George Zhang | 2025984 | 2013-01-08 15:55:59 -0800 | [diff] [blame] | 1 | /* |
| 2 | * VMware VMCI Driver |
| 3 | * |
| 4 | * Copyright (C) 2012 VMware, Inc. All rights reserved. |
| 5 | * |
| 6 | * This program is free software; you can redistribute it and/or modify it |
| 7 | * under the terms of the GNU General Public License as published by the |
| 8 | * Free Software Foundation version 2 and no later version. |
| 9 | * |
| 10 | * This program is distributed in the hope that it will be useful, but |
| 11 | * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
| 12 | * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| 13 | * for more details. |
| 14 | */ |
| 15 | |
| 16 | #ifndef _VMW_VMCI_DEF_H_ |
| 17 | #define _VMW_VMCI_DEF_H_ |
| 18 | |
| 19 | #include <linux/atomic.h> |
| 20 | |
| 21 | /* Register offsets. */ |
| 22 | #define VMCI_STATUS_ADDR 0x00 |
| 23 | #define VMCI_CONTROL_ADDR 0x04 |
| 24 | #define VMCI_ICR_ADDR 0x08 |
| 25 | #define VMCI_IMR_ADDR 0x0c |
| 26 | #define VMCI_DATA_OUT_ADDR 0x10 |
| 27 | #define VMCI_DATA_IN_ADDR 0x14 |
| 28 | #define VMCI_CAPS_ADDR 0x18 |
| 29 | #define VMCI_RESULT_LOW_ADDR 0x1c |
| 30 | #define VMCI_RESULT_HIGH_ADDR 0x20 |
| 31 | |
| 32 | /* Max number of devices. */ |
| 33 | #define VMCI_MAX_DEVICES 1 |
| 34 | |
| 35 | /* Status register bits. */ |
| 36 | #define VMCI_STATUS_INT_ON 0x1 |
| 37 | |
| 38 | /* Control register bits. */ |
| 39 | #define VMCI_CONTROL_RESET 0x1 |
| 40 | #define VMCI_CONTROL_INT_ENABLE 0x2 |
| 41 | #define VMCI_CONTROL_INT_DISABLE 0x4 |
| 42 | |
| 43 | /* Capabilities register bits. */ |
| 44 | #define VMCI_CAPS_HYPERCALL 0x1 |
| 45 | #define VMCI_CAPS_GUESTCALL 0x2 |
| 46 | #define VMCI_CAPS_DATAGRAM 0x4 |
| 47 | #define VMCI_CAPS_NOTIFICATIONS 0x8 |
| 48 | |
| 49 | /* Interrupt Cause register bits. */ |
| 50 | #define VMCI_ICR_DATAGRAM 0x1 |
| 51 | #define VMCI_ICR_NOTIFICATION 0x2 |
| 52 | |
| 53 | /* Interrupt Mask register bits. */ |
| 54 | #define VMCI_IMR_DATAGRAM 0x1 |
| 55 | #define VMCI_IMR_NOTIFICATION 0x2 |
| 56 | |
George Zhang | 2025984 | 2013-01-08 15:55:59 -0800 | [diff] [blame] | 57 | /* Maximum MSI/MSI-X interrupt vectors in the device. */ |
| 58 | #define VMCI_MAX_INTRS 2 |
| 59 | |
| 60 | /* |
| 61 | * Supported interrupt vectors. There is one for each ICR value above, |
| 62 | * but here they indicate the position in the vector array/message ID. |
| 63 | */ |
| 64 | enum { |
| 65 | VMCI_INTR_DATAGRAM = 0, |
| 66 | VMCI_INTR_NOTIFICATION = 1, |
| 67 | }; |
| 68 | |
| 69 | /* |
| 70 | * A single VMCI device has an upper limit of 128MB on the amount of |
| 71 | * memory that can be used for queue pairs. |
| 72 | */ |
| 73 | #define VMCI_MAX_GUEST_QP_MEMORY (128 * 1024 * 1024) |
| 74 | |
| 75 | /* |
| 76 | * Queues with pre-mapped data pages must be small, so that we don't pin |
| 77 | * too much kernel memory (especially on vmkernel). We limit a queuepair to |
| 78 | * 32 KB, or 16 KB per queue for symmetrical pairs. |
| 79 | */ |
| 80 | #define VMCI_MAX_PINNED_QP_MEMORY (32 * 1024) |
| 81 | |
| 82 | /* |
| 83 | * We have a fixed set of resource IDs available in the VMX. |
| 84 | * This allows us to have a very simple implementation since we statically |
| 85 | * know how many will create datagram handles. If a new caller arrives and |
| 86 | * we have run out of slots we can manually increment the maximum size of |
| 87 | * available resource IDs. |
| 88 | * |
| 89 | * VMCI reserved hypervisor datagram resource IDs. |
| 90 | */ |
| 91 | enum { |
| 92 | VMCI_RESOURCES_QUERY = 0, |
| 93 | VMCI_GET_CONTEXT_ID = 1, |
| 94 | VMCI_SET_NOTIFY_BITMAP = 2, |
| 95 | VMCI_DOORBELL_LINK = 3, |
| 96 | VMCI_DOORBELL_UNLINK = 4, |
| 97 | VMCI_DOORBELL_NOTIFY = 5, |
| 98 | /* |
| 99 | * VMCI_DATAGRAM_REQUEST_MAP and VMCI_DATAGRAM_REMOVE_MAP are |
| 100 | * obsoleted by the removal of VM to VM communication. |
| 101 | */ |
| 102 | VMCI_DATAGRAM_REQUEST_MAP = 6, |
| 103 | VMCI_DATAGRAM_REMOVE_MAP = 7, |
| 104 | VMCI_EVENT_SUBSCRIBE = 8, |
| 105 | VMCI_EVENT_UNSUBSCRIBE = 9, |
| 106 | VMCI_QUEUEPAIR_ALLOC = 10, |
| 107 | VMCI_QUEUEPAIR_DETACH = 11, |
| 108 | |
| 109 | /* |
| 110 | * VMCI_VSOCK_VMX_LOOKUP was assigned to 12 for Fusion 3.0/3.1, |
| 111 | * WS 7.0/7.1 and ESX 4.1 |
| 112 | */ |
| 113 | VMCI_HGFS_TRANSPORT = 13, |
| 114 | VMCI_UNITY_PBRPC_REGISTER = 14, |
| 115 | VMCI_RPC_PRIVILEGED = 15, |
| 116 | VMCI_RPC_UNPRIVILEGED = 16, |
| 117 | VMCI_RESOURCE_MAX = 17, |
| 118 | }; |
| 119 | |
| 120 | /* |
| 121 | * struct vmci_handle - Ownership information structure |
| 122 | * @context: The VMX context ID. |
| 123 | * @resource: The resource ID (used for locating in resource hash). |
| 124 | * |
| 125 | * The vmci_handle structure is used to track resources used within |
| 126 | * vmw_vmci. |
| 127 | */ |
| 128 | struct vmci_handle { |
| 129 | u32 context; |
| 130 | u32 resource; |
| 131 | }; |
| 132 | |
| 133 | #define vmci_make_handle(_cid, _rid) \ |
| 134 | (struct vmci_handle){ .context = _cid, .resource = _rid } |
| 135 | |
| 136 | static inline bool vmci_handle_is_equal(struct vmci_handle h1, |
| 137 | struct vmci_handle h2) |
| 138 | { |
| 139 | return h1.context == h2.context && h1.resource == h2.resource; |
| 140 | } |
| 141 | |
| 142 | #define VMCI_INVALID_ID ~0 |
| 143 | static const struct vmci_handle VMCI_INVALID_HANDLE = { |
| 144 | .context = VMCI_INVALID_ID, |
| 145 | .resource = VMCI_INVALID_ID |
| 146 | }; |
| 147 | |
| 148 | static inline bool vmci_handle_is_invalid(struct vmci_handle h) |
| 149 | { |
| 150 | return vmci_handle_is_equal(h, VMCI_INVALID_HANDLE); |
| 151 | } |
| 152 | |
| 153 | /* |
| 154 | * The below defines can be used to send anonymous requests. |
| 155 | * This also indicates that no response is expected. |
| 156 | */ |
| 157 | #define VMCI_ANON_SRC_CONTEXT_ID VMCI_INVALID_ID |
| 158 | #define VMCI_ANON_SRC_RESOURCE_ID VMCI_INVALID_ID |
| 159 | static const struct vmci_handle VMCI_ANON_SRC_HANDLE = { |
| 160 | .context = VMCI_ANON_SRC_CONTEXT_ID, |
| 161 | .resource = VMCI_ANON_SRC_RESOURCE_ID |
| 162 | }; |
| 163 | |
| 164 | /* The lowest 16 context ids are reserved for internal use. */ |
| 165 | #define VMCI_RESERVED_CID_LIMIT ((u32) 16) |
| 166 | |
| 167 | /* |
| 168 | * Hypervisor context id, used for calling into hypervisor |
| 169 | * supplied services from the VM. |
| 170 | */ |
| 171 | #define VMCI_HYPERVISOR_CONTEXT_ID 0 |
| 172 | |
| 173 | /* |
| 174 | * Well-known context id, a logical context that contains a set of |
| 175 | * well-known services. This context ID is now obsolete. |
| 176 | */ |
| 177 | #define VMCI_WELL_KNOWN_CONTEXT_ID 1 |
| 178 | |
| 179 | /* |
| 180 | * Context ID used by host endpoints. |
| 181 | */ |
| 182 | #define VMCI_HOST_CONTEXT_ID 2 |
| 183 | |
| 184 | #define VMCI_CONTEXT_IS_VM(_cid) (VMCI_INVALID_ID != (_cid) && \ |
| 185 | (_cid) > VMCI_HOST_CONTEXT_ID) |
| 186 | |
| 187 | /* |
| 188 | * The VMCI_CONTEXT_RESOURCE_ID is used together with vmci_make_handle to make |
| 189 | * handles that refer to a specific context. |
| 190 | */ |
| 191 | #define VMCI_CONTEXT_RESOURCE_ID 0 |
| 192 | |
| 193 | /* |
| 194 | * VMCI error codes. |
| 195 | */ |
| 196 | enum { |
| 197 | VMCI_SUCCESS_QUEUEPAIR_ATTACH = 5, |
| 198 | VMCI_SUCCESS_QUEUEPAIR_CREATE = 4, |
| 199 | VMCI_SUCCESS_LAST_DETACH = 3, |
| 200 | VMCI_SUCCESS_ACCESS_GRANTED = 2, |
| 201 | VMCI_SUCCESS_ENTRY_DEAD = 1, |
| 202 | VMCI_SUCCESS = 0, |
| 203 | VMCI_ERROR_INVALID_RESOURCE = (-1), |
| 204 | VMCI_ERROR_INVALID_ARGS = (-2), |
| 205 | VMCI_ERROR_NO_MEM = (-3), |
| 206 | VMCI_ERROR_DATAGRAM_FAILED = (-4), |
| 207 | VMCI_ERROR_MORE_DATA = (-5), |
| 208 | VMCI_ERROR_NO_MORE_DATAGRAMS = (-6), |
| 209 | VMCI_ERROR_NO_ACCESS = (-7), |
| 210 | VMCI_ERROR_NO_HANDLE = (-8), |
| 211 | VMCI_ERROR_DUPLICATE_ENTRY = (-9), |
| 212 | VMCI_ERROR_DST_UNREACHABLE = (-10), |
| 213 | VMCI_ERROR_PAYLOAD_TOO_LARGE = (-11), |
| 214 | VMCI_ERROR_INVALID_PRIV = (-12), |
| 215 | VMCI_ERROR_GENERIC = (-13), |
| 216 | VMCI_ERROR_PAGE_ALREADY_SHARED = (-14), |
| 217 | VMCI_ERROR_CANNOT_SHARE_PAGE = (-15), |
| 218 | VMCI_ERROR_CANNOT_UNSHARE_PAGE = (-16), |
| 219 | VMCI_ERROR_NO_PROCESS = (-17), |
| 220 | VMCI_ERROR_NO_DATAGRAM = (-18), |
| 221 | VMCI_ERROR_NO_RESOURCES = (-19), |
| 222 | VMCI_ERROR_UNAVAILABLE = (-20), |
| 223 | VMCI_ERROR_NOT_FOUND = (-21), |
| 224 | VMCI_ERROR_ALREADY_EXISTS = (-22), |
| 225 | VMCI_ERROR_NOT_PAGE_ALIGNED = (-23), |
| 226 | VMCI_ERROR_INVALID_SIZE = (-24), |
| 227 | VMCI_ERROR_REGION_ALREADY_SHARED = (-25), |
| 228 | VMCI_ERROR_TIMEOUT = (-26), |
| 229 | VMCI_ERROR_DATAGRAM_INCOMPLETE = (-27), |
| 230 | VMCI_ERROR_INCORRECT_IRQL = (-28), |
| 231 | VMCI_ERROR_EVENT_UNKNOWN = (-29), |
| 232 | VMCI_ERROR_OBSOLETE = (-30), |
| 233 | VMCI_ERROR_QUEUEPAIR_MISMATCH = (-31), |
| 234 | VMCI_ERROR_QUEUEPAIR_NOTSET = (-32), |
| 235 | VMCI_ERROR_QUEUEPAIR_NOTOWNER = (-33), |
| 236 | VMCI_ERROR_QUEUEPAIR_NOTATTACHED = (-34), |
| 237 | VMCI_ERROR_QUEUEPAIR_NOSPACE = (-35), |
| 238 | VMCI_ERROR_QUEUEPAIR_NODATA = (-36), |
| 239 | VMCI_ERROR_BUSMEM_INVALIDATION = (-37), |
| 240 | VMCI_ERROR_MODULE_NOT_LOADED = (-38), |
| 241 | VMCI_ERROR_DEVICE_NOT_FOUND = (-39), |
| 242 | VMCI_ERROR_QUEUEPAIR_NOT_READY = (-40), |
| 243 | VMCI_ERROR_WOULD_BLOCK = (-41), |
| 244 | |
| 245 | /* VMCI clients should return error code within this range */ |
| 246 | VMCI_ERROR_CLIENT_MIN = (-500), |
| 247 | VMCI_ERROR_CLIENT_MAX = (-550), |
| 248 | |
| 249 | /* Internal error codes. */ |
| 250 | VMCI_SHAREDMEM_ERROR_BAD_CONTEXT = (-1000), |
| 251 | }; |
| 252 | |
| 253 | /* VMCI reserved events. */ |
| 254 | enum { |
| 255 | /* Only applicable to guest endpoints */ |
| 256 | VMCI_EVENT_CTX_ID_UPDATE = 0, |
| 257 | |
| 258 | /* Applicable to guest and host */ |
| 259 | VMCI_EVENT_CTX_REMOVED = 1, |
| 260 | |
| 261 | /* Only applicable to guest endpoints */ |
| 262 | VMCI_EVENT_QP_RESUMED = 2, |
| 263 | |
| 264 | /* Applicable to guest and host */ |
| 265 | VMCI_EVENT_QP_PEER_ATTACH = 3, |
| 266 | |
| 267 | /* Applicable to guest and host */ |
| 268 | VMCI_EVENT_QP_PEER_DETACH = 4, |
| 269 | |
| 270 | /* |
| 271 | * Applicable to VMX and vmk. On vmk, |
| 272 | * this event has the Context payload type. |
| 273 | */ |
| 274 | VMCI_EVENT_MEM_ACCESS_ON = 5, |
| 275 | |
| 276 | /* |
| 277 | * Applicable to VMX and vmk. Same as |
| 278 | * above for the payload type. |
| 279 | */ |
| 280 | VMCI_EVENT_MEM_ACCESS_OFF = 6, |
| 281 | VMCI_EVENT_MAX = 7, |
| 282 | }; |
| 283 | |
| 284 | /* |
| 285 | * Of the above events, a few are reserved for use in the VMX, and |
| 286 | * other endpoints (guest and host kernel) should not use them. For |
| 287 | * the rest of the events, we allow both host and guest endpoints to |
| 288 | * subscribe to them, to maintain the same API for host and guest |
| 289 | * endpoints. |
| 290 | */ |
| 291 | #define VMCI_EVENT_VALID_VMX(_event) ((_event) == VMCI_EVENT_MEM_ACCESS_ON || \ |
| 292 | (_event) == VMCI_EVENT_MEM_ACCESS_OFF) |
| 293 | |
| 294 | #define VMCI_EVENT_VALID(_event) ((_event) < VMCI_EVENT_MAX && \ |
| 295 | !VMCI_EVENT_VALID_VMX(_event)) |
| 296 | |
| 297 | /* Reserved guest datagram resource ids. */ |
| 298 | #define VMCI_EVENT_HANDLER 0 |
| 299 | |
| 300 | /* |
| 301 | * VMCI coarse-grained privileges (per context or host |
| 302 | * process/endpoint. An entity with the restricted flag is only |
| 303 | * allowed to interact with the hypervisor and trusted entities. |
| 304 | */ |
| 305 | enum { |
| 306 | VMCI_NO_PRIVILEGE_FLAGS = 0, |
| 307 | VMCI_PRIVILEGE_FLAG_RESTRICTED = 1, |
| 308 | VMCI_PRIVILEGE_FLAG_TRUSTED = 2, |
| 309 | VMCI_PRIVILEGE_ALL_FLAGS = (VMCI_PRIVILEGE_FLAG_RESTRICTED | |
| 310 | VMCI_PRIVILEGE_FLAG_TRUSTED), |
| 311 | VMCI_DEFAULT_PROC_PRIVILEGE_FLAGS = VMCI_NO_PRIVILEGE_FLAGS, |
| 312 | VMCI_LEAST_PRIVILEGE_FLAGS = VMCI_PRIVILEGE_FLAG_RESTRICTED, |
| 313 | VMCI_MAX_PRIVILEGE_FLAGS = VMCI_PRIVILEGE_FLAG_TRUSTED, |
| 314 | }; |
| 315 | |
| 316 | /* 0 through VMCI_RESERVED_RESOURCE_ID_MAX are reserved. */ |
| 317 | #define VMCI_RESERVED_RESOURCE_ID_MAX 1023 |
| 318 | |
| 319 | /* |
| 320 | * Driver version. |
| 321 | * |
| 322 | * Increment major version when you make an incompatible change. |
| 323 | * Compatibility goes both ways (old driver with new executable |
| 324 | * as well as new driver with old executable). |
| 325 | */ |
| 326 | |
| 327 | /* Never change VMCI_VERSION_SHIFT_WIDTH */ |
| 328 | #define VMCI_VERSION_SHIFT_WIDTH 16 |
| 329 | #define VMCI_MAKE_VERSION(_major, _minor) \ |
| 330 | ((_major) << VMCI_VERSION_SHIFT_WIDTH | (u16) (_minor)) |
| 331 | |
| 332 | #define VMCI_VERSION_MAJOR(v) ((u32) (v) >> VMCI_VERSION_SHIFT_WIDTH) |
| 333 | #define VMCI_VERSION_MINOR(v) ((u16) (v)) |
| 334 | |
| 335 | /* |
| 336 | * VMCI_VERSION is always the current version. Subsequently listed |
| 337 | * versions are ways of detecting previous versions of the connecting |
| 338 | * application (i.e., VMX). |
| 339 | * |
| 340 | * VMCI_VERSION_NOVMVM: This version removed support for VM to VM |
| 341 | * communication. |
| 342 | * |
| 343 | * VMCI_VERSION_NOTIFY: This version introduced doorbell notification |
| 344 | * support. |
| 345 | * |
| 346 | * VMCI_VERSION_HOSTQP: This version introduced host end point support |
| 347 | * for hosted products. |
| 348 | * |
| 349 | * VMCI_VERSION_PREHOSTQP: This is the version prior to the adoption of |
| 350 | * support for host end-points. |
| 351 | * |
| 352 | * VMCI_VERSION_PREVERS2: This fictional version number is intended to |
| 353 | * represent the version of a VMX which doesn't call into the driver |
| 354 | * with ioctl VERSION2 and thus doesn't establish its version with the |
| 355 | * driver. |
| 356 | */ |
| 357 | |
| 358 | #define VMCI_VERSION VMCI_VERSION_NOVMVM |
| 359 | #define VMCI_VERSION_NOVMVM VMCI_MAKE_VERSION(11, 0) |
| 360 | #define VMCI_VERSION_NOTIFY VMCI_MAKE_VERSION(10, 0) |
| 361 | #define VMCI_VERSION_HOSTQP VMCI_MAKE_VERSION(9, 0) |
| 362 | #define VMCI_VERSION_PREHOSTQP VMCI_MAKE_VERSION(8, 0) |
| 363 | #define VMCI_VERSION_PREVERS2 VMCI_MAKE_VERSION(1, 0) |
| 364 | |
| 365 | #define VMCI_SOCKETS_MAKE_VERSION(_p) \ |
| 366 | ((((_p)[0] & 0xFF) << 24) | (((_p)[1] & 0xFF) << 16) | ((_p)[2])) |
| 367 | |
| 368 | /* |
| 369 | * The VMCI IOCTLs. We use identity code 7, as noted in ioctl-number.h, and |
| 370 | * we start at sequence 9f. This gives us the same values that our shipping |
| 371 | * products use, starting at 1951, provided we leave out the direction and |
| 372 | * structure size. Note that VMMon occupies the block following us, starting |
| 373 | * at 2001. |
| 374 | */ |
| 375 | #define IOCTL_VMCI_VERSION _IO(7, 0x9f) /* 1951 */ |
| 376 | #define IOCTL_VMCI_INIT_CONTEXT _IO(7, 0xa0) |
| 377 | #define IOCTL_VMCI_QUEUEPAIR_SETVA _IO(7, 0xa4) |
| 378 | #define IOCTL_VMCI_NOTIFY_RESOURCE _IO(7, 0xa5) |
| 379 | #define IOCTL_VMCI_NOTIFICATIONS_RECEIVE _IO(7, 0xa6) |
| 380 | #define IOCTL_VMCI_VERSION2 _IO(7, 0xa7) |
| 381 | #define IOCTL_VMCI_QUEUEPAIR_ALLOC _IO(7, 0xa8) |
| 382 | #define IOCTL_VMCI_QUEUEPAIR_SETPAGEFILE _IO(7, 0xa9) |
| 383 | #define IOCTL_VMCI_QUEUEPAIR_DETACH _IO(7, 0xaa) |
| 384 | #define IOCTL_VMCI_DATAGRAM_SEND _IO(7, 0xab) |
| 385 | #define IOCTL_VMCI_DATAGRAM_RECEIVE _IO(7, 0xac) |
| 386 | #define IOCTL_VMCI_CTX_ADD_NOTIFICATION _IO(7, 0xaf) |
| 387 | #define IOCTL_VMCI_CTX_REMOVE_NOTIFICATION _IO(7, 0xb0) |
| 388 | #define IOCTL_VMCI_CTX_GET_CPT_STATE _IO(7, 0xb1) |
| 389 | #define IOCTL_VMCI_CTX_SET_CPT_STATE _IO(7, 0xb2) |
| 390 | #define IOCTL_VMCI_GET_CONTEXT_ID _IO(7, 0xb3) |
| 391 | #define IOCTL_VMCI_SOCKETS_VERSION _IO(7, 0xb4) |
| 392 | #define IOCTL_VMCI_SOCKETS_GET_AF_VALUE _IO(7, 0xb8) |
| 393 | #define IOCTL_VMCI_SOCKETS_GET_LOCAL_CID _IO(7, 0xb9) |
| 394 | #define IOCTL_VMCI_SET_NOTIFY _IO(7, 0xcb) /* 1995 */ |
| 395 | /*IOCTL_VMMON_START _IO(7, 0xd1)*/ /* 2001 */ |
| 396 | |
| 397 | /* |
| 398 | * struct vmci_queue_header - VMCI Queue Header information. |
| 399 | * |
| 400 | * A Queue cannot stand by itself as designed. Each Queue's header |
| 401 | * contains a pointer into itself (the producer_tail) and into its peer |
| 402 | * (consumer_head). The reason for the separation is one of |
| 403 | * accessibility: Each end-point can modify two things: where the next |
| 404 | * location to enqueue is within its produce_q (producer_tail); and |
| 405 | * where the next dequeue location is in its consume_q (consumer_head). |
| 406 | * |
| 407 | * An end-point cannot modify the pointers of its peer (guest to |
| 408 | * guest; NOTE that in the host both queue headers are mapped r/w). |
| 409 | * But, each end-point needs read access to both Queue header |
| 410 | * structures in order to determine how much space is used (or left) |
| 411 | * in the Queue. This is because for an end-point to know how full |
| 412 | * its produce_q is, it needs to use the consumer_head that points into |
| 413 | * the produce_q but -that- consumer_head is in the Queue header for |
| 414 | * that end-points consume_q. |
| 415 | * |
| 416 | * Thoroughly confused? Sorry. |
| 417 | * |
| 418 | * producer_tail: the point to enqueue new entrants. When you approach |
| 419 | * a line in a store, for example, you walk up to the tail. |
| 420 | * |
| 421 | * consumer_head: the point in the queue from which the next element is |
| 422 | * dequeued. In other words, who is next in line is he who is at the |
| 423 | * head of the line. |
| 424 | * |
| 425 | * Also, producer_tail points to an empty byte in the Queue, whereas |
| 426 | * consumer_head points to a valid byte of data (unless producer_tail == |
| 427 | * consumer_head in which case consumer_head does not point to a valid |
| 428 | * byte of data). |
| 429 | * |
| 430 | * For a queue of buffer 'size' bytes, the tail and head pointers will be in |
| 431 | * the range [0, size-1]. |
| 432 | * |
| 433 | * If produce_q_header->producer_tail == consume_q_header->consumer_head |
| 434 | * then the produce_q is empty. |
| 435 | */ |
| 436 | struct vmci_queue_header { |
| 437 | /* All fields are 64bit and aligned. */ |
| 438 | struct vmci_handle handle; /* Identifier. */ |
| 439 | atomic64_t producer_tail; /* Offset in this queue. */ |
| 440 | atomic64_t consumer_head; /* Offset in peer queue. */ |
| 441 | }; |
| 442 | |
| 443 | /* |
| 444 | * struct vmci_datagram - Base struct for vmci datagrams. |
| 445 | * @dst: A vmci_handle that tracks the destination of the datagram. |
| 446 | * @src: A vmci_handle that tracks the source of the datagram. |
| 447 | * @payload_size: The size of the payload. |
| 448 | * |
| 449 | * vmci_datagram structs are used when sending vmci datagrams. They include |
| 450 | * the necessary source and destination information to properly route |
| 451 | * the information along with the size of the package. |
| 452 | */ |
| 453 | struct vmci_datagram { |
| 454 | struct vmci_handle dst; |
| 455 | struct vmci_handle src; |
| 456 | u64 payload_size; |
| 457 | }; |
| 458 | |
| 459 | /* |
| 460 | * Second flag is for creating a well-known handle instead of a per context |
| 461 | * handle. Next flag is for deferring datagram delivery, so that the |
| 462 | * datagram callback is invoked in a delayed context (not interrupt context). |
| 463 | */ |
| 464 | #define VMCI_FLAG_DG_NONE 0 |
| 465 | #define VMCI_FLAG_WELLKNOWN_DG_HND 0x1 |
| 466 | #define VMCI_FLAG_ANYCID_DG_HND 0x2 |
| 467 | #define VMCI_FLAG_DG_DELAYED_CB 0x4 |
| 468 | |
| 469 | /* |
| 470 | * Maximum supported size of a VMCI datagram for routable datagrams. |
| 471 | * Datagrams going to the hypervisor are allowed to be larger. |
| 472 | */ |
| 473 | #define VMCI_MAX_DG_SIZE (17 * 4096) |
| 474 | #define VMCI_MAX_DG_PAYLOAD_SIZE (VMCI_MAX_DG_SIZE - \ |
| 475 | sizeof(struct vmci_datagram)) |
| 476 | #define VMCI_DG_PAYLOAD(_dg) (void *)((char *)(_dg) + \ |
| 477 | sizeof(struct vmci_datagram)) |
| 478 | #define VMCI_DG_HEADERSIZE sizeof(struct vmci_datagram) |
| 479 | #define VMCI_DG_SIZE(_dg) (VMCI_DG_HEADERSIZE + (size_t)(_dg)->payload_size) |
| 480 | #define VMCI_DG_SIZE_ALIGNED(_dg) ((VMCI_DG_SIZE(_dg) + 7) & (~((size_t) 0x7))) |
| 481 | #define VMCI_MAX_DATAGRAM_QUEUE_SIZE (VMCI_MAX_DG_SIZE * 2) |
| 482 | |
| 483 | struct vmci_event_payload_qp { |
| 484 | struct vmci_handle handle; /* queue_pair handle. */ |
| 485 | u32 peer_id; /* Context id of attaching/detaching VM. */ |
| 486 | u32 _pad; |
| 487 | }; |
| 488 | |
| 489 | /* Flags for VMCI queue_pair API. */ |
| 490 | enum { |
| 491 | /* Fail alloc if QP not created by peer. */ |
| 492 | VMCI_QPFLAG_ATTACH_ONLY = 1 << 0, |
| 493 | |
| 494 | /* Only allow attaches from local context. */ |
| 495 | VMCI_QPFLAG_LOCAL = 1 << 1, |
| 496 | |
| 497 | /* Host won't block when guest is quiesced. */ |
| 498 | VMCI_QPFLAG_NONBLOCK = 1 << 2, |
| 499 | |
| 500 | /* Pin data pages in ESX. Used with NONBLOCK */ |
| 501 | VMCI_QPFLAG_PINNED = 1 << 3, |
| 502 | |
| 503 | /* Update the following flag when adding new flags. */ |
| 504 | VMCI_QP_ALL_FLAGS = (VMCI_QPFLAG_ATTACH_ONLY | VMCI_QPFLAG_LOCAL | |
| 505 | VMCI_QPFLAG_NONBLOCK | VMCI_QPFLAG_PINNED), |
| 506 | |
| 507 | /* Convenience flags */ |
| 508 | VMCI_QP_ASYMM = (VMCI_QPFLAG_NONBLOCK | VMCI_QPFLAG_PINNED), |
| 509 | VMCI_QP_ASYMM_PEER = (VMCI_QPFLAG_ATTACH_ONLY | VMCI_QP_ASYMM), |
| 510 | }; |
| 511 | |
| 512 | /* |
| 513 | * We allow at least 1024 more event datagrams from the hypervisor past the |
| 514 | * normally allowed datagrams pending for a given context. We define this |
| 515 | * limit on event datagrams from the hypervisor to guard against DoS attack |
| 516 | * from a malicious VM which could repeatedly attach to and detach from a queue |
| 517 | * pair, causing events to be queued at the destination VM. However, the rate |
| 518 | * at which such events can be generated is small since it requires a VM exit |
| 519 | * and handling of queue pair attach/detach call at the hypervisor. Event |
| 520 | * datagrams may be queued up at the destination VM if it has interrupts |
| 521 | * disabled or if it is not draining events for some other reason. 1024 |
| 522 | * datagrams is a grossly conservative estimate of the time for which |
| 523 | * interrupts may be disabled in the destination VM, but at the same time does |
| 524 | * not exacerbate the memory pressure problem on the host by much (size of each |
| 525 | * event datagram is small). |
| 526 | */ |
| 527 | #define VMCI_MAX_DATAGRAM_AND_EVENT_QUEUE_SIZE \ |
| 528 | (VMCI_MAX_DATAGRAM_QUEUE_SIZE + \ |
| 529 | 1024 * (sizeof(struct vmci_datagram) + \ |
| 530 | sizeof(struct vmci_event_data_max))) |
| 531 | |
| 532 | /* |
| 533 | * Struct used for querying, via VMCI_RESOURCES_QUERY, the availability of |
| 534 | * hypervisor resources. Struct size is 16 bytes. All fields in struct are |
| 535 | * aligned to their natural alignment. |
| 536 | */ |
| 537 | struct vmci_resource_query_hdr { |
| 538 | struct vmci_datagram hdr; |
| 539 | u32 num_resources; |
| 540 | u32 _padding; |
| 541 | }; |
| 542 | |
| 543 | /* |
| 544 | * Convenience struct for negotiating vectors. Must match layout of |
| 545 | * VMCIResourceQueryHdr minus the struct vmci_datagram header. |
| 546 | */ |
| 547 | struct vmci_resource_query_msg { |
| 548 | u32 num_resources; |
| 549 | u32 _padding; |
| 550 | u32 resources[1]; |
| 551 | }; |
| 552 | |
| 553 | /* |
| 554 | * The maximum number of resources that can be queried using |
| 555 | * VMCI_RESOURCE_QUERY is 31, as the result is encoded in the lower 31 |
| 556 | * bits of a positive return value. Negative values are reserved for |
| 557 | * errors. |
| 558 | */ |
| 559 | #define VMCI_RESOURCE_QUERY_MAX_NUM 31 |
| 560 | |
| 561 | /* Maximum size for the VMCI_RESOURCE_QUERY request. */ |
| 562 | #define VMCI_RESOURCE_QUERY_MAX_SIZE \ |
| 563 | (sizeof(struct vmci_resource_query_hdr) + \ |
| 564 | sizeof(u32) * VMCI_RESOURCE_QUERY_MAX_NUM) |
| 565 | |
| 566 | /* |
| 567 | * Struct used for setting the notification bitmap. All fields in |
| 568 | * struct are aligned to their natural alignment. |
| 569 | */ |
| 570 | struct vmci_notify_bm_set_msg { |
| 571 | struct vmci_datagram hdr; |
| 572 | u32 bitmap_ppn; |
| 573 | u32 _pad; |
| 574 | }; |
| 575 | |
| 576 | /* |
| 577 | * Struct used for linking a doorbell handle with an index in the |
| 578 | * notify bitmap. All fields in struct are aligned to their natural |
| 579 | * alignment. |
| 580 | */ |
| 581 | struct vmci_doorbell_link_msg { |
| 582 | struct vmci_datagram hdr; |
| 583 | struct vmci_handle handle; |
| 584 | u64 notify_idx; |
| 585 | }; |
| 586 | |
| 587 | /* |
| 588 | * Struct used for unlinking a doorbell handle from an index in the |
| 589 | * notify bitmap. All fields in struct are aligned to their natural |
| 590 | * alignment. |
| 591 | */ |
| 592 | struct vmci_doorbell_unlink_msg { |
| 593 | struct vmci_datagram hdr; |
| 594 | struct vmci_handle handle; |
| 595 | }; |
| 596 | |
| 597 | /* |
| 598 | * Struct used for generating a notification on a doorbell handle. All |
| 599 | * fields in struct are aligned to their natural alignment. |
| 600 | */ |
| 601 | struct vmci_doorbell_notify_msg { |
| 602 | struct vmci_datagram hdr; |
| 603 | struct vmci_handle handle; |
| 604 | }; |
| 605 | |
| 606 | /* |
| 607 | * This struct is used to contain data for events. Size of this struct is a |
| 608 | * multiple of 8 bytes, and all fields are aligned to their natural alignment. |
| 609 | */ |
| 610 | struct vmci_event_data { |
| 611 | u32 event; /* 4 bytes. */ |
| 612 | u32 _pad; |
| 613 | /* Event payload is put here. */ |
| 614 | }; |
| 615 | |
| 616 | /* |
| 617 | * Define the different VMCI_EVENT payload data types here. All structs must |
| 618 | * be a multiple of 8 bytes, and fields must be aligned to their natural |
| 619 | * alignment. |
| 620 | */ |
| 621 | struct vmci_event_payld_ctx { |
| 622 | u32 context_id; /* 4 bytes. */ |
| 623 | u32 _pad; |
| 624 | }; |
| 625 | |
| 626 | struct vmci_event_payld_qp { |
| 627 | struct vmci_handle handle; /* queue_pair handle. */ |
| 628 | u32 peer_id; /* Context id of attaching/detaching VM. */ |
| 629 | u32 _pad; |
| 630 | }; |
| 631 | |
| 632 | /* |
| 633 | * We define the following struct to get the size of the maximum event |
| 634 | * data the hypervisor may send to the guest. If adding a new event |
| 635 | * payload type above, add it to the following struct too (inside the |
| 636 | * union). |
| 637 | */ |
| 638 | struct vmci_event_data_max { |
| 639 | struct vmci_event_data event_data; |
| 640 | union { |
| 641 | struct vmci_event_payld_ctx context_payload; |
| 642 | struct vmci_event_payld_qp qp_payload; |
| 643 | } ev_data_payload; |
| 644 | }; |
| 645 | |
| 646 | /* |
| 647 | * Struct used for VMCI_EVENT_SUBSCRIBE/UNSUBSCRIBE and |
| 648 | * VMCI_EVENT_HANDLER messages. Struct size is 32 bytes. All fields |
| 649 | * in struct are aligned to their natural alignment. |
| 650 | */ |
| 651 | struct vmci_event_msg { |
| 652 | struct vmci_datagram hdr; |
| 653 | |
| 654 | /* Has event type and payload. */ |
| 655 | struct vmci_event_data event_data; |
| 656 | |
| 657 | /* Payload gets put here. */ |
| 658 | }; |
| 659 | |
| 660 | /* Event with context payload. */ |
| 661 | struct vmci_event_ctx { |
| 662 | struct vmci_event_msg msg; |
| 663 | struct vmci_event_payld_ctx payload; |
| 664 | }; |
| 665 | |
| 666 | /* Event with QP payload. */ |
| 667 | struct vmci_event_qp { |
| 668 | struct vmci_event_msg msg; |
| 669 | struct vmci_event_payld_qp payload; |
| 670 | }; |
| 671 | |
| 672 | /* |
| 673 | * Structs used for queue_pair alloc and detach messages. We align fields of |
| 674 | * these structs to 64bit boundaries. |
| 675 | */ |
| 676 | struct vmci_qp_alloc_msg { |
| 677 | struct vmci_datagram hdr; |
| 678 | struct vmci_handle handle; |
| 679 | u32 peer; |
| 680 | u32 flags; |
| 681 | u64 produce_size; |
| 682 | u64 consume_size; |
| 683 | u64 num_ppns; |
| 684 | |
| 685 | /* List of PPNs placed here. */ |
| 686 | }; |
| 687 | |
| 688 | struct vmci_qp_detach_msg { |
| 689 | struct vmci_datagram hdr; |
| 690 | struct vmci_handle handle; |
| 691 | }; |
| 692 | |
| 693 | /* VMCI Doorbell API. */ |
| 694 | #define VMCI_FLAG_DELAYED_CB 0x01 |
| 695 | |
| 696 | typedef void (*vmci_callback) (void *client_data); |
| 697 | |
| 698 | /* |
| 699 | * struct vmci_qp - A vmw_vmci queue pair handle. |
| 700 | * |
| 701 | * This structure is used as a handle to a queue pair created by |
| 702 | * VMCI. It is intentionally left opaque to clients. |
| 703 | */ |
| 704 | struct vmci_qp; |
| 705 | |
| 706 | /* Callback needed for correctly waiting on events. */ |
| 707 | typedef int (*vmci_datagram_recv_cb) (void *client_data, |
| 708 | struct vmci_datagram *msg); |
| 709 | |
| 710 | /* VMCI Event API. */ |
| 711 | typedef void (*vmci_event_cb) (u32 sub_id, const struct vmci_event_data *ed, |
| 712 | void *client_data); |
| 713 | |
| 714 | /* |
| 715 | * We use the following inline function to access the payload data |
| 716 | * associated with an event data. |
| 717 | */ |
| 718 | static inline const void * |
| 719 | vmci_event_data_const_payload(const struct vmci_event_data *ev_data) |
| 720 | { |
| 721 | return (const char *)ev_data + sizeof(*ev_data); |
| 722 | } |
| 723 | |
| 724 | static inline void *vmci_event_data_payload(struct vmci_event_data *ev_data) |
| 725 | { |
| 726 | return (void *)vmci_event_data_const_payload(ev_data); |
| 727 | } |
| 728 | |
| 729 | /* |
Jorgen Hansen | f42a0fd | 2015-11-12 01:29:32 -0800 | [diff] [blame] | 730 | * Helper to read a value from a head or tail pointer. For X86_32, the |
| 731 | * pointer is treated as a 32bit value, since the pointer value |
| 732 | * never exceeds a 32bit value in this case. Also, doing an |
| 733 | * atomic64_read on X86_32 uniprocessor systems may be implemented |
| 734 | * as a non locked cmpxchg8b, that may end up overwriting updates done |
| 735 | * by the VMCI device to the memory location. On 32bit SMP, the lock |
| 736 | * prefix will be used, so correctness isn't an issue, but using a |
| 737 | * 64bit operation still adds unnecessary overhead. |
| 738 | */ |
| 739 | static inline u64 vmci_q_read_pointer(atomic64_t *var) |
| 740 | { |
| 741 | #if defined(CONFIG_X86_32) |
| 742 | return atomic_read((atomic_t *)var); |
| 743 | #else |
| 744 | return atomic64_read(var); |
| 745 | #endif |
| 746 | } |
| 747 | |
| 748 | /* |
| 749 | * Helper to set the value of a head or tail pointer. For X86_32, the |
| 750 | * pointer is treated as a 32bit value, since the pointer value |
| 751 | * never exceeds a 32bit value in this case. On 32bit SMP, using a |
| 752 | * locked cmpxchg8b adds unnecessary overhead. |
| 753 | */ |
| 754 | static inline void vmci_q_set_pointer(atomic64_t *var, |
| 755 | u64 new_val) |
| 756 | { |
| 757 | #if defined(CONFIG_X86_32) |
| 758 | return atomic_set((atomic_t *)var, (u32)new_val); |
| 759 | #else |
| 760 | return atomic64_set(var, new_val); |
| 761 | #endif |
| 762 | } |
| 763 | |
| 764 | /* |
George Zhang | 2025984 | 2013-01-08 15:55:59 -0800 | [diff] [blame] | 765 | * Helper to add a given offset to a head or tail pointer. Wraps the |
| 766 | * value of the pointer around the max size of the queue. |
| 767 | */ |
| 768 | static inline void vmci_qp_add_pointer(atomic64_t *var, |
| 769 | size_t add, |
| 770 | u64 size) |
| 771 | { |
Jorgen Hansen | f42a0fd | 2015-11-12 01:29:32 -0800 | [diff] [blame] | 772 | u64 new_val = vmci_q_read_pointer(var); |
George Zhang | 2025984 | 2013-01-08 15:55:59 -0800 | [diff] [blame] | 773 | |
| 774 | if (new_val >= size - add) |
| 775 | new_val -= size; |
| 776 | |
| 777 | new_val += add; |
| 778 | |
Jorgen Hansen | f42a0fd | 2015-11-12 01:29:32 -0800 | [diff] [blame] | 779 | vmci_q_set_pointer(var, new_val); |
George Zhang | 2025984 | 2013-01-08 15:55:59 -0800 | [diff] [blame] | 780 | } |
| 781 | |
| 782 | /* |
| 783 | * Helper routine to get the Producer Tail from the supplied queue. |
| 784 | */ |
| 785 | static inline u64 |
| 786 | vmci_q_header_producer_tail(const struct vmci_queue_header *q_header) |
| 787 | { |
| 788 | struct vmci_queue_header *qh = (struct vmci_queue_header *)q_header; |
Jorgen Hansen | f42a0fd | 2015-11-12 01:29:32 -0800 | [diff] [blame] | 789 | return vmci_q_read_pointer(&qh->producer_tail); |
George Zhang | 2025984 | 2013-01-08 15:55:59 -0800 | [diff] [blame] | 790 | } |
| 791 | |
| 792 | /* |
| 793 | * Helper routine to get the Consumer Head from the supplied queue. |
| 794 | */ |
| 795 | static inline u64 |
| 796 | vmci_q_header_consumer_head(const struct vmci_queue_header *q_header) |
| 797 | { |
| 798 | struct vmci_queue_header *qh = (struct vmci_queue_header *)q_header; |
Jorgen Hansen | f42a0fd | 2015-11-12 01:29:32 -0800 | [diff] [blame] | 799 | return vmci_q_read_pointer(&qh->consumer_head); |
George Zhang | 2025984 | 2013-01-08 15:55:59 -0800 | [diff] [blame] | 800 | } |
| 801 | |
| 802 | /* |
| 803 | * Helper routine to increment the Producer Tail. Fundamentally, |
| 804 | * vmci_qp_add_pointer() is used to manipulate the tail itself. |
| 805 | */ |
| 806 | static inline void |
| 807 | vmci_q_header_add_producer_tail(struct vmci_queue_header *q_header, |
| 808 | size_t add, |
| 809 | u64 queue_size) |
| 810 | { |
| 811 | vmci_qp_add_pointer(&q_header->producer_tail, add, queue_size); |
| 812 | } |
| 813 | |
| 814 | /* |
| 815 | * Helper routine to increment the Consumer Head. Fundamentally, |
| 816 | * vmci_qp_add_pointer() is used to manipulate the head itself. |
| 817 | */ |
| 818 | static inline void |
| 819 | vmci_q_header_add_consumer_head(struct vmci_queue_header *q_header, |
| 820 | size_t add, |
| 821 | u64 queue_size) |
| 822 | { |
| 823 | vmci_qp_add_pointer(&q_header->consumer_head, add, queue_size); |
| 824 | } |
| 825 | |
| 826 | /* |
| 827 | * Helper routine for getting the head and the tail pointer for a queue. |
| 828 | * Both the VMCIQueues are needed to get both the pointers for one queue. |
| 829 | */ |
| 830 | static inline void |
| 831 | vmci_q_header_get_pointers(const struct vmci_queue_header *produce_q_header, |
| 832 | const struct vmci_queue_header *consume_q_header, |
| 833 | u64 *producer_tail, |
| 834 | u64 *consumer_head) |
| 835 | { |
| 836 | if (producer_tail) |
| 837 | *producer_tail = vmci_q_header_producer_tail(produce_q_header); |
| 838 | |
| 839 | if (consumer_head) |
| 840 | *consumer_head = vmci_q_header_consumer_head(consume_q_header); |
| 841 | } |
| 842 | |
| 843 | static inline void vmci_q_header_init(struct vmci_queue_header *q_header, |
| 844 | const struct vmci_handle handle) |
| 845 | { |
| 846 | q_header->handle = handle; |
| 847 | atomic64_set(&q_header->producer_tail, 0); |
| 848 | atomic64_set(&q_header->consumer_head, 0); |
| 849 | } |
| 850 | |
| 851 | /* |
| 852 | * Finds available free space in a produce queue to enqueue more |
| 853 | * data or reports an error if queue pair corruption is detected. |
| 854 | */ |
| 855 | static s64 |
| 856 | vmci_q_header_free_space(const struct vmci_queue_header *produce_q_header, |
| 857 | const struct vmci_queue_header *consume_q_header, |
| 858 | const u64 produce_q_size) |
| 859 | { |
| 860 | u64 tail; |
| 861 | u64 head; |
| 862 | u64 free_space; |
| 863 | |
| 864 | tail = vmci_q_header_producer_tail(produce_q_header); |
| 865 | head = vmci_q_header_consumer_head(consume_q_header); |
| 866 | |
| 867 | if (tail >= produce_q_size || head >= produce_q_size) |
| 868 | return VMCI_ERROR_INVALID_SIZE; |
| 869 | |
| 870 | /* |
| 871 | * Deduct 1 to avoid tail becoming equal to head which causes |
| 872 | * ambiguity. If head and tail are equal it means that the |
| 873 | * queue is empty. |
| 874 | */ |
| 875 | if (tail >= head) |
| 876 | free_space = produce_q_size - (tail - head) - 1; |
| 877 | else |
| 878 | free_space = head - tail - 1; |
| 879 | |
| 880 | return free_space; |
| 881 | } |
| 882 | |
| 883 | /* |
| 884 | * vmci_q_header_free_space() does all the heavy lifting of |
| 885 | * determing the number of free bytes in a Queue. This routine, |
| 886 | * then subtracts that size from the full size of the Queue so |
| 887 | * the caller knows how many bytes are ready to be dequeued. |
| 888 | * Results: |
| 889 | * On success, available data size in bytes (up to MAX_INT64). |
| 890 | * On failure, appropriate error code. |
| 891 | */ |
| 892 | static inline s64 |
| 893 | vmci_q_header_buf_ready(const struct vmci_queue_header *consume_q_header, |
| 894 | const struct vmci_queue_header *produce_q_header, |
| 895 | const u64 consume_q_size) |
| 896 | { |
| 897 | s64 free_space; |
| 898 | |
| 899 | free_space = vmci_q_header_free_space(consume_q_header, |
| 900 | produce_q_header, consume_q_size); |
| 901 | if (free_space < VMCI_SUCCESS) |
| 902 | return free_space; |
| 903 | |
| 904 | return consume_q_size - free_space - 1; |
| 905 | } |
| 906 | |
| 907 | |
| 908 | #endif /* _VMW_VMCI_DEF_H_ */ |