Ben Hutchings | 8ceee66 | 2008-04-27 12:55:59 +0100 | [diff] [blame] | 1 | /**************************************************************************** |
| 2 | * Driver for Solarflare Solarstorm network controllers and boards |
| 3 | * Copyright 2005-2006 Fen Systems Ltd. |
| 4 | * Copyright 2006-2008 Solarflare Communications Inc. |
| 5 | * |
| 6 | * This program is free software; you can redistribute it and/or modify it |
| 7 | * under the terms of the GNU General Public License version 2 as published |
| 8 | * by the Free Software Foundation, incorporated herein by reference. |
| 9 | */ |
| 10 | |
| 11 | #include <linux/bitops.h> |
| 12 | #include <linux/delay.h> |
| 13 | #include <linux/pci.h> |
| 14 | #include <linux/module.h> |
| 15 | #include <linux/seq_file.h> |
| 16 | #include "net_driver.h" |
| 17 | #include "bitfield.h" |
| 18 | #include "efx.h" |
| 19 | #include "mac.h" |
| 20 | #include "gmii.h" |
| 21 | #include "spi.h" |
| 22 | #include "falcon.h" |
| 23 | #include "falcon_hwdefs.h" |
| 24 | #include "falcon_io.h" |
| 25 | #include "mdio_10g.h" |
| 26 | #include "phy.h" |
| 27 | #include "boards.h" |
| 28 | #include "workarounds.h" |
| 29 | |
| 30 | /* Falcon hardware control. |
| 31 | * Falcon is the internal codename for the SFC4000 controller that is |
| 32 | * present in SFE400X evaluation boards |
| 33 | */ |
| 34 | |
| 35 | /** |
| 36 | * struct falcon_nic_data - Falcon NIC state |
| 37 | * @next_buffer_table: First available buffer table id |
| 38 | * @pci_dev2: The secondary PCI device if present |
| 39 | */ |
| 40 | struct falcon_nic_data { |
| 41 | unsigned next_buffer_table; |
| 42 | struct pci_dev *pci_dev2; |
| 43 | }; |
| 44 | |
| 45 | /************************************************************************** |
| 46 | * |
| 47 | * Configurable values |
| 48 | * |
| 49 | ************************************************************************** |
| 50 | */ |
| 51 | |
| 52 | static int disable_dma_stats; |
| 53 | |
| 54 | /* This is set to 16 for a good reason. In summary, if larger than |
| 55 | * 16, the descriptor cache holds more than a default socket |
| 56 | * buffer's worth of packets (for UDP we can only have at most one |
| 57 | * socket buffer's worth outstanding). This combined with the fact |
| 58 | * that we only get 1 TX event per descriptor cache means the NIC |
| 59 | * goes idle. |
| 60 | */ |
| 61 | #define TX_DC_ENTRIES 16 |
| 62 | #define TX_DC_ENTRIES_ORDER 0 |
| 63 | #define TX_DC_BASE 0x130000 |
| 64 | |
| 65 | #define RX_DC_ENTRIES 64 |
| 66 | #define RX_DC_ENTRIES_ORDER 2 |
| 67 | #define RX_DC_BASE 0x100000 |
| 68 | |
| 69 | /* RX FIFO XOFF watermark |
| 70 | * |
| 71 | * When the amount of the RX FIFO increases used increases past this |
| 72 | * watermark send XOFF. Only used if RX flow control is enabled (ethtool -A) |
| 73 | * This also has an effect on RX/TX arbitration |
| 74 | */ |
| 75 | static int rx_xoff_thresh_bytes = -1; |
| 76 | module_param(rx_xoff_thresh_bytes, int, 0644); |
| 77 | MODULE_PARM_DESC(rx_xoff_thresh_bytes, "RX fifo XOFF threshold"); |
| 78 | |
| 79 | /* RX FIFO XON watermark |
| 80 | * |
| 81 | * When the amount of the RX FIFO used decreases below this |
| 82 | * watermark send XON. Only used if TX flow control is enabled (ethtool -A) |
| 83 | * This also has an effect on RX/TX arbitration |
| 84 | */ |
| 85 | static int rx_xon_thresh_bytes = -1; |
| 86 | module_param(rx_xon_thresh_bytes, int, 0644); |
| 87 | MODULE_PARM_DESC(rx_xon_thresh_bytes, "RX fifo XON threshold"); |
| 88 | |
| 89 | /* TX descriptor ring size - min 512 max 4k */ |
| 90 | #define FALCON_TXD_RING_ORDER TX_DESCQ_SIZE_1K |
| 91 | #define FALCON_TXD_RING_SIZE 1024 |
| 92 | #define FALCON_TXD_RING_MASK (FALCON_TXD_RING_SIZE - 1) |
| 93 | |
| 94 | /* RX descriptor ring size - min 512 max 4k */ |
| 95 | #define FALCON_RXD_RING_ORDER RX_DESCQ_SIZE_1K |
| 96 | #define FALCON_RXD_RING_SIZE 1024 |
| 97 | #define FALCON_RXD_RING_MASK (FALCON_RXD_RING_SIZE - 1) |
| 98 | |
| 99 | /* Event queue size - max 32k */ |
| 100 | #define FALCON_EVQ_ORDER EVQ_SIZE_4K |
| 101 | #define FALCON_EVQ_SIZE 4096 |
| 102 | #define FALCON_EVQ_MASK (FALCON_EVQ_SIZE - 1) |
| 103 | |
| 104 | /* Max number of internal errors. After this resets will not be performed */ |
| 105 | #define FALCON_MAX_INT_ERRORS 4 |
| 106 | |
| 107 | /* Maximum period that we wait for flush events. If the flush event |
| 108 | * doesn't arrive in this period of time then we check if the queue |
| 109 | * was disabled anyway. */ |
| 110 | #define FALCON_FLUSH_TIMEOUT 10 /* 10ms */ |
| 111 | |
| 112 | /************************************************************************** |
| 113 | * |
| 114 | * Falcon constants |
| 115 | * |
| 116 | ************************************************************************** |
| 117 | */ |
| 118 | |
| 119 | /* DMA address mask (up to 46-bit, avoiding compiler warnings) |
| 120 | * |
| 121 | * Note that it is possible to have a platform with 64-bit longs and |
| 122 | * 32-bit DMA addresses, or vice versa. EFX_DMA_MASK takes care of the |
| 123 | * platform DMA mask. |
| 124 | */ |
| 125 | #if BITS_PER_LONG == 64 |
| 126 | #define FALCON_DMA_MASK EFX_DMA_MASK(0x00003fffffffffffUL) |
| 127 | #else |
| 128 | #define FALCON_DMA_MASK EFX_DMA_MASK(0x00003fffffffffffULL) |
| 129 | #endif |
| 130 | |
| 131 | /* TX DMA length mask (13-bit) */ |
| 132 | #define FALCON_TX_DMA_MASK (4096 - 1) |
| 133 | |
| 134 | /* Size and alignment of special buffers (4KB) */ |
| 135 | #define FALCON_BUF_SIZE 4096 |
| 136 | |
| 137 | /* Dummy SRAM size code */ |
| 138 | #define SRM_NB_BSZ_ONCHIP_ONLY (-1) |
| 139 | |
| 140 | /* Be nice if these (or equiv.) were in linux/pci_regs.h, but they're not. */ |
| 141 | #define PCI_EXP_DEVCAP_PWR_VAL_LBN 18 |
| 142 | #define PCI_EXP_DEVCAP_PWR_SCL_LBN 26 |
| 143 | #define PCI_EXP_DEVCTL_PAYLOAD_LBN 5 |
| 144 | #define PCI_EXP_LNKSTA_LNK_WID 0x3f0 |
| 145 | #define PCI_EXP_LNKSTA_LNK_WID_LBN 4 |
| 146 | |
| 147 | #define FALCON_IS_DUAL_FUNC(efx) \ |
| 148 | (FALCON_REV(efx) < FALCON_REV_B0) |
| 149 | |
| 150 | /************************************************************************** |
| 151 | * |
| 152 | * Falcon hardware access |
| 153 | * |
| 154 | **************************************************************************/ |
| 155 | |
| 156 | /* Read the current event from the event queue */ |
| 157 | static inline efx_qword_t *falcon_event(struct efx_channel *channel, |
| 158 | unsigned int index) |
| 159 | { |
| 160 | return (((efx_qword_t *) (channel->eventq.addr)) + index); |
| 161 | } |
| 162 | |
| 163 | /* See if an event is present |
| 164 | * |
| 165 | * We check both the high and low dword of the event for all ones. We |
| 166 | * wrote all ones when we cleared the event, and no valid event can |
| 167 | * have all ones in either its high or low dwords. This approach is |
| 168 | * robust against reordering. |
| 169 | * |
| 170 | * Note that using a single 64-bit comparison is incorrect; even |
| 171 | * though the CPU read will be atomic, the DMA write may not be. |
| 172 | */ |
| 173 | static inline int falcon_event_present(efx_qword_t *event) |
| 174 | { |
| 175 | return (!(EFX_DWORD_IS_ALL_ONES(event->dword[0]) | |
| 176 | EFX_DWORD_IS_ALL_ONES(event->dword[1]))); |
| 177 | } |
| 178 | |
| 179 | /************************************************************************** |
| 180 | * |
| 181 | * I2C bus - this is a bit-bashing interface using GPIO pins |
| 182 | * Note that it uses the output enables to tristate the outputs |
| 183 | * SDA is the data pin and SCL is the clock |
| 184 | * |
| 185 | ************************************************************************** |
| 186 | */ |
| 187 | static void falcon_setsdascl(struct efx_i2c_interface *i2c) |
| 188 | { |
| 189 | efx_oword_t reg; |
| 190 | |
| 191 | falcon_read(i2c->efx, ®, GPIO_CTL_REG_KER); |
| 192 | EFX_SET_OWORD_FIELD(reg, GPIO0_OEN, (i2c->scl ? 0 : 1)); |
| 193 | EFX_SET_OWORD_FIELD(reg, GPIO3_OEN, (i2c->sda ? 0 : 1)); |
| 194 | falcon_write(i2c->efx, ®, GPIO_CTL_REG_KER); |
| 195 | } |
| 196 | |
| 197 | static int falcon_getsda(struct efx_i2c_interface *i2c) |
| 198 | { |
| 199 | efx_oword_t reg; |
| 200 | |
| 201 | falcon_read(i2c->efx, ®, GPIO_CTL_REG_KER); |
| 202 | return EFX_OWORD_FIELD(reg, GPIO3_IN); |
| 203 | } |
| 204 | |
| 205 | static int falcon_getscl(struct efx_i2c_interface *i2c) |
| 206 | { |
| 207 | efx_oword_t reg; |
| 208 | |
| 209 | falcon_read(i2c->efx, ®, GPIO_CTL_REG_KER); |
| 210 | return EFX_DWORD_FIELD(reg, GPIO0_IN); |
| 211 | } |
| 212 | |
| 213 | static struct efx_i2c_bit_operations falcon_i2c_bit_operations = { |
| 214 | .setsda = falcon_setsdascl, |
| 215 | .setscl = falcon_setsdascl, |
| 216 | .getsda = falcon_getsda, |
| 217 | .getscl = falcon_getscl, |
| 218 | .udelay = 100, |
| 219 | .mdelay = 10, |
| 220 | }; |
| 221 | |
| 222 | /************************************************************************** |
| 223 | * |
| 224 | * Falcon special buffer handling |
| 225 | * Special buffers are used for event queues and the TX and RX |
| 226 | * descriptor rings. |
| 227 | * |
| 228 | *************************************************************************/ |
| 229 | |
| 230 | /* |
| 231 | * Initialise a Falcon special buffer |
| 232 | * |
| 233 | * This will define a buffer (previously allocated via |
| 234 | * falcon_alloc_special_buffer()) in Falcon's buffer table, allowing |
| 235 | * it to be used for event queues, descriptor rings etc. |
| 236 | */ |
| 237 | static int |
| 238 | falcon_init_special_buffer(struct efx_nic *efx, |
| 239 | struct efx_special_buffer *buffer) |
| 240 | { |
| 241 | efx_qword_t buf_desc; |
| 242 | int index; |
| 243 | dma_addr_t dma_addr; |
| 244 | int i; |
| 245 | |
| 246 | EFX_BUG_ON_PARANOID(!buffer->addr); |
| 247 | |
| 248 | /* Write buffer descriptors to NIC */ |
| 249 | for (i = 0; i < buffer->entries; i++) { |
| 250 | index = buffer->index + i; |
| 251 | dma_addr = buffer->dma_addr + (i * 4096); |
| 252 | EFX_LOG(efx, "mapping special buffer %d at %llx\n", |
| 253 | index, (unsigned long long)dma_addr); |
| 254 | EFX_POPULATE_QWORD_4(buf_desc, |
| 255 | IP_DAT_BUF_SIZE, IP_DAT_BUF_SIZE_4K, |
| 256 | BUF_ADR_REGION, 0, |
| 257 | BUF_ADR_FBUF, (dma_addr >> 12), |
| 258 | BUF_OWNER_ID_FBUF, 0); |
| 259 | falcon_write_sram(efx, &buf_desc, index); |
| 260 | } |
| 261 | |
| 262 | return 0; |
| 263 | } |
| 264 | |
| 265 | /* Unmaps a buffer from Falcon and clears the buffer table entries */ |
| 266 | static void |
| 267 | falcon_fini_special_buffer(struct efx_nic *efx, |
| 268 | struct efx_special_buffer *buffer) |
| 269 | { |
| 270 | efx_oword_t buf_tbl_upd; |
| 271 | unsigned int start = buffer->index; |
| 272 | unsigned int end = (buffer->index + buffer->entries - 1); |
| 273 | |
| 274 | if (!buffer->entries) |
| 275 | return; |
| 276 | |
| 277 | EFX_LOG(efx, "unmapping special buffers %d-%d\n", |
| 278 | buffer->index, buffer->index + buffer->entries - 1); |
| 279 | |
| 280 | EFX_POPULATE_OWORD_4(buf_tbl_upd, |
| 281 | BUF_UPD_CMD, 0, |
| 282 | BUF_CLR_CMD, 1, |
| 283 | BUF_CLR_END_ID, end, |
| 284 | BUF_CLR_START_ID, start); |
| 285 | falcon_write(efx, &buf_tbl_upd, BUF_TBL_UPD_REG_KER); |
| 286 | } |
| 287 | |
| 288 | /* |
| 289 | * Allocate a new Falcon special buffer |
| 290 | * |
| 291 | * This allocates memory for a new buffer, clears it and allocates a |
| 292 | * new buffer ID range. It does not write into Falcon's buffer table. |
| 293 | * |
| 294 | * This call will allocate 4KB buffers, since Falcon can't use 8KB |
| 295 | * buffers for event queues and descriptor rings. |
| 296 | */ |
| 297 | static int falcon_alloc_special_buffer(struct efx_nic *efx, |
| 298 | struct efx_special_buffer *buffer, |
| 299 | unsigned int len) |
| 300 | { |
| 301 | struct falcon_nic_data *nic_data = efx->nic_data; |
| 302 | |
| 303 | len = ALIGN(len, FALCON_BUF_SIZE); |
| 304 | |
| 305 | buffer->addr = pci_alloc_consistent(efx->pci_dev, len, |
| 306 | &buffer->dma_addr); |
| 307 | if (!buffer->addr) |
| 308 | return -ENOMEM; |
| 309 | buffer->len = len; |
| 310 | buffer->entries = len / FALCON_BUF_SIZE; |
| 311 | BUG_ON(buffer->dma_addr & (FALCON_BUF_SIZE - 1)); |
| 312 | |
| 313 | /* All zeros is a potentially valid event so memset to 0xff */ |
| 314 | memset(buffer->addr, 0xff, len); |
| 315 | |
| 316 | /* Select new buffer ID */ |
| 317 | buffer->index = nic_data->next_buffer_table; |
| 318 | nic_data->next_buffer_table += buffer->entries; |
| 319 | |
| 320 | EFX_LOG(efx, "allocating special buffers %d-%d at %llx+%x " |
| 321 | "(virt %p phys %lx)\n", buffer->index, |
| 322 | buffer->index + buffer->entries - 1, |
| 323 | (unsigned long long)buffer->dma_addr, len, |
| 324 | buffer->addr, virt_to_phys(buffer->addr)); |
| 325 | |
| 326 | return 0; |
| 327 | } |
| 328 | |
| 329 | static void falcon_free_special_buffer(struct efx_nic *efx, |
| 330 | struct efx_special_buffer *buffer) |
| 331 | { |
| 332 | if (!buffer->addr) |
| 333 | return; |
| 334 | |
| 335 | EFX_LOG(efx, "deallocating special buffers %d-%d at %llx+%x " |
| 336 | "(virt %p phys %lx)\n", buffer->index, |
| 337 | buffer->index + buffer->entries - 1, |
| 338 | (unsigned long long)buffer->dma_addr, buffer->len, |
| 339 | buffer->addr, virt_to_phys(buffer->addr)); |
| 340 | |
| 341 | pci_free_consistent(efx->pci_dev, buffer->len, buffer->addr, |
| 342 | buffer->dma_addr); |
| 343 | buffer->addr = NULL; |
| 344 | buffer->entries = 0; |
| 345 | } |
| 346 | |
| 347 | /************************************************************************** |
| 348 | * |
| 349 | * Falcon generic buffer handling |
| 350 | * These buffers are used for interrupt status and MAC stats |
| 351 | * |
| 352 | **************************************************************************/ |
| 353 | |
| 354 | static int falcon_alloc_buffer(struct efx_nic *efx, |
| 355 | struct efx_buffer *buffer, unsigned int len) |
| 356 | { |
| 357 | buffer->addr = pci_alloc_consistent(efx->pci_dev, len, |
| 358 | &buffer->dma_addr); |
| 359 | if (!buffer->addr) |
| 360 | return -ENOMEM; |
| 361 | buffer->len = len; |
| 362 | memset(buffer->addr, 0, len); |
| 363 | return 0; |
| 364 | } |
| 365 | |
| 366 | static void falcon_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer) |
| 367 | { |
| 368 | if (buffer->addr) { |
| 369 | pci_free_consistent(efx->pci_dev, buffer->len, |
| 370 | buffer->addr, buffer->dma_addr); |
| 371 | buffer->addr = NULL; |
| 372 | } |
| 373 | } |
| 374 | |
| 375 | /************************************************************************** |
| 376 | * |
| 377 | * Falcon TX path |
| 378 | * |
| 379 | **************************************************************************/ |
| 380 | |
| 381 | /* Returns a pointer to the specified transmit descriptor in the TX |
| 382 | * descriptor queue belonging to the specified channel. |
| 383 | */ |
| 384 | static inline efx_qword_t *falcon_tx_desc(struct efx_tx_queue *tx_queue, |
| 385 | unsigned int index) |
| 386 | { |
| 387 | return (((efx_qword_t *) (tx_queue->txd.addr)) + index); |
| 388 | } |
| 389 | |
| 390 | /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */ |
| 391 | static inline void falcon_notify_tx_desc(struct efx_tx_queue *tx_queue) |
| 392 | { |
| 393 | unsigned write_ptr; |
| 394 | efx_dword_t reg; |
| 395 | |
| 396 | write_ptr = tx_queue->write_count & FALCON_TXD_RING_MASK; |
| 397 | EFX_POPULATE_DWORD_1(reg, TX_DESC_WPTR_DWORD, write_ptr); |
| 398 | falcon_writel_page(tx_queue->efx, ®, |
| 399 | TX_DESC_UPD_REG_KER_DWORD, tx_queue->queue); |
| 400 | } |
| 401 | |
| 402 | |
| 403 | /* For each entry inserted into the software descriptor ring, create a |
| 404 | * descriptor in the hardware TX descriptor ring (in host memory), and |
| 405 | * write a doorbell. |
| 406 | */ |
| 407 | void falcon_push_buffers(struct efx_tx_queue *tx_queue) |
| 408 | { |
| 409 | |
| 410 | struct efx_tx_buffer *buffer; |
| 411 | efx_qword_t *txd; |
| 412 | unsigned write_ptr; |
| 413 | |
| 414 | BUG_ON(tx_queue->write_count == tx_queue->insert_count); |
| 415 | |
| 416 | do { |
| 417 | write_ptr = tx_queue->write_count & FALCON_TXD_RING_MASK; |
| 418 | buffer = &tx_queue->buffer[write_ptr]; |
| 419 | txd = falcon_tx_desc(tx_queue, write_ptr); |
| 420 | ++tx_queue->write_count; |
| 421 | |
| 422 | /* Create TX descriptor ring entry */ |
| 423 | EFX_POPULATE_QWORD_5(*txd, |
| 424 | TX_KER_PORT, 0, |
| 425 | TX_KER_CONT, buffer->continuation, |
| 426 | TX_KER_BYTE_CNT, buffer->len, |
| 427 | TX_KER_BUF_REGION, 0, |
| 428 | TX_KER_BUF_ADR, buffer->dma_addr); |
| 429 | } while (tx_queue->write_count != tx_queue->insert_count); |
| 430 | |
| 431 | wmb(); /* Ensure descriptors are written before they are fetched */ |
| 432 | falcon_notify_tx_desc(tx_queue); |
| 433 | } |
| 434 | |
| 435 | /* Allocate hardware resources for a TX queue */ |
| 436 | int falcon_probe_tx(struct efx_tx_queue *tx_queue) |
| 437 | { |
| 438 | struct efx_nic *efx = tx_queue->efx; |
| 439 | return falcon_alloc_special_buffer(efx, &tx_queue->txd, |
| 440 | FALCON_TXD_RING_SIZE * |
| 441 | sizeof(efx_qword_t)); |
| 442 | } |
| 443 | |
| 444 | int falcon_init_tx(struct efx_tx_queue *tx_queue) |
| 445 | { |
| 446 | efx_oword_t tx_desc_ptr; |
| 447 | struct efx_nic *efx = tx_queue->efx; |
| 448 | int rc; |
| 449 | |
| 450 | /* Pin TX descriptor ring */ |
| 451 | rc = falcon_init_special_buffer(efx, &tx_queue->txd); |
| 452 | if (rc) |
| 453 | return rc; |
| 454 | |
| 455 | /* Push TX descriptor ring to card */ |
| 456 | EFX_POPULATE_OWORD_10(tx_desc_ptr, |
| 457 | TX_DESCQ_EN, 1, |
| 458 | TX_ISCSI_DDIG_EN, 0, |
| 459 | TX_ISCSI_HDIG_EN, 0, |
| 460 | TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index, |
| 461 | TX_DESCQ_EVQ_ID, tx_queue->channel->evqnum, |
| 462 | TX_DESCQ_OWNER_ID, 0, |
| 463 | TX_DESCQ_LABEL, tx_queue->queue, |
| 464 | TX_DESCQ_SIZE, FALCON_TXD_RING_ORDER, |
| 465 | TX_DESCQ_TYPE, 0, |
| 466 | TX_NON_IP_DROP_DIS_B0, 1); |
| 467 | |
| 468 | if (FALCON_REV(efx) >= FALCON_REV_B0) { |
| 469 | int csum = !(efx->net_dev->features & NETIF_F_IP_CSUM); |
| 470 | EFX_SET_OWORD_FIELD(tx_desc_ptr, TX_IP_CHKSM_DIS_B0, csum); |
| 471 | EFX_SET_OWORD_FIELD(tx_desc_ptr, TX_TCP_CHKSM_DIS_B0, csum); |
| 472 | } |
| 473 | |
| 474 | falcon_write_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base, |
| 475 | tx_queue->queue); |
| 476 | |
| 477 | if (FALCON_REV(efx) < FALCON_REV_B0) { |
| 478 | efx_oword_t reg; |
| 479 | |
| 480 | BUG_ON(tx_queue->queue >= 128); /* HW limit */ |
| 481 | |
| 482 | falcon_read(efx, ®, TX_CHKSM_CFG_REG_KER_A1); |
| 483 | if (efx->net_dev->features & NETIF_F_IP_CSUM) |
| 484 | clear_bit_le(tx_queue->queue, (void *)®); |
| 485 | else |
| 486 | set_bit_le(tx_queue->queue, (void *)®); |
| 487 | falcon_write(efx, ®, TX_CHKSM_CFG_REG_KER_A1); |
| 488 | } |
| 489 | |
| 490 | return 0; |
| 491 | } |
| 492 | |
| 493 | static int falcon_flush_tx_queue(struct efx_tx_queue *tx_queue) |
| 494 | { |
| 495 | struct efx_nic *efx = tx_queue->efx; |
| 496 | struct efx_channel *channel = &efx->channel[0]; |
| 497 | efx_oword_t tx_flush_descq; |
| 498 | unsigned int read_ptr, i; |
| 499 | |
| 500 | /* Post a flush command */ |
| 501 | EFX_POPULATE_OWORD_2(tx_flush_descq, |
| 502 | TX_FLUSH_DESCQ_CMD, 1, |
| 503 | TX_FLUSH_DESCQ, tx_queue->queue); |
| 504 | falcon_write(efx, &tx_flush_descq, TX_FLUSH_DESCQ_REG_KER); |
| 505 | msleep(FALCON_FLUSH_TIMEOUT); |
| 506 | |
| 507 | if (EFX_WORKAROUND_7803(efx)) |
| 508 | return 0; |
| 509 | |
| 510 | /* Look for a flush completed event */ |
| 511 | read_ptr = channel->eventq_read_ptr; |
| 512 | for (i = 0; i < FALCON_EVQ_SIZE; ++i) { |
| 513 | efx_qword_t *event = falcon_event(channel, read_ptr); |
| 514 | int ev_code, ev_sub_code, ev_queue; |
| 515 | if (!falcon_event_present(event)) |
| 516 | break; |
| 517 | |
| 518 | ev_code = EFX_QWORD_FIELD(*event, EV_CODE); |
| 519 | ev_sub_code = EFX_QWORD_FIELD(*event, DRIVER_EV_SUB_CODE); |
| 520 | ev_queue = EFX_QWORD_FIELD(*event, DRIVER_EV_TX_DESCQ_ID); |
| 521 | if ((ev_sub_code == TX_DESCQ_FLS_DONE_EV_DECODE) && |
| 522 | (ev_queue == tx_queue->queue)) { |
| 523 | EFX_LOG(efx, "tx queue %d flush command succesful\n", |
| 524 | tx_queue->queue); |
| 525 | return 0; |
| 526 | } |
| 527 | |
| 528 | read_ptr = (read_ptr + 1) & FALCON_EVQ_MASK; |
| 529 | } |
| 530 | |
| 531 | if (EFX_WORKAROUND_11557(efx)) { |
| 532 | efx_oword_t reg; |
| 533 | int enabled; |
| 534 | |
| 535 | falcon_read_table(efx, ®, efx->type->txd_ptr_tbl_base, |
| 536 | tx_queue->queue); |
| 537 | enabled = EFX_OWORD_FIELD(reg, TX_DESCQ_EN); |
| 538 | if (!enabled) { |
| 539 | EFX_LOG(efx, "tx queue %d disabled without a " |
| 540 | "flush event seen\n", tx_queue->queue); |
| 541 | return 0; |
| 542 | } |
| 543 | } |
| 544 | |
| 545 | EFX_ERR(efx, "tx queue %d flush command timed out\n", tx_queue->queue); |
| 546 | return -ETIMEDOUT; |
| 547 | } |
| 548 | |
| 549 | void falcon_fini_tx(struct efx_tx_queue *tx_queue) |
| 550 | { |
| 551 | struct efx_nic *efx = tx_queue->efx; |
| 552 | efx_oword_t tx_desc_ptr; |
| 553 | |
| 554 | /* Stop the hardware using the queue */ |
| 555 | if (falcon_flush_tx_queue(tx_queue)) |
| 556 | EFX_ERR(efx, "failed to flush tx queue %d\n", tx_queue->queue); |
| 557 | |
| 558 | /* Remove TX descriptor ring from card */ |
| 559 | EFX_ZERO_OWORD(tx_desc_ptr); |
| 560 | falcon_write_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base, |
| 561 | tx_queue->queue); |
| 562 | |
| 563 | /* Unpin TX descriptor ring */ |
| 564 | falcon_fini_special_buffer(efx, &tx_queue->txd); |
| 565 | } |
| 566 | |
| 567 | /* Free buffers backing TX queue */ |
| 568 | void falcon_remove_tx(struct efx_tx_queue *tx_queue) |
| 569 | { |
| 570 | falcon_free_special_buffer(tx_queue->efx, &tx_queue->txd); |
| 571 | } |
| 572 | |
| 573 | /************************************************************************** |
| 574 | * |
| 575 | * Falcon RX path |
| 576 | * |
| 577 | **************************************************************************/ |
| 578 | |
| 579 | /* Returns a pointer to the specified descriptor in the RX descriptor queue */ |
| 580 | static inline efx_qword_t *falcon_rx_desc(struct efx_rx_queue *rx_queue, |
| 581 | unsigned int index) |
| 582 | { |
| 583 | return (((efx_qword_t *) (rx_queue->rxd.addr)) + index); |
| 584 | } |
| 585 | |
| 586 | /* This creates an entry in the RX descriptor queue */ |
| 587 | static inline void falcon_build_rx_desc(struct efx_rx_queue *rx_queue, |
| 588 | unsigned index) |
| 589 | { |
| 590 | struct efx_rx_buffer *rx_buf; |
| 591 | efx_qword_t *rxd; |
| 592 | |
| 593 | rxd = falcon_rx_desc(rx_queue, index); |
| 594 | rx_buf = efx_rx_buffer(rx_queue, index); |
| 595 | EFX_POPULATE_QWORD_3(*rxd, |
| 596 | RX_KER_BUF_SIZE, |
| 597 | rx_buf->len - |
| 598 | rx_queue->efx->type->rx_buffer_padding, |
| 599 | RX_KER_BUF_REGION, 0, |
| 600 | RX_KER_BUF_ADR, rx_buf->dma_addr); |
| 601 | } |
| 602 | |
| 603 | /* This writes to the RX_DESC_WPTR register for the specified receive |
| 604 | * descriptor ring. |
| 605 | */ |
| 606 | void falcon_notify_rx_desc(struct efx_rx_queue *rx_queue) |
| 607 | { |
| 608 | efx_dword_t reg; |
| 609 | unsigned write_ptr; |
| 610 | |
| 611 | while (rx_queue->notified_count != rx_queue->added_count) { |
| 612 | falcon_build_rx_desc(rx_queue, |
| 613 | rx_queue->notified_count & |
| 614 | FALCON_RXD_RING_MASK); |
| 615 | ++rx_queue->notified_count; |
| 616 | } |
| 617 | |
| 618 | wmb(); |
| 619 | write_ptr = rx_queue->added_count & FALCON_RXD_RING_MASK; |
| 620 | EFX_POPULATE_DWORD_1(reg, RX_DESC_WPTR_DWORD, write_ptr); |
| 621 | falcon_writel_page(rx_queue->efx, ®, |
| 622 | RX_DESC_UPD_REG_KER_DWORD, rx_queue->queue); |
| 623 | } |
| 624 | |
| 625 | int falcon_probe_rx(struct efx_rx_queue *rx_queue) |
| 626 | { |
| 627 | struct efx_nic *efx = rx_queue->efx; |
| 628 | return falcon_alloc_special_buffer(efx, &rx_queue->rxd, |
| 629 | FALCON_RXD_RING_SIZE * |
| 630 | sizeof(efx_qword_t)); |
| 631 | } |
| 632 | |
| 633 | int falcon_init_rx(struct efx_rx_queue *rx_queue) |
| 634 | { |
| 635 | efx_oword_t rx_desc_ptr; |
| 636 | struct efx_nic *efx = rx_queue->efx; |
| 637 | int rc; |
| 638 | int is_b0 = FALCON_REV(efx) >= FALCON_REV_B0; |
| 639 | int iscsi_digest_en = is_b0; |
| 640 | |
| 641 | EFX_LOG(efx, "RX queue %d ring in special buffers %d-%d\n", |
| 642 | rx_queue->queue, rx_queue->rxd.index, |
| 643 | rx_queue->rxd.index + rx_queue->rxd.entries - 1); |
| 644 | |
| 645 | /* Pin RX descriptor ring */ |
| 646 | rc = falcon_init_special_buffer(efx, &rx_queue->rxd); |
| 647 | if (rc) |
| 648 | return rc; |
| 649 | |
| 650 | /* Push RX descriptor ring to card */ |
| 651 | EFX_POPULATE_OWORD_10(rx_desc_ptr, |
| 652 | RX_ISCSI_DDIG_EN, iscsi_digest_en, |
| 653 | RX_ISCSI_HDIG_EN, iscsi_digest_en, |
| 654 | RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index, |
| 655 | RX_DESCQ_EVQ_ID, rx_queue->channel->evqnum, |
| 656 | RX_DESCQ_OWNER_ID, 0, |
| 657 | RX_DESCQ_LABEL, rx_queue->queue, |
| 658 | RX_DESCQ_SIZE, FALCON_RXD_RING_ORDER, |
| 659 | RX_DESCQ_TYPE, 0 /* kernel queue */ , |
| 660 | /* For >=B0 this is scatter so disable */ |
| 661 | RX_DESCQ_JUMBO, !is_b0, |
| 662 | RX_DESCQ_EN, 1); |
| 663 | falcon_write_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base, |
| 664 | rx_queue->queue); |
| 665 | return 0; |
| 666 | } |
| 667 | |
| 668 | static int falcon_flush_rx_queue(struct efx_rx_queue *rx_queue) |
| 669 | { |
| 670 | struct efx_nic *efx = rx_queue->efx; |
| 671 | struct efx_channel *channel = &efx->channel[0]; |
| 672 | unsigned int read_ptr, i; |
| 673 | efx_oword_t rx_flush_descq; |
| 674 | |
| 675 | /* Post a flush command */ |
| 676 | EFX_POPULATE_OWORD_2(rx_flush_descq, |
| 677 | RX_FLUSH_DESCQ_CMD, 1, |
| 678 | RX_FLUSH_DESCQ, rx_queue->queue); |
| 679 | falcon_write(efx, &rx_flush_descq, RX_FLUSH_DESCQ_REG_KER); |
| 680 | msleep(FALCON_FLUSH_TIMEOUT); |
| 681 | |
| 682 | if (EFX_WORKAROUND_7803(efx)) |
| 683 | return 0; |
| 684 | |
| 685 | /* Look for a flush completed event */ |
| 686 | read_ptr = channel->eventq_read_ptr; |
| 687 | for (i = 0; i < FALCON_EVQ_SIZE; ++i) { |
| 688 | efx_qword_t *event = falcon_event(channel, read_ptr); |
| 689 | int ev_code, ev_sub_code, ev_queue, ev_failed; |
| 690 | if (!falcon_event_present(event)) |
| 691 | break; |
| 692 | |
| 693 | ev_code = EFX_QWORD_FIELD(*event, EV_CODE); |
| 694 | ev_sub_code = EFX_QWORD_FIELD(*event, DRIVER_EV_SUB_CODE); |
| 695 | ev_queue = EFX_QWORD_FIELD(*event, DRIVER_EV_RX_DESCQ_ID); |
| 696 | ev_failed = EFX_QWORD_FIELD(*event, DRIVER_EV_RX_FLUSH_FAIL); |
| 697 | |
| 698 | if ((ev_sub_code == RX_DESCQ_FLS_DONE_EV_DECODE) && |
| 699 | (ev_queue == rx_queue->queue)) { |
| 700 | if (ev_failed) { |
| 701 | EFX_INFO(efx, "rx queue %d flush command " |
| 702 | "failed\n", rx_queue->queue); |
| 703 | return -EAGAIN; |
| 704 | } else { |
| 705 | EFX_LOG(efx, "rx queue %d flush command " |
| 706 | "succesful\n", rx_queue->queue); |
| 707 | return 0; |
| 708 | } |
| 709 | } |
| 710 | |
| 711 | read_ptr = (read_ptr + 1) & FALCON_EVQ_MASK; |
| 712 | } |
| 713 | |
| 714 | if (EFX_WORKAROUND_11557(efx)) { |
| 715 | efx_oword_t reg; |
| 716 | int enabled; |
| 717 | |
| 718 | falcon_read_table(efx, ®, efx->type->rxd_ptr_tbl_base, |
| 719 | rx_queue->queue); |
| 720 | enabled = EFX_OWORD_FIELD(reg, RX_DESCQ_EN); |
| 721 | if (!enabled) { |
| 722 | EFX_LOG(efx, "rx queue %d disabled without a " |
| 723 | "flush event seen\n", rx_queue->queue); |
| 724 | return 0; |
| 725 | } |
| 726 | } |
| 727 | |
| 728 | EFX_ERR(efx, "rx queue %d flush command timed out\n", rx_queue->queue); |
| 729 | return -ETIMEDOUT; |
| 730 | } |
| 731 | |
| 732 | void falcon_fini_rx(struct efx_rx_queue *rx_queue) |
| 733 | { |
| 734 | efx_oword_t rx_desc_ptr; |
| 735 | struct efx_nic *efx = rx_queue->efx; |
| 736 | int i, rc; |
| 737 | |
| 738 | /* Try and flush the rx queue. This may need to be repeated */ |
| 739 | for (i = 0; i < 5; i++) { |
| 740 | rc = falcon_flush_rx_queue(rx_queue); |
| 741 | if (rc == -EAGAIN) |
| 742 | continue; |
| 743 | break; |
| 744 | } |
| 745 | if (rc) |
| 746 | EFX_ERR(efx, "failed to flush rx queue %d\n", rx_queue->queue); |
| 747 | |
| 748 | /* Remove RX descriptor ring from card */ |
| 749 | EFX_ZERO_OWORD(rx_desc_ptr); |
| 750 | falcon_write_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base, |
| 751 | rx_queue->queue); |
| 752 | |
| 753 | /* Unpin RX descriptor ring */ |
| 754 | falcon_fini_special_buffer(efx, &rx_queue->rxd); |
| 755 | } |
| 756 | |
| 757 | /* Free buffers backing RX queue */ |
| 758 | void falcon_remove_rx(struct efx_rx_queue *rx_queue) |
| 759 | { |
| 760 | falcon_free_special_buffer(rx_queue->efx, &rx_queue->rxd); |
| 761 | } |
| 762 | |
| 763 | /************************************************************************** |
| 764 | * |
| 765 | * Falcon event queue processing |
| 766 | * Event queues are processed by per-channel tasklets. |
| 767 | * |
| 768 | **************************************************************************/ |
| 769 | |
| 770 | /* Update a channel's event queue's read pointer (RPTR) register |
| 771 | * |
| 772 | * This writes the EVQ_RPTR_REG register for the specified channel's |
| 773 | * event queue. |
| 774 | * |
| 775 | * Note that EVQ_RPTR_REG contains the index of the "last read" event, |
| 776 | * whereas channel->eventq_read_ptr contains the index of the "next to |
| 777 | * read" event. |
| 778 | */ |
| 779 | void falcon_eventq_read_ack(struct efx_channel *channel) |
| 780 | { |
| 781 | efx_dword_t reg; |
| 782 | struct efx_nic *efx = channel->efx; |
| 783 | |
| 784 | EFX_POPULATE_DWORD_1(reg, EVQ_RPTR_DWORD, channel->eventq_read_ptr); |
| 785 | falcon_writel_table(efx, ®, efx->type->evq_rptr_tbl_base, |
| 786 | channel->evqnum); |
| 787 | } |
| 788 | |
| 789 | /* Use HW to insert a SW defined event */ |
| 790 | void falcon_generate_event(struct efx_channel *channel, efx_qword_t *event) |
| 791 | { |
| 792 | efx_oword_t drv_ev_reg; |
| 793 | |
| 794 | EFX_POPULATE_OWORD_2(drv_ev_reg, |
| 795 | DRV_EV_QID, channel->evqnum, |
| 796 | DRV_EV_DATA, |
| 797 | EFX_QWORD_FIELD64(*event, WHOLE_EVENT)); |
| 798 | falcon_write(channel->efx, &drv_ev_reg, DRV_EV_REG_KER); |
| 799 | } |
| 800 | |
| 801 | /* Handle a transmit completion event |
| 802 | * |
| 803 | * Falcon batches TX completion events; the message we receive is of |
| 804 | * the form "complete all TX events up to this index". |
| 805 | */ |
| 806 | static inline void falcon_handle_tx_event(struct efx_channel *channel, |
| 807 | efx_qword_t *event) |
| 808 | { |
| 809 | unsigned int tx_ev_desc_ptr; |
| 810 | unsigned int tx_ev_q_label; |
| 811 | struct efx_tx_queue *tx_queue; |
| 812 | struct efx_nic *efx = channel->efx; |
| 813 | |
| 814 | if (likely(EFX_QWORD_FIELD(*event, TX_EV_COMP))) { |
| 815 | /* Transmit completion */ |
| 816 | tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, TX_EV_DESC_PTR); |
| 817 | tx_ev_q_label = EFX_QWORD_FIELD(*event, TX_EV_Q_LABEL); |
| 818 | tx_queue = &efx->tx_queue[tx_ev_q_label]; |
| 819 | efx_xmit_done(tx_queue, tx_ev_desc_ptr); |
| 820 | } else if (EFX_QWORD_FIELD(*event, TX_EV_WQ_FF_FULL)) { |
| 821 | /* Rewrite the FIFO write pointer */ |
| 822 | tx_ev_q_label = EFX_QWORD_FIELD(*event, TX_EV_Q_LABEL); |
| 823 | tx_queue = &efx->tx_queue[tx_ev_q_label]; |
| 824 | |
| 825 | if (NET_DEV_REGISTERED(efx)) |
| 826 | netif_tx_lock(efx->net_dev); |
| 827 | falcon_notify_tx_desc(tx_queue); |
| 828 | if (NET_DEV_REGISTERED(efx)) |
| 829 | netif_tx_unlock(efx->net_dev); |
| 830 | } else if (EFX_QWORD_FIELD(*event, TX_EV_PKT_ERR) && |
| 831 | EFX_WORKAROUND_10727(efx)) { |
| 832 | efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH); |
| 833 | } else { |
| 834 | EFX_ERR(efx, "channel %d unexpected TX event " |
| 835 | EFX_QWORD_FMT"\n", channel->channel, |
| 836 | EFX_QWORD_VAL(*event)); |
| 837 | } |
| 838 | } |
| 839 | |
| 840 | /* Check received packet's destination MAC address. */ |
| 841 | static int check_dest_mac(struct efx_rx_queue *rx_queue, |
| 842 | const efx_qword_t *event) |
| 843 | { |
| 844 | struct efx_rx_buffer *rx_buf; |
| 845 | struct efx_nic *efx = rx_queue->efx; |
| 846 | int rx_ev_desc_ptr; |
| 847 | struct ethhdr *eh; |
| 848 | |
| 849 | if (efx->promiscuous) |
| 850 | return 1; |
| 851 | |
| 852 | rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, RX_EV_DESC_PTR); |
| 853 | rx_buf = efx_rx_buffer(rx_queue, rx_ev_desc_ptr); |
| 854 | eh = (struct ethhdr *)rx_buf->data; |
| 855 | if (memcmp(eh->h_dest, efx->net_dev->dev_addr, ETH_ALEN)) |
| 856 | return 0; |
| 857 | return 1; |
| 858 | } |
| 859 | |
| 860 | /* Detect errors included in the rx_evt_pkt_ok bit. */ |
| 861 | static void falcon_handle_rx_not_ok(struct efx_rx_queue *rx_queue, |
| 862 | const efx_qword_t *event, |
| 863 | unsigned *rx_ev_pkt_ok, |
| 864 | int *discard, int byte_count) |
| 865 | { |
| 866 | struct efx_nic *efx = rx_queue->efx; |
| 867 | unsigned rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err; |
| 868 | unsigned rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err; |
| 869 | unsigned rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc; |
| 870 | unsigned rx_ev_pkt_type, rx_ev_other_err, rx_ev_pause_frm; |
| 871 | unsigned rx_ev_ip_frag_err, rx_ev_hdr_type, rx_ev_mcast_pkt; |
| 872 | int snap, non_ip; |
| 873 | |
| 874 | rx_ev_hdr_type = EFX_QWORD_FIELD(*event, RX_EV_HDR_TYPE); |
| 875 | rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, RX_EV_MCAST_PKT); |
| 876 | rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, RX_EV_TOBE_DISC); |
| 877 | rx_ev_pkt_type = EFX_QWORD_FIELD(*event, RX_EV_PKT_TYPE); |
| 878 | rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event, |
| 879 | RX_EV_BUF_OWNER_ID_ERR); |
| 880 | rx_ev_ip_frag_err = EFX_QWORD_FIELD(*event, RX_EV_IF_FRAG_ERR); |
| 881 | rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event, |
| 882 | RX_EV_IP_HDR_CHKSUM_ERR); |
| 883 | rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event, |
| 884 | RX_EV_TCP_UDP_CHKSUM_ERR); |
| 885 | rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, RX_EV_ETH_CRC_ERR); |
| 886 | rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, RX_EV_FRM_TRUNC); |
| 887 | rx_ev_drib_nib = ((FALCON_REV(efx) >= FALCON_REV_B0) ? |
| 888 | 0 : EFX_QWORD_FIELD(*event, RX_EV_DRIB_NIB)); |
| 889 | rx_ev_pause_frm = EFX_QWORD_FIELD(*event, RX_EV_PAUSE_FRM_ERR); |
| 890 | |
| 891 | /* Every error apart from tobe_disc and pause_frm */ |
| 892 | rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err | |
| 893 | rx_ev_buf_owner_id_err | rx_ev_eth_crc_err | |
| 894 | rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err); |
| 895 | |
| 896 | snap = (rx_ev_pkt_type == RX_EV_PKT_TYPE_LLC_DECODE) || |
| 897 | (rx_ev_pkt_type == RX_EV_PKT_TYPE_VLAN_LLC_DECODE); |
| 898 | non_ip = (rx_ev_hdr_type == RX_EV_HDR_TYPE_NON_IP_DECODE); |
| 899 | |
| 900 | /* SFC bug 5475/8970: The Falcon XMAC incorrectly calculates the |
| 901 | * length field of an LLC frame, which sets TOBE_DISC. We could set |
| 902 | * PASS_LEN_ERR, but we want the MAC to filter out short frames (to |
| 903 | * protect the RX block). |
| 904 | * |
| 905 | * bug5475 - LLC/SNAP: Falcon identifies SNAP packets. |
| 906 | * bug8970 - LLC/noSNAP: Falcon does not provide an LLC flag. |
| 907 | * LLC can't encapsulate IP, so by definition |
| 908 | * these packets are NON_IP. |
| 909 | * |
| 910 | * Unicast mismatch will also cause TOBE_DISC, so the driver needs |
| 911 | * to check this. |
| 912 | */ |
| 913 | if (EFX_WORKAROUND_5475(efx) && rx_ev_tobe_disc && (snap || non_ip)) { |
| 914 | /* If all the other flags are zero then we can state the |
| 915 | * entire packet is ok, which will flag to the kernel not |
| 916 | * to recalculate checksums. |
| 917 | */ |
| 918 | if (!(non_ip | rx_ev_other_err | rx_ev_pause_frm)) |
| 919 | *rx_ev_pkt_ok = 1; |
| 920 | |
| 921 | rx_ev_tobe_disc = 0; |
| 922 | |
| 923 | /* TOBE_DISC is set for unicast mismatch. But given that |
| 924 | * we can't trust TOBE_DISC here, we must validate the dest |
| 925 | * MAC address ourselves. |
| 926 | */ |
| 927 | if (!rx_ev_mcast_pkt && !check_dest_mac(rx_queue, event)) |
| 928 | rx_ev_tobe_disc = 1; |
| 929 | } |
| 930 | |
| 931 | /* Count errors that are not in MAC stats. */ |
| 932 | if (rx_ev_frm_trunc) |
| 933 | ++rx_queue->channel->n_rx_frm_trunc; |
| 934 | else if (rx_ev_tobe_disc) |
| 935 | ++rx_queue->channel->n_rx_tobe_disc; |
| 936 | else if (rx_ev_ip_hdr_chksum_err) |
| 937 | ++rx_queue->channel->n_rx_ip_hdr_chksum_err; |
| 938 | else if (rx_ev_tcp_udp_chksum_err) |
| 939 | ++rx_queue->channel->n_rx_tcp_udp_chksum_err; |
| 940 | if (rx_ev_ip_frag_err) |
| 941 | ++rx_queue->channel->n_rx_ip_frag_err; |
| 942 | |
| 943 | /* The frame must be discarded if any of these are true. */ |
| 944 | *discard = (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib | |
| 945 | rx_ev_tobe_disc | rx_ev_pause_frm); |
| 946 | |
| 947 | /* TOBE_DISC is expected on unicast mismatches; don't print out an |
| 948 | * error message. FRM_TRUNC indicates RXDP dropped the packet due |
| 949 | * to a FIFO overflow. |
| 950 | */ |
| 951 | #ifdef EFX_ENABLE_DEBUG |
| 952 | if (rx_ev_other_err) { |
| 953 | EFX_INFO_RL(efx, " RX queue %d unexpected RX event " |
| 954 | EFX_QWORD_FMT "%s%s%s%s%s%s%s%s%s\n", |
| 955 | rx_queue->queue, EFX_QWORD_VAL(*event), |
| 956 | rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "", |
| 957 | rx_ev_ip_hdr_chksum_err ? |
| 958 | " [IP_HDR_CHKSUM_ERR]" : "", |
| 959 | rx_ev_tcp_udp_chksum_err ? |
| 960 | " [TCP_UDP_CHKSUM_ERR]" : "", |
| 961 | rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "", |
| 962 | rx_ev_frm_trunc ? " [FRM_TRUNC]" : "", |
| 963 | rx_ev_drib_nib ? " [DRIB_NIB]" : "", |
| 964 | rx_ev_tobe_disc ? " [TOBE_DISC]" : "", |
| 965 | rx_ev_pause_frm ? " [PAUSE]" : "", |
| 966 | snap ? " [SNAP/LLC]" : ""); |
| 967 | } |
| 968 | #endif |
| 969 | |
| 970 | if (unlikely(rx_ev_eth_crc_err && EFX_WORKAROUND_10750(efx) && |
| 971 | efx->phy_type == PHY_TYPE_10XPRESS)) |
| 972 | tenxpress_crc_err(efx); |
| 973 | } |
| 974 | |
| 975 | /* Handle receive events that are not in-order. */ |
| 976 | static void falcon_handle_rx_bad_index(struct efx_rx_queue *rx_queue, |
| 977 | unsigned index) |
| 978 | { |
| 979 | struct efx_nic *efx = rx_queue->efx; |
| 980 | unsigned expected, dropped; |
| 981 | |
| 982 | expected = rx_queue->removed_count & FALCON_RXD_RING_MASK; |
| 983 | dropped = ((index + FALCON_RXD_RING_SIZE - expected) & |
| 984 | FALCON_RXD_RING_MASK); |
| 985 | EFX_INFO(efx, "dropped %d events (index=%d expected=%d)\n", |
| 986 | dropped, index, expected); |
| 987 | |
| 988 | efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ? |
| 989 | RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE); |
| 990 | } |
| 991 | |
| 992 | /* Handle a packet received event |
| 993 | * |
| 994 | * Falcon silicon gives a "discard" flag if it's a unicast packet with the |
| 995 | * wrong destination address |
| 996 | * Also "is multicast" and "matches multicast filter" flags can be used to |
| 997 | * discard non-matching multicast packets. |
| 998 | */ |
| 999 | static inline int falcon_handle_rx_event(struct efx_channel *channel, |
| 1000 | const efx_qword_t *event) |
| 1001 | { |
| 1002 | unsigned int rx_ev_q_label, rx_ev_desc_ptr, rx_ev_byte_cnt; |
| 1003 | unsigned int rx_ev_pkt_ok, rx_ev_hdr_type, rx_ev_mcast_pkt; |
| 1004 | unsigned expected_ptr; |
| 1005 | int discard = 0, checksummed; |
| 1006 | struct efx_rx_queue *rx_queue; |
| 1007 | struct efx_nic *efx = channel->efx; |
| 1008 | |
| 1009 | /* Basic packet information */ |
| 1010 | rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, RX_EV_BYTE_CNT); |
| 1011 | rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, RX_EV_PKT_OK); |
| 1012 | rx_ev_hdr_type = EFX_QWORD_FIELD(*event, RX_EV_HDR_TYPE); |
| 1013 | WARN_ON(EFX_QWORD_FIELD(*event, RX_EV_JUMBO_CONT)); |
| 1014 | WARN_ON(EFX_QWORD_FIELD(*event, RX_EV_SOP) != 1); |
| 1015 | |
| 1016 | rx_ev_q_label = EFX_QWORD_FIELD(*event, RX_EV_Q_LABEL); |
| 1017 | rx_queue = &efx->rx_queue[rx_ev_q_label]; |
| 1018 | |
| 1019 | rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, RX_EV_DESC_PTR); |
| 1020 | expected_ptr = rx_queue->removed_count & FALCON_RXD_RING_MASK; |
| 1021 | if (unlikely(rx_ev_desc_ptr != expected_ptr)) { |
| 1022 | falcon_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr); |
| 1023 | return rx_ev_q_label; |
| 1024 | } |
| 1025 | |
| 1026 | if (likely(rx_ev_pkt_ok)) { |
| 1027 | /* If packet is marked as OK and packet type is TCP/IPv4 or |
| 1028 | * UDP/IPv4, then we can rely on the hardware checksum. |
| 1029 | */ |
| 1030 | checksummed = RX_EV_HDR_TYPE_HAS_CHECKSUMS(rx_ev_hdr_type); |
| 1031 | } else { |
| 1032 | falcon_handle_rx_not_ok(rx_queue, event, &rx_ev_pkt_ok, |
| 1033 | &discard, rx_ev_byte_cnt); |
| 1034 | checksummed = 0; |
| 1035 | } |
| 1036 | |
| 1037 | /* Detect multicast packets that didn't match the filter */ |
| 1038 | rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, RX_EV_MCAST_PKT); |
| 1039 | if (rx_ev_mcast_pkt) { |
| 1040 | unsigned int rx_ev_mcast_hash_match = |
| 1041 | EFX_QWORD_FIELD(*event, RX_EV_MCAST_HASH_MATCH); |
| 1042 | |
| 1043 | if (unlikely(!rx_ev_mcast_hash_match)) |
| 1044 | discard = 1; |
| 1045 | } |
| 1046 | |
| 1047 | /* Handle received packet */ |
| 1048 | efx_rx_packet(rx_queue, rx_ev_desc_ptr, rx_ev_byte_cnt, |
| 1049 | checksummed, discard); |
| 1050 | |
| 1051 | return rx_ev_q_label; |
| 1052 | } |
| 1053 | |
| 1054 | /* Global events are basically PHY events */ |
| 1055 | static void falcon_handle_global_event(struct efx_channel *channel, |
| 1056 | efx_qword_t *event) |
| 1057 | { |
| 1058 | struct efx_nic *efx = channel->efx; |
| 1059 | int is_phy_event = 0, handled = 0; |
| 1060 | |
| 1061 | /* Check for interrupt on either port. Some boards have a |
| 1062 | * single PHY wired to the interrupt line for port 1. */ |
| 1063 | if (EFX_QWORD_FIELD(*event, G_PHY0_INTR) || |
| 1064 | EFX_QWORD_FIELD(*event, G_PHY1_INTR) || |
| 1065 | EFX_QWORD_FIELD(*event, XG_PHY_INTR)) |
| 1066 | is_phy_event = 1; |
| 1067 | |
| 1068 | if ((FALCON_REV(efx) >= FALCON_REV_B0) && |
| 1069 | EFX_OWORD_FIELD(*event, XG_MNT_INTR_B0)) |
| 1070 | is_phy_event = 1; |
| 1071 | |
| 1072 | if (is_phy_event) { |
| 1073 | efx->phy_op->clear_interrupt(efx); |
| 1074 | queue_work(efx->workqueue, &efx->reconfigure_work); |
| 1075 | handled = 1; |
| 1076 | } |
| 1077 | |
| 1078 | if (EFX_QWORD_FIELD_VER(efx, *event, RX_RECOVERY)) { |
| 1079 | EFX_ERR(efx, "channel %d seen global RX_RESET " |
| 1080 | "event. Resetting.\n", channel->channel); |
| 1081 | |
| 1082 | atomic_inc(&efx->rx_reset); |
| 1083 | efx_schedule_reset(efx, EFX_WORKAROUND_6555(efx) ? |
| 1084 | RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE); |
| 1085 | handled = 1; |
| 1086 | } |
| 1087 | |
| 1088 | if (!handled) |
| 1089 | EFX_ERR(efx, "channel %d unknown global event " |
| 1090 | EFX_QWORD_FMT "\n", channel->channel, |
| 1091 | EFX_QWORD_VAL(*event)); |
| 1092 | } |
| 1093 | |
| 1094 | static void falcon_handle_driver_event(struct efx_channel *channel, |
| 1095 | efx_qword_t *event) |
| 1096 | { |
| 1097 | struct efx_nic *efx = channel->efx; |
| 1098 | unsigned int ev_sub_code; |
| 1099 | unsigned int ev_sub_data; |
| 1100 | |
| 1101 | ev_sub_code = EFX_QWORD_FIELD(*event, DRIVER_EV_SUB_CODE); |
| 1102 | ev_sub_data = EFX_QWORD_FIELD(*event, DRIVER_EV_SUB_DATA); |
| 1103 | |
| 1104 | switch (ev_sub_code) { |
| 1105 | case TX_DESCQ_FLS_DONE_EV_DECODE: |
| 1106 | EFX_TRACE(efx, "channel %d TXQ %d flushed\n", |
| 1107 | channel->channel, ev_sub_data); |
| 1108 | break; |
| 1109 | case RX_DESCQ_FLS_DONE_EV_DECODE: |
| 1110 | EFX_TRACE(efx, "channel %d RXQ %d flushed\n", |
| 1111 | channel->channel, ev_sub_data); |
| 1112 | break; |
| 1113 | case EVQ_INIT_DONE_EV_DECODE: |
| 1114 | EFX_LOG(efx, "channel %d EVQ %d initialised\n", |
| 1115 | channel->channel, ev_sub_data); |
| 1116 | break; |
| 1117 | case SRM_UPD_DONE_EV_DECODE: |
| 1118 | EFX_TRACE(efx, "channel %d SRAM update done\n", |
| 1119 | channel->channel); |
| 1120 | break; |
| 1121 | case WAKE_UP_EV_DECODE: |
| 1122 | EFX_TRACE(efx, "channel %d RXQ %d wakeup event\n", |
| 1123 | channel->channel, ev_sub_data); |
| 1124 | break; |
| 1125 | case TIMER_EV_DECODE: |
| 1126 | EFX_TRACE(efx, "channel %d RX queue %d timer expired\n", |
| 1127 | channel->channel, ev_sub_data); |
| 1128 | break; |
| 1129 | case RX_RECOVERY_EV_DECODE: |
| 1130 | EFX_ERR(efx, "channel %d seen DRIVER RX_RESET event. " |
| 1131 | "Resetting.\n", channel->channel); |
Ben Hutchings | 05e3ec0 | 2008-05-07 13:00:39 +0100 | [diff] [blame] | 1132 | atomic_inc(&efx->rx_reset); |
Ben Hutchings | 8ceee66 | 2008-04-27 12:55:59 +0100 | [diff] [blame] | 1133 | efx_schedule_reset(efx, |
| 1134 | EFX_WORKAROUND_6555(efx) ? |
| 1135 | RESET_TYPE_RX_RECOVERY : |
| 1136 | RESET_TYPE_DISABLE); |
| 1137 | break; |
| 1138 | case RX_DSC_ERROR_EV_DECODE: |
| 1139 | EFX_ERR(efx, "RX DMA Q %d reports descriptor fetch error." |
| 1140 | " RX Q %d is disabled.\n", ev_sub_data, ev_sub_data); |
| 1141 | efx_schedule_reset(efx, RESET_TYPE_RX_DESC_FETCH); |
| 1142 | break; |
| 1143 | case TX_DSC_ERROR_EV_DECODE: |
| 1144 | EFX_ERR(efx, "TX DMA Q %d reports descriptor fetch error." |
| 1145 | " TX Q %d is disabled.\n", ev_sub_data, ev_sub_data); |
| 1146 | efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH); |
| 1147 | break; |
| 1148 | default: |
| 1149 | EFX_TRACE(efx, "channel %d unknown driver event code %d " |
| 1150 | "data %04x\n", channel->channel, ev_sub_code, |
| 1151 | ev_sub_data); |
| 1152 | break; |
| 1153 | } |
| 1154 | } |
| 1155 | |
| 1156 | int falcon_process_eventq(struct efx_channel *channel, int *rx_quota) |
| 1157 | { |
| 1158 | unsigned int read_ptr; |
| 1159 | efx_qword_t event, *p_event; |
| 1160 | int ev_code; |
| 1161 | int rxq; |
| 1162 | int rxdmaqs = 0; |
| 1163 | |
| 1164 | read_ptr = channel->eventq_read_ptr; |
| 1165 | |
| 1166 | do { |
| 1167 | p_event = falcon_event(channel, read_ptr); |
| 1168 | event = *p_event; |
| 1169 | |
| 1170 | if (!falcon_event_present(&event)) |
| 1171 | /* End of events */ |
| 1172 | break; |
| 1173 | |
| 1174 | EFX_TRACE(channel->efx, "channel %d event is "EFX_QWORD_FMT"\n", |
| 1175 | channel->channel, EFX_QWORD_VAL(event)); |
| 1176 | |
| 1177 | /* Clear this event by marking it all ones */ |
| 1178 | EFX_SET_QWORD(*p_event); |
| 1179 | |
| 1180 | ev_code = EFX_QWORD_FIELD(event, EV_CODE); |
| 1181 | |
| 1182 | switch (ev_code) { |
| 1183 | case RX_IP_EV_DECODE: |
| 1184 | rxq = falcon_handle_rx_event(channel, &event); |
| 1185 | rxdmaqs |= (1 << rxq); |
| 1186 | (*rx_quota)--; |
| 1187 | break; |
| 1188 | case TX_IP_EV_DECODE: |
| 1189 | falcon_handle_tx_event(channel, &event); |
| 1190 | break; |
| 1191 | case DRV_GEN_EV_DECODE: |
| 1192 | channel->eventq_magic |
| 1193 | = EFX_QWORD_FIELD(event, EVQ_MAGIC); |
| 1194 | EFX_LOG(channel->efx, "channel %d received generated " |
| 1195 | "event "EFX_QWORD_FMT"\n", channel->channel, |
| 1196 | EFX_QWORD_VAL(event)); |
| 1197 | break; |
| 1198 | case GLOBAL_EV_DECODE: |
| 1199 | falcon_handle_global_event(channel, &event); |
| 1200 | break; |
| 1201 | case DRIVER_EV_DECODE: |
| 1202 | falcon_handle_driver_event(channel, &event); |
| 1203 | break; |
| 1204 | default: |
| 1205 | EFX_ERR(channel->efx, "channel %d unknown event type %d" |
| 1206 | " (data " EFX_QWORD_FMT ")\n", channel->channel, |
| 1207 | ev_code, EFX_QWORD_VAL(event)); |
| 1208 | } |
| 1209 | |
| 1210 | /* Increment read pointer */ |
| 1211 | read_ptr = (read_ptr + 1) & FALCON_EVQ_MASK; |
| 1212 | |
| 1213 | } while (*rx_quota); |
| 1214 | |
| 1215 | channel->eventq_read_ptr = read_ptr; |
| 1216 | return rxdmaqs; |
| 1217 | } |
| 1218 | |
| 1219 | void falcon_set_int_moderation(struct efx_channel *channel) |
| 1220 | { |
| 1221 | efx_dword_t timer_cmd; |
| 1222 | struct efx_nic *efx = channel->efx; |
| 1223 | |
| 1224 | /* Set timer register */ |
| 1225 | if (channel->irq_moderation) { |
| 1226 | /* Round to resolution supported by hardware. The value we |
| 1227 | * program is based at 0. So actual interrupt moderation |
| 1228 | * achieved is ((x + 1) * res). |
| 1229 | */ |
| 1230 | unsigned int res = 5; |
| 1231 | channel->irq_moderation -= (channel->irq_moderation % res); |
| 1232 | if (channel->irq_moderation < res) |
| 1233 | channel->irq_moderation = res; |
| 1234 | EFX_POPULATE_DWORD_2(timer_cmd, |
| 1235 | TIMER_MODE, TIMER_MODE_INT_HLDOFF, |
| 1236 | TIMER_VAL, |
| 1237 | (channel->irq_moderation / res) - 1); |
| 1238 | } else { |
| 1239 | EFX_POPULATE_DWORD_2(timer_cmd, |
| 1240 | TIMER_MODE, TIMER_MODE_DIS, |
| 1241 | TIMER_VAL, 0); |
| 1242 | } |
| 1243 | falcon_writel_page_locked(efx, &timer_cmd, TIMER_CMD_REG_KER, |
| 1244 | channel->evqnum); |
| 1245 | |
| 1246 | } |
| 1247 | |
| 1248 | /* Allocate buffer table entries for event queue */ |
| 1249 | int falcon_probe_eventq(struct efx_channel *channel) |
| 1250 | { |
| 1251 | struct efx_nic *efx = channel->efx; |
| 1252 | unsigned int evq_size; |
| 1253 | |
| 1254 | evq_size = FALCON_EVQ_SIZE * sizeof(efx_qword_t); |
| 1255 | return falcon_alloc_special_buffer(efx, &channel->eventq, evq_size); |
| 1256 | } |
| 1257 | |
| 1258 | int falcon_init_eventq(struct efx_channel *channel) |
| 1259 | { |
| 1260 | efx_oword_t evq_ptr; |
| 1261 | struct efx_nic *efx = channel->efx; |
| 1262 | int rc; |
| 1263 | |
| 1264 | EFX_LOG(efx, "channel %d event queue in special buffers %d-%d\n", |
| 1265 | channel->channel, channel->eventq.index, |
| 1266 | channel->eventq.index + channel->eventq.entries - 1); |
| 1267 | |
| 1268 | /* Pin event queue buffer */ |
| 1269 | rc = falcon_init_special_buffer(efx, &channel->eventq); |
| 1270 | if (rc) |
| 1271 | return rc; |
| 1272 | |
| 1273 | /* Fill event queue with all ones (i.e. empty events) */ |
| 1274 | memset(channel->eventq.addr, 0xff, channel->eventq.len); |
| 1275 | |
| 1276 | /* Push event queue to card */ |
| 1277 | EFX_POPULATE_OWORD_3(evq_ptr, |
| 1278 | EVQ_EN, 1, |
| 1279 | EVQ_SIZE, FALCON_EVQ_ORDER, |
| 1280 | EVQ_BUF_BASE_ID, channel->eventq.index); |
| 1281 | falcon_write_table(efx, &evq_ptr, efx->type->evq_ptr_tbl_base, |
| 1282 | channel->evqnum); |
| 1283 | |
| 1284 | falcon_set_int_moderation(channel); |
| 1285 | |
| 1286 | return 0; |
| 1287 | } |
| 1288 | |
| 1289 | void falcon_fini_eventq(struct efx_channel *channel) |
| 1290 | { |
| 1291 | efx_oword_t eventq_ptr; |
| 1292 | struct efx_nic *efx = channel->efx; |
| 1293 | |
| 1294 | /* Remove event queue from card */ |
| 1295 | EFX_ZERO_OWORD(eventq_ptr); |
| 1296 | falcon_write_table(efx, &eventq_ptr, efx->type->evq_ptr_tbl_base, |
| 1297 | channel->evqnum); |
| 1298 | |
| 1299 | /* Unpin event queue */ |
| 1300 | falcon_fini_special_buffer(efx, &channel->eventq); |
| 1301 | } |
| 1302 | |
| 1303 | /* Free buffers backing event queue */ |
| 1304 | void falcon_remove_eventq(struct efx_channel *channel) |
| 1305 | { |
| 1306 | falcon_free_special_buffer(channel->efx, &channel->eventq); |
| 1307 | } |
| 1308 | |
| 1309 | |
| 1310 | /* Generates a test event on the event queue. A subsequent call to |
| 1311 | * process_eventq() should pick up the event and place the value of |
| 1312 | * "magic" into channel->eventq_magic; |
| 1313 | */ |
| 1314 | void falcon_generate_test_event(struct efx_channel *channel, unsigned int magic) |
| 1315 | { |
| 1316 | efx_qword_t test_event; |
| 1317 | |
| 1318 | EFX_POPULATE_QWORD_2(test_event, |
| 1319 | EV_CODE, DRV_GEN_EV_DECODE, |
| 1320 | EVQ_MAGIC, magic); |
| 1321 | falcon_generate_event(channel, &test_event); |
| 1322 | } |
| 1323 | |
| 1324 | |
| 1325 | /************************************************************************** |
| 1326 | * |
| 1327 | * Falcon hardware interrupts |
| 1328 | * The hardware interrupt handler does very little work; all the event |
| 1329 | * queue processing is carried out by per-channel tasklets. |
| 1330 | * |
| 1331 | **************************************************************************/ |
| 1332 | |
| 1333 | /* Enable/disable/generate Falcon interrupts */ |
| 1334 | static inline void falcon_interrupts(struct efx_nic *efx, int enabled, |
| 1335 | int force) |
| 1336 | { |
| 1337 | efx_oword_t int_en_reg_ker; |
| 1338 | |
| 1339 | EFX_POPULATE_OWORD_2(int_en_reg_ker, |
| 1340 | KER_INT_KER, force, |
| 1341 | DRV_INT_EN_KER, enabled); |
| 1342 | falcon_write(efx, &int_en_reg_ker, INT_EN_REG_KER); |
| 1343 | } |
| 1344 | |
| 1345 | void falcon_enable_interrupts(struct efx_nic *efx) |
| 1346 | { |
| 1347 | efx_oword_t int_adr_reg_ker; |
| 1348 | struct efx_channel *channel; |
| 1349 | |
| 1350 | EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr)); |
| 1351 | wmb(); /* Ensure interrupt vector is clear before interrupts enabled */ |
| 1352 | |
| 1353 | /* Program address */ |
| 1354 | EFX_POPULATE_OWORD_2(int_adr_reg_ker, |
| 1355 | NORM_INT_VEC_DIS_KER, EFX_INT_MODE_USE_MSI(efx), |
| 1356 | INT_ADR_KER, efx->irq_status.dma_addr); |
| 1357 | falcon_write(efx, &int_adr_reg_ker, INT_ADR_REG_KER); |
| 1358 | |
| 1359 | /* Enable interrupts */ |
| 1360 | falcon_interrupts(efx, 1, 0); |
| 1361 | |
| 1362 | /* Force processing of all the channels to get the EVQ RPTRs up to |
| 1363 | date */ |
| 1364 | efx_for_each_channel_with_interrupt(channel, efx) |
| 1365 | efx_schedule_channel(channel); |
| 1366 | } |
| 1367 | |
| 1368 | void falcon_disable_interrupts(struct efx_nic *efx) |
| 1369 | { |
| 1370 | /* Disable interrupts */ |
| 1371 | falcon_interrupts(efx, 0, 0); |
| 1372 | } |
| 1373 | |
| 1374 | /* Generate a Falcon test interrupt |
| 1375 | * Interrupt must already have been enabled, otherwise nasty things |
| 1376 | * may happen. |
| 1377 | */ |
| 1378 | void falcon_generate_interrupt(struct efx_nic *efx) |
| 1379 | { |
| 1380 | falcon_interrupts(efx, 1, 1); |
| 1381 | } |
| 1382 | |
| 1383 | /* Acknowledge a legacy interrupt from Falcon |
| 1384 | * |
| 1385 | * This acknowledges a legacy (not MSI) interrupt via INT_ACK_KER_REG. |
| 1386 | * |
| 1387 | * Due to SFC bug 3706 (silicon revision <=A1) reads can be duplicated in the |
| 1388 | * BIU. Interrupt acknowledge is read sensitive so must write instead |
| 1389 | * (then read to ensure the BIU collector is flushed) |
| 1390 | * |
| 1391 | * NB most hardware supports MSI interrupts |
| 1392 | */ |
| 1393 | static inline void falcon_irq_ack_a1(struct efx_nic *efx) |
| 1394 | { |
| 1395 | efx_dword_t reg; |
| 1396 | |
| 1397 | EFX_POPULATE_DWORD_1(reg, INT_ACK_DUMMY_DATA, 0xb7eb7e); |
| 1398 | falcon_writel(efx, ®, INT_ACK_REG_KER_A1); |
| 1399 | falcon_readl(efx, ®, WORK_AROUND_BROKEN_PCI_READS_REG_KER_A1); |
| 1400 | } |
| 1401 | |
| 1402 | /* Process a fatal interrupt |
| 1403 | * Disable bus mastering ASAP and schedule a reset |
| 1404 | */ |
| 1405 | static irqreturn_t falcon_fatal_interrupt(struct efx_nic *efx) |
| 1406 | { |
| 1407 | struct falcon_nic_data *nic_data = efx->nic_data; |
| 1408 | efx_oword_t *int_ker = (efx_oword_t *) efx->irq_status.addr; |
| 1409 | efx_oword_t fatal_intr; |
| 1410 | int error, mem_perr; |
| 1411 | static int n_int_errors; |
| 1412 | |
| 1413 | falcon_read(efx, &fatal_intr, FATAL_INTR_REG_KER); |
| 1414 | error = EFX_OWORD_FIELD(fatal_intr, INT_KER_ERROR); |
| 1415 | |
| 1416 | EFX_ERR(efx, "SYSTEM ERROR " EFX_OWORD_FMT " status " |
| 1417 | EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker), |
| 1418 | EFX_OWORD_VAL(fatal_intr), |
| 1419 | error ? "disabling bus mastering" : "no recognised error"); |
| 1420 | if (error == 0) |
| 1421 | goto out; |
| 1422 | |
| 1423 | /* If this is a memory parity error dump which blocks are offending */ |
| 1424 | mem_perr = EFX_OWORD_FIELD(fatal_intr, MEM_PERR_INT_KER); |
| 1425 | if (mem_perr) { |
| 1426 | efx_oword_t reg; |
| 1427 | falcon_read(efx, ®, MEM_STAT_REG_KER); |
| 1428 | EFX_ERR(efx, "SYSTEM ERROR: memory parity error " |
| 1429 | EFX_OWORD_FMT "\n", EFX_OWORD_VAL(reg)); |
| 1430 | } |
| 1431 | |
| 1432 | /* Disable DMA bus mastering on both devices */ |
| 1433 | pci_disable_device(efx->pci_dev); |
| 1434 | if (FALCON_IS_DUAL_FUNC(efx)) |
| 1435 | pci_disable_device(nic_data->pci_dev2); |
| 1436 | |
| 1437 | if (++n_int_errors < FALCON_MAX_INT_ERRORS) { |
| 1438 | EFX_ERR(efx, "SYSTEM ERROR - reset scheduled\n"); |
| 1439 | efx_schedule_reset(efx, RESET_TYPE_INT_ERROR); |
| 1440 | } else { |
| 1441 | EFX_ERR(efx, "SYSTEM ERROR - max number of errors seen." |
| 1442 | "NIC will be disabled\n"); |
| 1443 | efx_schedule_reset(efx, RESET_TYPE_DISABLE); |
| 1444 | } |
| 1445 | out: |
| 1446 | return IRQ_HANDLED; |
| 1447 | } |
| 1448 | |
| 1449 | /* Handle a legacy interrupt from Falcon |
| 1450 | * Acknowledges the interrupt and schedule event queue processing. |
| 1451 | */ |
| 1452 | static irqreturn_t falcon_legacy_interrupt_b0(int irq, void *dev_id) |
| 1453 | { |
| 1454 | struct efx_nic *efx = (struct efx_nic *)dev_id; |
| 1455 | efx_oword_t *int_ker = (efx_oword_t *) efx->irq_status.addr; |
| 1456 | struct efx_channel *channel; |
| 1457 | efx_dword_t reg; |
| 1458 | u32 queues; |
| 1459 | int syserr; |
| 1460 | |
| 1461 | /* Read the ISR which also ACKs the interrupts */ |
| 1462 | falcon_readl(efx, ®, INT_ISR0_B0); |
| 1463 | queues = EFX_EXTRACT_DWORD(reg, 0, 31); |
| 1464 | |
| 1465 | /* Check to see if we have a serious error condition */ |
| 1466 | syserr = EFX_OWORD_FIELD(*int_ker, FATAL_INT); |
| 1467 | if (unlikely(syserr)) |
| 1468 | return falcon_fatal_interrupt(efx); |
| 1469 | |
| 1470 | if (queues == 0) |
| 1471 | return IRQ_NONE; |
| 1472 | |
| 1473 | efx->last_irq_cpu = raw_smp_processor_id(); |
| 1474 | EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n", |
| 1475 | irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg)); |
| 1476 | |
| 1477 | /* Schedule processing of any interrupting queues */ |
| 1478 | channel = &efx->channel[0]; |
| 1479 | while (queues) { |
| 1480 | if (queues & 0x01) |
| 1481 | efx_schedule_channel(channel); |
| 1482 | channel++; |
| 1483 | queues >>= 1; |
| 1484 | } |
| 1485 | |
| 1486 | return IRQ_HANDLED; |
| 1487 | } |
| 1488 | |
| 1489 | |
| 1490 | static irqreturn_t falcon_legacy_interrupt_a1(int irq, void *dev_id) |
| 1491 | { |
| 1492 | struct efx_nic *efx = (struct efx_nic *)dev_id; |
| 1493 | efx_oword_t *int_ker = (efx_oword_t *) efx->irq_status.addr; |
| 1494 | struct efx_channel *channel; |
| 1495 | int syserr; |
| 1496 | int queues; |
| 1497 | |
| 1498 | /* Check to see if this is our interrupt. If it isn't, we |
| 1499 | * exit without having touched the hardware. |
| 1500 | */ |
| 1501 | if (unlikely(EFX_OWORD_IS_ZERO(*int_ker))) { |
| 1502 | EFX_TRACE(efx, "IRQ %d on CPU %d not for me\n", irq, |
| 1503 | raw_smp_processor_id()); |
| 1504 | return IRQ_NONE; |
| 1505 | } |
| 1506 | efx->last_irq_cpu = raw_smp_processor_id(); |
| 1507 | EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n", |
| 1508 | irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker)); |
| 1509 | |
| 1510 | /* Check to see if we have a serious error condition */ |
| 1511 | syserr = EFX_OWORD_FIELD(*int_ker, FATAL_INT); |
| 1512 | if (unlikely(syserr)) |
| 1513 | return falcon_fatal_interrupt(efx); |
| 1514 | |
| 1515 | /* Determine interrupting queues, clear interrupt status |
| 1516 | * register and acknowledge the device interrupt. |
| 1517 | */ |
| 1518 | BUILD_BUG_ON(INT_EVQS_WIDTH > EFX_MAX_CHANNELS); |
| 1519 | queues = EFX_OWORD_FIELD(*int_ker, INT_EVQS); |
| 1520 | EFX_ZERO_OWORD(*int_ker); |
| 1521 | wmb(); /* Ensure the vector is cleared before interrupt ack */ |
| 1522 | falcon_irq_ack_a1(efx); |
| 1523 | |
| 1524 | /* Schedule processing of any interrupting queues */ |
| 1525 | channel = &efx->channel[0]; |
| 1526 | while (queues) { |
| 1527 | if (queues & 0x01) |
| 1528 | efx_schedule_channel(channel); |
| 1529 | channel++; |
| 1530 | queues >>= 1; |
| 1531 | } |
| 1532 | |
| 1533 | return IRQ_HANDLED; |
| 1534 | } |
| 1535 | |
| 1536 | /* Handle an MSI interrupt from Falcon |
| 1537 | * |
| 1538 | * Handle an MSI hardware interrupt. This routine schedules event |
| 1539 | * queue processing. No interrupt acknowledgement cycle is necessary. |
| 1540 | * Also, we never need to check that the interrupt is for us, since |
| 1541 | * MSI interrupts cannot be shared. |
| 1542 | */ |
| 1543 | static irqreturn_t falcon_msi_interrupt(int irq, void *dev_id) |
| 1544 | { |
| 1545 | struct efx_channel *channel = (struct efx_channel *)dev_id; |
| 1546 | struct efx_nic *efx = channel->efx; |
| 1547 | efx_oword_t *int_ker = (efx_oword_t *) efx->irq_status.addr; |
| 1548 | int syserr; |
| 1549 | |
| 1550 | efx->last_irq_cpu = raw_smp_processor_id(); |
| 1551 | EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n", |
| 1552 | irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker)); |
| 1553 | |
| 1554 | /* Check to see if we have a serious error condition */ |
| 1555 | syserr = EFX_OWORD_FIELD(*int_ker, FATAL_INT); |
| 1556 | if (unlikely(syserr)) |
| 1557 | return falcon_fatal_interrupt(efx); |
| 1558 | |
| 1559 | /* Schedule processing of the channel */ |
| 1560 | efx_schedule_channel(channel); |
| 1561 | |
| 1562 | return IRQ_HANDLED; |
| 1563 | } |
| 1564 | |
| 1565 | |
| 1566 | /* Setup RSS indirection table. |
| 1567 | * This maps from the hash value of the packet to RXQ |
| 1568 | */ |
| 1569 | static void falcon_setup_rss_indir_table(struct efx_nic *efx) |
| 1570 | { |
| 1571 | int i = 0; |
| 1572 | unsigned long offset; |
| 1573 | efx_dword_t dword; |
| 1574 | |
| 1575 | if (FALCON_REV(efx) < FALCON_REV_B0) |
| 1576 | return; |
| 1577 | |
| 1578 | for (offset = RX_RSS_INDIR_TBL_B0; |
| 1579 | offset < RX_RSS_INDIR_TBL_B0 + 0x800; |
| 1580 | offset += 0x10) { |
| 1581 | EFX_POPULATE_DWORD_1(dword, RX_RSS_INDIR_ENT_B0, |
| 1582 | i % efx->rss_queues); |
| 1583 | falcon_writel(efx, &dword, offset); |
| 1584 | i++; |
| 1585 | } |
| 1586 | } |
| 1587 | |
| 1588 | /* Hook interrupt handler(s) |
| 1589 | * Try MSI and then legacy interrupts. |
| 1590 | */ |
| 1591 | int falcon_init_interrupt(struct efx_nic *efx) |
| 1592 | { |
| 1593 | struct efx_channel *channel; |
| 1594 | int rc; |
| 1595 | |
| 1596 | if (!EFX_INT_MODE_USE_MSI(efx)) { |
| 1597 | irq_handler_t handler; |
| 1598 | if (FALCON_REV(efx) >= FALCON_REV_B0) |
| 1599 | handler = falcon_legacy_interrupt_b0; |
| 1600 | else |
| 1601 | handler = falcon_legacy_interrupt_a1; |
| 1602 | |
| 1603 | rc = request_irq(efx->legacy_irq, handler, IRQF_SHARED, |
| 1604 | efx->name, efx); |
| 1605 | if (rc) { |
| 1606 | EFX_ERR(efx, "failed to hook legacy IRQ %d\n", |
| 1607 | efx->pci_dev->irq); |
| 1608 | goto fail1; |
| 1609 | } |
| 1610 | return 0; |
| 1611 | } |
| 1612 | |
| 1613 | /* Hook MSI or MSI-X interrupt */ |
| 1614 | efx_for_each_channel_with_interrupt(channel, efx) { |
| 1615 | rc = request_irq(channel->irq, falcon_msi_interrupt, |
| 1616 | IRQF_PROBE_SHARED, /* Not shared */ |
| 1617 | efx->name, channel); |
| 1618 | if (rc) { |
| 1619 | EFX_ERR(efx, "failed to hook IRQ %d\n", channel->irq); |
| 1620 | goto fail2; |
| 1621 | } |
| 1622 | } |
| 1623 | |
| 1624 | return 0; |
| 1625 | |
| 1626 | fail2: |
| 1627 | efx_for_each_channel_with_interrupt(channel, efx) |
| 1628 | free_irq(channel->irq, channel); |
| 1629 | fail1: |
| 1630 | return rc; |
| 1631 | } |
| 1632 | |
| 1633 | void falcon_fini_interrupt(struct efx_nic *efx) |
| 1634 | { |
| 1635 | struct efx_channel *channel; |
| 1636 | efx_oword_t reg; |
| 1637 | |
| 1638 | /* Disable MSI/MSI-X interrupts */ |
| 1639 | efx_for_each_channel_with_interrupt(channel, efx) |
| 1640 | if (channel->irq) |
| 1641 | free_irq(channel->irq, channel); |
| 1642 | |
| 1643 | /* ACK legacy interrupt */ |
| 1644 | if (FALCON_REV(efx) >= FALCON_REV_B0) |
| 1645 | falcon_read(efx, ®, INT_ISR0_B0); |
| 1646 | else |
| 1647 | falcon_irq_ack_a1(efx); |
| 1648 | |
| 1649 | /* Disable legacy interrupt */ |
| 1650 | if (efx->legacy_irq) |
| 1651 | free_irq(efx->legacy_irq, efx); |
| 1652 | } |
| 1653 | |
| 1654 | /************************************************************************** |
| 1655 | * |
| 1656 | * EEPROM/flash |
| 1657 | * |
| 1658 | ************************************************************************** |
| 1659 | */ |
| 1660 | |
| 1661 | #define FALCON_SPI_MAX_LEN sizeof(efx_oword_t) |
| 1662 | |
| 1663 | /* Wait for SPI command completion */ |
| 1664 | static int falcon_spi_wait(struct efx_nic *efx) |
| 1665 | { |
| 1666 | efx_oword_t reg; |
| 1667 | int cmd_en, timer_active; |
| 1668 | int count; |
| 1669 | |
| 1670 | count = 0; |
| 1671 | do { |
| 1672 | falcon_read(efx, ®, EE_SPI_HCMD_REG_KER); |
| 1673 | cmd_en = EFX_OWORD_FIELD(reg, EE_SPI_HCMD_CMD_EN); |
| 1674 | timer_active = EFX_OWORD_FIELD(reg, EE_WR_TIMER_ACTIVE); |
| 1675 | if (!cmd_en && !timer_active) |
| 1676 | return 0; |
| 1677 | udelay(10); |
| 1678 | } while (++count < 10000); /* wait upto 100msec */ |
| 1679 | EFX_ERR(efx, "timed out waiting for SPI\n"); |
| 1680 | return -ETIMEDOUT; |
| 1681 | } |
| 1682 | |
| 1683 | static int |
| 1684 | falcon_spi_read(struct efx_nic *efx, int device_id, unsigned int command, |
| 1685 | unsigned int address, unsigned int addr_len, |
| 1686 | void *data, unsigned int len) |
| 1687 | { |
| 1688 | efx_oword_t reg; |
| 1689 | int rc; |
| 1690 | |
| 1691 | BUG_ON(len > FALCON_SPI_MAX_LEN); |
| 1692 | |
| 1693 | /* Check SPI not currently being accessed */ |
| 1694 | rc = falcon_spi_wait(efx); |
| 1695 | if (rc) |
| 1696 | return rc; |
| 1697 | |
| 1698 | /* Program address register */ |
| 1699 | EFX_POPULATE_OWORD_1(reg, EE_SPI_HADR_ADR, address); |
| 1700 | falcon_write(efx, ®, EE_SPI_HADR_REG_KER); |
| 1701 | |
| 1702 | /* Issue read command */ |
| 1703 | EFX_POPULATE_OWORD_7(reg, |
| 1704 | EE_SPI_HCMD_CMD_EN, 1, |
| 1705 | EE_SPI_HCMD_SF_SEL, device_id, |
| 1706 | EE_SPI_HCMD_DABCNT, len, |
| 1707 | EE_SPI_HCMD_READ, EE_SPI_READ, |
| 1708 | EE_SPI_HCMD_DUBCNT, 0, |
| 1709 | EE_SPI_HCMD_ADBCNT, addr_len, |
| 1710 | EE_SPI_HCMD_ENC, command); |
| 1711 | falcon_write(efx, ®, EE_SPI_HCMD_REG_KER); |
| 1712 | |
| 1713 | /* Wait for read to complete */ |
| 1714 | rc = falcon_spi_wait(efx); |
| 1715 | if (rc) |
| 1716 | return rc; |
| 1717 | |
| 1718 | /* Read data */ |
| 1719 | falcon_read(efx, ®, EE_SPI_HDATA_REG_KER); |
| 1720 | memcpy(data, ®, len); |
| 1721 | return 0; |
| 1722 | } |
| 1723 | |
| 1724 | /************************************************************************** |
| 1725 | * |
| 1726 | * MAC wrapper |
| 1727 | * |
| 1728 | ************************************************************************** |
| 1729 | */ |
| 1730 | void falcon_drain_tx_fifo(struct efx_nic *efx) |
| 1731 | { |
| 1732 | efx_oword_t temp; |
| 1733 | int count; |
| 1734 | |
Ben Hutchings | 3273c2e | 2008-05-07 13:36:19 +0100 | [diff] [blame^] | 1735 | if ((FALCON_REV(efx) < FALCON_REV_B0) || |
| 1736 | (efx->loopback_mode != LOOPBACK_NONE)) |
Ben Hutchings | 8ceee66 | 2008-04-27 12:55:59 +0100 | [diff] [blame] | 1737 | return; |
| 1738 | |
| 1739 | falcon_read(efx, &temp, MAC0_CTRL_REG_KER); |
| 1740 | /* There is no point in draining more than once */ |
| 1741 | if (EFX_OWORD_FIELD(temp, TXFIFO_DRAIN_EN_B0)) |
| 1742 | return; |
| 1743 | |
| 1744 | /* MAC stats will fail whilst the TX fifo is draining. Serialise |
| 1745 | * the drain sequence with the statistics fetch */ |
| 1746 | spin_lock(&efx->stats_lock); |
| 1747 | |
| 1748 | EFX_SET_OWORD_FIELD(temp, TXFIFO_DRAIN_EN_B0, 1); |
| 1749 | falcon_write(efx, &temp, MAC0_CTRL_REG_KER); |
| 1750 | |
| 1751 | /* Reset the MAC and EM block. */ |
| 1752 | falcon_read(efx, &temp, GLB_CTL_REG_KER); |
| 1753 | EFX_SET_OWORD_FIELD(temp, RST_XGTX, 1); |
| 1754 | EFX_SET_OWORD_FIELD(temp, RST_XGRX, 1); |
| 1755 | EFX_SET_OWORD_FIELD(temp, RST_EM, 1); |
| 1756 | falcon_write(efx, &temp, GLB_CTL_REG_KER); |
| 1757 | |
| 1758 | count = 0; |
| 1759 | while (1) { |
| 1760 | falcon_read(efx, &temp, GLB_CTL_REG_KER); |
| 1761 | if (!EFX_OWORD_FIELD(temp, RST_XGTX) && |
| 1762 | !EFX_OWORD_FIELD(temp, RST_XGRX) && |
| 1763 | !EFX_OWORD_FIELD(temp, RST_EM)) { |
| 1764 | EFX_LOG(efx, "Completed MAC reset after %d loops\n", |
| 1765 | count); |
| 1766 | break; |
| 1767 | } |
| 1768 | if (count > 20) { |
| 1769 | EFX_ERR(efx, "MAC reset failed\n"); |
| 1770 | break; |
| 1771 | } |
| 1772 | count++; |
| 1773 | udelay(10); |
| 1774 | } |
| 1775 | |
| 1776 | spin_unlock(&efx->stats_lock); |
| 1777 | |
| 1778 | /* If we've reset the EM block and the link is up, then |
| 1779 | * we'll have to kick the XAUI link so the PHY can recover */ |
| 1780 | if (efx->link_up && EFX_WORKAROUND_5147(efx)) |
| 1781 | falcon_reset_xaui(efx); |
| 1782 | } |
| 1783 | |
| 1784 | void falcon_deconfigure_mac_wrapper(struct efx_nic *efx) |
| 1785 | { |
| 1786 | efx_oword_t temp; |
| 1787 | |
| 1788 | if (FALCON_REV(efx) < FALCON_REV_B0) |
| 1789 | return; |
| 1790 | |
| 1791 | /* Isolate the MAC -> RX */ |
| 1792 | falcon_read(efx, &temp, RX_CFG_REG_KER); |
| 1793 | EFX_SET_OWORD_FIELD(temp, RX_INGR_EN_B0, 0); |
| 1794 | falcon_write(efx, &temp, RX_CFG_REG_KER); |
| 1795 | |
| 1796 | if (!efx->link_up) |
| 1797 | falcon_drain_tx_fifo(efx); |
| 1798 | } |
| 1799 | |
| 1800 | void falcon_reconfigure_mac_wrapper(struct efx_nic *efx) |
| 1801 | { |
| 1802 | efx_oword_t reg; |
| 1803 | int link_speed; |
| 1804 | unsigned int tx_fc; |
| 1805 | |
| 1806 | if (efx->link_options & GM_LPA_10000) |
| 1807 | link_speed = 0x3; |
| 1808 | else if (efx->link_options & GM_LPA_1000) |
| 1809 | link_speed = 0x2; |
| 1810 | else if (efx->link_options & GM_LPA_100) |
| 1811 | link_speed = 0x1; |
| 1812 | else |
| 1813 | link_speed = 0x0; |
| 1814 | /* MAC_LINK_STATUS controls MAC backpressure but doesn't work |
| 1815 | * as advertised. Disable to ensure packets are not |
| 1816 | * indefinitely held and TX queue can be flushed at any point |
| 1817 | * while the link is down. */ |
| 1818 | EFX_POPULATE_OWORD_5(reg, |
| 1819 | MAC_XOFF_VAL, 0xffff /* max pause time */, |
| 1820 | MAC_BCAD_ACPT, 1, |
| 1821 | MAC_UC_PROM, efx->promiscuous, |
| 1822 | MAC_LINK_STATUS, 1, /* always set */ |
| 1823 | MAC_SPEED, link_speed); |
| 1824 | /* On B0, MAC backpressure can be disabled and packets get |
| 1825 | * discarded. */ |
| 1826 | if (FALCON_REV(efx) >= FALCON_REV_B0) { |
| 1827 | EFX_SET_OWORD_FIELD(reg, TXFIFO_DRAIN_EN_B0, |
| 1828 | !efx->link_up); |
| 1829 | } |
| 1830 | |
| 1831 | falcon_write(efx, ®, MAC0_CTRL_REG_KER); |
| 1832 | |
| 1833 | /* Restore the multicast hash registers. */ |
| 1834 | falcon_set_multicast_hash(efx); |
| 1835 | |
| 1836 | /* Transmission of pause frames when RX crosses the threshold is |
| 1837 | * covered by RX_XOFF_MAC_EN and XM_TX_CFG_REG:XM_FCNTL. |
| 1838 | * Action on receipt of pause frames is controller by XM_DIS_FCNTL */ |
| 1839 | tx_fc = (efx->flow_control & EFX_FC_TX) ? 1 : 0; |
| 1840 | falcon_read(efx, ®, RX_CFG_REG_KER); |
| 1841 | EFX_SET_OWORD_FIELD_VER(efx, reg, RX_XOFF_MAC_EN, tx_fc); |
| 1842 | |
| 1843 | /* Unisolate the MAC -> RX */ |
| 1844 | if (FALCON_REV(efx) >= FALCON_REV_B0) |
| 1845 | EFX_SET_OWORD_FIELD(reg, RX_INGR_EN_B0, 1); |
| 1846 | falcon_write(efx, ®, RX_CFG_REG_KER); |
| 1847 | } |
| 1848 | |
| 1849 | int falcon_dma_stats(struct efx_nic *efx, unsigned int done_offset) |
| 1850 | { |
| 1851 | efx_oword_t reg; |
| 1852 | u32 *dma_done; |
| 1853 | int i; |
| 1854 | |
| 1855 | if (disable_dma_stats) |
| 1856 | return 0; |
| 1857 | |
| 1858 | /* Statistics fetch will fail if the MAC is in TX drain */ |
| 1859 | if (FALCON_REV(efx) >= FALCON_REV_B0) { |
| 1860 | efx_oword_t temp; |
| 1861 | falcon_read(efx, &temp, MAC0_CTRL_REG_KER); |
| 1862 | if (EFX_OWORD_FIELD(temp, TXFIFO_DRAIN_EN_B0)) |
| 1863 | return 0; |
| 1864 | } |
| 1865 | |
| 1866 | dma_done = (efx->stats_buffer.addr + done_offset); |
| 1867 | *dma_done = FALCON_STATS_NOT_DONE; |
| 1868 | wmb(); /* ensure done flag is clear */ |
| 1869 | |
| 1870 | /* Initiate DMA transfer of stats */ |
| 1871 | EFX_POPULATE_OWORD_2(reg, |
| 1872 | MAC_STAT_DMA_CMD, 1, |
| 1873 | MAC_STAT_DMA_ADR, |
| 1874 | efx->stats_buffer.dma_addr); |
| 1875 | falcon_write(efx, ®, MAC0_STAT_DMA_REG_KER); |
| 1876 | |
| 1877 | /* Wait for transfer to complete */ |
| 1878 | for (i = 0; i < 400; i++) { |
| 1879 | if (*(volatile u32 *)dma_done == FALCON_STATS_DONE) |
| 1880 | return 0; |
| 1881 | udelay(10); |
| 1882 | } |
| 1883 | |
| 1884 | EFX_ERR(efx, "timed out waiting for statistics\n"); |
| 1885 | return -ETIMEDOUT; |
| 1886 | } |
| 1887 | |
| 1888 | /************************************************************************** |
| 1889 | * |
| 1890 | * PHY access via GMII |
| 1891 | * |
| 1892 | ************************************************************************** |
| 1893 | */ |
| 1894 | |
| 1895 | /* Use the top bit of the MII PHY id to indicate the PHY type |
| 1896 | * (1G/10G), with the remaining bits as the actual PHY id. |
| 1897 | * |
| 1898 | * This allows us to avoid leaking information from the mii_if_info |
| 1899 | * structure into other data structures. |
| 1900 | */ |
| 1901 | #define FALCON_PHY_ID_ID_WIDTH EFX_WIDTH(MD_PRT_DEV_ADR) |
| 1902 | #define FALCON_PHY_ID_ID_MASK ((1 << FALCON_PHY_ID_ID_WIDTH) - 1) |
| 1903 | #define FALCON_PHY_ID_WIDTH (FALCON_PHY_ID_ID_WIDTH + 1) |
| 1904 | #define FALCON_PHY_ID_MASK ((1 << FALCON_PHY_ID_WIDTH) - 1) |
| 1905 | #define FALCON_PHY_ID_10G (1 << (FALCON_PHY_ID_WIDTH - 1)) |
| 1906 | |
| 1907 | |
| 1908 | /* Packing the clause 45 port and device fields into a single value */ |
| 1909 | #define MD_PRT_ADR_COMP_LBN (MD_PRT_ADR_LBN - MD_DEV_ADR_LBN) |
| 1910 | #define MD_PRT_ADR_COMP_WIDTH MD_PRT_ADR_WIDTH |
| 1911 | #define MD_DEV_ADR_COMP_LBN 0 |
| 1912 | #define MD_DEV_ADR_COMP_WIDTH MD_DEV_ADR_WIDTH |
| 1913 | |
| 1914 | |
| 1915 | /* Wait for GMII access to complete */ |
| 1916 | static int falcon_gmii_wait(struct efx_nic *efx) |
| 1917 | { |
| 1918 | efx_dword_t md_stat; |
| 1919 | int count; |
| 1920 | |
| 1921 | for (count = 0; count < 1000; count++) { /* wait upto 10ms */ |
| 1922 | falcon_readl(efx, &md_stat, MD_STAT_REG_KER); |
| 1923 | if (EFX_DWORD_FIELD(md_stat, MD_BSY) == 0) { |
| 1924 | if (EFX_DWORD_FIELD(md_stat, MD_LNFL) != 0 || |
| 1925 | EFX_DWORD_FIELD(md_stat, MD_BSERR) != 0) { |
| 1926 | EFX_ERR(efx, "error from GMII access " |
| 1927 | EFX_DWORD_FMT"\n", |
| 1928 | EFX_DWORD_VAL(md_stat)); |
| 1929 | return -EIO; |
| 1930 | } |
| 1931 | return 0; |
| 1932 | } |
| 1933 | udelay(10); |
| 1934 | } |
| 1935 | EFX_ERR(efx, "timed out waiting for GMII\n"); |
| 1936 | return -ETIMEDOUT; |
| 1937 | } |
| 1938 | |
| 1939 | /* Writes a GMII register of a PHY connected to Falcon using MDIO. */ |
| 1940 | static void falcon_mdio_write(struct net_device *net_dev, int phy_id, |
| 1941 | int addr, int value) |
| 1942 | { |
| 1943 | struct efx_nic *efx = (struct efx_nic *)net_dev->priv; |
| 1944 | unsigned int phy_id2 = phy_id & FALCON_PHY_ID_ID_MASK; |
| 1945 | efx_oword_t reg; |
| 1946 | |
| 1947 | /* The 'generic' prt/dev packing in mdio_10g.h is conveniently |
| 1948 | * chosen so that the only current user, Falcon, can take the |
| 1949 | * packed value and use them directly. |
| 1950 | * Fail to build if this assumption is broken. |
| 1951 | */ |
| 1952 | BUILD_BUG_ON(FALCON_PHY_ID_10G != MDIO45_XPRT_ID_IS10G); |
| 1953 | BUILD_BUG_ON(FALCON_PHY_ID_ID_WIDTH != MDIO45_PRT_DEV_WIDTH); |
| 1954 | BUILD_BUG_ON(MD_PRT_ADR_COMP_LBN != MDIO45_PRT_ID_COMP_LBN); |
| 1955 | BUILD_BUG_ON(MD_DEV_ADR_COMP_LBN != MDIO45_DEV_ID_COMP_LBN); |
| 1956 | |
| 1957 | if (phy_id2 == PHY_ADDR_INVALID) |
| 1958 | return; |
| 1959 | |
| 1960 | /* See falcon_mdio_read for an explanation. */ |
| 1961 | if (!(phy_id & FALCON_PHY_ID_10G)) { |
| 1962 | int mmd = ffs(efx->phy_op->mmds) - 1; |
| 1963 | EFX_TRACE(efx, "Fixing erroneous clause22 write\n"); |
| 1964 | phy_id2 = mdio_clause45_pack(phy_id2, mmd) |
| 1965 | & FALCON_PHY_ID_ID_MASK; |
| 1966 | } |
| 1967 | |
| 1968 | EFX_REGDUMP(efx, "writing GMII %d register %02x with %04x\n", phy_id, |
| 1969 | addr, value); |
| 1970 | |
| 1971 | spin_lock_bh(&efx->phy_lock); |
| 1972 | |
| 1973 | /* Check MII not currently being accessed */ |
| 1974 | if (falcon_gmii_wait(efx) != 0) |
| 1975 | goto out; |
| 1976 | |
| 1977 | /* Write the address/ID register */ |
| 1978 | EFX_POPULATE_OWORD_1(reg, MD_PHY_ADR, addr); |
| 1979 | falcon_write(efx, ®, MD_PHY_ADR_REG_KER); |
| 1980 | |
| 1981 | EFX_POPULATE_OWORD_1(reg, MD_PRT_DEV_ADR, phy_id2); |
| 1982 | falcon_write(efx, ®, MD_ID_REG_KER); |
| 1983 | |
| 1984 | /* Write data */ |
| 1985 | EFX_POPULATE_OWORD_1(reg, MD_TXD, value); |
| 1986 | falcon_write(efx, ®, MD_TXD_REG_KER); |
| 1987 | |
| 1988 | EFX_POPULATE_OWORD_2(reg, |
| 1989 | MD_WRC, 1, |
| 1990 | MD_GC, 0); |
| 1991 | falcon_write(efx, ®, MD_CS_REG_KER); |
| 1992 | |
| 1993 | /* Wait for data to be written */ |
| 1994 | if (falcon_gmii_wait(efx) != 0) { |
| 1995 | /* Abort the write operation */ |
| 1996 | EFX_POPULATE_OWORD_2(reg, |
| 1997 | MD_WRC, 0, |
| 1998 | MD_GC, 1); |
| 1999 | falcon_write(efx, ®, MD_CS_REG_KER); |
| 2000 | udelay(10); |
| 2001 | } |
| 2002 | |
| 2003 | out: |
| 2004 | spin_unlock_bh(&efx->phy_lock); |
| 2005 | } |
| 2006 | |
| 2007 | /* Reads a GMII register from a PHY connected to Falcon. If no value |
| 2008 | * could be read, -1 will be returned. */ |
| 2009 | static int falcon_mdio_read(struct net_device *net_dev, int phy_id, int addr) |
| 2010 | { |
| 2011 | struct efx_nic *efx = (struct efx_nic *)net_dev->priv; |
| 2012 | unsigned int phy_addr = phy_id & FALCON_PHY_ID_ID_MASK; |
| 2013 | efx_oword_t reg; |
| 2014 | int value = -1; |
| 2015 | |
| 2016 | if (phy_addr == PHY_ADDR_INVALID) |
| 2017 | return -1; |
| 2018 | |
| 2019 | /* Our PHY code knows whether it needs to talk clause 22(1G) or 45(10G) |
| 2020 | * but the generic Linux code does not make any distinction or have |
| 2021 | * any state for this. |
| 2022 | * We spot the case where someone tried to talk 22 to a 45 PHY and |
| 2023 | * redirect the request to the lowest numbered MMD as a clause45 |
| 2024 | * request. This is enough to allow simple queries like id and link |
| 2025 | * state to succeed. TODO: We may need to do more in future. |
| 2026 | */ |
| 2027 | if (!(phy_id & FALCON_PHY_ID_10G)) { |
| 2028 | int mmd = ffs(efx->phy_op->mmds) - 1; |
| 2029 | EFX_TRACE(efx, "Fixing erroneous clause22 read\n"); |
| 2030 | phy_addr = mdio_clause45_pack(phy_addr, mmd) |
| 2031 | & FALCON_PHY_ID_ID_MASK; |
| 2032 | } |
| 2033 | |
| 2034 | spin_lock_bh(&efx->phy_lock); |
| 2035 | |
| 2036 | /* Check MII not currently being accessed */ |
| 2037 | if (falcon_gmii_wait(efx) != 0) |
| 2038 | goto out; |
| 2039 | |
| 2040 | EFX_POPULATE_OWORD_1(reg, MD_PHY_ADR, addr); |
| 2041 | falcon_write(efx, ®, MD_PHY_ADR_REG_KER); |
| 2042 | |
| 2043 | EFX_POPULATE_OWORD_1(reg, MD_PRT_DEV_ADR, phy_addr); |
| 2044 | falcon_write(efx, ®, MD_ID_REG_KER); |
| 2045 | |
| 2046 | /* Request data to be read */ |
| 2047 | EFX_POPULATE_OWORD_2(reg, MD_RDC, 1, MD_GC, 0); |
| 2048 | falcon_write(efx, ®, MD_CS_REG_KER); |
| 2049 | |
| 2050 | /* Wait for data to become available */ |
| 2051 | value = falcon_gmii_wait(efx); |
| 2052 | if (value == 0) { |
| 2053 | falcon_read(efx, ®, MD_RXD_REG_KER); |
| 2054 | value = EFX_OWORD_FIELD(reg, MD_RXD); |
| 2055 | EFX_REGDUMP(efx, "read from GMII %d register %02x, got %04x\n", |
| 2056 | phy_id, addr, value); |
| 2057 | } else { |
| 2058 | /* Abort the read operation */ |
| 2059 | EFX_POPULATE_OWORD_2(reg, |
| 2060 | MD_RIC, 0, |
| 2061 | MD_GC, 1); |
| 2062 | falcon_write(efx, ®, MD_CS_REG_KER); |
| 2063 | |
| 2064 | EFX_LOG(efx, "read from GMII 0x%x register %02x, got " |
| 2065 | "error %d\n", phy_id, addr, value); |
| 2066 | } |
| 2067 | |
| 2068 | out: |
| 2069 | spin_unlock_bh(&efx->phy_lock); |
| 2070 | |
| 2071 | return value; |
| 2072 | } |
| 2073 | |
| 2074 | static void falcon_init_mdio(struct mii_if_info *gmii) |
| 2075 | { |
| 2076 | gmii->mdio_read = falcon_mdio_read; |
| 2077 | gmii->mdio_write = falcon_mdio_write; |
| 2078 | gmii->phy_id_mask = FALCON_PHY_ID_MASK; |
| 2079 | gmii->reg_num_mask = ((1 << EFX_WIDTH(MD_PHY_ADR)) - 1); |
| 2080 | } |
| 2081 | |
| 2082 | static int falcon_probe_phy(struct efx_nic *efx) |
| 2083 | { |
| 2084 | switch (efx->phy_type) { |
| 2085 | case PHY_TYPE_10XPRESS: |
| 2086 | efx->phy_op = &falcon_tenxpress_phy_ops; |
| 2087 | break; |
| 2088 | case PHY_TYPE_XFP: |
| 2089 | efx->phy_op = &falcon_xfp_phy_ops; |
| 2090 | break; |
| 2091 | default: |
| 2092 | EFX_ERR(efx, "Unknown PHY type %d\n", |
| 2093 | efx->phy_type); |
| 2094 | return -1; |
| 2095 | } |
Ben Hutchings | 3273c2e | 2008-05-07 13:36:19 +0100 | [diff] [blame^] | 2096 | |
| 2097 | efx->loopback_modes = LOOPBACKS_10G_INTERNAL | efx->phy_op->loopbacks; |
Ben Hutchings | 8ceee66 | 2008-04-27 12:55:59 +0100 | [diff] [blame] | 2098 | return 0; |
| 2099 | } |
| 2100 | |
| 2101 | /* This call is responsible for hooking in the MAC and PHY operations */ |
| 2102 | int falcon_probe_port(struct efx_nic *efx) |
| 2103 | { |
| 2104 | int rc; |
| 2105 | |
| 2106 | /* Hook in PHY operations table */ |
| 2107 | rc = falcon_probe_phy(efx); |
| 2108 | if (rc) |
| 2109 | return rc; |
| 2110 | |
| 2111 | /* Set up GMII structure for PHY */ |
| 2112 | efx->mii.supports_gmii = 1; |
| 2113 | falcon_init_mdio(&efx->mii); |
| 2114 | |
| 2115 | /* Hardware flow ctrl. FalconA RX FIFO too small for pause generation */ |
| 2116 | if (FALCON_REV(efx) >= FALCON_REV_B0) |
| 2117 | efx->flow_control = EFX_FC_RX | EFX_FC_TX; |
| 2118 | else |
| 2119 | efx->flow_control = EFX_FC_RX; |
| 2120 | |
| 2121 | /* Allocate buffer for stats */ |
| 2122 | rc = falcon_alloc_buffer(efx, &efx->stats_buffer, |
| 2123 | FALCON_MAC_STATS_SIZE); |
| 2124 | if (rc) |
| 2125 | return rc; |
| 2126 | EFX_LOG(efx, "stats buffer at %llx (virt %p phys %lx)\n", |
| 2127 | (unsigned long long)efx->stats_buffer.dma_addr, |
| 2128 | efx->stats_buffer.addr, |
| 2129 | virt_to_phys(efx->stats_buffer.addr)); |
| 2130 | |
| 2131 | return 0; |
| 2132 | } |
| 2133 | |
| 2134 | void falcon_remove_port(struct efx_nic *efx) |
| 2135 | { |
| 2136 | falcon_free_buffer(efx, &efx->stats_buffer); |
| 2137 | } |
| 2138 | |
| 2139 | /************************************************************************** |
| 2140 | * |
| 2141 | * Multicast filtering |
| 2142 | * |
| 2143 | ************************************************************************** |
| 2144 | */ |
| 2145 | |
| 2146 | void falcon_set_multicast_hash(struct efx_nic *efx) |
| 2147 | { |
| 2148 | union efx_multicast_hash *mc_hash = &efx->multicast_hash; |
| 2149 | |
| 2150 | /* Broadcast packets go through the multicast hash filter. |
| 2151 | * ether_crc_le() of the broadcast address is 0xbe2612ff |
| 2152 | * so we always add bit 0xff to the mask. |
| 2153 | */ |
| 2154 | set_bit_le(0xff, mc_hash->byte); |
| 2155 | |
| 2156 | falcon_write(efx, &mc_hash->oword[0], MAC_MCAST_HASH_REG0_KER); |
| 2157 | falcon_write(efx, &mc_hash->oword[1], MAC_MCAST_HASH_REG1_KER); |
| 2158 | } |
| 2159 | |
| 2160 | /************************************************************************** |
| 2161 | * |
| 2162 | * Device reset |
| 2163 | * |
| 2164 | ************************************************************************** |
| 2165 | */ |
| 2166 | |
| 2167 | /* Resets NIC to known state. This routine must be called in process |
| 2168 | * context and is allowed to sleep. */ |
| 2169 | int falcon_reset_hw(struct efx_nic *efx, enum reset_type method) |
| 2170 | { |
| 2171 | struct falcon_nic_data *nic_data = efx->nic_data; |
| 2172 | efx_oword_t glb_ctl_reg_ker; |
| 2173 | int rc; |
| 2174 | |
| 2175 | EFX_LOG(efx, "performing hardware reset (%d)\n", method); |
| 2176 | |
| 2177 | /* Initiate device reset */ |
| 2178 | if (method == RESET_TYPE_WORLD) { |
| 2179 | rc = pci_save_state(efx->pci_dev); |
| 2180 | if (rc) { |
| 2181 | EFX_ERR(efx, "failed to backup PCI state of primary " |
| 2182 | "function prior to hardware reset\n"); |
| 2183 | goto fail1; |
| 2184 | } |
| 2185 | if (FALCON_IS_DUAL_FUNC(efx)) { |
| 2186 | rc = pci_save_state(nic_data->pci_dev2); |
| 2187 | if (rc) { |
| 2188 | EFX_ERR(efx, "failed to backup PCI state of " |
| 2189 | "secondary function prior to " |
| 2190 | "hardware reset\n"); |
| 2191 | goto fail2; |
| 2192 | } |
| 2193 | } |
| 2194 | |
| 2195 | EFX_POPULATE_OWORD_2(glb_ctl_reg_ker, |
| 2196 | EXT_PHY_RST_DUR, 0x7, |
| 2197 | SWRST, 1); |
| 2198 | } else { |
| 2199 | int reset_phy = (method == RESET_TYPE_INVISIBLE ? |
| 2200 | EXCLUDE_FROM_RESET : 0); |
| 2201 | |
| 2202 | EFX_POPULATE_OWORD_7(glb_ctl_reg_ker, |
| 2203 | EXT_PHY_RST_CTL, reset_phy, |
| 2204 | PCIE_CORE_RST_CTL, EXCLUDE_FROM_RESET, |
| 2205 | PCIE_NSTCK_RST_CTL, EXCLUDE_FROM_RESET, |
| 2206 | PCIE_SD_RST_CTL, EXCLUDE_FROM_RESET, |
| 2207 | EE_RST_CTL, EXCLUDE_FROM_RESET, |
| 2208 | EXT_PHY_RST_DUR, 0x7 /* 10ms */, |
| 2209 | SWRST, 1); |
| 2210 | } |
| 2211 | falcon_write(efx, &glb_ctl_reg_ker, GLB_CTL_REG_KER); |
| 2212 | |
| 2213 | EFX_LOG(efx, "waiting for hardware reset\n"); |
| 2214 | schedule_timeout_uninterruptible(HZ / 20); |
| 2215 | |
| 2216 | /* Restore PCI configuration if needed */ |
| 2217 | if (method == RESET_TYPE_WORLD) { |
| 2218 | if (FALCON_IS_DUAL_FUNC(efx)) { |
| 2219 | rc = pci_restore_state(nic_data->pci_dev2); |
| 2220 | if (rc) { |
| 2221 | EFX_ERR(efx, "failed to restore PCI config for " |
| 2222 | "the secondary function\n"); |
| 2223 | goto fail3; |
| 2224 | } |
| 2225 | } |
| 2226 | rc = pci_restore_state(efx->pci_dev); |
| 2227 | if (rc) { |
| 2228 | EFX_ERR(efx, "failed to restore PCI config for the " |
| 2229 | "primary function\n"); |
| 2230 | goto fail4; |
| 2231 | } |
| 2232 | EFX_LOG(efx, "successfully restored PCI config\n"); |
| 2233 | } |
| 2234 | |
| 2235 | /* Assert that reset complete */ |
| 2236 | falcon_read(efx, &glb_ctl_reg_ker, GLB_CTL_REG_KER); |
| 2237 | if (EFX_OWORD_FIELD(glb_ctl_reg_ker, SWRST) != 0) { |
| 2238 | rc = -ETIMEDOUT; |
| 2239 | EFX_ERR(efx, "timed out waiting for hardware reset\n"); |
| 2240 | goto fail5; |
| 2241 | } |
| 2242 | EFX_LOG(efx, "hardware reset complete\n"); |
| 2243 | |
| 2244 | return 0; |
| 2245 | |
| 2246 | /* pci_save_state() and pci_restore_state() MUST be called in pairs */ |
| 2247 | fail2: |
| 2248 | fail3: |
| 2249 | pci_restore_state(efx->pci_dev); |
| 2250 | fail1: |
| 2251 | fail4: |
| 2252 | fail5: |
| 2253 | return rc; |
| 2254 | } |
| 2255 | |
| 2256 | /* Zeroes out the SRAM contents. This routine must be called in |
| 2257 | * process context and is allowed to sleep. |
| 2258 | */ |
| 2259 | static int falcon_reset_sram(struct efx_nic *efx) |
| 2260 | { |
| 2261 | efx_oword_t srm_cfg_reg_ker, gpio_cfg_reg_ker; |
| 2262 | int count; |
| 2263 | |
| 2264 | /* Set the SRAM wake/sleep GPIO appropriately. */ |
| 2265 | falcon_read(efx, &gpio_cfg_reg_ker, GPIO_CTL_REG_KER); |
| 2266 | EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, GPIO1_OEN, 1); |
| 2267 | EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, GPIO1_OUT, 1); |
| 2268 | falcon_write(efx, &gpio_cfg_reg_ker, GPIO_CTL_REG_KER); |
| 2269 | |
| 2270 | /* Initiate SRAM reset */ |
| 2271 | EFX_POPULATE_OWORD_2(srm_cfg_reg_ker, |
| 2272 | SRAM_OOB_BT_INIT_EN, 1, |
| 2273 | SRM_NUM_BANKS_AND_BANK_SIZE, 0); |
| 2274 | falcon_write(efx, &srm_cfg_reg_ker, SRM_CFG_REG_KER); |
| 2275 | |
| 2276 | /* Wait for SRAM reset to complete */ |
| 2277 | count = 0; |
| 2278 | do { |
| 2279 | EFX_LOG(efx, "waiting for SRAM reset (attempt %d)...\n", count); |
| 2280 | |
| 2281 | /* SRAM reset is slow; expect around 16ms */ |
| 2282 | schedule_timeout_uninterruptible(HZ / 50); |
| 2283 | |
| 2284 | /* Check for reset complete */ |
| 2285 | falcon_read(efx, &srm_cfg_reg_ker, SRM_CFG_REG_KER); |
| 2286 | if (!EFX_OWORD_FIELD(srm_cfg_reg_ker, SRAM_OOB_BT_INIT_EN)) { |
| 2287 | EFX_LOG(efx, "SRAM reset complete\n"); |
| 2288 | |
| 2289 | return 0; |
| 2290 | } |
| 2291 | } while (++count < 20); /* wait upto 0.4 sec */ |
| 2292 | |
| 2293 | EFX_ERR(efx, "timed out waiting for SRAM reset\n"); |
| 2294 | return -ETIMEDOUT; |
| 2295 | } |
| 2296 | |
| 2297 | /* Extract non-volatile configuration */ |
| 2298 | static int falcon_probe_nvconfig(struct efx_nic *efx) |
| 2299 | { |
| 2300 | struct falcon_nvconfig *nvconfig; |
| 2301 | efx_oword_t nic_stat; |
| 2302 | int device_id; |
| 2303 | unsigned addr_len; |
| 2304 | size_t offset, len; |
| 2305 | int magic_num, struct_ver, board_rev; |
| 2306 | int rc; |
| 2307 | |
| 2308 | /* Find the boot device. */ |
| 2309 | falcon_read(efx, &nic_stat, NIC_STAT_REG); |
| 2310 | if (EFX_OWORD_FIELD(nic_stat, SF_PRST)) { |
| 2311 | device_id = EE_SPI_FLASH; |
| 2312 | addr_len = 3; |
| 2313 | } else if (EFX_OWORD_FIELD(nic_stat, EE_PRST)) { |
| 2314 | device_id = EE_SPI_EEPROM; |
| 2315 | addr_len = 2; |
| 2316 | } else { |
| 2317 | return -ENODEV; |
| 2318 | } |
| 2319 | |
| 2320 | nvconfig = kmalloc(sizeof(*nvconfig), GFP_KERNEL); |
| 2321 | |
| 2322 | /* Read the whole configuration structure into memory. */ |
| 2323 | for (offset = 0; offset < sizeof(*nvconfig); offset += len) { |
| 2324 | len = min(sizeof(*nvconfig) - offset, |
| 2325 | (size_t) FALCON_SPI_MAX_LEN); |
| 2326 | rc = falcon_spi_read(efx, device_id, SPI_READ, |
| 2327 | NVCONFIG_BASE + offset, addr_len, |
| 2328 | (char *)nvconfig + offset, len); |
| 2329 | if (rc) |
| 2330 | goto out; |
| 2331 | } |
| 2332 | |
| 2333 | /* Read the MAC addresses */ |
| 2334 | memcpy(efx->mac_address, nvconfig->mac_address[0], ETH_ALEN); |
| 2335 | |
| 2336 | /* Read the board configuration. */ |
| 2337 | magic_num = le16_to_cpu(nvconfig->board_magic_num); |
| 2338 | struct_ver = le16_to_cpu(nvconfig->board_struct_ver); |
| 2339 | |
| 2340 | if (magic_num != NVCONFIG_BOARD_MAGIC_NUM || struct_ver < 2) { |
| 2341 | EFX_ERR(efx, "Non volatile memory bad magic=%x ver=%x " |
| 2342 | "therefore using defaults\n", magic_num, struct_ver); |
| 2343 | efx->phy_type = PHY_TYPE_NONE; |
| 2344 | efx->mii.phy_id = PHY_ADDR_INVALID; |
| 2345 | board_rev = 0; |
| 2346 | } else { |
| 2347 | struct falcon_nvconfig_board_v2 *v2 = &nvconfig->board_v2; |
| 2348 | |
| 2349 | efx->phy_type = v2->port0_phy_type; |
| 2350 | efx->mii.phy_id = v2->port0_phy_addr; |
| 2351 | board_rev = le16_to_cpu(v2->board_revision); |
| 2352 | } |
| 2353 | |
| 2354 | EFX_LOG(efx, "PHY is %d phy_id %d\n", efx->phy_type, efx->mii.phy_id); |
| 2355 | |
| 2356 | efx_set_board_info(efx, board_rev); |
| 2357 | |
| 2358 | out: |
| 2359 | kfree(nvconfig); |
| 2360 | return rc; |
| 2361 | } |
| 2362 | |
| 2363 | /* Probe the NIC variant (revision, ASIC vs FPGA, function count, port |
| 2364 | * count, port speed). Set workaround and feature flags accordingly. |
| 2365 | */ |
| 2366 | static int falcon_probe_nic_variant(struct efx_nic *efx) |
| 2367 | { |
| 2368 | efx_oword_t altera_build; |
| 2369 | |
| 2370 | falcon_read(efx, &altera_build, ALTERA_BUILD_REG_KER); |
| 2371 | if (EFX_OWORD_FIELD(altera_build, VER_ALL)) { |
| 2372 | EFX_ERR(efx, "Falcon FPGA not supported\n"); |
| 2373 | return -ENODEV; |
| 2374 | } |
| 2375 | |
| 2376 | switch (FALCON_REV(efx)) { |
| 2377 | case FALCON_REV_A0: |
| 2378 | case 0xff: |
| 2379 | EFX_ERR(efx, "Falcon rev A0 not supported\n"); |
| 2380 | return -ENODEV; |
| 2381 | |
| 2382 | case FALCON_REV_A1:{ |
| 2383 | efx_oword_t nic_stat; |
| 2384 | |
| 2385 | falcon_read(efx, &nic_stat, NIC_STAT_REG); |
| 2386 | |
| 2387 | if (EFX_OWORD_FIELD(nic_stat, STRAP_PCIE) == 0) { |
| 2388 | EFX_ERR(efx, "Falcon rev A1 PCI-X not supported\n"); |
| 2389 | return -ENODEV; |
| 2390 | } |
| 2391 | if (!EFX_OWORD_FIELD(nic_stat, STRAP_10G)) { |
| 2392 | EFX_ERR(efx, "1G mode not supported\n"); |
| 2393 | return -ENODEV; |
| 2394 | } |
| 2395 | break; |
| 2396 | } |
| 2397 | |
| 2398 | case FALCON_REV_B0: |
| 2399 | break; |
| 2400 | |
| 2401 | default: |
| 2402 | EFX_ERR(efx, "Unknown Falcon rev %d\n", FALCON_REV(efx)); |
| 2403 | return -ENODEV; |
| 2404 | } |
| 2405 | |
| 2406 | return 0; |
| 2407 | } |
| 2408 | |
| 2409 | int falcon_probe_nic(struct efx_nic *efx) |
| 2410 | { |
| 2411 | struct falcon_nic_data *nic_data; |
| 2412 | int rc; |
| 2413 | |
| 2414 | /* Initialise I2C interface state */ |
| 2415 | efx->i2c.efx = efx; |
| 2416 | efx->i2c.op = &falcon_i2c_bit_operations; |
| 2417 | efx->i2c.sda = 1; |
| 2418 | efx->i2c.scl = 1; |
| 2419 | |
| 2420 | /* Allocate storage for hardware specific data */ |
| 2421 | nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL); |
| 2422 | efx->nic_data = (void *) nic_data; |
| 2423 | |
| 2424 | /* Determine number of ports etc. */ |
| 2425 | rc = falcon_probe_nic_variant(efx); |
| 2426 | if (rc) |
| 2427 | goto fail1; |
| 2428 | |
| 2429 | /* Probe secondary function if expected */ |
| 2430 | if (FALCON_IS_DUAL_FUNC(efx)) { |
| 2431 | struct pci_dev *dev = pci_dev_get(efx->pci_dev); |
| 2432 | |
| 2433 | while ((dev = pci_get_device(EFX_VENDID_SFC, FALCON_A_S_DEVID, |
| 2434 | dev))) { |
| 2435 | if (dev->bus == efx->pci_dev->bus && |
| 2436 | dev->devfn == efx->pci_dev->devfn + 1) { |
| 2437 | nic_data->pci_dev2 = dev; |
| 2438 | break; |
| 2439 | } |
| 2440 | } |
| 2441 | if (!nic_data->pci_dev2) { |
| 2442 | EFX_ERR(efx, "failed to find secondary function\n"); |
| 2443 | rc = -ENODEV; |
| 2444 | goto fail2; |
| 2445 | } |
| 2446 | } |
| 2447 | |
| 2448 | /* Now we can reset the NIC */ |
| 2449 | rc = falcon_reset_hw(efx, RESET_TYPE_ALL); |
| 2450 | if (rc) { |
| 2451 | EFX_ERR(efx, "failed to reset NIC\n"); |
| 2452 | goto fail3; |
| 2453 | } |
| 2454 | |
| 2455 | /* Allocate memory for INT_KER */ |
| 2456 | rc = falcon_alloc_buffer(efx, &efx->irq_status, sizeof(efx_oword_t)); |
| 2457 | if (rc) |
| 2458 | goto fail4; |
| 2459 | BUG_ON(efx->irq_status.dma_addr & 0x0f); |
| 2460 | |
| 2461 | EFX_LOG(efx, "INT_KER at %llx (virt %p phys %lx)\n", |
| 2462 | (unsigned long long)efx->irq_status.dma_addr, |
| 2463 | efx->irq_status.addr, virt_to_phys(efx->irq_status.addr)); |
| 2464 | |
| 2465 | /* Read in the non-volatile configuration */ |
| 2466 | rc = falcon_probe_nvconfig(efx); |
| 2467 | if (rc) |
| 2468 | goto fail5; |
| 2469 | |
| 2470 | return 0; |
| 2471 | |
| 2472 | fail5: |
| 2473 | falcon_free_buffer(efx, &efx->irq_status); |
| 2474 | fail4: |
Ben Hutchings | 8ceee66 | 2008-04-27 12:55:59 +0100 | [diff] [blame] | 2475 | fail3: |
| 2476 | if (nic_data->pci_dev2) { |
| 2477 | pci_dev_put(nic_data->pci_dev2); |
| 2478 | nic_data->pci_dev2 = NULL; |
| 2479 | } |
| 2480 | fail2: |
Ben Hutchings | 8ceee66 | 2008-04-27 12:55:59 +0100 | [diff] [blame] | 2481 | fail1: |
| 2482 | kfree(efx->nic_data); |
| 2483 | return rc; |
| 2484 | } |
| 2485 | |
| 2486 | /* This call performs hardware-specific global initialisation, such as |
| 2487 | * defining the descriptor cache sizes and number of RSS channels. |
| 2488 | * It does not set up any buffers, descriptor rings or event queues. |
| 2489 | */ |
| 2490 | int falcon_init_nic(struct efx_nic *efx) |
| 2491 | { |
| 2492 | struct falcon_nic_data *data; |
| 2493 | efx_oword_t temp; |
| 2494 | unsigned thresh; |
| 2495 | int rc; |
| 2496 | |
| 2497 | data = (struct falcon_nic_data *)efx->nic_data; |
| 2498 | |
| 2499 | /* Set up the address region register. This is only needed |
| 2500 | * for the B0 FPGA, but since we are just pushing in the |
| 2501 | * reset defaults this may as well be unconditional. */ |
| 2502 | EFX_POPULATE_OWORD_4(temp, ADR_REGION0, 0, |
| 2503 | ADR_REGION1, (1 << 16), |
| 2504 | ADR_REGION2, (2 << 16), |
| 2505 | ADR_REGION3, (3 << 16)); |
| 2506 | falcon_write(efx, &temp, ADR_REGION_REG_KER); |
| 2507 | |
| 2508 | /* Use on-chip SRAM */ |
| 2509 | falcon_read(efx, &temp, NIC_STAT_REG); |
| 2510 | EFX_SET_OWORD_FIELD(temp, ONCHIP_SRAM, 1); |
| 2511 | falcon_write(efx, &temp, NIC_STAT_REG); |
| 2512 | |
| 2513 | /* Set buffer table mode */ |
| 2514 | EFX_POPULATE_OWORD_1(temp, BUF_TBL_MODE, BUF_TBL_MODE_FULL); |
| 2515 | falcon_write(efx, &temp, BUF_TBL_CFG_REG_KER); |
| 2516 | |
| 2517 | rc = falcon_reset_sram(efx); |
| 2518 | if (rc) |
| 2519 | return rc; |
| 2520 | |
| 2521 | /* Set positions of descriptor caches in SRAM. */ |
| 2522 | EFX_POPULATE_OWORD_1(temp, SRM_TX_DC_BASE_ADR, TX_DC_BASE / 8); |
| 2523 | falcon_write(efx, &temp, SRM_TX_DC_CFG_REG_KER); |
| 2524 | EFX_POPULATE_OWORD_1(temp, SRM_RX_DC_BASE_ADR, RX_DC_BASE / 8); |
| 2525 | falcon_write(efx, &temp, SRM_RX_DC_CFG_REG_KER); |
| 2526 | |
| 2527 | /* Set TX descriptor cache size. */ |
| 2528 | BUILD_BUG_ON(TX_DC_ENTRIES != (16 << TX_DC_ENTRIES_ORDER)); |
| 2529 | EFX_POPULATE_OWORD_1(temp, TX_DC_SIZE, TX_DC_ENTRIES_ORDER); |
| 2530 | falcon_write(efx, &temp, TX_DC_CFG_REG_KER); |
| 2531 | |
| 2532 | /* Set RX descriptor cache size. Set low watermark to size-8, as |
| 2533 | * this allows most efficient prefetching. |
| 2534 | */ |
| 2535 | BUILD_BUG_ON(RX_DC_ENTRIES != (16 << RX_DC_ENTRIES_ORDER)); |
| 2536 | EFX_POPULATE_OWORD_1(temp, RX_DC_SIZE, RX_DC_ENTRIES_ORDER); |
| 2537 | falcon_write(efx, &temp, RX_DC_CFG_REG_KER); |
| 2538 | EFX_POPULATE_OWORD_1(temp, RX_DC_PF_LWM, RX_DC_ENTRIES - 8); |
| 2539 | falcon_write(efx, &temp, RX_DC_PF_WM_REG_KER); |
| 2540 | |
| 2541 | /* Clear the parity enables on the TX data fifos as |
| 2542 | * they produce false parity errors because of timing issues |
| 2543 | */ |
| 2544 | if (EFX_WORKAROUND_5129(efx)) { |
| 2545 | falcon_read(efx, &temp, SPARE_REG_KER); |
| 2546 | EFX_SET_OWORD_FIELD(temp, MEM_PERR_EN_TX_DATA, 0); |
| 2547 | falcon_write(efx, &temp, SPARE_REG_KER); |
| 2548 | } |
| 2549 | |
| 2550 | /* Enable all the genuinely fatal interrupts. (They are still |
| 2551 | * masked by the overall interrupt mask, controlled by |
| 2552 | * falcon_interrupts()). |
| 2553 | * |
| 2554 | * Note: All other fatal interrupts are enabled |
| 2555 | */ |
| 2556 | EFX_POPULATE_OWORD_3(temp, |
| 2557 | ILL_ADR_INT_KER_EN, 1, |
| 2558 | RBUF_OWN_INT_KER_EN, 1, |
| 2559 | TBUF_OWN_INT_KER_EN, 1); |
| 2560 | EFX_INVERT_OWORD(temp); |
| 2561 | falcon_write(efx, &temp, FATAL_INTR_REG_KER); |
| 2562 | |
| 2563 | /* Set number of RSS queues for receive path. */ |
| 2564 | falcon_read(efx, &temp, RX_FILTER_CTL_REG); |
| 2565 | if (FALCON_REV(efx) >= FALCON_REV_B0) |
| 2566 | EFX_SET_OWORD_FIELD(temp, NUM_KER, 0); |
| 2567 | else |
| 2568 | EFX_SET_OWORD_FIELD(temp, NUM_KER, efx->rss_queues - 1); |
| 2569 | if (EFX_WORKAROUND_7244(efx)) { |
| 2570 | EFX_SET_OWORD_FIELD(temp, UDP_FULL_SRCH_LIMIT, 8); |
| 2571 | EFX_SET_OWORD_FIELD(temp, UDP_WILD_SRCH_LIMIT, 8); |
| 2572 | EFX_SET_OWORD_FIELD(temp, TCP_FULL_SRCH_LIMIT, 8); |
| 2573 | EFX_SET_OWORD_FIELD(temp, TCP_WILD_SRCH_LIMIT, 8); |
| 2574 | } |
| 2575 | falcon_write(efx, &temp, RX_FILTER_CTL_REG); |
| 2576 | |
| 2577 | falcon_setup_rss_indir_table(efx); |
| 2578 | |
| 2579 | /* Setup RX. Wait for descriptor is broken and must |
| 2580 | * be disabled. RXDP recovery shouldn't be needed, but is. |
| 2581 | */ |
| 2582 | falcon_read(efx, &temp, RX_SELF_RST_REG_KER); |
| 2583 | EFX_SET_OWORD_FIELD(temp, RX_NODESC_WAIT_DIS, 1); |
| 2584 | EFX_SET_OWORD_FIELD(temp, RX_RECOVERY_EN, 1); |
| 2585 | if (EFX_WORKAROUND_5583(efx)) |
| 2586 | EFX_SET_OWORD_FIELD(temp, RX_ISCSI_DIS, 1); |
| 2587 | falcon_write(efx, &temp, RX_SELF_RST_REG_KER); |
| 2588 | |
| 2589 | /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be |
| 2590 | * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q. |
| 2591 | */ |
| 2592 | falcon_read(efx, &temp, TX_CFG2_REG_KER); |
| 2593 | EFX_SET_OWORD_FIELD(temp, TX_RX_SPACER, 0xfe); |
| 2594 | EFX_SET_OWORD_FIELD(temp, TX_RX_SPACER_EN, 1); |
| 2595 | EFX_SET_OWORD_FIELD(temp, TX_ONE_PKT_PER_Q, 1); |
| 2596 | EFX_SET_OWORD_FIELD(temp, TX_CSR_PUSH_EN, 0); |
| 2597 | EFX_SET_OWORD_FIELD(temp, TX_DIS_NON_IP_EV, 1); |
| 2598 | /* Enable SW_EV to inherit in char driver - assume harmless here */ |
| 2599 | EFX_SET_OWORD_FIELD(temp, TX_SW_EV_EN, 1); |
| 2600 | /* Prefetch threshold 2 => fetch when descriptor cache half empty */ |
| 2601 | EFX_SET_OWORD_FIELD(temp, TX_PREF_THRESHOLD, 2); |
| 2602 | /* Squash TX of packets of 16 bytes or less */ |
| 2603 | if (FALCON_REV(efx) >= FALCON_REV_B0 && EFX_WORKAROUND_9141(efx)) |
| 2604 | EFX_SET_OWORD_FIELD(temp, TX_FLUSH_MIN_LEN_EN_B0, 1); |
| 2605 | falcon_write(efx, &temp, TX_CFG2_REG_KER); |
| 2606 | |
| 2607 | /* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16 |
| 2608 | * descriptors (which is bad). |
| 2609 | */ |
| 2610 | falcon_read(efx, &temp, TX_CFG_REG_KER); |
| 2611 | EFX_SET_OWORD_FIELD(temp, TX_NO_EOP_DISC_EN, 0); |
| 2612 | falcon_write(efx, &temp, TX_CFG_REG_KER); |
| 2613 | |
| 2614 | /* RX config */ |
| 2615 | falcon_read(efx, &temp, RX_CFG_REG_KER); |
| 2616 | EFX_SET_OWORD_FIELD_VER(efx, temp, RX_DESC_PUSH_EN, 0); |
| 2617 | if (EFX_WORKAROUND_7575(efx)) |
| 2618 | EFX_SET_OWORD_FIELD_VER(efx, temp, RX_USR_BUF_SIZE, |
| 2619 | (3 * 4096) / 32); |
| 2620 | if (FALCON_REV(efx) >= FALCON_REV_B0) |
| 2621 | EFX_SET_OWORD_FIELD(temp, RX_INGR_EN_B0, 1); |
| 2622 | |
| 2623 | /* RX FIFO flow control thresholds */ |
| 2624 | thresh = ((rx_xon_thresh_bytes >= 0) ? |
| 2625 | rx_xon_thresh_bytes : efx->type->rx_xon_thresh); |
| 2626 | EFX_SET_OWORD_FIELD_VER(efx, temp, RX_XON_MAC_TH, thresh / 256); |
| 2627 | thresh = ((rx_xoff_thresh_bytes >= 0) ? |
| 2628 | rx_xoff_thresh_bytes : efx->type->rx_xoff_thresh); |
| 2629 | EFX_SET_OWORD_FIELD_VER(efx, temp, RX_XOFF_MAC_TH, thresh / 256); |
| 2630 | /* RX control FIFO thresholds [32 entries] */ |
| 2631 | EFX_SET_OWORD_FIELD_VER(efx, temp, RX_XON_TX_TH, 25); |
| 2632 | EFX_SET_OWORD_FIELD_VER(efx, temp, RX_XOFF_TX_TH, 20); |
| 2633 | falcon_write(efx, &temp, RX_CFG_REG_KER); |
| 2634 | |
| 2635 | /* Set destination of both TX and RX Flush events */ |
| 2636 | if (FALCON_REV(efx) >= FALCON_REV_B0) { |
| 2637 | EFX_POPULATE_OWORD_1(temp, FLS_EVQ_ID, 0); |
| 2638 | falcon_write(efx, &temp, DP_CTRL_REG); |
| 2639 | } |
| 2640 | |
| 2641 | return 0; |
| 2642 | } |
| 2643 | |
| 2644 | void falcon_remove_nic(struct efx_nic *efx) |
| 2645 | { |
| 2646 | struct falcon_nic_data *nic_data = efx->nic_data; |
| 2647 | |
| 2648 | falcon_free_buffer(efx, &efx->irq_status); |
| 2649 | |
| 2650 | (void) falcon_reset_hw(efx, RESET_TYPE_ALL); |
| 2651 | |
| 2652 | /* Release the second function after the reset */ |
| 2653 | if (nic_data->pci_dev2) { |
| 2654 | pci_dev_put(nic_data->pci_dev2); |
| 2655 | nic_data->pci_dev2 = NULL; |
| 2656 | } |
| 2657 | |
| 2658 | /* Tear down the private nic state */ |
| 2659 | kfree(efx->nic_data); |
| 2660 | efx->nic_data = NULL; |
| 2661 | } |
| 2662 | |
| 2663 | void falcon_update_nic_stats(struct efx_nic *efx) |
| 2664 | { |
| 2665 | efx_oword_t cnt; |
| 2666 | |
| 2667 | falcon_read(efx, &cnt, RX_NODESC_DROP_REG_KER); |
| 2668 | efx->n_rx_nodesc_drop_cnt += EFX_OWORD_FIELD(cnt, RX_NODESC_DROP_CNT); |
| 2669 | } |
| 2670 | |
| 2671 | /************************************************************************** |
| 2672 | * |
| 2673 | * Revision-dependent attributes used by efx.c |
| 2674 | * |
| 2675 | ************************************************************************** |
| 2676 | */ |
| 2677 | |
| 2678 | struct efx_nic_type falcon_a_nic_type = { |
| 2679 | .mem_bar = 2, |
| 2680 | .mem_map_size = 0x20000, |
| 2681 | .txd_ptr_tbl_base = TX_DESC_PTR_TBL_KER_A1, |
| 2682 | .rxd_ptr_tbl_base = RX_DESC_PTR_TBL_KER_A1, |
| 2683 | .buf_tbl_base = BUF_TBL_KER_A1, |
| 2684 | .evq_ptr_tbl_base = EVQ_PTR_TBL_KER_A1, |
| 2685 | .evq_rptr_tbl_base = EVQ_RPTR_REG_KER_A1, |
| 2686 | .txd_ring_mask = FALCON_TXD_RING_MASK, |
| 2687 | .rxd_ring_mask = FALCON_RXD_RING_MASK, |
| 2688 | .evq_size = FALCON_EVQ_SIZE, |
| 2689 | .max_dma_mask = FALCON_DMA_MASK, |
| 2690 | .tx_dma_mask = FALCON_TX_DMA_MASK, |
| 2691 | .bug5391_mask = 0xf, |
| 2692 | .rx_xoff_thresh = 2048, |
| 2693 | .rx_xon_thresh = 512, |
| 2694 | .rx_buffer_padding = 0x24, |
| 2695 | .max_interrupt_mode = EFX_INT_MODE_MSI, |
| 2696 | .phys_addr_channels = 4, |
| 2697 | }; |
| 2698 | |
| 2699 | struct efx_nic_type falcon_b_nic_type = { |
| 2700 | .mem_bar = 2, |
| 2701 | /* Map everything up to and including the RSS indirection |
| 2702 | * table. Don't map MSI-X table, MSI-X PBA since Linux |
| 2703 | * requires that they not be mapped. */ |
| 2704 | .mem_map_size = RX_RSS_INDIR_TBL_B0 + 0x800, |
| 2705 | .txd_ptr_tbl_base = TX_DESC_PTR_TBL_KER_B0, |
| 2706 | .rxd_ptr_tbl_base = RX_DESC_PTR_TBL_KER_B0, |
| 2707 | .buf_tbl_base = BUF_TBL_KER_B0, |
| 2708 | .evq_ptr_tbl_base = EVQ_PTR_TBL_KER_B0, |
| 2709 | .evq_rptr_tbl_base = EVQ_RPTR_REG_KER_B0, |
| 2710 | .txd_ring_mask = FALCON_TXD_RING_MASK, |
| 2711 | .rxd_ring_mask = FALCON_RXD_RING_MASK, |
| 2712 | .evq_size = FALCON_EVQ_SIZE, |
| 2713 | .max_dma_mask = FALCON_DMA_MASK, |
| 2714 | .tx_dma_mask = FALCON_TX_DMA_MASK, |
| 2715 | .bug5391_mask = 0, |
| 2716 | .rx_xoff_thresh = 54272, /* ~80Kb - 3*max MTU */ |
| 2717 | .rx_xon_thresh = 27648, /* ~3*max MTU */ |
| 2718 | .rx_buffer_padding = 0, |
| 2719 | .max_interrupt_mode = EFX_INT_MODE_MSIX, |
| 2720 | .phys_addr_channels = 32, /* Hardware limit is 64, but the legacy |
| 2721 | * interrupt handler only supports 32 |
| 2722 | * channels */ |
| 2723 | }; |
| 2724 | |