blob: d0e5d6ee882c4e041d8c3db4e41392d9bc6d90ab [file] [log] [blame]
Borislav Petkov011d8262017-03-27 11:33:02 +02001#include <linux/mm.h>
2#include <linux/gfp.h>
3#include <linux/kernel.h>
4
5#include <asm/mce.h>
6
7#include "debugfs.h"
8
9/*
10 * RAS Correctable Errors Collector
11 *
12 * This is a simple gadget which collects correctable errors and counts their
13 * occurrence per physical page address.
14 *
15 * We've opted for possibly the simplest data structure to collect those - an
16 * array of the size of a memory page. It stores 512 u64's with the following
17 * structure:
18 *
19 * [63 ... PFN ... 12 | 11 ... generation ... 10 | 9 ... count ... 0]
20 *
21 * The generation in the two highest order bits is two bits which are set to 11b
22 * on every insertion. During the course of each entry's existence, the
23 * generation field gets decremented during spring cleaning to 10b, then 01b and
24 * then 00b.
25 *
26 * This way we're employing the natural numeric ordering to make sure that newly
27 * inserted/touched elements have higher 12-bit counts (which we've manufactured)
28 * and thus iterating over the array initially won't kick out those elements
29 * which were inserted last.
30 *
31 * Spring cleaning is what we do when we reach a certain number CLEAN_ELEMS of
32 * elements entered into the array, during which, we're decaying all elements.
33 * If, after decay, an element gets inserted again, its generation is set to 11b
34 * to make sure it has higher numerical count than other, older elements and
35 * thus emulate an an LRU-like behavior when deleting elements to free up space
36 * in the page.
37 *
38 * When an element reaches it's max count of count_threshold, we try to poison
39 * it by assuming that errors triggered count_threshold times in a single page
40 * are excessive and that page shouldn't be used anymore. count_threshold is
41 * initialized to COUNT_MASK which is the maximum.
42 *
43 * That error event entry causes cec_add_elem() to return !0 value and thus
44 * signal to its callers to log the error.
45 *
46 * To the question why we've chosen a page and moving elements around with
47 * memmove(), it is because it is a very simple structure to handle and max data
48 * movement is 4K which on highly optimized modern CPUs is almost unnoticeable.
49 * We wanted to avoid the pointer traversal of more complex structures like a
50 * linked list or some sort of a balancing search tree.
51 *
52 * Deleting an element takes O(n) but since it is only a single page, it should
53 * be fast enough and it shouldn't happen all too often depending on error
54 * patterns.
55 */
56
57#undef pr_fmt
58#define pr_fmt(fmt) "RAS: " fmt
59
60/*
61 * We use DECAY_BITS bits of PAGE_SHIFT bits for counting decay, i.e., how long
62 * elements have stayed in the array without having been accessed again.
63 */
64#define DECAY_BITS 2
65#define DECAY_MASK ((1ULL << DECAY_BITS) - 1)
66#define MAX_ELEMS (PAGE_SIZE / sizeof(u64))
67
68/*
69 * Threshold amount of inserted elements after which we start spring
70 * cleaning.
71 */
72#define CLEAN_ELEMS (MAX_ELEMS >> DECAY_BITS)
73
74/* Bits which count the number of errors happened in this 4K page. */
75#define COUNT_BITS (PAGE_SHIFT - DECAY_BITS)
76#define COUNT_MASK ((1ULL << COUNT_BITS) - 1)
77#define FULL_COUNT_MASK (PAGE_SIZE - 1)
78
79/*
80 * u64: [ 63 ... 12 | DECAY_BITS | COUNT_BITS ]
81 */
82
83#define PFN(e) ((e) >> PAGE_SHIFT)
84#define DECAY(e) (((e) >> COUNT_BITS) & DECAY_MASK)
85#define COUNT(e) ((unsigned int)(e) & COUNT_MASK)
86#define FULL_COUNT(e) ((e) & (PAGE_SIZE - 1))
87
88static struct ce_array {
89 u64 *array; /* container page */
90 unsigned int n; /* number of elements in the array */
91
92 unsigned int decay_count; /*
93 * number of element insertions/increments
94 * since the last spring cleaning.
95 */
96
97 u64 pfns_poisoned; /*
98 * number of PFNs which got poisoned.
99 */
100
101 u64 ces_entered; /*
102 * The number of correctable errors
103 * entered into the collector.
104 */
105
106 u64 decays_done; /*
107 * Times we did spring cleaning.
108 */
109
110 union {
111 struct {
112 __u32 disabled : 1, /* cmdline disabled */
113 __resv : 31;
114 };
115 __u32 flags;
116 };
117} ce_arr;
118
119static DEFINE_MUTEX(ce_mutex);
120static u64 dfs_pfn;
121
122/* Amount of errors after which we offline */
123static unsigned int count_threshold = COUNT_MASK;
124
125/*
126 * The timer "decays" element count each timer_interval which is 24hrs by
127 * default.
128 */
129
130#define CEC_TIMER_DEFAULT_INTERVAL 24 * 60 * 60 /* 24 hrs */
131#define CEC_TIMER_MIN_INTERVAL 1 * 60 * 60 /* 1h */
132#define CEC_TIMER_MAX_INTERVAL 30 * 24 * 60 * 60 /* one month */
133static struct timer_list cec_timer;
134static u64 timer_interval = CEC_TIMER_DEFAULT_INTERVAL;
135
136/*
137 * Decrement decay value. We're using DECAY_BITS bits to denote decay of an
138 * element in the array. On insertion and any access, it gets reset to max.
139 */
140static void do_spring_cleaning(struct ce_array *ca)
141{
142 int i;
143
144 for (i = 0; i < ca->n; i++) {
145 u8 decay = DECAY(ca->array[i]);
146
147 if (!decay)
148 continue;
149
150 decay--;
151
152 ca->array[i] &= ~(DECAY_MASK << COUNT_BITS);
153 ca->array[i] |= (decay << COUNT_BITS);
154 }
155 ca->decay_count = 0;
156 ca->decays_done++;
157}
158
159/*
160 * @interval in seconds
161 */
162static void cec_mod_timer(struct timer_list *t, unsigned long interval)
163{
164 unsigned long iv;
165
166 iv = interval * HZ + jiffies;
167
168 mod_timer(t, round_jiffies(iv));
169}
170
171static void cec_timer_fn(unsigned long data)
172{
173 struct ce_array *ca = (struct ce_array *)data;
174
175 do_spring_cleaning(ca);
176
177 cec_mod_timer(&cec_timer, timer_interval);
178}
179
180/*
181 * @to: index of the smallest element which is >= then @pfn.
182 *
183 * Return the index of the pfn if found, otherwise negative value.
184 */
185static int __find_elem(struct ce_array *ca, u64 pfn, unsigned int *to)
186{
187 u64 this_pfn;
188 int min = 0, max = ca->n;
189
190 while (min < max) {
191 int tmp = (max + min) >> 1;
192
193 this_pfn = PFN(ca->array[tmp]);
194
195 if (this_pfn < pfn)
196 min = tmp + 1;
197 else if (this_pfn > pfn)
198 max = tmp;
199 else {
200 min = tmp;
201 break;
202 }
203 }
204
205 if (to)
206 *to = min;
207
208 this_pfn = PFN(ca->array[min]);
209
210 if (this_pfn == pfn)
211 return min;
212
213 return -ENOKEY;
214}
215
216static int find_elem(struct ce_array *ca, u64 pfn, unsigned int *to)
217{
218 WARN_ON(!to);
219
220 if (!ca->n) {
221 *to = 0;
222 return -ENOKEY;
223 }
224 return __find_elem(ca, pfn, to);
225}
226
227static void del_elem(struct ce_array *ca, int idx)
228{
229 /* Save us a function call when deleting the last element. */
230 if (ca->n - (idx + 1))
231 memmove((void *)&ca->array[idx],
232 (void *)&ca->array[idx + 1],
233 (ca->n - (idx + 1)) * sizeof(u64));
234
235 ca->n--;
236}
237
238static u64 del_lru_elem_unlocked(struct ce_array *ca)
239{
240 unsigned int min = FULL_COUNT_MASK;
241 int i, min_idx = 0;
242
243 for (i = 0; i < ca->n; i++) {
244 unsigned int this = FULL_COUNT(ca->array[i]);
245
246 if (min > this) {
247 min = this;
248 min_idx = i;
249 }
250 }
251
252 del_elem(ca, min_idx);
253
254 return PFN(ca->array[min_idx]);
255}
256
257/*
258 * We return the 0th pfn in the error case under the assumption that it cannot
259 * be poisoned and excessive CEs in there are a serious deal anyway.
260 */
261static u64 __maybe_unused del_lru_elem(void)
262{
263 struct ce_array *ca = &ce_arr;
264 u64 pfn;
265
266 if (!ca->n)
267 return 0;
268
269 mutex_lock(&ce_mutex);
270 pfn = del_lru_elem_unlocked(ca);
271 mutex_unlock(&ce_mutex);
272
273 return pfn;
274}
275
276
277int cec_add_elem(u64 pfn)
278{
279 struct ce_array *ca = &ce_arr;
280 unsigned int to;
281 int count, ret = 0;
282
283 /*
284 * We can be called very early on the identify_cpu() path where we are
285 * not initialized yet. We ignore the error for simplicity.
286 */
287 if (!ce_arr.array || ce_arr.disabled)
288 return -ENODEV;
289
290 ca->ces_entered++;
291
292 mutex_lock(&ce_mutex);
293
294 if (ca->n == MAX_ELEMS)
295 WARN_ON(!del_lru_elem_unlocked(ca));
296
297 ret = find_elem(ca, pfn, &to);
298 if (ret < 0) {
299 /*
300 * Shift range [to-end] to make room for one more element.
301 */
302 memmove((void *)&ca->array[to + 1],
303 (void *)&ca->array[to],
304 (ca->n - to) * sizeof(u64));
305
306 ca->array[to] = (pfn << PAGE_SHIFT) |
307 (DECAY_MASK << COUNT_BITS) | 1;
308
309 ca->n++;
310
311 ret = 0;
312
313 goto decay;
314 }
315
316 count = COUNT(ca->array[to]);
317
318 if (count < count_threshold) {
319 ca->array[to] |= (DECAY_MASK << COUNT_BITS);
320 ca->array[to]++;
321
322 ret = 0;
323 } else {
324 u64 pfn = ca->array[to] >> PAGE_SHIFT;
325
326 if (!pfn_valid(pfn)) {
327 pr_warn("CEC: Invalid pfn: 0x%llx\n", pfn);
328 } else {
329 /* We have reached max count for this page, soft-offline it. */
330 pr_err("Soft-offlining pfn: 0x%llx\n", pfn);
331 memory_failure_queue(pfn, 0, MF_SOFT_OFFLINE);
332 ca->pfns_poisoned++;
333 }
334
335 del_elem(ca, to);
336
337 /*
338 * Return a >0 value to denote that we've reached the offlining
339 * threshold.
340 */
341 ret = 1;
342
343 goto unlock;
344 }
345
346decay:
347 ca->decay_count++;
348
349 if (ca->decay_count >= CLEAN_ELEMS)
350 do_spring_cleaning(ca);
351
352unlock:
353 mutex_unlock(&ce_mutex);
354
355 return ret;
356}
357
358static int u64_get(void *data, u64 *val)
359{
360 *val = *(u64 *)data;
361
362 return 0;
363}
364
365static int pfn_set(void *data, u64 val)
366{
367 *(u64 *)data = val;
368
369 return cec_add_elem(val);
370}
371
372DEFINE_DEBUGFS_ATTRIBUTE(pfn_ops, u64_get, pfn_set, "0x%llx\n");
373
374static int decay_interval_set(void *data, u64 val)
375{
376 *(u64 *)data = val;
377
378 if (val < CEC_TIMER_MIN_INTERVAL)
379 return -EINVAL;
380
381 if (val > CEC_TIMER_MAX_INTERVAL)
382 return -EINVAL;
383
384 timer_interval = val;
385
386 cec_mod_timer(&cec_timer, timer_interval);
387 return 0;
388}
389DEFINE_DEBUGFS_ATTRIBUTE(decay_interval_ops, u64_get, decay_interval_set, "%lld\n");
390
391static int count_threshold_set(void *data, u64 val)
392{
393 *(u64 *)data = val;
394
395 if (val > COUNT_MASK)
396 val = COUNT_MASK;
397
398 count_threshold = val;
399
400 return 0;
401}
402DEFINE_DEBUGFS_ATTRIBUTE(count_threshold_ops, u64_get, count_threshold_set, "%lld\n");
403
404static int array_dump(struct seq_file *m, void *v)
405{
406 struct ce_array *ca = &ce_arr;
407 u64 prev = 0;
408 int i;
409
410 mutex_lock(&ce_mutex);
411
412 seq_printf(m, "{ n: %d\n", ca->n);
413 for (i = 0; i < ca->n; i++) {
414 u64 this = PFN(ca->array[i]);
415
416 seq_printf(m, " %03d: [%016llx|%03llx]\n", i, this, FULL_COUNT(ca->array[i]));
417
418 WARN_ON(prev > this);
419
420 prev = this;
421 }
422
423 seq_printf(m, "}\n");
424
425 seq_printf(m, "Stats:\nCEs: %llu\nofflined pages: %llu\n",
426 ca->ces_entered, ca->pfns_poisoned);
427
428 seq_printf(m, "Flags: 0x%x\n", ca->flags);
429
430 seq_printf(m, "Timer interval: %lld seconds\n", timer_interval);
431 seq_printf(m, "Decays: %lld\n", ca->decays_done);
432
433 seq_printf(m, "Action threshold: %d\n", count_threshold);
434
435 mutex_unlock(&ce_mutex);
436
437 return 0;
438}
439
440static int array_open(struct inode *inode, struct file *filp)
441{
442 return single_open(filp, array_dump, NULL);
443}
444
445static const struct file_operations array_ops = {
446 .owner = THIS_MODULE,
447 .open = array_open,
448 .read = seq_read,
449 .llseek = seq_lseek,
450 .release = single_release,
451};
452
453static int __init create_debugfs_nodes(void)
454{
455 struct dentry *d, *pfn, *decay, *count, *array;
456
457 d = debugfs_create_dir("cec", ras_debugfs_dir);
458 if (!d) {
459 pr_warn("Error creating cec debugfs node!\n");
460 return -1;
461 }
462
463 pfn = debugfs_create_file("pfn", S_IRUSR | S_IWUSR, d, &dfs_pfn, &pfn_ops);
464 if (!pfn) {
465 pr_warn("Error creating pfn debugfs node!\n");
466 goto err;
467 }
468
469 array = debugfs_create_file("array", S_IRUSR, d, NULL, &array_ops);
470 if (!array) {
471 pr_warn("Error creating array debugfs node!\n");
472 goto err;
473 }
474
475 decay = debugfs_create_file("decay_interval", S_IRUSR | S_IWUSR, d,
476 &timer_interval, &decay_interval_ops);
477 if (!decay) {
478 pr_warn("Error creating decay_interval debugfs node!\n");
479 goto err;
480 }
481
482 count = debugfs_create_file("count_threshold", S_IRUSR | S_IWUSR, d,
483 &count_threshold, &count_threshold_ops);
Christophe JAILLET32288da2017-06-26 14:35:32 +0200484 if (!count) {
Borislav Petkov011d8262017-03-27 11:33:02 +0200485 pr_warn("Error creating count_threshold debugfs node!\n");
486 goto err;
487 }
488
489
490 return 0;
491
492err:
493 debugfs_remove_recursive(d);
494
495 return 1;
496}
497
498void __init cec_init(void)
499{
500 if (ce_arr.disabled)
501 return;
502
503 ce_arr.array = (void *)get_zeroed_page(GFP_KERNEL);
504 if (!ce_arr.array) {
505 pr_err("Error allocating CE array page!\n");
506 return;
507 }
508
509 if (create_debugfs_nodes())
510 return;
511
512 setup_timer(&cec_timer, cec_timer_fn, (unsigned long)&ce_arr);
513 cec_mod_timer(&cec_timer, CEC_TIMER_DEFAULT_INTERVAL);
514
515 pr_info("Correctable Errors collector initialized.\n");
516}
517
518int __init parse_cec_param(char *str)
519{
520 if (!str)
521 return 0;
522
523 if (*str == '=')
524 str++;
525
526 if (!strncmp(str, "cec_disable", 7))
527 ce_arr.disabled = 1;
528 else
529 return 0;
530
531 return 1;
532}