_read_pos; |
| 262 | |
| 263 | struct nandc_regs *regs; |
| 264 | |
| 265 | u32 cmd1, vld; |
| 266 | u32 ecc_modes; |
| 267 | }; |
| 268 | |
| 269 | /* |
| 270 | * NAND chip structure |
| 271 | * |
| 272 | * @chip: base NAND chip structure |
| 273 | * @node: list node to add itself to host_list in |
| 274 | * qcom_nand_controller |
| 275 | * |
| 276 | * @cs: chip select value for this chip |
| 277 | * @cw_size: the number of bytes in a single step/codeword |
| 278 | * of a page, consisting of all data, ecc, spare |
| 279 | * and reserved bytes |
| 280 | * @cw_data: the number of bytes within a codeword protected |
| 281 | * by ECC |
| 282 | * @use_ecc: request the controller to use ECC for the |
| 283 | * upcoming read/write |
| 284 | * @bch_enabled: flag to tell whether BCH ECC mode is used |
| 285 | * @ecc_bytes_hw: ECC bytes used by controller hardware for this |
| 286 | * chip |
| 287 | * @status: value to be returned if NAND_CMD_STATUS command |
| 288 | * is executed |
| 289 | * @last_command: keeps track of last command on this chip. used |
| 290 | * for reading correct status |
| 291 | * |
| 292 | * @cfg0, cfg1, cfg0_raw..: NANDc register configurations needed for |
| 293 | * ecc/non-ecc mode for the current nand flash |
| 294 | * device |
| 295 | */ |
| 296 | struct qcom_nand_host { |
| 297 | struct nand_chip chip; |
| 298 | struct list_head node; |
| 299 | |
| 300 | int cs; |
| 301 | int cw_size; |
| 302 | int cw_data; |
| 303 | bool use_ecc; |
| 304 | bool bch_enabled; |
| 305 | int ecc_bytes_hw; |
| 306 | int spare_bytes; |
| 307 | int bbm_size; |
| 308 | u8 status; |
| 309 | int last_command; |
| 310 | |
| 311 | u32 cfg0, cfg1; |
| 312 | u32 cfg0_raw, cfg1_raw; |
| 313 | u32 ecc_buf_cfg; |
| 314 | u32 ecc_bch_cfg; |
| 315 | u32 clrflashstatus; |
| 316 | u32 clrreadstatus; |
| 317 | }; |
| 318 | |
| 319 | static inline struct qcom_nand_host *to_qcom_nand_host(struct nand_chip *chip) |
| 320 | { |
| 321 | return container_of(chip, struct qcom_nand_host, chip); |
| 322 | } |
| 323 | |
| 324 | static inline struct qcom_nand_controller * |
| 325 | get_qcom_nand_controller(struct nand_chip *chip) |
| 326 | { |
| 327 | return container_of(chip->controller, struct qcom_nand_controller, |
| 328 | controller); |
| 329 | } |
| 330 | |
| 331 | static inline u32 nandc_read(struct qcom_nand_controller *nandc, int offset) |
| 332 | { |
| 333 | return ioread32(nandc->base + offset); |
| 334 | } |
| 335 | |
| 336 | static inline void nandc_write(struct qcom_nand_controller *nandc, int offset, |
| 337 | u32 val) |
| 338 | { |
| 339 | iowrite32(val, nandc->base + offset); |
| 340 | } |
| 341 | |
| 342 | static __le32 *offset_to_nandc_reg(struct nandc_regs *regs, int offset) |
| 343 | { |
| 344 | switch (offset) { |
| 345 | case NAND_FLASH_CMD: |
| 346 | return ®s->cmd; |
| 347 | case NAND_ADDR0: |
| 348 | return ®s->addr0; |
| 349 | case NAND_ADDR1: |
| 350 | return ®s->addr1; |
| 351 | case NAND_FLASH_CHIP_SELECT: |
| 352 | return ®s->chip_sel; |
| 353 | case NAND_EXEC_CMD: |
| 354 | return ®s->exec; |
| 355 | case NAND_FLASH_STATUS: |
| 356 | return ®s->clrflashstatus; |
| 357 | case NAND_DEV0_CFG0: |
| 358 | return ®s->cfg0; |
| 359 | case NAND_DEV0_CFG1: |
| 360 | return ®s->cfg1; |
| 361 | case NAND_DEV0_ECC_CFG: |
| 362 | return ®s->ecc_bch_cfg; |
| 363 | case NAND_READ_STATUS: |
| 364 | return ®s->clrreadstatus; |
| 365 | case NAND_DEV_CMD1: |
| 366 | return ®s->cmd1; |
| 367 | case NAND_DEV_CMD1_RESTORE: |
| 368 | return ®s->orig_cmd1; |
| 369 | case NAND_DEV_CMD_VLD: |
| 370 | return ®s->vld; |
| 371 | case NAND_DEV_CMD_VLD_RESTORE: |
| 372 | return ®s->orig_vld; |
| 373 | case NAND_EBI2_ECC_BUF_CFG: |
| 374 | return ®s->ecc_buf_cfg; |
| 375 | default: |
| 376 | return NULL; |
| 377 | } |
| 378 | } |
| 379 | |
| 380 | static void nandc_set_reg(struct qcom_nand_controller *nandc, int offset, |
| 381 | u32 val) |
| 382 | { |
| 383 | struct nandc_regs *regs = nandc->regs; |
| 384 | __le32 *reg; |
| 385 | |
| 386 | reg = offset_to_nandc_reg(regs, offset); |
| 387 | |
| 388 | if (reg) |
| 389 | *reg = cpu_to_le32(val); |
| 390 | } |
| 391 | |
| 392 | /* helper to configure address register values */ |
| 393 | static void set_address(struct qcom_nand_host *host, u16 column, int page) |
| 394 | { |
| 395 | struct nand_chip *chip = &host->chip; |
| 396 | struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); |
| 397 | |
| 398 | if (chip->options & NAND_BUSWIDTH_16) |
| 399 | column >>= 1; |
| 400 | |
| 401 | nandc_set_reg(nandc, NAND_ADDR0, page << 16 | column); |
| 402 | nandc_set_reg(nandc, NAND_ADDR1, page >> 16 & 0xff); |
| 403 | } |
| 404 | |
| 405 | /* |
| 406 | * update_rw_regs: set up read/write register values, these will be |
| 407 | * written to the NAND controller registers via DMA |
| 408 | * |
| 409 | * @num_cw: number of steps for the read/write operation |
| 410 | * @read: read or write operation |
| 411 | */ |
| 412 | static void update_rw_regs(struct qcom_nand_host *host, int num_cw, bool read) |
| 413 | { |
| 414 | struct nand_chip *chip = &host->chip; |
| 415 | struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); |
| 416 | u32 cmd, cfg0, cfg1, ecc_bch_cfg; |
| 417 | |
| 418 | if (read) { |
| 419 | if (host->use_ecc) |
| 420 | cmd = PAGE_READ_WITH_ECC | PAGE_ACC | LAST_PAGE; |
| 421 | else |
| 422 | cmd = PAGE_READ | PAGE_ACC | LAST_PAGE; |
| 423 | } else { |
| 424 | cmd = PROGRAM_PAGE | PAGE_ACC | LAST_PAGE; |
| 425 | } |
| 426 | |
| 427 | if (host->use_ecc) { |
| 428 | cfg0 = (host->cfg0 & ~(7U << CW_PER_PAGE)) | |
| 429 | (num_cw - 1) << CW_PER_PAGE; |
| 430 | |
| 431 | cfg1 = host->cfg1; |
| 432 | ecc_bch_cfg = host->ecc_bch_cfg; |
| 433 | } else { |
| 434 | cfg0 = (host->cfg0_raw & ~(7U << CW_PER_PAGE)) | |
| 435 | (num_cw - 1) << CW_PER_PAGE; |
| 436 | |
| 437 | cfg1 = host->cfg1_raw; |
| 438 | ecc_bch_cfg = 1 << ECC_CFG_ECC_DISABLE; |
| 439 | } |
| 440 | |
| 441 | nandc_set_reg(nandc, NAND_FLASH_CMD, cmd); |
| 442 | nandc_set_reg(nandc, NAND_DEV0_CFG0, cfg0); |
| 443 | nandc_set_reg(nandc, NAND_DEV0_CFG1, cfg1); |
| 444 | nandc_set_reg(nandc, NAND_DEV0_ECC_CFG, ecc_bch_cfg); |
| 445 | nandc_set_reg(nandc, NAND_EBI2_ECC_BUF_CFG, host->ecc_buf_cfg); |
| 446 | nandc_set_reg(nandc, NAND_FLASH_STATUS, host->clrflashstatus); |
| 447 | nandc_set_reg(nandc, NAND_READ_STATUS, host->clrreadstatus); |
| 448 | nandc_set_reg(nandc, NAND_EXEC_CMD, 1); |
| 449 | } |
| 450 | |
| 451 | static int prep_dma_desc(struct qcom_nand_controller *nandc, bool read, |
| 452 | int reg_off, const void *vaddr, int size, |
| 453 | bool flow_control) |
| 454 | { |
| 455 | struct desc_info *desc; |
| 456 | struct dma_async_tx_descriptor *dma_desc; |
| 457 | struct scatterlist *sgl; |
| 458 | struct dma_slave_config slave_conf; |
| 459 | enum dma_transfer_direction dir_eng; |
| 460 | int ret; |
| 461 | |
| 462 | desc = kzalloc(sizeof(*desc), GFP_KERNEL); |
| 463 | if (!desc) |
| 464 | return -ENOMEM; |
| 465 | |
| 466 | sgl = &desc->sgl; |
| 467 | |
| 468 | sg_init_one(sgl, vaddr, size); |
| 469 | |
| 470 | if (read) { |
| 471 | dir_eng = DMA_DEV_TO_MEM; |
| 472 | desc->dir = DMA_FROM_DEVICE; |
| 473 | } else { |
| 474 | dir_eng = DMA_MEM_TO_DEV; |
| 475 | desc->dir = DMA_TO_DEVICE; |
| 476 | } |
| 477 | |
| 478 | ret = dma_map_sg(nandc->dev, sgl, 1, desc->dir); |
| 479 | if (ret == 0) { |
| 480 | ret = -ENOMEM; |
| 481 | goto err; |
| 482 | } |
| 483 | |
| 484 | memset(&slave_conf, 0x00, sizeof(slave_conf)); |
| 485 | |
| 486 | slave_conf.device_fc = flow_control; |
| 487 | if (read) { |
| 488 | slave_conf.src_maxburst = 16; |
| 489 | slave_conf.src_addr = nandc->base_dma + reg_off; |
| 490 | slave_conf.slave_id = nandc->data_crci; |
| 491 | } else { |
| 492 | slave_conf.dst_maxburst = 16; |
| 493 | slave_conf.dst_addr = nandc->base_dma + reg_off; |
| 494 | slave_conf.slave_id = nandc->cmd_crci; |
| 495 | } |
| 496 | |
| 497 | ret = dmaengine_slave_config(nandc->chan, &slave_conf); |
| 498 | if (ret) { |
| 499 | dev_err(nandc->dev, "failed to configure dma channel\n"); |
| 500 | goto err; |
| 501 | } |
| 502 | |
| 503 | dma_desc = dmaengine_prep_slave_sg(nandc->chan, sgl, 1, dir_eng, 0); |
| 504 | if (!dma_desc) { |
| 505 | dev_err(nandc->dev, "failed to prepare desc\n"); |
| 506 | ret = -EINVAL; |
| 507 | goto err; |
| 508 | } |
| 509 | |
| 510 | desc->dma_desc = dma_desc; |
| 511 | |
| 512 | list_add_tail(&desc->node, &nandc->desc_list); |
| 513 | |
| 514 | return 0; |
| 515 | err: |
| 516 | kfree(desc); |
| 517 | |
| 518 | return ret; |
| 519 | } |
| 520 | |
| 521 | /* |
| 522 | * read_reg_dma: prepares a descriptor to read a given number of |
| 523 | * contiguous registers to the reg_read_buf pointer |
| 524 | * |
| 525 | * @first: offset of the first register in the contiguous block |
| 526 | * @num_regs: number of registers to read |
| 527 | */ |
| 528 | static int read_reg_dma(struct qcom_nand_controller *nandc, int first, |
| 529 | int num_regs) |
| 530 | { |
| 531 | bool flow_control = false; |
| 532 | void *vaddr; |
| 533 | int size; |
| 534 | |
| 535 | if (first == NAND_READ_ID || first == NAND_FLASH_STATUS) |
| 536 | flow_control = true; |
| 537 | |
| 538 | size = num_regs * sizeof(u32); |
| 539 | vaddr = nandc->reg_read_buf + nandc->reg_read_pos; |
| 540 | nandc->reg_read_pos += num_regs; |
| 541 | |
| 542 | return prep_dma_desc(nandc, true, first, vaddr, size, flow_control); |
| 543 | } |
| 544 | |
| 545 | /* |
| 546 | * write_reg_dma: prepares a descriptor to write a given number of |
| 547 | * contiguous registers |
| 548 | * |
| 549 | * @first: offset of the first register in the contiguous block |
| 550 | * @num_regs: number of registers to write |
| 551 | */ |
| 552 | static int write_reg_dma(struct qcom_nand_controller *nandc, int first, |
| 553 | int num_regs) |
| 554 | { |
| 555 | bool flow_control = false; |
| 556 | struct nandc_regs *regs = nandc->regs; |
| 557 | void *vaddr; |
| 558 | int size; |
| 559 | |
| 560 | vaddr = offset_to_nandc_reg(regs, first); |
| 561 | |
| 562 | if (first == NAND_FLASH_CMD) |
| 563 | flow_control = true; |
| 564 | |
| 565 | if (first == NAND_DEV_CMD1_RESTORE) |
| 566 | first = NAND_DEV_CMD1; |
| 567 | |
| 568 | if (first == NAND_DEV_CMD_VLD_RESTORE) |
| 569 | first = NAND_DEV_CMD_VLD; |
| 570 | |
| 571 | size = num_regs * sizeof(u32); |
| 572 | |
| 573 | return prep_dma_desc(nandc, false, first, vaddr, size, flow_control); |
| 574 | } |
| 575 | |
| 576 | /* |
| 577 | * read_data_dma: prepares a DMA descriptor to transfer data from the |
| 578 | * controller's internal buffer to the buffer 'vaddr' |
| 579 | * |
| 580 | * @reg_off: offset within the controller's data buffer |
| 581 | * @vaddr: virtual address of the buffer we want to write to |
| 582 | * @size: DMA transaction size in bytes |
| 583 | */ |
| 584 | static int read_data_dma(struct qcom_nand_controller *nandc, int reg_off, |
| 585 | const u8 *vaddr, int size) |
| 586 | { |
| 587 | return prep_dma_desc(nandc, true, reg_off, vaddr, size, false); |
| 588 | } |
| 589 | |
| 590 | /* |
| 591 | * write_data_dma: prepares a DMA descriptor to transfer data from |
| 592 | * 'vaddr' to the controller's internal buffer |
| 593 | * |
| 594 | * @reg_off: offset within the controller's data buffer |
| 595 | * @vaddr: virtual address of the buffer we want to read from |
| 596 | * @size: DMA transaction size in bytes |
| 597 | */ |
| 598 | static int write_data_dma(struct qcom_nand_controller *nandc, int reg_off, |
| 599 | const u8 *vaddr, int size) |
| 600 | { |
| 601 | return prep_dma_desc(nandc, false, reg_off, vaddr, size, false); |
| 602 | } |
| 603 | |
| 604 | /* |
| 605 | * helper to prepare dma descriptors to configure registers needed for reading a |
| 606 | * codeword/step in a page |
| 607 | */ |
| 608 | static void config_cw_read(struct qcom_nand_controller *nandc) |
| 609 | { |
| 610 | write_reg_dma(nandc, NAND_FLASH_CMD, 3); |
| 611 | write_reg_dma(nandc, NAND_DEV0_CFG0, 3); |
| 612 | write_reg_dma(nandc, NAND_EBI2_ECC_BUF_CFG, 1); |
| 613 | |
| 614 | write_reg_dma(nandc, NAND_EXEC_CMD, 1); |
| 615 | |
| 616 | read_reg_dma(nandc, NAND_FLASH_STATUS, 2); |
| 617 | read_reg_dma(nandc, NAND_ERASED_CW_DETECT_STATUS, 1); |
| 618 | } |
| 619 | |
| 620 | /* |
| 621 | * helpers to prepare dma descriptors used to configure registers needed for |
| 622 | * writing a codeword/step in a page |
| 623 | */ |
| 624 | static void config_cw_write_pre(struct qcom_nand_controller *nandc) |
| 625 | { |
| 626 | write_reg_dma(nandc, NAND_FLASH_CMD, 3); |
| 627 | write_reg_dma(nandc, NAND_DEV0_CFG0, 3); |
| 628 | write_reg_dma(nandc, NAND_EBI2_ECC_BUF_CFG, 1); |
| 629 | } |
| 630 | |
| 631 | static void config_cw_write_post(struct qcom_nand_controller *nandc) |
| 632 | { |
| 633 | write_reg_dma(nandc, NAND_EXEC_CMD, 1); |
| 634 | |
| 635 | read_reg_dma(nandc, NAND_FLASH_STATUS, 1); |
| 636 | |
| 637 | write_reg_dma(nandc, NAND_FLASH_STATUS, 1); |
| 638 | write_reg_dma(nandc, NAND_READ_STATUS, 1); |
| 639 | } |
| 640 | |
| 641 | /* |
| 642 | * the following functions are used within chip->cmdfunc() to perform different |
| 643 | * NAND_CMD_* commands |
| 644 | */ |
| 645 | |
| 646 | /* sets up descriptors for NAND_CMD_PARAM */ |
| 647 | static int nandc_param(struct qcom_nand_host *host) |
| 648 | { |
| 649 | struct nand_chip *chip = &host->chip; |
| 650 | struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); |
| 651 | |
| 652 | /* |
| 653 | * NAND_CMD_PARAM is called before we know much about the FLASH chip |
| 654 | * in use. we configure the controller to perform a raw read of 512 |
| 655 | * bytes to read onfi params |
| 656 | */ |
| 657 | nandc_set_reg(nandc, NAND_FLASH_CMD, PAGE_READ | PAGE_ACC | LAST_PAGE); |
| 658 | nandc_set_reg(nandc, NAND_ADDR0, 0); |
| 659 | nandc_set_reg(nandc, NAND_ADDR1, 0); |
| 660 | nandc_set_reg(nandc, NAND_DEV0_CFG0, 0 << CW_PER_PAGE |
| 661 | | 512 << UD_SIZE_BYTES |
| 662 | | 5 << NUM_ADDR_CYCLES |
| 663 | | 0 << SPARE_SIZE_BYTES); |
| 664 | nandc_set_reg(nandc, NAND_DEV0_CFG1, 7 << NAND_RECOVERY_CYCLES |
| 665 | | 0 << CS_ACTIVE_BSY |
| 666 | | 17 << BAD_BLOCK_BYTE_NUM |
| 667 | | 1 << BAD_BLOCK_IN_SPARE_AREA |
| 668 | | 2 << WR_RD_BSY_GAP |
| 669 | | 0 << WIDE_FLASH |
| 670 | | 1 << DEV0_CFG1_ECC_DISABLE); |
| 671 | nandc_set_reg(nandc, NAND_EBI2_ECC_BUF_CFG, 1 << ECC_CFG_ECC_DISABLE); |
| 672 | |
| 673 | /* configure CMD1 and VLD for ONFI param probing */ |
| 674 | nandc_set_reg(nandc, NAND_DEV_CMD_VLD, |
| 675 | (nandc->vld & ~(1 << READ_START_VLD)) |
| 676 | | 0 << READ_START_VLD); |
| 677 | nandc_set_reg(nandc, NAND_DEV_CMD1, |
| 678 | (nandc->cmd1 & ~(0xFF << READ_ADDR)) |
| 679 | | NAND_CMD_PARAM << READ_ADDR); |
| 680 | |
| 681 | nandc_set_reg(nandc, NAND_EXEC_CMD, 1); |
| 682 | |
| 683 | nandc_set_reg(nandc, NAND_DEV_CMD1_RESTORE, nandc->cmd1); |
| 684 | nandc_set_reg(nandc, NAND_DEV_CMD_VLD_RESTORE, nandc->vld); |
| 685 | |
| 686 | write_reg_dma(nandc, NAND_DEV_CMD_VLD, 1); |
| 687 | write_reg_dma(nandc, NAND_DEV_CMD1, 1); |
| 688 | |
| 689 | nandc->buf_count = 512; |
| 690 | memset(nandc->data_buffer, 0xff, nandc->buf_count); |
| 691 | |
| 692 | config_cw_read(nandc); |
| 693 | |
| 694 | read_data_dma(nandc, FLASH_BUF_ACC, nandc->data_buffer, |
| 695 | nandc->buf_count); |
| 696 | |
| 697 | /* restore CMD1 and VLD regs */ |
| 698 | write_reg_dma(nandc, NAND_DEV_CMD1_RESTORE, 1); |
| 699 | write_reg_dma(nandc, NAND_DEV_CMD_VLD_RESTORE, 1); |
| 700 | |
| 701 | return 0; |
| 702 | } |
| 703 | |
| 704 | /* sets up descriptors for NAND_CMD_ERASE1 */ |
| 705 | static int erase_block(struct qcom_nand_host *host, int page_addr) |
| 706 | { |
| 707 | struct nand_chip *chip = &host->chip; |
| 708 | struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); |
| 709 | |
| 710 | nandc_set_reg(nandc, NAND_FLASH_CMD, |
| 711 | BLOCK_ERASE | PAGE_ACC | LAST_PAGE); |
| 712 | nandc_set_reg(nandc, NAND_ADDR0, page_addr); |
| 713 | nandc_set_reg(nandc, NAND_ADDR1, 0); |
| 714 | nandc_set_reg(nandc, NAND_DEV0_CFG0, |
| 715 | host->cfg0_raw & ~(7 << CW_PER_PAGE)); |
| 716 | nandc_set_reg(nandc, NAND_DEV0_CFG1, host->cfg1_raw); |
| 717 | nandc_set_reg(nandc, NAND_EXEC_CMD, 1); |
| 718 | nandc_set_reg(nandc, NAND_FLASH_STATUS, host->clrflashstatus); |
| 719 | nandc_set_reg(nandc, NAND_READ_STATUS, host->clrreadstatus); |
| 720 | |
| 721 | write_reg_dma(nandc, NAND_FLASH_CMD, 3); |
| 722 | write_reg_dma(nandc, NAND_DEV0_CFG0, 2); |
| 723 | write_reg_dma(nandc, NAND_EXEC_CMD, 1); |
| 724 | |
| 725 | read_reg_dma(nandc, NAND_FLASH_STATUS, 1); |
| 726 | |
| 727 | write_reg_dma(nandc, NAND_FLASH_STATUS, 1); |
| 728 | write_reg_dma(nandc, NAND_READ_STATUS, 1); |
| 729 | |
| 730 | return 0; |
| 731 | } |
| 732 | |
| 733 | /* sets up descriptors for NAND_CMD_READID */ |
| 734 | static int read_id(struct qcom_nand_host *host, int column) |
| 735 | { |
| 736 | struct nand_chip *chip = &host->chip; |
| 737 | struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); |
| 738 | |
| 739 | if (column == -1) |
| 740 | return 0; |
| 741 | |
| 742 | nandc_set_reg(nandc, NAND_FLASH_CMD, FETCH_ID); |
| 743 | nandc_set_reg(nandc, NAND_ADDR0, column); |
| 744 | nandc_set_reg(nandc, NAND_ADDR1, 0); |
| 745 | nandc_set_reg(nandc, NAND_FLASH_CHIP_SELECT, DM_EN); |
| 746 | nandc_set_reg(nandc, NAND_EXEC_CMD, 1); |
| 747 | |
| 748 | write_reg_dma(nandc, NAND_FLASH_CMD, 4); |
| 749 | write_reg_dma(nandc, NAND_EXEC_CMD, 1); |
| 750 | |
| 751 | read_reg_dma(nandc, NAND_READ_ID, 1); |
| 752 | |
| 753 | return 0; |
| 754 | } |
| 755 | |
| 756 | /* sets up descriptors for NAND_CMD_RESET */ |
| 757 | static int reset(struct qcom_nand_host *host) |
| 758 | { |
| 759 | struct nand_chip *chip = &host->chip; |
| 760 | struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); |
| 761 | |
| 762 | nandc_set_reg(nandc, NAND_FLASH_CMD, RESET_DEVICE); |
| 763 | nandc_set_reg(nandc, NAND_EXEC_CMD, 1); |
| 764 | |
| 765 | write_reg_dma(nandc, NAND_FLASH_CMD, 1); |
| 766 | write_reg_dma(nandc, NAND_EXEC_CMD, 1); |
| 767 | |
| 768 | read_reg_dma(nandc, NAND_FLASH_STATUS, 1); |
| 769 | |
| 770 | return 0; |
| 771 | } |
| 772 | |
| 773 | /* helpers to submit/free our list of dma descriptors */ |
| 774 | static int submit_descs(struct qcom_nand_controller *nandc) |
| 775 | { |
| 776 | struct desc_info *desc; |
| 777 | dma_cookie_t cookie = 0; |
| 778 | |
| 779 | list_for_each_entry(desc, &nandc->desc_list, node) |
| 780 | cookie = dmaengine_submit(desc->dma_desc); |
| 781 | |
| 782 | if (dma_sync_wait(nandc->chan, cookie) != DMA_COMPLETE) |
| 783 | return -ETIMEDOUT; |
| 784 | |
| 785 | return 0; |
| 786 | } |
| 787 | |
| 788 | static void free_descs(struct qcom_nand_controller *nandc) |
| 789 | { |
| 790 | struct desc_info *desc, *n; |
| 791 | |
| 792 | list_for_each_entry_safe(desc, n, &nandc->desc_list, node) { |
| 793 | list_del(&desc->node); |
| 794 | dma_unmap_sg(nandc->dev, &desc->sgl, 1, desc->dir); |
| 795 | kfree(desc); |
| 796 | } |
| 797 | } |
| 798 | |
| 799 | /* reset the register read buffer for next NAND operation */ |
| 800 | static void clear_read_regs(struct qcom_nand_controller *nandc) |
| 801 | { |
| 802 | nandc->reg_read_pos = 0; |
| 803 | memset(nandc->reg_read_buf, 0, |
| 804 | MAX_REG_RD * sizeof(*nandc->reg_read_buf)); |
| 805 | } |
| 806 | |
| 807 | static void pre_command(struct qcom_nand_host *host, int command) |
| 808 | { |
| 809 | struct nand_chip *chip = &host->chip; |
| 810 | struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); |
| 811 | |
| 812 | nandc->buf_count = 0; |
| 813 | nandc->buf_start = 0; |
| 814 | host->use_ecc = false; |
| 815 | host->last_command = command; |
| 816 | |
| 817 | clear_read_regs(nandc); |
| 818 | } |
| 819 | |
| 820 | /* |
| 821 | * this is called after NAND_CMD_PAGEPROG and NAND_CMD_ERASE1 to set our |
| 822 | * privately maintained status byte, this status byte can be read after |
| 823 | * NAND_CMD_STATUS is called |
| 824 | */ |
| 825 | static void parse_erase_write_errors(struct qcom_nand_host *host, int command) |
| 826 | { |
| 827 | struct nand_chip *chip = &host->chip; |
| 828 | struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); |
| 829 | struct nand_ecc_ctrl *ecc = &chip->ecc; |
| 830 | int num_cw; |
| 831 | int i; |
| 832 | |
| 833 | num_cw = command == NAND_CMD_PAGEPROG ? ecc->steps : 1; |
| 834 | |
| 835 | for (i = 0; i < num_cw; i++) { |
| 836 | u32 flash_status = le32_to_cpu(nandc->reg_read_buf[i]); |
| 837 | |
| 838 | if (flash_status & FS_MPU_ERR) |
| 839 | host->status &= ~NAND_STATUS_WP; |
| 840 | |
| 841 | if (flash_status & FS_OP_ERR || (i == (num_cw - 1) && |
| 842 | (flash_status & |
| 843 | FS_DEVICE_STS_ERR))) |
| 844 | host->status |= NAND_STATUS_FAIL; |
| 845 | } |
| 846 | } |
| 847 | |
| 848 | static void post_command(struct qcom_nand_host *host, int command) |
| 849 | { |
| 850 | struct nand_chip *chip = &host->chip; |
| 851 | struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); |
| 852 | |
| 853 | switch (command) { |
| 854 | case NAND_CMD_READID: |
| 855 | memcpy(nandc->data_buffer, nandc->reg_read_buf, |
| 856 | nandc->buf_count); |
| 857 | break; |
| 858 | case NAND_CMD_PAGEPROG: |
| 859 | case NAND_CMD_ERASE1: |
| 860 | parse_erase_write_errors(host, command); |
| 861 | break; |
| 862 | default: |
| 863 | break; |
| 864 | } |
| 865 | } |
| 866 | |
| 867 | /* |
| 868 | * Implements chip->cmdfunc. It's only used for a limited set of commands. |
| 869 | * The rest of the commands wouldn't be called by upper layers. For example, |
| 870 | * NAND_CMD_READOOB would never be called because we have our own versions |
| 871 | * of read_oob ops for nand_ecc_ctrl. |
| 872 | */ |
| 873 | static void qcom_nandc_command(struct mtd_info *mtd, unsigned int command, |
| 874 | int column, int page_addr) |
| 875 | { |
| 876 | struct nand_chip *chip = mtd_to_nand(mtd); |
| 877 | struct qcom_nand_host *host = to_qcom_nand_host(chip); |
| 878 | struct nand_ecc_ctrl *ecc = &chip->ecc; |
| 879 | struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); |
| 880 | bool wait = false; |
| 881 | int ret = 0; |
| 882 | |
| 883 | pre_command(host, command); |
| 884 | |
| 885 | switch (command) { |
| 886 | case NAND_CMD_RESET: |
| 887 | ret = reset(host); |
| 888 | wait = true; |
| 889 | break; |
| 890 | |
| 891 | case NAND_CMD_READID: |
| 892 | nandc->buf_count = 4; |
| 893 | ret = read_id(host, column); |
| 894 | wait = true; |
| 895 | break; |
| 896 | |
| 897 | case NAND_CMD_PARAM: |
| 898 | ret = nandc_param(host); |
| 899 | wait = true; |
| 900 | break; |
| 901 | |
| 902 | case NAND_CMD_ERASE1: |
| 903 | ret = erase_block(host, page_addr); |
| 904 | wait = true; |
| 905 | break; |
| 906 | |
| 907 | case NAND_CMD_READ0: |
| 908 | /* we read the entire page for now */ |
| 909 | WARN_ON(column != 0); |
| 910 | |
| 911 | host->use_ecc = true; |
| 912 | set_address(host, 0, page_addr); |
| 913 | update_rw_regs(host, ecc->steps, true); |
| 914 | break; |
| 915 | |
| 916 | case NAND_CMD_SEQIN: |
| 917 | WARN_ON(column != 0); |
| 918 | set_address(host, 0, page_addr); |
| 919 | break; |
| 920 | |
| 921 | case NAND_CMD_PAGEPROG: |
| 922 | case NAND_CMD_STATUS: |
| 923 | case NAND_CMD_NONE: |
| 924 | default: |
| 925 | break; |
| 926 | } |
| 927 | |
| 928 | if (ret) { |
| 929 | dev_err(nandc->dev, "failure executing command %d\n", |
| 930 | command); |
| 931 | free_descs(nandc); |
| 932 | return; |
| 933 | } |
| 934 | |
| 935 | if (wait) { |
| 936 | ret = submit_descs(nandc); |
| 937 | if (ret) |
| 938 | dev_err(nandc->dev, |
| 939 | "failure submitting descs for command %d\n", |
| 940 | command); |
| 941 | } |
| 942 | |
| 943 | free_descs(nandc); |
| 944 | |
| 945 | post_command(host, command); |
| 946 | } |
| 947 | |
| 948 | /* |
| 949 | * when using BCH ECC, the HW flags an error in NAND_FLASH_STATUS if it read |
| 950 | * an erased CW, and reports an erased CW in NAND_ERASED_CW_DETECT_STATUS. |
| 951 | * |
| 952 | * when using RS ECC, the HW reports the same erros when reading an erased CW, |
| 953 | * but it notifies that it is an erased CW by placing special characters at |
| 954 | * certain offsets in the buffer. |
| 955 | * |
| 956 | * verify if the page is erased or not, and fix up the page for RS ECC by |
| 957 | * replacing the special characters with 0xff. |
| 958 | */ |
| 959 | static bool erased_chunk_check_and_fixup(u8 *data_buf, int data_len) |
| 960 | { |
| 961 | u8 empty1, empty2; |
| 962 | |
| 963 | /* |
| 964 | * an erased page flags an error in NAND_FLASH_STATUS, check if the page |
| 965 | * is erased by looking for 0x54s at offsets 3 and 175 from the |
| 966 | * beginning of each codeword |
| 967 | */ |
| 968 | |
| 969 | empty1 = data_buf[3]; |
| 970 | empty2 = data_buf[175]; |
| 971 | |
| 972 | /* |
| 973 | * if the erased codework markers, if they exist override them with |
| 974 | * 0xffs |
| 975 | */ |
| 976 | if ((empty1 == 0x54 && empty2 == 0xff) || |
| 977 | (empty1 == 0xff && empty2 == 0x54)) { |
| 978 | data_buf[3] = 0xff; |
| 979 | data_buf[175] = 0xff; |
| 980 | } |
| 981 | |
| 982 | /* |
| 983 | * check if the entire chunk contains 0xffs or not. if it doesn't, then |
| 984 | * restore the original values at the special offsets |
| 985 | */ |
| 986 | if (memchr_inv(data_buf, 0xff, data_len)) { |
| 987 | data_buf[3] = empty1; |
| 988 | data_buf[175] = empty2; |
| 989 | |
| 990 | return false; |
| 991 | } |
| 992 | |
| 993 | return true; |
| 994 | } |
| 995 | |
| 996 | struct read_stats { |
| 997 | __le32 flash; |
| 998 | __le32 buffer; |
| 999 | __le32 erased_cw; |
| 1000 | }; |
| 1001 | |
| 1002 | /* |
| 1003 | * reads back status registers set by the controller to notify page read |
| 1004 | * errors. this is equivalent to what 'ecc->correct()' would do. |
| 1005 | */ |
| 1006 | static int parse_read_errors(struct qcom_nand_host *host, u8 *data_buf, |
| 1007 | u8 *oob_buf) |
| 1008 | { |
| 1009 | struct nand_chip *chip = &host->chip; |
| 1010 | struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); |
| 1011 | struct mtd_info *mtd = nand_to_mtd(chip); |
| 1012 | struct nand_ecc_ctrl *ecc = &chip->ecc; |
| 1013 | unsigned int max_bitflips = 0; |
| 1014 | struct read_stats *buf; |
| 1015 | int i; |
| 1016 | |
| 1017 | buf = (struct read_stats *)nandc->reg_read_buf; |
| 1018 | |
| 1019 | for (i = 0; i < ecc->steps; i++, buf++) { |
| 1020 | u32 flash, buffer, erased_cw; |
| 1021 | int data_len, oob_len; |
| 1022 | |
| 1023 | if (i == (ecc->steps - 1)) { |
| 1024 | data_len = ecc->size - ((ecc->steps - 1) << 2); |
| 1025 | oob_len = ecc->steps << 2; |
| 1026 | } else { |
| 1027 | data_len = host->cw_data; |
| 1028 | oob_len = 0; |
| 1029 | } |
| 1030 | |
| 1031 | flash = le32_to_cpu(buf->flash); |
| 1032 | buffer = le32_to_cpu(buf->buffer); |
| 1033 | erased_cw = le32_to_cpu(buf->erased_cw); |
| 1034 | |
| 1035 | if (flash & (FS_OP_ERR | FS_MPU_ERR)) { |
| 1036 | bool erased; |
| 1037 | |
| 1038 | /* ignore erased codeword errors */ |
| 1039 | if (host->bch_enabled) { |
| 1040 | erased = (erased_cw & ERASED_CW) == ERASED_CW ? |
| 1041 | true : false; |
| 1042 | } else { |
| 1043 | erased = erased_chunk_check_and_fixup(data_buf, |
| 1044 | data_len); |
| 1045 | } |
| 1046 | |
| 1047 | if (erased) { |
| 1048 | data_buf += data_len; |
| 1049 | if (oob_buf) |
| 1050 | oob_buf += oob_len + ecc->bytes; |
| 1051 | continue; |
| 1052 | } |
| 1053 | |
| 1054 | if (buffer & BS_UNCORRECTABLE_BIT) { |
| 1055 | int ret, ecclen, extraooblen; |
| 1056 | void *eccbuf; |
| 1057 | |
| 1058 | eccbuf = oob_buf ? oob_buf + oob_len : NULL; |
| 1059 | ecclen = oob_buf ? host->ecc_bytes_hw : 0; |
| 1060 | extraooblen = oob_buf ? oob_len : 0; |
| 1061 | |
| 1062 | /* |
| 1063 | * make sure it isn't an erased page reported |
| 1064 | * as not-erased by HW because of a few bitflips |
| 1065 | */ |
| 1066 | ret = nand_check_erased_ecc_chunk(data_buf, |
| 1067 | data_len, eccbuf, ecclen, oob_buf, |
| 1068 | extraooblen, ecc->strength); |
| 1069 | if (ret < 0) { |
| 1070 | mtd->ecc_stats.failed++; |
| 1071 | } else { |
| 1072 | mtd->ecc_stats.corrected += ret; |
| 1073 | max_bitflips = |
| 1074 | max_t(unsigned int, max_bitflips, ret); |
| 1075 | } |
| 1076 | } |
| 1077 | } else { |
| 1078 | unsigned int stat; |
| 1079 | |
| 1080 | stat = buffer & BS_CORRECTABLE_ERR_MSK; |
| 1081 | mtd->ecc_stats.corrected += stat; |
| 1082 | max_bitflips = max(max_bitflips, stat); |
| 1083 | } |
| 1084 | |
| 1085 | data_buf += data_len; |
| 1086 | if (oob_buf) |
| 1087 | oob_buf += oob_len + ecc->bytes; |
| 1088 | } |
| 1089 | |
| 1090 | return max_bitflips; |
| 1091 | } |
| 1092 | |
| 1093 | /* |
| 1094 | * helper to perform the actual page read operation, used by ecc->read_page(), |
| 1095 | * ecc->read_oob() |
| 1096 | */ |
| 1097 | static int read_page_ecc(struct qcom_nand_host *host, u8 *data_buf, |
| 1098 | u8 *oob_buf) |
| 1099 | { |
| 1100 | struct nand_chip *chip = &host->chip; |
| 1101 | struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); |
| 1102 | struct nand_ecc_ctrl *ecc = &chip->ecc; |
| 1103 | int i, ret; |
| 1104 | |
| 1105 | /* queue cmd descs for each codeword */ |
| 1106 | for (i = 0; i < ecc->steps; i++) { |
| 1107 | int data_size, oob_size; |
| 1108 | |
| 1109 | if (i == (ecc->steps - 1)) { |
| 1110 | data_size = ecc->size - ((ecc->steps - 1) << 2); |
| 1111 | oob_size = (ecc->steps << 2) + host->ecc_bytes_hw + |
| 1112 | host->spare_bytes; |
| 1113 | } else { |
| 1114 | data_size = host->cw_data; |
| 1115 | oob_size = host->ecc_bytes_hw + host->spare_bytes; |
| 1116 | } |
| 1117 | |
| 1118 | config_cw_read(nandc); |
| 1119 | |
| 1120 | if (data_buf) |
| 1121 | read_data_dma(nandc, FLASH_BUF_ACC, data_buf, |
| 1122 | data_size); |
| 1123 | |
| 1124 | /* |
| 1125 | * when ecc is enabled, the controller doesn't read the real |
| 1126 | * or dummy bad block markers in each chunk. To maintain a |
| 1127 | * consistent layout across RAW and ECC reads, we just |
| 1128 | * leave the real/dummy BBM offsets empty (i.e, filled with |
| 1129 | * 0xffs) |
| 1130 | */ |
| 1131 | if (oob_buf) { |
| 1132 | int j; |
| 1133 | |
| 1134 | for (j = 0; j < host->bbm_size; j++) |
| 1135 | *oob_buf++ = 0xff; |
| 1136 | |
| 1137 | read_data_dma(nandc, FLASH_BUF_ACC + data_size, |
| 1138 | oob_buf, oob_size); |
| 1139 | } |
| 1140 | |
| 1141 | if (data_buf) |
| 1142 | data_buf += data_size; |
| 1143 | if (oob_buf) |
| 1144 | oob_buf += oob_size; |
| 1145 | } |
| 1146 | |
| 1147 | ret = submit_descs(nandc); |
| 1148 | if (ret) |
| 1149 | dev_err(nandc->dev, "failure to read page/oob\n"); |
| 1150 | |
| 1151 | free_descs(nandc); |
| 1152 | |
| 1153 | return ret; |
| 1154 | } |
| 1155 | |
| 1156 | /* |
| 1157 | * a helper that copies the last step/codeword of a page (containing free oob) |
| 1158 | * into our local buffer |
| 1159 | */ |
| 1160 | static int copy_last_cw(struct qcom_nand_host *host, int page) |
| 1161 | { |
| 1162 | struct nand_chip *chip = &host->chip; |
| 1163 | struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); |
| 1164 | struct nand_ecc_ctrl *ecc = &chip->ecc; |
| 1165 | int size; |
| 1166 | int ret; |
| 1167 | |
| 1168 | clear_read_regs(nandc); |
| 1169 | |
| 1170 | size = host->use_ecc ? host->cw_data : host->cw_size; |
| 1171 | |
| 1172 | /* prepare a clean read buffer */ |
| 1173 | memset(nandc->data_buffer, 0xff, size); |
| 1174 | |
| 1175 | set_address(host, host->cw_size * (ecc->steps - 1), page); |
| 1176 | update_rw_regs(host, 1, true); |
| 1177 | |
| 1178 | config_cw_read(nandc); |
| 1179 | |
| 1180 | read_data_dma(nandc, FLASH_BUF_ACC, nandc->data_buffer, size); |
| 1181 | |
| 1182 | ret = submit_descs(nandc); |
| 1183 | if (ret) |
| 1184 | dev_err(nandc->dev, "failed to copy last codeword\n"); |
| 1185 | |
| 1186 | free_descs(nandc); |
| 1187 | |
| 1188 | return ret; |
| 1189 | } |
| 1190 | |
| 1191 | /* implements ecc->read_page() */ |
| 1192 | static int qcom_nandc_read_page(struct mtd_info *mtd, struct nand_chip *chip, |
| 1193 | uint8_t *buf, int oob_required, int page) |
| 1194 | { |
| 1195 | struct qcom_nand_host *host = to_qcom_nand_host(chip); |
| 1196 | struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); |
| 1197 | u8 *data_buf, *oob_buf = NULL; |
| 1198 | int ret; |
| 1199 | |
| 1200 | data_buf = buf; |
| 1201 | oob_buf = oob_required ? chip->oob_poi : NULL; |
| 1202 | |
| 1203 | ret = read_page_ecc(host, data_buf, oob_buf); |
| 1204 | if (ret) { |
| 1205 | dev_err(nandc->dev, "failure to read page\n"); |
| 1206 | return ret; |
| 1207 | } |
| 1208 | |
| 1209 | return parse_read_errors(host, data_buf, oob_buf); |
| 1210 | } |
| 1211 | |
| 1212 | /* implements ecc->read_page_raw() */ |
| 1213 | static int qcom_nandc_read_page_raw(struct mtd_info *mtd, |
| 1214 | struct nand_chip *chip, uint8_t *buf, |
| 1215 | int oob_required, int page) |
| 1216 | { |
| 1217 | struct qcom_nand_host *host = to_qcom_nand_host(chip); |
| 1218 | struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); |
| 1219 | u8 *data_buf, *oob_buf; |
| 1220 | struct nand_ecc_ctrl *ecc = &chip->ecc; |
| 1221 | int i, ret; |
| 1222 | |
| 1223 | data_buf = buf; |
| 1224 | oob_buf = chip->oob_poi; |
| 1225 | |
| 1226 | host->use_ecc = false; |
| 1227 | update_rw_regs(host, ecc->steps, true); |
| 1228 | |
| 1229 | for (i = 0; i < ecc->steps; i++) { |
| 1230 | int data_size1, data_size2, oob_size1, oob_size2; |
| 1231 | int reg_off = FLASH_BUF_ACC; |
| 1232 | |
| 1233 | data_size1 = mtd->writesize - host->cw_size * (ecc->steps - 1); |
| 1234 | oob_size1 = host->bbm_size; |
| 1235 | |
| 1236 | if (i == (ecc->steps - 1)) { |
| 1237 | data_size2 = ecc->size - data_size1 - |
| 1238 | ((ecc->steps - 1) << 2); |
| 1239 | oob_size2 = (ecc->steps << 2) + host->ecc_bytes_hw + |
| 1240 | host->spare_bytes; |
| 1241 | } else { |
| 1242 | data_size2 = host->cw_data - data_size1; |
| 1243 | oob_size2 = host->ecc_bytes_hw + host->spare_bytes; |
| 1244 | } |
| 1245 | |
| 1246 | config_cw_read(nandc); |
| 1247 | |
| 1248 | read_data_dma(nandc, reg_off, data_buf, data_size1); |
| 1249 | reg_off += data_size1; |
| 1250 | data_buf += data_size1; |
| 1251 | |
| 1252 | read_data_dma(nandc, reg_off, oob_buf, oob_size1); |
| 1253 | reg_off += oob_size1; |
| 1254 | oob_buf += oob_size1; |
| 1255 | |
| 1256 | read_data_dma(nandc, reg_off, data_buf, data_size2); |
| 1257 | reg_off += data_size2; |
| 1258 | data_buf += data_size2; |
| 1259 | |
| 1260 | read_data_dma(nandc, reg_off, oob_buf, oob_size2); |
| 1261 | oob_buf += oob_size2; |
| 1262 | } |
| 1263 | |
| 1264 | ret = submit_descs(nandc); |
| 1265 | if (ret) |
| 1266 | dev_err(nandc->dev, "failure to read raw page\n"); |
| 1267 | |
| 1268 | free_descs(nandc); |
| 1269 | |
| 1270 | return 0; |
| 1271 | } |
| 1272 | |
| 1273 | /* implements ecc->read_oob() */ |
| 1274 | static int qcom_nandc_read_oob(struct mtd_info *mtd, struct nand_chip *chip, |
| 1275 | int page) |
| 1276 | { |
| 1277 | struct qcom_nand_host *host = to_qcom_nand_host(chip); |
| 1278 | struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); |
| 1279 | struct nand_ecc_ctrl *ecc = &chip->ecc; |
| 1280 | int ret; |
| 1281 | |
| 1282 | clear_read_regs(nandc); |
| 1283 | |
| 1284 | host->use_ecc = true; |
| 1285 | set_address(host, 0, page); |
| 1286 | update_rw_regs(host, ecc->steps, true); |
| 1287 | |
| 1288 | ret = read_page_ecc(host, NULL, chip->oob_poi); |
| 1289 | if (ret) |
| 1290 | dev_err(nandc->dev, "failure to read oob\n"); |
| 1291 | |
| 1292 | return ret; |
| 1293 | } |
| 1294 | |
| 1295 | /* implements ecc->write_page() */ |
| 1296 | static int qcom_nandc_write_page(struct mtd_info *mtd, struct nand_chip *chip, |
| 1297 | const uint8_t *buf, int oob_required, int page) |
| 1298 | { |
| 1299 | struct qcom_nand_host *host = to_qcom_nand_host(chip); |
| 1300 | struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); |
| 1301 | struct nand_ecc_ctrl *ecc = &chip->ecc; |
| 1302 | u8 *data_buf, *oob_buf; |
| 1303 | int i, ret; |
| 1304 | |
| 1305 | clear_read_regs(nandc); |
| 1306 | |
| 1307 | data_buf = (u8 *)buf; |
| 1308 | oob_buf = chip->oob_poi; |
| 1309 | |
| 1310 | host->use_ecc = true; |
| 1311 | update_rw_regs(host, ecc->steps, false); |
| 1312 | |
| 1313 | for (i = 0; i < ecc->steps; i++) { |
| 1314 | int data_size, oob_size; |
| 1315 | |
| 1316 | if (i == (ecc->steps - 1)) { |
| 1317 | data_size = ecc->size - ((ecc->steps - 1) << 2); |
| 1318 | oob_size = (ecc->steps << 2) + host->ecc_bytes_hw + |
| 1319 | host->spare_bytes; |
| 1320 | } else { |
| 1321 | data_size = host->cw_data; |
| 1322 | oob_size = ecc->bytes; |
| 1323 | } |
| 1324 | |
| 1325 | config_cw_write_pre(nandc); |
| 1326 | |
| 1327 | write_data_dma(nandc, FLASH_BUF_ACC, data_buf, data_size); |
| 1328 | |
| 1329 | /* |
| 1330 | * when ECC is enabled, we don't really need to write anything |
| 1331 | * to oob for the first n - 1 codewords since these oob regions |
| 1332 | * just contain ECC bytes that's written by the controller |
| 1333 | * itself. For the last codeword, we skip the bbm positions and |
| 1334 | * write to the free oob area. |
| 1335 | */ |
| 1336 | if (i == (ecc->steps - 1)) { |
| 1337 | oob_buf += host->bbm_size; |
| 1338 | |
| 1339 | write_data_dma(nandc, FLASH_BUF_ACC + data_size, |
| 1340 | oob_buf, oob_size); |
| 1341 | } |
| 1342 | |
| 1343 | config_cw_write_post(nandc); |
| 1344 | |
| 1345 | data_buf += data_size; |
| 1346 | oob_buf += oob_size; |
| 1347 | } |
| 1348 | |
| 1349 | ret = submit_descs(nandc); |
| 1350 | if (ret) |
| 1351 | dev_err(nandc->dev, "failure to write page\n"); |
| 1352 | |
| 1353 | free_descs(nandc); |
| 1354 | |
| 1355 | return ret; |
| 1356 | } |
| 1357 | |
| 1358 | /* implements ecc->write_page_raw() */ |
| 1359 | static int qcom_nandc_write_page_raw(struct mtd_info *mtd, |
| 1360 | struct nand_chip *chip, const uint8_t *buf, |
| 1361 | int oob_required, int page) |
| 1362 | { |
| 1363 | struct qcom_nand_host *host = to_qcom_nand_host(chip); |
| 1364 | struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); |
| 1365 | struct nand_ecc_ctrl *ecc = &chip->ecc; |
| 1366 | u8 *data_buf, *oob_buf; |
| 1367 | int i, ret; |
| 1368 | |
| 1369 | clear_read_regs(nandc); |
| 1370 | |
| 1371 | data_buf = (u8 *)buf; |
| 1372 | oob_buf = chip->oob_poi; |
| 1373 | |
| 1374 | host->use_ecc = false; |
| 1375 | update_rw_regs(host, ecc->steps, false); |
| 1376 | |
| 1377 | for (i = 0; i < ecc->steps; i++) { |
| 1378 | int data_size1, data_size2, oob_size1, oob_size2; |
| 1379 | int reg_off = FLASH_BUF_ACC; |
| 1380 | |
| 1381 | data_size1 = mtd->writesize - host->cw_size * (ecc->steps - 1); |
| 1382 | oob_size1 = host->bbm_size; |
| 1383 | |
| 1384 | if (i == (ecc->steps - 1)) { |
| 1385 | data_size2 = ecc->size - data_size1 - |
| 1386 | ((ecc->steps - 1) << 2); |
| 1387 | oob_size2 = (ecc->steps << 2) + host->ecc_bytes_hw + |
| 1388 | host->spare_bytes; |
| 1389 | } else { |
| 1390 | data_size2 = host->cw_data - data_size1; |
| 1391 | oob_size2 = host->ecc_bytes_hw + host->spare_bytes; |
| 1392 | } |
| 1393 | |
| 1394 | config_cw_write_pre(nandc); |
| 1395 | |
| 1396 | write_data_dma(nandc, reg_off, data_buf, data_size1); |
| 1397 | reg_off += data_size1; |
| 1398 | data_buf += data_size1; |
| 1399 | |
| 1400 | write_data_dma(nandc, reg_off, oob_buf, oob_size1); |
| 1401 | reg_off += oob_size1; |
| 1402 | oob_buf += oob_size1; |
| 1403 | |
| 1404 | write_data_dma(nandc, reg_off, data_buf, data_size2); |
| 1405 | reg_off += data_size2; |
| 1406 | data_buf += data_size2; |
| 1407 | |
| 1408 | write_data_dma(nandc, reg_off, oob_buf, oob_size2); |
| 1409 | oob_buf += oob_size2; |
| 1410 | |
| 1411 | config_cw_write_post(nandc); |
| 1412 | } |
| 1413 | |
| 1414 | ret = submit_descs(nandc); |
| 1415 | if (ret) |
| 1416 | dev_err(nandc->dev, "failure to write raw page\n"); |
| 1417 | |
| 1418 | free_descs(nandc); |
| 1419 | |
| 1420 | return ret; |
| 1421 | } |
| 1422 | |
| 1423 | /* |
| 1424 | * implements ecc->write_oob() |
| 1425 | * |
| 1426 | * the NAND controller cannot write only data or only oob within a codeword, |
| 1427 | * since ecc is calculated for the combined codeword. we first copy the |
| 1428 | * entire contents for the last codeword(data + oob), replace the old oob |
| 1429 | * with the new one in chip->oob_poi, and then write the entire codeword. |
| 1430 | * this read-copy-write operation results in a slight performance loss. |
| 1431 | */ |
| 1432 | static int qcom_nandc_write_oob(struct mtd_info *mtd, struct nand_chip *chip, |
| 1433 | int page) |
| 1434 | { |
| 1435 | struct qcom_nand_host *host = to_qcom_nand_host(chip); |
| 1436 | struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); |
| 1437 | struct nand_ecc_ctrl *ecc = &chip->ecc; |
| 1438 | u8 *oob = chip->oob_poi; |
Archit Taneja | c76b78d | 2016-02-03 14:29:50 +0530 | [diff] [blame] | 1439 | int data_size, oob_size; |
| 1440 | int ret, status = 0; |
| 1441 | |
| 1442 | host->use_ecc = true; |
| 1443 | |
| 1444 | ret = copy_last_cw(host, page); |
| 1445 | if (ret) |
| 1446 | return ret; |
| 1447 | |
| 1448 | clear_read_regs(nandc); |
| 1449 | |
| 1450 | /* calculate the data and oob size for the last codeword/step */ |
| 1451 | data_size = ecc->size - ((ecc->steps - 1) << 2); |
Boris Brezillon | aa02fcf | 2016-03-18 17:53:31 +0100 | [diff] [blame] | 1452 | oob_size = mtd->oobavail; |
Archit Taneja | c76b78d | 2016-02-03 14:29:50 +0530 | [diff] [blame] | 1453 | |
| 1454 | /* override new oob content to last codeword */ |
Boris Brezillon | aa02fcf | 2016-03-18 17:53:31 +0100 | [diff] [blame] | 1455 | mtd_ooblayout_get_databytes(mtd, nandc->data_buffer + data_size, oob, |
| 1456 | 0, mtd->oobavail); |
Archit Taneja | c76b78d | 2016-02-03 14:29:50 +0530 | [diff] [blame] | 1457 | |
| 1458 | set_address(host, host->cw_size * (ecc->steps - 1), page); |
| 1459 | update_rw_regs(host, 1, false); |
| 1460 | |
| 1461 | config_cw_write_pre(nandc); |
| 1462 | write_data_dma(nandc, FLASH_BUF_ACC, nandc->data_buffer, |
| 1463 | data_size + oob_size); |
| 1464 | config_cw_write_post(nandc); |
| 1465 | |
| 1466 | ret = submit_descs(nandc); |
| 1467 | |
| 1468 | free_descs(nandc); |
| 1469 | |
| 1470 | if (ret) { |
| 1471 | dev_err(nandc->dev, "failure to write oob\n"); |
| 1472 | return -EIO; |
| 1473 | } |
| 1474 | |
| 1475 | chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1); |
| 1476 | |
| 1477 | status = chip->waitfunc(mtd, chip); |
| 1478 | |
| 1479 | return status & NAND_STATUS_FAIL ? -EIO : 0; |
| 1480 | } |
| 1481 | |
| 1482 | static int qcom_nandc_block_bad(struct mtd_info *mtd, loff_t ofs) |
| 1483 | { |
| 1484 | struct nand_chip *chip = mtd_to_nand(mtd); |
| 1485 | struct qcom_nand_host *host = to_qcom_nand_host(chip); |
| 1486 | struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); |
| 1487 | struct nand_ecc_ctrl *ecc = &chip->ecc; |
| 1488 | int page, ret, bbpos, bad = 0; |
| 1489 | u32 flash_status; |
| 1490 | |
| 1491 | page = (int)(ofs >> chip->page_shift) & chip->pagemask; |
| 1492 | |
| 1493 | /* |
| 1494 | * configure registers for a raw sub page read, the address is set to |
| 1495 | * the beginning of the last codeword, we don't care about reading ecc |
| 1496 | * portion of oob. we just want the first few bytes from this codeword |
| 1497 | * that contains the BBM |
| 1498 | */ |
| 1499 | host->use_ecc = false; |
| 1500 | |
| 1501 | ret = copy_last_cw(host, page); |
| 1502 | if (ret) |
| 1503 | goto err; |
| 1504 | |
| 1505 | flash_status = le32_to_cpu(nandc->reg_read_buf[0]); |
| 1506 | |
| 1507 | if (flash_status & (FS_OP_ERR | FS_MPU_ERR)) { |
| 1508 | dev_warn(nandc->dev, "error when trying to read BBM\n"); |
| 1509 | goto err; |
| 1510 | } |
| 1511 | |
| 1512 | bbpos = mtd->writesize - host->cw_size * (ecc->steps - 1); |
| 1513 | |
| 1514 | bad = nandc->data_buffer[bbpos] != 0xff; |
| 1515 | |
| 1516 | if (chip->options & NAND_BUSWIDTH_16) |
| 1517 | bad = bad || (nandc->data_buffer[bbpos + 1] != 0xff); |
| 1518 | err: |
| 1519 | return bad; |
| 1520 | } |
| 1521 | |
| 1522 | static int qcom_nandc_block_markbad(struct mtd_info *mtd, loff_t ofs) |
| 1523 | { |
| 1524 | struct nand_chip *chip = mtd_to_nand(mtd); |
| 1525 | struct qcom_nand_host *host = to_qcom_nand_host(chip); |
| 1526 | struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); |
| 1527 | struct nand_ecc_ctrl *ecc = &chip->ecc; |
| 1528 | int page, ret, status = 0; |
| 1529 | |
| 1530 | clear_read_regs(nandc); |
| 1531 | |
| 1532 | /* |
| 1533 | * to mark the BBM as bad, we flash the entire last codeword with 0s. |
| 1534 | * we don't care about the rest of the content in the codeword since |
| 1535 | * we aren't going to use this block again |
| 1536 | */ |
| 1537 | memset(nandc->data_buffer, 0x00, host->cw_size); |
| 1538 | |
| 1539 | page = (int)(ofs >> chip->page_shift) & chip->pagemask; |
| 1540 | |
| 1541 | /* prepare write */ |
| 1542 | host->use_ecc = false; |
| 1543 | set_address(host, host->cw_size * (ecc->steps - 1), page); |
| 1544 | update_rw_regs(host, 1, false); |
| 1545 | |
| 1546 | config_cw_write_pre(nandc); |
| 1547 | write_data_dma(nandc, FLASH_BUF_ACC, nandc->data_buffer, host->cw_size); |
| 1548 | config_cw_write_post(nandc); |
| 1549 | |
| 1550 | ret = submit_descs(nandc); |
| 1551 | |
| 1552 | free_descs(nandc); |
| 1553 | |
| 1554 | if (ret) { |
| 1555 | dev_err(nandc->dev, "failure to update BBM\n"); |
| 1556 | return -EIO; |
| 1557 | } |
| 1558 | |
| 1559 | chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1); |
| 1560 | |
| 1561 | status = chip->waitfunc(mtd, chip); |
| 1562 | |
| 1563 | return status & NAND_STATUS_FAIL ? -EIO : 0; |
| 1564 | } |
| 1565 | |
| 1566 | /* |
| 1567 | * the three functions below implement chip->read_byte(), chip->read_buf() |
| 1568 | * and chip->write_buf() respectively. these aren't used for |
| 1569 | * reading/writing page data, they are used for smaller data like reading |
| 1570 | * id, status etc |
| 1571 | */ |
| 1572 | static uint8_t qcom_nandc_read_byte(struct mtd_info *mtd) |
| 1573 | { |
| 1574 | struct nand_chip *chip = mtd_to_nand(mtd); |
| 1575 | struct qcom_nand_host *host = to_qcom_nand_host(chip); |
| 1576 | struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); |
| 1577 | u8 *buf = nandc->data_buffer; |
| 1578 | u8 ret = 0x0; |
| 1579 | |
| 1580 | if (host->last_command == NAND_CMD_STATUS) { |
| 1581 | ret = host->status; |
| 1582 | |
| 1583 | host->status = NAND_STATUS_READY | NAND_STATUS_WP; |
| 1584 | |
| 1585 | return ret; |
| 1586 | } |
| 1587 | |
| 1588 | if (nandc->buf_start < nandc->buf_count) |
| 1589 | ret = buf[nandc->buf_start++]; |
| 1590 | |
| 1591 | return ret; |
| 1592 | } |
| 1593 | |
| 1594 | static void qcom_nandc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) |
| 1595 | { |
| 1596 | struct nand_chip *chip = mtd_to_nand(mtd); |
| 1597 | struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); |
| 1598 | int real_len = min_t(size_t, len, nandc->buf_count - nandc->buf_start); |
| 1599 | |
| 1600 | memcpy(buf, nandc->data_buffer + nandc->buf_start, real_len); |
| 1601 | nandc->buf_start += real_len; |
| 1602 | } |
| 1603 | |
| 1604 | static void qcom_nandc_write_buf(struct mtd_info *mtd, const uint8_t *buf, |
| 1605 | int len) |
| 1606 | { |
| 1607 | struct nand_chip *chip = mtd_to_nand(mtd); |
| 1608 | struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); |
| 1609 | int real_len = min_t(size_t, len, nandc->buf_count - nandc->buf_start); |
| 1610 | |
| 1611 | memcpy(nandc->data_buffer + nandc->buf_start, buf, real_len); |
| 1612 | |
| 1613 | nandc->buf_start += real_len; |
| 1614 | } |
| 1615 | |
| 1616 | /* we support only one external chip for now */ |
| 1617 | static void qcom_nandc_select_chip(struct mtd_info *mtd, int chipnr) |
| 1618 | { |
| 1619 | struct nand_chip *chip = mtd_to_nand(mtd); |
| 1620 | struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); |
| 1621 | |
| 1622 | if (chipnr <= 0) |
| 1623 | return; |
| 1624 | |
| 1625 | dev_warn(nandc->dev, "invalid chip select\n"); |
| 1626 | } |
| 1627 | |
| 1628 | /* |
| 1629 | * NAND controller page layout info |
| 1630 | * |
| 1631 | * Layout with ECC enabled: |
| 1632 | * |
| 1633 | * |----------------------| |---------------------------------| |
| 1634 | * | xx.......yy| | *********xx.......yy| |
| 1635 | * | DATA xx..ECC..yy| | DATA **SPARE**xx..ECC..yy| |
| 1636 | * | (516) xx.......yy| | (516-n*4) **(n*4)**xx.......yy| |
| 1637 | * | xx.......yy| | *********xx.......yy| |
| 1638 | * |----------------------| |---------------------------------| |
| 1639 | * codeword 1,2..n-1 codeword n |
| 1640 | * <---(528/532 Bytes)--> <-------(528/532 Bytes)---------> |
| 1641 | * |
| 1642 | * n = Number of codewords in the page |
| 1643 | * . = ECC bytes |
| 1644 | * * = Spare/free bytes |
| 1645 | * x = Unused byte(s) |
| 1646 | * y = Reserved byte(s) |
| 1647 | * |
| 1648 | * 2K page: n = 4, spare = 16 bytes |
| 1649 | * 4K page: n = 8, spare = 32 bytes |
| 1650 | * 8K page: n = 16, spare = 64 bytes |
| 1651 | * |
| 1652 | * the qcom nand controller operates at a sub page/codeword level. each |
| 1653 | * codeword is 528 and 532 bytes for 4 bit and 8 bit ECC modes respectively. |
| 1654 | * the number of ECC bytes vary based on the ECC strength and the bus width. |
| 1655 | * |
| 1656 | * the first n - 1 codewords contains 516 bytes of user data, the remaining |
| 1657 | * 12/16 bytes consist of ECC and reserved data. The nth codeword contains |
| 1658 | * both user data and spare(oobavail) bytes that sum up to 516 bytes. |
| 1659 | * |
| 1660 | * When we access a page with ECC enabled, the reserved bytes(s) are not |
| 1661 | * accessible at all. When reading, we fill up these unreadable positions |
| 1662 | * with 0xffs. When writing, the controller skips writing the inaccessible |
| 1663 | * bytes. |
| 1664 | * |
| 1665 | * Layout with ECC disabled: |
| 1666 | * |
| 1667 | * |------------------------------| |---------------------------------------| |
| 1668 | * | yy xx.......| | bb *********xx.......| |
| 1669 | * | DATA1 yy DATA2 xx..ECC..| | DATA1 bb DATA2 **SPARE**xx..ECC..| |
| 1670 | * | (size1) yy (size2) xx.......| | (size1) bb (size2) **(n*4)**xx.......| |
| 1671 | * | yy xx.......| | bb *********xx.......| |
| 1672 | * |------------------------------| |---------------------------------------| |
| 1673 | * codeword 1,2..n-1 codeword n |
| 1674 | * <-------(528/532 Bytes)------> <-----------(528/532 Bytes)-----------> |
| 1675 | * |
| 1676 | * n = Number of codewords in the page |
| 1677 | * . = ECC bytes |
| 1678 | * * = Spare/free bytes |
| 1679 | * x = Unused byte(s) |
| 1680 | * y = Dummy Bad Bock byte(s) |
| 1681 | * b = Real Bad Block byte(s) |
| 1682 | * size1/size2 = function of codeword size and 'n' |
| 1683 | * |
| 1684 | * when the ECC block is disabled, one reserved byte (or two for 16 bit bus |
| 1685 | * width) is now accessible. For the first n - 1 codewords, these are dummy Bad |
| 1686 | * Block Markers. In the last codeword, this position contains the real BBM |
| 1687 | * |
| 1688 | * In order to have a consistent layout between RAW and ECC modes, we assume |
| 1689 | * the following OOB layout arrangement: |
| 1690 | * |
| 1691 | * |-----------| |--------------------| |
| 1692 | * |yyxx.......| |bb*********xx.......| |
| 1693 | * |yyxx..ECC..| |bb*FREEOOB*xx..ECC..| |
| 1694 | * |yyxx.......| |bb*********xx.......| |
| 1695 | * |yyxx.......| |bb*********xx.......| |
| 1696 | * |-----------| |--------------------| |
| 1697 | * first n - 1 nth OOB region |
| 1698 | * OOB regions |
| 1699 | * |
| 1700 | * n = Number of codewords in the page |
| 1701 | * . = ECC bytes |
| 1702 | * * = FREE OOB bytes |
| 1703 | * y = Dummy bad block byte(s) (inaccessible when ECC enabled) |
| 1704 | * x = Unused byte(s) |
| 1705 | * b = Real bad block byte(s) (inaccessible when ECC enabled) |
| 1706 | * |
| 1707 | * This layout is read as is when ECC is disabled. When ECC is enabled, the |
| 1708 | * inaccessible Bad Block byte(s) are ignored when we write to a page/oob, |
| 1709 | * and assumed as 0xffs when we read a page/oob. The ECC, unused and |
Boris Brezillon | 421e81c | 2016-03-18 17:54:27 +0100 | [diff] [blame] | 1710 | * dummy/real bad block bytes are grouped as ecc bytes (i.e, ecc->bytes is |
| 1711 | * the sum of the three). |
Archit Taneja | c76b78d | 2016-02-03 14:29:50 +0530 | [diff] [blame] | 1712 | */ |
Boris Brezillon | 421e81c | 2016-03-18 17:54:27 +0100 | [diff] [blame] | 1713 | static int qcom_nand_ooblayout_ecc(struct mtd_info *mtd, int section, |
| 1714 | struct mtd_oob_region *oobregion) |
Archit Taneja | c76b78d | 2016-02-03 14:29:50 +0530 | [diff] [blame] | 1715 | { |
Boris Brezillon | 421e81c | 2016-03-18 17:54:27 +0100 | [diff] [blame] | 1716 | struct nand_chip *chip = mtd_to_nand(mtd); |
| 1717 | struct qcom_nand_host *host = to_qcom_nand_host(chip); |
Archit Taneja | c76b78d | 2016-02-03 14:29:50 +0530 | [diff] [blame] | 1718 | struct nand_ecc_ctrl *ecc = &chip->ecc; |
Archit Taneja | c76b78d | 2016-02-03 14:29:50 +0530 | [diff] [blame] | 1719 | |
Boris Brezillon | 421e81c | 2016-03-18 17:54:27 +0100 | [diff] [blame] | 1720 | if (section > 1) |
| 1721 | return -ERANGE; |
Archit Taneja | c76b78d | 2016-02-03 14:29:50 +0530 | [diff] [blame] | 1722 | |
Boris Brezillon | 421e81c | 2016-03-18 17:54:27 +0100 | [diff] [blame] | 1723 | if (!section) { |
| 1724 | oobregion->length = (ecc->bytes * (ecc->steps - 1)) + |
| 1725 | host->bbm_size; |
| 1726 | oobregion->offset = 0; |
| 1727 | } else { |
| 1728 | oobregion->length = host->ecc_bytes_hw + host->spare_bytes; |
| 1729 | oobregion->offset = mtd->oobsize - oobregion->length; |
Archit Taneja | c76b78d | 2016-02-03 14:29:50 +0530 | [diff] [blame] | 1730 | } |
| 1731 | |
Boris Brezillon | 421e81c | 2016-03-18 17:54:27 +0100 | [diff] [blame] | 1732 | return 0; |
Archit Taneja | c76b78d | 2016-02-03 14:29:50 +0530 | [diff] [blame] | 1733 | } |
| 1734 | |
Boris Brezillon | 421e81c | 2016-03-18 17:54:27 +0100 | [diff] [blame] | 1735 | static int qcom_nand_ooblayout_free(struct mtd_info *mtd, int section, |
| 1736 | struct mtd_oob_region *oobregion) |
| 1737 | { |
| 1738 | struct nand_chip *chip = mtd_to_nand(mtd); |
| 1739 | struct qcom_nand_host *host = to_qcom_nand_host(chip); |
| 1740 | struct nand_ecc_ctrl *ecc = &chip->ecc; |
| 1741 | |
| 1742 | if (section) |
| 1743 | return -ERANGE; |
| 1744 | |
| 1745 | oobregion->length = ecc->steps * 4; |
| 1746 | oobregion->offset = ((ecc->steps - 1) * ecc->bytes) + host->bbm_size; |
| 1747 | |
| 1748 | return 0; |
| 1749 | } |
| 1750 | |
| 1751 | static const struct mtd_ooblayout_ops qcom_nand_ooblayout_ops = { |
| 1752 | .ecc = qcom_nand_ooblayout_ecc, |
| 1753 | .free = qcom_nand_ooblayout_free, |
| 1754 | }; |
| 1755 | |
Archit Taneja | c76b78d | 2016-02-03 14:29:50 +0530 | [diff] [blame] | 1756 | static int qcom_nand_host_setup(struct qcom_nand_host *host) |
| 1757 | { |
| 1758 | struct nand_chip *chip = &host->chip; |
| 1759 | struct mtd_info *mtd = nand_to_mtd(chip); |
| 1760 | struct nand_ecc_ctrl *ecc = &chip->ecc; |
| 1761 | struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); |
| 1762 | int cwperpage, bad_block_byte; |
| 1763 | bool wide_bus; |
| 1764 | int ecc_mode = 1; |
| 1765 | |
| 1766 | /* |
| 1767 | * the controller requires each step consists of 512 bytes of data. |
| 1768 | * bail out if DT has populated a wrong step size. |
| 1769 | */ |
| 1770 | if (ecc->size != NANDC_STEP_SIZE) { |
| 1771 | dev_err(nandc->dev, "invalid ecc size\n"); |
| 1772 | return -EINVAL; |
| 1773 | } |
| 1774 | |
| 1775 | wide_bus = chip->options & NAND_BUSWIDTH_16 ? true : false; |
| 1776 | |
| 1777 | if (ecc->strength >= 8) { |
| 1778 | /* 8 bit ECC defaults to BCH ECC on all platforms */ |
| 1779 | host->bch_enabled = true; |
| 1780 | ecc_mode = 1; |
| 1781 | |
| 1782 | if (wide_bus) { |
| 1783 | host->ecc_bytes_hw = 14; |
| 1784 | host->spare_bytes = 0; |
| 1785 | host->bbm_size = 2; |
| 1786 | } else { |
| 1787 | host->ecc_bytes_hw = 13; |
| 1788 | host->spare_bytes = 2; |
| 1789 | host->bbm_size = 1; |
| 1790 | } |
| 1791 | } else { |
| 1792 | /* |
| 1793 | * if the controller supports BCH for 4 bit ECC, the controller |
| 1794 | * uses lesser bytes for ECC. If RS is used, the ECC bytes is |
| 1795 | * always 10 bytes |
| 1796 | */ |
| 1797 | if (nandc->ecc_modes & ECC_BCH_4BIT) { |
| 1798 | /* BCH */ |
| 1799 | host->bch_enabled = true; |
| 1800 | ecc_mode = 0; |
| 1801 | |
| 1802 | if (wide_bus) { |
| 1803 | host->ecc_bytes_hw = 8; |
| 1804 | host->spare_bytes = 2; |
| 1805 | host->bbm_size = 2; |
| 1806 | } else { |
| 1807 | host->ecc_bytes_hw = 7; |
| 1808 | host->spare_bytes = 4; |
| 1809 | host->bbm_size = 1; |
| 1810 | } |
| 1811 | } else { |
| 1812 | /* RS */ |
| 1813 | host->ecc_bytes_hw = 10; |
| 1814 | |
| 1815 | if (wide_bus) { |
| 1816 | host->spare_bytes = 0; |
| 1817 | host->bbm_size = 2; |
| 1818 | } else { |
| 1819 | host->spare_bytes = 1; |
| 1820 | host->bbm_size = 1; |
| 1821 | } |
| 1822 | } |
| 1823 | } |
| 1824 | |
| 1825 | /* |
| 1826 | * we consider ecc->bytes as the sum of all the non-data content in a |
| 1827 | * step. It gives us a clean representation of the oob area (even if |
| 1828 | * all the bytes aren't used for ECC).It is always 16 bytes for 8 bit |
| 1829 | * ECC and 12 bytes for 4 bit ECC |
| 1830 | */ |
| 1831 | ecc->bytes = host->ecc_bytes_hw + host->spare_bytes + host->bbm_size; |
| 1832 | |
| 1833 | ecc->read_page = qcom_nandc_read_page; |
| 1834 | ecc->read_page_raw = qcom_nandc_read_page_raw; |
| 1835 | ecc->read_oob = qcom_nandc_read_oob; |
| 1836 | ecc->write_page = qcom_nandc_write_page; |
| 1837 | ecc->write_page_raw = qcom_nandc_write_page_raw; |
| 1838 | ecc->write_oob = qcom_nandc_write_oob; |
| 1839 | |
| 1840 | ecc->mode = NAND_ECC_HW; |
| 1841 | |
Boris Brezillon | 421e81c | 2016-03-18 17:54:27 +0100 | [diff] [blame] | 1842 | mtd_set_ooblayout(mtd, &qcom_nand_ooblayout_ops); |
Archit Taneja | c76b78d | 2016-02-03 14:29:50 +0530 | [diff] [blame] | 1843 | |
| 1844 | cwperpage = mtd->writesize / ecc->size; |
| 1845 | |
| 1846 | /* |
| 1847 | * DATA_UD_BYTES varies based on whether the read/write command protects |
| 1848 | * spare data with ECC too. We protect spare data by default, so we set |
| 1849 | * it to main + spare data, which are 512 and 4 bytes respectively. |
| 1850 | */ |
| 1851 | host->cw_data = 516; |
| 1852 | |
| 1853 | /* |
| 1854 | * total bytes in a step, either 528 bytes for 4 bit ECC, or 532 bytes |
| 1855 | * for 8 bit ECC |
| 1856 | */ |
| 1857 | host->cw_size = host->cw_data + ecc->bytes; |
| 1858 | |
| 1859 | if (ecc->bytes * (mtd->writesize / ecc->size) > mtd->oobsize) { |
| 1860 | dev_err(nandc->dev, "ecc data doesn't fit in OOB area\n"); |
| 1861 | return -EINVAL; |
| 1862 | } |
| 1863 | |
| 1864 | bad_block_byte = mtd->writesize - host->cw_size * (cwperpage - 1) + 1; |
| 1865 | |
| 1866 | host->cfg0 = (cwperpage - 1) << CW_PER_PAGE |
| 1867 | | host->cw_data << UD_SIZE_BYTES |
| 1868 | | 0 << DISABLE_STATUS_AFTER_WRITE |
| 1869 | | 5 << NUM_ADDR_CYCLES |
| 1870 | | host->ecc_bytes_hw << ECC_PARITY_SIZE_BYTES_RS |
| 1871 | | 0 << STATUS_BFR_READ |
| 1872 | | 1 << SET_RD_MODE_AFTER_STATUS |
| 1873 | | host->spare_bytes << SPARE_SIZE_BYTES; |
| 1874 | |
| 1875 | host->cfg1 = 7 << NAND_RECOVERY_CYCLES |
| 1876 | | 0 << CS_ACTIVE_BSY |
| 1877 | | bad_block_byte << BAD_BLOCK_BYTE_NUM |
| 1878 | | 0 << BAD_BLOCK_IN_SPARE_AREA |
| 1879 | | 2 << WR_RD_BSY_GAP |
| 1880 | | wide_bus << WIDE_FLASH |
| 1881 | | host->bch_enabled << ENABLE_BCH_ECC; |
| 1882 | |
| 1883 | host->cfg0_raw = (cwperpage - 1) << CW_PER_PAGE |
| 1884 | | host->cw_size << UD_SIZE_BYTES |
| 1885 | | 5 << NUM_ADDR_CYCLES |
| 1886 | | 0 << SPARE_SIZE_BYTES; |
| 1887 | |
| 1888 | host->cfg1_raw = 7 << NAND_RECOVERY_CYCLES |
| 1889 | | 0 << CS_ACTIVE_BSY |
| 1890 | | 17 << BAD_BLOCK_BYTE_NUM |
| 1891 | | 1 << BAD_BLOCK_IN_SPARE_AREA |
| 1892 | | 2 << WR_RD_BSY_GAP |
| 1893 | | wide_bus << WIDE_FLASH |
| 1894 | | 1 << DEV0_CFG1_ECC_DISABLE; |
| 1895 | |
| 1896 | host->ecc_bch_cfg = host->bch_enabled << ECC_CFG_ECC_DISABLE |
| 1897 | | 0 << ECC_SW_RESET |
| 1898 | | host->cw_data << ECC_NUM_DATA_BYTES |
| 1899 | | 1 << ECC_FORCE_CLK_OPEN |
| 1900 | | ecc_mode << ECC_MODE |
| 1901 | | host->ecc_bytes_hw << ECC_PARITY_SIZE_BYTES_BCH; |
| 1902 | |
| 1903 | host->ecc_buf_cfg = 0x203 << NUM_STEPS; |
| 1904 | |
| 1905 | host->clrflashstatus = FS_READY_BSY_N; |
| 1906 | host->clrreadstatus = 0xc0; |
| 1907 | |
| 1908 | dev_dbg(nandc->dev, |
| 1909 | "cfg0 %x cfg1 %x ecc_buf_cfg %x ecc_bch cfg %x cw_size %d cw_data %d strength %d parity_bytes %d steps %d\n", |
| 1910 | host->cfg0, host->cfg1, host->ecc_buf_cfg, host->ecc_bch_cfg, |
| 1911 | host->cw_size, host->cw_data, ecc->strength, ecc->bytes, |
| 1912 | cwperpage); |
| 1913 | |
| 1914 | return 0; |
| 1915 | } |
| 1916 | |
| 1917 | static int qcom_nandc_alloc(struct qcom_nand_controller *nandc) |
| 1918 | { |
| 1919 | int ret; |
| 1920 | |
| 1921 | ret = dma_set_coherent_mask(nandc->dev, DMA_BIT_MASK(32)); |
| 1922 | if (ret) { |
| 1923 | dev_err(nandc->dev, "failed to set DMA mask\n"); |
| 1924 | return ret; |
| 1925 | } |
| 1926 | |
| 1927 | /* |
| 1928 | * we use the internal buffer for reading ONFI params, reading small |
| 1929 | * data like ID and status, and preforming read-copy-write operations |
| 1930 | * when writing to a codeword partially. 532 is the maximum possible |
| 1931 | * size of a codeword for our nand controller |
| 1932 | */ |
| 1933 | nandc->buf_size = 532; |
| 1934 | |
| 1935 | nandc->data_buffer = devm_kzalloc(nandc->dev, nandc->buf_size, |
| 1936 | GFP_KERNEL); |
| 1937 | if (!nandc->data_buffer) |
| 1938 | return -ENOMEM; |
| 1939 | |
| 1940 | nandc->regs = devm_kzalloc(nandc->dev, sizeof(*nandc->regs), |
| 1941 | GFP_KERNEL); |
| 1942 | if (!nandc->regs) |
| 1943 | return -ENOMEM; |
| 1944 | |
| 1945 | nandc->reg_read_buf = devm_kzalloc(nandc->dev, |
| 1946 | MAX_REG_RD * sizeof(*nandc->reg_read_buf), |
| 1947 | GFP_KERNEL); |
| 1948 | if (!nandc->reg_read_buf) |
| 1949 | return -ENOMEM; |
| 1950 | |
| 1951 | nandc->chan = dma_request_slave_channel(nandc->dev, "rxtx"); |
| 1952 | if (!nandc->chan) { |
| 1953 | dev_err(nandc->dev, "failed to request slave channel\n"); |
| 1954 | return -ENODEV; |
| 1955 | } |
| 1956 | |
| 1957 | INIT_LIST_HEAD(&nandc->desc_list); |
| 1958 | INIT_LIST_HEAD(&nandc->host_list); |
| 1959 | |
| 1960 | spin_lock_init(&nandc->controller.lock); |
| 1961 | init_waitqueue_head(&nandc->controller.wq); |
| 1962 | |
| 1963 | return 0; |
| 1964 | } |
| 1965 | |
| 1966 | static void qcom_nandc_unalloc(struct qcom_nand_controller *nandc) |
| 1967 | { |
| 1968 | dma_release_channel(nandc->chan); |
| 1969 | } |
| 1970 | |
| 1971 | /* one time setup of a few nand controller registers */ |
| 1972 | static int qcom_nandc_setup(struct qcom_nand_controller *nandc) |
| 1973 | { |
| 1974 | /* kill onenand */ |
| 1975 | nandc_write(nandc, SFLASHC_BURST_CFG, 0); |
| 1976 | |
| 1977 | /* enable ADM DMA */ |
| 1978 | nandc_write(nandc, NAND_FLASH_CHIP_SELECT, DM_EN); |
| 1979 | |
| 1980 | /* save the original values of these registers */ |
| 1981 | nandc->cmd1 = nandc_read(nandc, NAND_DEV_CMD1); |
| 1982 | nandc->vld = nandc_read(nandc, NAND_DEV_CMD_VLD); |
| 1983 | |
| 1984 | return 0; |
| 1985 | } |
| 1986 | |
| 1987 | static int qcom_nand_host_init(struct qcom_nand_controller *nandc, |
| 1988 | struct qcom_nand_host *host, |
| 1989 | struct device_node *dn) |
| 1990 | { |
| 1991 | struct nand_chip *chip = &host->chip; |
| 1992 | struct mtd_info *mtd = nand_to_mtd(chip); |
| 1993 | struct device *dev = nandc->dev; |
| 1994 | int ret; |
| 1995 | |
| 1996 | ret = of_property_read_u32(dn, "reg", &host->cs); |
| 1997 | if (ret) { |
| 1998 | dev_err(dev, "can't get chip-select\n"); |
| 1999 | return -ENXIO; |
| 2000 | } |
| 2001 | |
| 2002 | nand_set_flash_node(chip, dn); |
| 2003 | mtd->name = devm_kasprintf(dev, GFP_KERNEL, "qcom_nand.%d", host->cs); |
| 2004 | mtd->owner = THIS_MODULE; |
| 2005 | mtd->dev.parent = dev; |
| 2006 | |
| 2007 | chip->cmdfunc = qcom_nandc_command; |
| 2008 | chip->select_chip = qcom_nandc_select_chip; |
| 2009 | chip->read_byte = qcom_nandc_read_byte; |
| 2010 | chip->read_buf = qcom_nandc_read_buf; |
| 2011 | chip->write_buf = qcom_nandc_write_buf; |
| 2012 | |
| 2013 | /* |
| 2014 | * the bad block marker is readable only when we read the last codeword |
| 2015 | * of a page with ECC disabled. currently, the nand_base and nand_bbt |
| 2016 | * helpers don't allow us to read BB from a nand chip with ECC |
| 2017 | * disabled (MTD_OPS_PLACE_OOB is set by default). use the block_bad |
| 2018 | * and block_markbad helpers until we permanently switch to using |
| 2019 | * MTD_OPS_RAW for all drivers (with the help of badblockbits) |
| 2020 | */ |
| 2021 | chip->block_bad = qcom_nandc_block_bad; |
| 2022 | chip->block_markbad = qcom_nandc_block_markbad; |
| 2023 | |
| 2024 | chip->controller = &nandc->controller; |
| 2025 | chip->options |= NAND_NO_SUBPAGE_WRITE | NAND_USE_BOUNCE_BUFFER | |
| 2026 | NAND_SKIP_BBTSCAN; |
| 2027 | |
| 2028 | /* set up initial status value */ |
| 2029 | host->status = NAND_STATUS_READY | NAND_STATUS_WP; |
| 2030 | |
| 2031 | ret = nand_scan_ident(mtd, 1, NULL); |
| 2032 | if (ret) |
| 2033 | return ret; |
| 2034 | |
| 2035 | ret = qcom_nand_host_setup(host); |
| 2036 | if (ret) |
| 2037 | return ret; |
| 2038 | |
| 2039 | ret = nand_scan_tail(mtd); |
| 2040 | if (ret) |
| 2041 | return ret; |
| 2042 | |
| 2043 | return mtd_device_register(mtd, NULL, 0); |
| 2044 | } |
| 2045 | |
| 2046 | /* parse custom DT properties here */ |
| 2047 | static int qcom_nandc_parse_dt(struct platform_device *pdev) |
| 2048 | { |
| 2049 | struct qcom_nand_controller *nandc = platform_get_drvdata(pdev); |
| 2050 | struct device_node *np = nandc->dev->of_node; |
| 2051 | int ret; |
| 2052 | |
| 2053 | ret = of_property_read_u32(np, "qcom,cmd-crci", &nandc->cmd_crci); |
| 2054 | if (ret) { |
| 2055 | dev_err(nandc->dev, "command CRCI unspecified\n"); |
| 2056 | return ret; |
| 2057 | } |
| 2058 | |
| 2059 | ret = of_property_read_u32(np, "qcom,data-crci", &nandc->data_crci); |
| 2060 | if (ret) { |
| 2061 | dev_err(nandc->dev, "data CRCI unspecified\n"); |
| 2062 | return ret; |
| 2063 | } |
| 2064 | |
| 2065 | return 0; |
| 2066 | } |
| 2067 | |
| 2068 | static int qcom_nandc_probe(struct platform_device *pdev) |
| 2069 | { |
| 2070 | struct qcom_nand_controller *nandc; |
| 2071 | struct qcom_nand_host *host; |
| 2072 | const void *dev_data; |
| 2073 | struct device *dev = &pdev->dev; |
| 2074 | struct device_node *dn = dev->of_node, *child; |
| 2075 | struct resource *res; |
| 2076 | int ret; |
| 2077 | |
| 2078 | nandc = devm_kzalloc(&pdev->dev, sizeof(*nandc), GFP_KERNEL); |
| 2079 | if (!nandc) |
| 2080 | return -ENOMEM; |
| 2081 | |
| 2082 | platform_set_drvdata(pdev, nandc); |
| 2083 | nandc->dev = dev; |
| 2084 | |
| 2085 | dev_data = of_device_get_match_data(dev); |
| 2086 | if (!dev_data) { |
| 2087 | dev_err(&pdev->dev, "failed to get device data\n"); |
| 2088 | return -ENODEV; |
| 2089 | } |
| 2090 | |
| 2091 | nandc->ecc_modes = (unsigned long)dev_data; |
| 2092 | |
| 2093 | res = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| 2094 | nandc->base = devm_ioremap_resource(dev, res); |
| 2095 | if (IS_ERR(nandc->base)) |
| 2096 | return PTR_ERR(nandc->base); |
| 2097 | |
| 2098 | nandc->base_dma = phys_to_dma(dev, (phys_addr_t)res->start); |
| 2099 | |
| 2100 | nandc->core_clk = devm_clk_get(dev, "core"); |
| 2101 | if (IS_ERR(nandc->core_clk)) |
| 2102 | return PTR_ERR(nandc->core_clk); |
| 2103 | |
| 2104 | nandc->aon_clk = devm_clk_get(dev, "aon"); |
| 2105 | if (IS_ERR(nandc->aon_clk)) |
| 2106 | return PTR_ERR(nandc->aon_clk); |
| 2107 | |
| 2108 | ret = qcom_nandc_parse_dt(pdev); |
| 2109 | if (ret) |
| 2110 | return ret; |
| 2111 | |
| 2112 | ret = qcom_nandc_alloc(nandc); |
| 2113 | if (ret) |
| 2114 | return ret; |
| 2115 | |
| 2116 | ret = clk_prepare_enable(nandc->core_clk); |
| 2117 | if (ret) |
| 2118 | goto err_core_clk; |
| 2119 | |
| 2120 | ret = clk_prepare_enable(nandc->aon_clk); |
| 2121 | if (ret) |
| 2122 | goto err_aon_clk; |
| 2123 | |
| 2124 | ret = qcom_nandc_setup(nandc); |
| 2125 | if (ret) |
| 2126 | goto err_setup; |
| 2127 | |
| 2128 | for_each_available_child_of_node(dn, child) { |
| 2129 | if (of_device_is_compatible(child, "qcom,nandcs")) { |
| 2130 | host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL); |
| 2131 | if (!host) { |
| 2132 | of_node_put(child); |
| 2133 | ret = -ENOMEM; |
| 2134 | goto err_cs_init; |
| 2135 | } |
| 2136 | |
| 2137 | ret = qcom_nand_host_init(nandc, host, child); |
| 2138 | if (ret) { |
| 2139 | devm_kfree(dev, host); |
| 2140 | continue; |
| 2141 | } |
| 2142 | |
| 2143 | list_add_tail(&host->node, &nandc->host_list); |
| 2144 | } |
| 2145 | } |
| 2146 | |
| 2147 | if (list_empty(&nandc->host_list)) { |
| 2148 | ret = -ENODEV; |
| 2149 | goto err_cs_init; |
| 2150 | } |
| 2151 | |
| 2152 | return 0; |
| 2153 | |
| 2154 | err_cs_init: |
| 2155 | list_for_each_entry(host, &nandc->host_list, node) |
| 2156 | nand_release(nand_to_mtd(&host->chip)); |
| 2157 | err_setup: |
| 2158 | clk_disable_unprepare(nandc->aon_clk); |
| 2159 | err_aon_clk: |
| 2160 | clk_disable_unprepare(nandc->core_clk); |
| 2161 | err_core_clk: |
| 2162 | qcom_nandc_unalloc(nandc); |
| 2163 | |
| 2164 | return ret; |
| 2165 | } |
| 2166 | |
| 2167 | static int qcom_nandc_remove(struct platform_device *pdev) |
| 2168 | { |
| 2169 | struct qcom_nand_controller *nandc = platform_get_drvdata(pdev); |
| 2170 | struct qcom_nand_host *host; |
| 2171 | |
| 2172 | list_for_each_entry(host, &nandc->host_list, node) |
| 2173 | nand_release(nand_to_mtd(&host->chip)); |
| 2174 | |
| 2175 | qcom_nandc_unalloc(nandc); |
| 2176 | |
| 2177 | clk_disable_unprepare(nandc->aon_clk); |
| 2178 | clk_disable_unprepare(nandc->core_clk); |
| 2179 | |
| 2180 | return 0; |
| 2181 | } |
| 2182 | |
| 2183 | #define EBI2_NANDC_ECC_MODES (ECC_RS_4BIT | ECC_BCH_8BIT) |
| 2184 | |
| 2185 | /* |
| 2186 | * data will hold a struct pointer containing more differences once we support |
| 2187 | * more controller variants |
| 2188 | */ |
| 2189 | static const struct of_device_id qcom_nandc_of_match[] = { |
| 2190 | { .compatible = "qcom,ipq806x-nand", |
| 2191 | .data = (void *)EBI2_NANDC_ECC_MODES, |
| 2192 | }, |
| 2193 | {} |
| 2194 | }; |
| 2195 | MODULE_DEVICE_TABLE(of, qcom_nandc_of_match); |
| 2196 | |
| 2197 | static struct platform_driver qcom_nandc_driver = { |
| 2198 | .driver = { |
| 2199 | .name = "qcom-nandc", |
| 2200 | .of_match_table = qcom_nandc_of_match, |
| 2201 | }, |
| 2202 | .probe = qcom_nandc_probe, |
| 2203 | .remove = qcom_nandc_remove, |
| 2204 | }; |
| 2205 | module_platform_driver(qcom_nandc_driver); |
| 2206 | |
| 2207 | MODULE_AUTHOR("Archit Taneja <architt@codeaurora.org>"); |
| 2208 | MODULE_DESCRIPTION("Qualcomm NAND Controller driver"); |
| 2209 | MODULE_LICENSE("GPL v2"); |