blob: 842f92e455174d954c1f88ad651a932b743d31d2 [file] [log] [blame]
Ben Hutchings86094f72013-08-21 19:51:04 +01001/****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2006-2011 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11#include <linux/bitops.h>
12#include <linux/delay.h>
13#include <linux/interrupt.h>
14#include <linux/pci.h>
15#include <linux/module.h>
16#include <linux/seq_file.h>
Ben Hutchings964e6132012-11-19 23:08:22 +000017#include <linux/crc32.h>
Ben Hutchings86094f72013-08-21 19:51:04 +010018#include "net_driver.h"
19#include "bitfield.h"
20#include "efx.h"
21#include "nic.h"
22#include "farch_regs.h"
23#include "io.h"
24#include "workarounds.h"
25
26/* Falcon-architecture (SFC4000 and SFC9000-family) support */
27
28/**************************************************************************
29 *
30 * Configurable values
31 *
32 **************************************************************************
33 */
34
35/* This is set to 16 for a good reason. In summary, if larger than
36 * 16, the descriptor cache holds more than a default socket
37 * buffer's worth of packets (for UDP we can only have at most one
38 * socket buffer's worth outstanding). This combined with the fact
39 * that we only get 1 TX event per descriptor cache means the NIC
40 * goes idle.
41 */
42#define TX_DC_ENTRIES 16
43#define TX_DC_ENTRIES_ORDER 1
44
45#define RX_DC_ENTRIES 64
46#define RX_DC_ENTRIES_ORDER 3
47
48/* If EFX_MAX_INT_ERRORS internal errors occur within
49 * EFX_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
50 * disable it.
51 */
52#define EFX_INT_ERROR_EXPIRE 3600
53#define EFX_MAX_INT_ERRORS 5
54
55/* Depth of RX flush request fifo */
56#define EFX_RX_FLUSH_COUNT 4
57
58/* Driver generated events */
59#define _EFX_CHANNEL_MAGIC_TEST 0x000101
60#define _EFX_CHANNEL_MAGIC_FILL 0x000102
61#define _EFX_CHANNEL_MAGIC_RX_DRAIN 0x000103
62#define _EFX_CHANNEL_MAGIC_TX_DRAIN 0x000104
63
64#define _EFX_CHANNEL_MAGIC(_code, _data) ((_code) << 8 | (_data))
65#define _EFX_CHANNEL_MAGIC_CODE(_magic) ((_magic) >> 8)
66
67#define EFX_CHANNEL_MAGIC_TEST(_channel) \
68 _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TEST, (_channel)->channel)
69#define EFX_CHANNEL_MAGIC_FILL(_rx_queue) \
70 _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_FILL, \
71 efx_rx_queue_index(_rx_queue))
72#define EFX_CHANNEL_MAGIC_RX_DRAIN(_rx_queue) \
73 _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_RX_DRAIN, \
74 efx_rx_queue_index(_rx_queue))
75#define EFX_CHANNEL_MAGIC_TX_DRAIN(_tx_queue) \
76 _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TX_DRAIN, \
77 (_tx_queue)->queue)
78
79static void efx_farch_magic_event(struct efx_channel *channel, u32 magic);
80
81/**************************************************************************
82 *
83 * Hardware access
84 *
85 **************************************************************************/
86
87static inline void efx_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value,
88 unsigned int index)
89{
90 efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base,
91 value, index);
92}
93
94static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
95 const efx_oword_t *mask)
96{
97 return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
98 ((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
99}
100
101int efx_farch_test_registers(struct efx_nic *efx,
102 const struct efx_farch_register_test *regs,
103 size_t n_regs)
104{
105 unsigned address = 0, i, j;
106 efx_oword_t mask, imask, original, reg, buf;
107
108 for (i = 0; i < n_regs; ++i) {
109 address = regs[i].address;
110 mask = imask = regs[i].mask;
111 EFX_INVERT_OWORD(imask);
112
113 efx_reado(efx, &original, address);
114
115 /* bit sweep on and off */
116 for (j = 0; j < 128; j++) {
117 if (!EFX_EXTRACT_OWORD32(mask, j, j))
118 continue;
119
120 /* Test this testable bit can be set in isolation */
121 EFX_AND_OWORD(reg, original, mask);
122 EFX_SET_OWORD32(reg, j, j, 1);
123
124 efx_writeo(efx, &reg, address);
125 efx_reado(efx, &buf, address);
126
127 if (efx_masked_compare_oword(&reg, &buf, &mask))
128 goto fail;
129
130 /* Test this testable bit can be cleared in isolation */
131 EFX_OR_OWORD(reg, original, mask);
132 EFX_SET_OWORD32(reg, j, j, 0);
133
134 efx_writeo(efx, &reg, address);
135 efx_reado(efx, &buf, address);
136
137 if (efx_masked_compare_oword(&reg, &buf, &mask))
138 goto fail;
139 }
140
141 efx_writeo(efx, &original, address);
142 }
143
144 return 0;
145
146fail:
147 netif_err(efx, hw, efx->net_dev,
148 "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
149 " at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
150 EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
151 return -EIO;
152}
153
154/**************************************************************************
155 *
156 * Special buffer handling
157 * Special buffers are used for event queues and the TX and RX
158 * descriptor rings.
159 *
160 *************************************************************************/
161
162/*
163 * Initialise a special buffer
164 *
165 * This will define a buffer (previously allocated via
166 * efx_alloc_special_buffer()) in the buffer table, allowing
167 * it to be used for event queues, descriptor rings etc.
168 */
169static void
170efx_init_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
171{
172 efx_qword_t buf_desc;
173 unsigned int index;
174 dma_addr_t dma_addr;
175 int i;
176
177 EFX_BUG_ON_PARANOID(!buffer->buf.addr);
178
179 /* Write buffer descriptors to NIC */
180 for (i = 0; i < buffer->entries; i++) {
181 index = buffer->index + i;
182 dma_addr = buffer->buf.dma_addr + (i * EFX_BUF_SIZE);
183 netif_dbg(efx, probe, efx->net_dev,
184 "mapping special buffer %d at %llx\n",
185 index, (unsigned long long)dma_addr);
186 EFX_POPULATE_QWORD_3(buf_desc,
187 FRF_AZ_BUF_ADR_REGION, 0,
188 FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12,
189 FRF_AZ_BUF_OWNER_ID_FBUF, 0);
190 efx_write_buf_tbl(efx, &buf_desc, index);
191 }
192}
193
194/* Unmaps a buffer and clears the buffer table entries */
195static void
196efx_fini_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
197{
198 efx_oword_t buf_tbl_upd;
199 unsigned int start = buffer->index;
200 unsigned int end = (buffer->index + buffer->entries - 1);
201
202 if (!buffer->entries)
203 return;
204
205 netif_dbg(efx, hw, efx->net_dev, "unmapping special buffers %d-%d\n",
206 buffer->index, buffer->index + buffer->entries - 1);
207
208 EFX_POPULATE_OWORD_4(buf_tbl_upd,
209 FRF_AZ_BUF_UPD_CMD, 0,
210 FRF_AZ_BUF_CLR_CMD, 1,
211 FRF_AZ_BUF_CLR_END_ID, end,
212 FRF_AZ_BUF_CLR_START_ID, start);
213 efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD);
214}
215
216/*
217 * Allocate a new special buffer
218 *
219 * This allocates memory for a new buffer, clears it and allocates a
220 * new buffer ID range. It does not write into the buffer table.
221 *
222 * This call will allocate 4KB buffers, since 8KB buffers can't be
223 * used for event queues and descriptor rings.
224 */
225static int efx_alloc_special_buffer(struct efx_nic *efx,
226 struct efx_special_buffer *buffer,
227 unsigned int len)
228{
229 len = ALIGN(len, EFX_BUF_SIZE);
230
231 if (efx_nic_alloc_buffer(efx, &buffer->buf, len, GFP_KERNEL))
232 return -ENOMEM;
233 buffer->entries = len / EFX_BUF_SIZE;
234 BUG_ON(buffer->buf.dma_addr & (EFX_BUF_SIZE - 1));
235
236 /* Select new buffer ID */
237 buffer->index = efx->next_buffer_table;
238 efx->next_buffer_table += buffer->entries;
239#ifdef CONFIG_SFC_SRIOV
240 BUG_ON(efx_sriov_enabled(efx) &&
241 efx->vf_buftbl_base < efx->next_buffer_table);
242#endif
243
244 netif_dbg(efx, probe, efx->net_dev,
245 "allocating special buffers %d-%d at %llx+%x "
246 "(virt %p phys %llx)\n", buffer->index,
247 buffer->index + buffer->entries - 1,
248 (u64)buffer->buf.dma_addr, len,
249 buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr));
250
251 return 0;
252}
253
254static void
255efx_free_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
256{
257 if (!buffer->buf.addr)
258 return;
259
260 netif_dbg(efx, hw, efx->net_dev,
261 "deallocating special buffers %d-%d at %llx+%x "
262 "(virt %p phys %llx)\n", buffer->index,
263 buffer->index + buffer->entries - 1,
264 (u64)buffer->buf.dma_addr, buffer->buf.len,
265 buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr));
266
267 efx_nic_free_buffer(efx, &buffer->buf);
268 buffer->entries = 0;
269}
270
271/**************************************************************************
272 *
273 * TX path
274 *
275 **************************************************************************/
276
277/* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
278static inline void efx_farch_notify_tx_desc(struct efx_tx_queue *tx_queue)
279{
280 unsigned write_ptr;
281 efx_dword_t reg;
282
283 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
284 EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr);
285 efx_writed_page(tx_queue->efx, &reg,
286 FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue);
287}
288
289/* Write pointer and first descriptor for TX descriptor ring */
290static inline void efx_farch_push_tx_desc(struct efx_tx_queue *tx_queue,
291 const efx_qword_t *txd)
292{
293 unsigned write_ptr;
294 efx_oword_t reg;
295
296 BUILD_BUG_ON(FRF_AZ_TX_DESC_LBN != 0);
297 BUILD_BUG_ON(FR_AA_TX_DESC_UPD_KER != FR_BZ_TX_DESC_UPD_P0);
298
299 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
300 EFX_POPULATE_OWORD_2(reg, FRF_AZ_TX_DESC_PUSH_CMD, true,
301 FRF_AZ_TX_DESC_WPTR, write_ptr);
302 reg.qword[0] = *txd;
303 efx_writeo_page(tx_queue->efx, &reg,
304 FR_BZ_TX_DESC_UPD_P0, tx_queue->queue);
305}
306
307
308/* For each entry inserted into the software descriptor ring, create a
309 * descriptor in the hardware TX descriptor ring (in host memory), and
310 * write a doorbell.
311 */
312void efx_farch_tx_write(struct efx_tx_queue *tx_queue)
313{
314
315 struct efx_tx_buffer *buffer;
316 efx_qword_t *txd;
317 unsigned write_ptr;
318 unsigned old_write_count = tx_queue->write_count;
319
320 BUG_ON(tx_queue->write_count == tx_queue->insert_count);
321
322 do {
323 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
324 buffer = &tx_queue->buffer[write_ptr];
325 txd = efx_tx_desc(tx_queue, write_ptr);
326 ++tx_queue->write_count;
327
328 /* Create TX descriptor ring entry */
329 BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
330 EFX_POPULATE_QWORD_4(*txd,
331 FSF_AZ_TX_KER_CONT,
332 buffer->flags & EFX_TX_BUF_CONT,
333 FSF_AZ_TX_KER_BYTE_COUNT, buffer->len,
334 FSF_AZ_TX_KER_BUF_REGION, 0,
335 FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr);
336 } while (tx_queue->write_count != tx_queue->insert_count);
337
338 wmb(); /* Ensure descriptors are written before they are fetched */
339
340 if (efx_nic_may_push_tx_desc(tx_queue, old_write_count)) {
341 txd = efx_tx_desc(tx_queue,
342 old_write_count & tx_queue->ptr_mask);
343 efx_farch_push_tx_desc(tx_queue, txd);
344 ++tx_queue->pushes;
345 } else {
346 efx_farch_notify_tx_desc(tx_queue);
347 }
348}
349
350/* Allocate hardware resources for a TX queue */
351int efx_farch_tx_probe(struct efx_tx_queue *tx_queue)
352{
353 struct efx_nic *efx = tx_queue->efx;
354 unsigned entries;
355
356 entries = tx_queue->ptr_mask + 1;
357 return efx_alloc_special_buffer(efx, &tx_queue->txd,
358 entries * sizeof(efx_qword_t));
359}
360
361void efx_farch_tx_init(struct efx_tx_queue *tx_queue)
362{
363 struct efx_nic *efx = tx_queue->efx;
364 efx_oword_t reg;
365
366 /* Pin TX descriptor ring */
367 efx_init_special_buffer(efx, &tx_queue->txd);
368
369 /* Push TX descriptor ring to card */
370 EFX_POPULATE_OWORD_10(reg,
371 FRF_AZ_TX_DESCQ_EN, 1,
372 FRF_AZ_TX_ISCSI_DDIG_EN, 0,
373 FRF_AZ_TX_ISCSI_HDIG_EN, 0,
374 FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
375 FRF_AZ_TX_DESCQ_EVQ_ID,
376 tx_queue->channel->channel,
377 FRF_AZ_TX_DESCQ_OWNER_ID, 0,
378 FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue,
379 FRF_AZ_TX_DESCQ_SIZE,
380 __ffs(tx_queue->txd.entries),
381 FRF_AZ_TX_DESCQ_TYPE, 0,
382 FRF_BZ_TX_NON_IP_DROP_DIS, 1);
383
384 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
385 int csum = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
386 EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_IP_CHKSM_DIS, !csum);
387 EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_TCP_CHKSM_DIS,
388 !csum);
389 }
390
391 efx_writeo_table(efx, &reg, efx->type->txd_ptr_tbl_base,
392 tx_queue->queue);
393
394 if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) {
395 /* Only 128 bits in this register */
396 BUILD_BUG_ON(EFX_MAX_TX_QUEUES > 128);
397
398 efx_reado(efx, &reg, FR_AA_TX_CHKSM_CFG);
399 if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD)
400 __clear_bit_le(tx_queue->queue, &reg);
401 else
402 __set_bit_le(tx_queue->queue, &reg);
403 efx_writeo(efx, &reg, FR_AA_TX_CHKSM_CFG);
404 }
405
406 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
407 EFX_POPULATE_OWORD_1(reg,
408 FRF_BZ_TX_PACE,
409 (tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
410 FFE_BZ_TX_PACE_OFF :
411 FFE_BZ_TX_PACE_RESERVED);
412 efx_writeo_table(efx, &reg, FR_BZ_TX_PACE_TBL,
413 tx_queue->queue);
414 }
415}
416
417static void efx_farch_flush_tx_queue(struct efx_tx_queue *tx_queue)
418{
419 struct efx_nic *efx = tx_queue->efx;
420 efx_oword_t tx_flush_descq;
421
422 WARN_ON(atomic_read(&tx_queue->flush_outstanding));
423 atomic_set(&tx_queue->flush_outstanding, 1);
424
425 EFX_POPULATE_OWORD_2(tx_flush_descq,
426 FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
427 FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue);
428 efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ);
429}
430
431void efx_farch_tx_fini(struct efx_tx_queue *tx_queue)
432{
433 struct efx_nic *efx = tx_queue->efx;
434 efx_oword_t tx_desc_ptr;
435
436 /* Remove TX descriptor ring from card */
437 EFX_ZERO_OWORD(tx_desc_ptr);
438 efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
439 tx_queue->queue);
440
441 /* Unpin TX descriptor ring */
442 efx_fini_special_buffer(efx, &tx_queue->txd);
443}
444
445/* Free buffers backing TX queue */
446void efx_farch_tx_remove(struct efx_tx_queue *tx_queue)
447{
448 efx_free_special_buffer(tx_queue->efx, &tx_queue->txd);
449}
450
451/**************************************************************************
452 *
453 * RX path
454 *
455 **************************************************************************/
456
457/* This creates an entry in the RX descriptor queue */
458static inline void
459efx_farch_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned index)
460{
461 struct efx_rx_buffer *rx_buf;
462 efx_qword_t *rxd;
463
464 rxd = efx_rx_desc(rx_queue, index);
465 rx_buf = efx_rx_buffer(rx_queue, index);
466 EFX_POPULATE_QWORD_3(*rxd,
467 FSF_AZ_RX_KER_BUF_SIZE,
468 rx_buf->len -
469 rx_queue->efx->type->rx_buffer_padding,
470 FSF_AZ_RX_KER_BUF_REGION, 0,
471 FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
472}
473
474/* This writes to the RX_DESC_WPTR register for the specified receive
475 * descriptor ring.
476 */
477void efx_farch_rx_write(struct efx_rx_queue *rx_queue)
478{
479 struct efx_nic *efx = rx_queue->efx;
480 efx_dword_t reg;
481 unsigned write_ptr;
482
483 while (rx_queue->notified_count != rx_queue->added_count) {
484 efx_farch_build_rx_desc(
485 rx_queue,
486 rx_queue->notified_count & rx_queue->ptr_mask);
487 ++rx_queue->notified_count;
488 }
489
490 wmb();
491 write_ptr = rx_queue->added_count & rx_queue->ptr_mask;
492 EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr);
493 efx_writed_page(efx, &reg, FR_AZ_RX_DESC_UPD_DWORD_P0,
494 efx_rx_queue_index(rx_queue));
495}
496
497int efx_farch_rx_probe(struct efx_rx_queue *rx_queue)
498{
499 struct efx_nic *efx = rx_queue->efx;
500 unsigned entries;
501
502 entries = rx_queue->ptr_mask + 1;
503 return efx_alloc_special_buffer(efx, &rx_queue->rxd,
504 entries * sizeof(efx_qword_t));
505}
506
507void efx_farch_rx_init(struct efx_rx_queue *rx_queue)
508{
509 efx_oword_t rx_desc_ptr;
510 struct efx_nic *efx = rx_queue->efx;
511 bool is_b0 = efx_nic_rev(efx) >= EFX_REV_FALCON_B0;
512 bool iscsi_digest_en = is_b0;
513 bool jumbo_en;
514
515 /* For kernel-mode queues in Falcon A1, the JUMBO flag enables
516 * DMA to continue after a PCIe page boundary (and scattering
517 * is not possible). In Falcon B0 and Siena, it enables
518 * scatter.
519 */
520 jumbo_en = !is_b0 || efx->rx_scatter;
521
522 netif_dbg(efx, hw, efx->net_dev,
523 "RX queue %d ring in special buffers %d-%d\n",
524 efx_rx_queue_index(rx_queue), rx_queue->rxd.index,
525 rx_queue->rxd.index + rx_queue->rxd.entries - 1);
526
527 rx_queue->scatter_n = 0;
528
529 /* Pin RX descriptor ring */
530 efx_init_special_buffer(efx, &rx_queue->rxd);
531
532 /* Push RX descriptor ring to card */
533 EFX_POPULATE_OWORD_10(rx_desc_ptr,
534 FRF_AZ_RX_ISCSI_DDIG_EN, iscsi_digest_en,
535 FRF_AZ_RX_ISCSI_HDIG_EN, iscsi_digest_en,
536 FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
537 FRF_AZ_RX_DESCQ_EVQ_ID,
538 efx_rx_queue_channel(rx_queue)->channel,
539 FRF_AZ_RX_DESCQ_OWNER_ID, 0,
540 FRF_AZ_RX_DESCQ_LABEL,
541 efx_rx_queue_index(rx_queue),
542 FRF_AZ_RX_DESCQ_SIZE,
543 __ffs(rx_queue->rxd.entries),
544 FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ ,
545 FRF_AZ_RX_DESCQ_JUMBO, jumbo_en,
546 FRF_AZ_RX_DESCQ_EN, 1);
547 efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
548 efx_rx_queue_index(rx_queue));
549}
550
551static void efx_farch_flush_rx_queue(struct efx_rx_queue *rx_queue)
552{
553 struct efx_nic *efx = rx_queue->efx;
554 efx_oword_t rx_flush_descq;
555
556 EFX_POPULATE_OWORD_2(rx_flush_descq,
557 FRF_AZ_RX_FLUSH_DESCQ_CMD, 1,
558 FRF_AZ_RX_FLUSH_DESCQ,
559 efx_rx_queue_index(rx_queue));
560 efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ);
561}
562
563void efx_farch_rx_fini(struct efx_rx_queue *rx_queue)
564{
565 efx_oword_t rx_desc_ptr;
566 struct efx_nic *efx = rx_queue->efx;
567
568 /* Remove RX descriptor ring from card */
569 EFX_ZERO_OWORD(rx_desc_ptr);
570 efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
571 efx_rx_queue_index(rx_queue));
572
573 /* Unpin RX descriptor ring */
574 efx_fini_special_buffer(efx, &rx_queue->rxd);
575}
576
577/* Free buffers backing RX queue */
578void efx_farch_rx_remove(struct efx_rx_queue *rx_queue)
579{
580 efx_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
581}
582
583/**************************************************************************
584 *
585 * Flush handling
586 *
587 **************************************************************************/
588
589/* efx_farch_flush_queues() must be woken up when all flushes are completed,
590 * or more RX flushes can be kicked off.
591 */
592static bool efx_farch_flush_wake(struct efx_nic *efx)
593{
594 /* Ensure that all updates are visible to efx_farch_flush_queues() */
595 smp_mb();
596
Alexandre Rames3881d8a2013-06-10 11:03:21 +0100597 return (atomic_read(&efx->active_queues) == 0 ||
Ben Hutchings86094f72013-08-21 19:51:04 +0100598 (atomic_read(&efx->rxq_flush_outstanding) < EFX_RX_FLUSH_COUNT
599 && atomic_read(&efx->rxq_flush_pending) > 0));
600}
601
602static bool efx_check_tx_flush_complete(struct efx_nic *efx)
603{
604 bool i = true;
605 efx_oword_t txd_ptr_tbl;
606 struct efx_channel *channel;
607 struct efx_tx_queue *tx_queue;
608
609 efx_for_each_channel(channel, efx) {
610 efx_for_each_channel_tx_queue(tx_queue, channel) {
611 efx_reado_table(efx, &txd_ptr_tbl,
612 FR_BZ_TX_DESC_PTR_TBL, tx_queue->queue);
613 if (EFX_OWORD_FIELD(txd_ptr_tbl,
614 FRF_AZ_TX_DESCQ_FLUSH) ||
615 EFX_OWORD_FIELD(txd_ptr_tbl,
616 FRF_AZ_TX_DESCQ_EN)) {
617 netif_dbg(efx, hw, efx->net_dev,
618 "flush did not complete on TXQ %d\n",
619 tx_queue->queue);
620 i = false;
621 } else if (atomic_cmpxchg(&tx_queue->flush_outstanding,
622 1, 0)) {
623 /* The flush is complete, but we didn't
624 * receive a flush completion event
625 */
626 netif_dbg(efx, hw, efx->net_dev,
627 "flush complete on TXQ %d, so drain "
628 "the queue\n", tx_queue->queue);
Alexandre Rames3881d8a2013-06-10 11:03:21 +0100629 /* Don't need to increment active_queues as it
Ben Hutchings86094f72013-08-21 19:51:04 +0100630 * has already been incremented for the queues
631 * which did not drain
632 */
633 efx_farch_magic_event(channel,
634 EFX_CHANNEL_MAGIC_TX_DRAIN(
635 tx_queue));
636 }
637 }
638 }
639
640 return i;
641}
642
643/* Flush all the transmit queues, and continue flushing receive queues until
644 * they're all flushed. Wait for the DRAIN events to be recieved so that there
645 * are no more RX and TX events left on any channel. */
646static int efx_farch_do_flush(struct efx_nic *efx)
647{
648 unsigned timeout = msecs_to_jiffies(5000); /* 5s for all flushes and drains */
649 struct efx_channel *channel;
650 struct efx_rx_queue *rx_queue;
651 struct efx_tx_queue *tx_queue;
652 int rc = 0;
653
654 efx_for_each_channel(channel, efx) {
655 efx_for_each_channel_tx_queue(tx_queue, channel) {
Ben Hutchings86094f72013-08-21 19:51:04 +0100656 efx_farch_flush_tx_queue(tx_queue);
657 }
658 efx_for_each_channel_rx_queue(rx_queue, channel) {
Ben Hutchings86094f72013-08-21 19:51:04 +0100659 rx_queue->flush_pending = true;
660 atomic_inc(&efx->rxq_flush_pending);
661 }
662 }
663
Alexandre Rames3881d8a2013-06-10 11:03:21 +0100664 while (timeout && atomic_read(&efx->active_queues) > 0) {
Ben Hutchings86094f72013-08-21 19:51:04 +0100665 /* If SRIOV is enabled, then offload receive queue flushing to
666 * the firmware (though we will still have to poll for
667 * completion). If that fails, fall back to the old scheme.
668 */
669 if (efx_sriov_enabled(efx)) {
670 rc = efx_mcdi_flush_rxqs(efx);
671 if (!rc)
672 goto wait;
673 }
674
675 /* The hardware supports four concurrent rx flushes, each of
676 * which may need to be retried if there is an outstanding
677 * descriptor fetch
678 */
679 efx_for_each_channel(channel, efx) {
680 efx_for_each_channel_rx_queue(rx_queue, channel) {
681 if (atomic_read(&efx->rxq_flush_outstanding) >=
682 EFX_RX_FLUSH_COUNT)
683 break;
684
685 if (rx_queue->flush_pending) {
686 rx_queue->flush_pending = false;
687 atomic_dec(&efx->rxq_flush_pending);
688 atomic_inc(&efx->rxq_flush_outstanding);
689 efx_farch_flush_rx_queue(rx_queue);
690 }
691 }
692 }
693
694 wait:
695 timeout = wait_event_timeout(efx->flush_wq,
696 efx_farch_flush_wake(efx),
697 timeout);
698 }
699
Alexandre Rames3881d8a2013-06-10 11:03:21 +0100700 if (atomic_read(&efx->active_queues) &&
Ben Hutchings86094f72013-08-21 19:51:04 +0100701 !efx_check_tx_flush_complete(efx)) {
702 netif_err(efx, hw, efx->net_dev, "failed to flush %d queues "
Alexandre Rames3881d8a2013-06-10 11:03:21 +0100703 "(rx %d+%d)\n", atomic_read(&efx->active_queues),
Ben Hutchings86094f72013-08-21 19:51:04 +0100704 atomic_read(&efx->rxq_flush_outstanding),
705 atomic_read(&efx->rxq_flush_pending));
706 rc = -ETIMEDOUT;
707
Alexandre Rames3881d8a2013-06-10 11:03:21 +0100708 atomic_set(&efx->active_queues, 0);
Ben Hutchings86094f72013-08-21 19:51:04 +0100709 atomic_set(&efx->rxq_flush_pending, 0);
710 atomic_set(&efx->rxq_flush_outstanding, 0);
711 }
712
713 return rc;
714}
715
716int efx_farch_fini_dmaq(struct efx_nic *efx)
717{
718 struct efx_channel *channel;
719 struct efx_tx_queue *tx_queue;
720 struct efx_rx_queue *rx_queue;
721 int rc = 0;
722
723 /* Do not attempt to write to the NIC during EEH recovery */
724 if (efx->state != STATE_RECOVERY) {
725 /* Only perform flush if DMA is enabled */
726 if (efx->pci_dev->is_busmaster) {
727 efx->type->prepare_flush(efx);
728 rc = efx_farch_do_flush(efx);
729 efx->type->finish_flush(efx);
730 }
731
732 efx_for_each_channel(channel, efx) {
733 efx_for_each_channel_rx_queue(rx_queue, channel)
734 efx_farch_rx_fini(rx_queue);
735 efx_for_each_channel_tx_queue(tx_queue, channel)
736 efx_farch_tx_fini(tx_queue);
737 }
738 }
739
740 return rc;
741}
742
743/**************************************************************************
744 *
745 * Event queue processing
746 * Event queues are processed by per-channel tasklets.
747 *
748 **************************************************************************/
749
750/* Update a channel's event queue's read pointer (RPTR) register
751 *
752 * This writes the EVQ_RPTR_REG register for the specified channel's
753 * event queue.
754 */
755void efx_farch_ev_read_ack(struct efx_channel *channel)
756{
757 efx_dword_t reg;
758 struct efx_nic *efx = channel->efx;
759
760 EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR,
761 channel->eventq_read_ptr & channel->eventq_mask);
762
763 /* For Falcon A1, EVQ_RPTR_KER is documented as having a step size
764 * of 4 bytes, but it is really 16 bytes just like later revisions.
765 */
766 efx_writed(efx, &reg,
767 efx->type->evq_rptr_tbl_base +
768 FR_BZ_EVQ_RPTR_STEP * channel->channel);
769}
770
771/* Use HW to insert a SW defined event */
772void efx_farch_generate_event(struct efx_nic *efx, unsigned int evq,
773 efx_qword_t *event)
774{
775 efx_oword_t drv_ev_reg;
776
777 BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 ||
778 FRF_AZ_DRV_EV_DATA_WIDTH != 64);
779 drv_ev_reg.u32[0] = event->u32[0];
780 drv_ev_reg.u32[1] = event->u32[1];
781 drv_ev_reg.u32[2] = 0;
782 drv_ev_reg.u32[3] = 0;
783 EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, evq);
784 efx_writeo(efx, &drv_ev_reg, FR_AZ_DRV_EV);
785}
786
787static void efx_farch_magic_event(struct efx_channel *channel, u32 magic)
788{
789 efx_qword_t event;
790
791 EFX_POPULATE_QWORD_2(event, FSF_AZ_EV_CODE,
792 FSE_AZ_EV_CODE_DRV_GEN_EV,
793 FSF_AZ_DRV_GEN_EV_MAGIC, magic);
794 efx_farch_generate_event(channel->efx, channel->channel, &event);
795}
796
797/* Handle a transmit completion event
798 *
799 * The NIC batches TX completion events; the message we receive is of
800 * the form "complete all TX events up to this index".
801 */
802static int
803efx_farch_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
804{
805 unsigned int tx_ev_desc_ptr;
806 unsigned int tx_ev_q_label;
807 struct efx_tx_queue *tx_queue;
808 struct efx_nic *efx = channel->efx;
809 int tx_packets = 0;
810
811 if (unlikely(ACCESS_ONCE(efx->reset_pending)))
812 return 0;
813
814 if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) {
815 /* Transmit completion */
816 tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR);
817 tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
818 tx_queue = efx_channel_get_tx_queue(
819 channel, tx_ev_q_label % EFX_TXQ_TYPES);
820 tx_packets = ((tx_ev_desc_ptr - tx_queue->read_count) &
821 tx_queue->ptr_mask);
822 efx_xmit_done(tx_queue, tx_ev_desc_ptr);
823 } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) {
824 /* Rewrite the FIFO write pointer */
825 tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
826 tx_queue = efx_channel_get_tx_queue(
827 channel, tx_ev_q_label % EFX_TXQ_TYPES);
828
829 netif_tx_lock(efx->net_dev);
830 efx_farch_notify_tx_desc(tx_queue);
831 netif_tx_unlock(efx->net_dev);
Ben Hutchingsab3b8252012-10-05 19:31:02 +0100832 } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR)) {
Alexandre Rames3de82b92013-06-13 11:36:15 +0100833 efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
Ben Hutchings86094f72013-08-21 19:51:04 +0100834 } else {
835 netif_err(efx, tx_err, efx->net_dev,
836 "channel %d unexpected TX event "
837 EFX_QWORD_FMT"\n", channel->channel,
838 EFX_QWORD_VAL(*event));
839 }
840
841 return tx_packets;
842}
843
844/* Detect errors included in the rx_evt_pkt_ok bit. */
845static u16 efx_farch_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
846 const efx_qword_t *event)
847{
848 struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
849 struct efx_nic *efx = rx_queue->efx;
850 bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
851 bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
852 bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc;
853 bool rx_ev_other_err, rx_ev_pause_frm;
854 bool rx_ev_hdr_type, rx_ev_mcast_pkt;
855 unsigned rx_ev_pkt_type;
856
857 rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
858 rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
859 rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC);
860 rx_ev_pkt_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_TYPE);
861 rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
862 FSF_AZ_RX_EV_BUF_OWNER_ID_ERR);
863 rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
864 FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR);
865 rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
866 FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR);
867 rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR);
868 rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC);
869 rx_ev_drib_nib = ((efx_nic_rev(efx) >= EFX_REV_FALCON_B0) ?
870 0 : EFX_QWORD_FIELD(*event, FSF_AA_RX_EV_DRIB_NIB));
871 rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR);
872
873 /* Every error apart from tobe_disc and pause_frm */
874 rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err |
875 rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
876 rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
877
878 /* Count errors that are not in MAC stats. Ignore expected
879 * checksum errors during self-test. */
880 if (rx_ev_frm_trunc)
881 ++channel->n_rx_frm_trunc;
882 else if (rx_ev_tobe_disc)
883 ++channel->n_rx_tobe_disc;
884 else if (!efx->loopback_selftest) {
885 if (rx_ev_ip_hdr_chksum_err)
886 ++channel->n_rx_ip_hdr_chksum_err;
887 else if (rx_ev_tcp_udp_chksum_err)
888 ++channel->n_rx_tcp_udp_chksum_err;
889 }
890
891 /* TOBE_DISC is expected on unicast mismatches; don't print out an
892 * error message. FRM_TRUNC indicates RXDP dropped the packet due
893 * to a FIFO overflow.
894 */
895#ifdef DEBUG
896 if (rx_ev_other_err && net_ratelimit()) {
897 netif_dbg(efx, rx_err, efx->net_dev,
898 " RX queue %d unexpected RX event "
899 EFX_QWORD_FMT "%s%s%s%s%s%s%s%s\n",
900 efx_rx_queue_index(rx_queue), EFX_QWORD_VAL(*event),
901 rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
902 rx_ev_ip_hdr_chksum_err ?
903 " [IP_HDR_CHKSUM_ERR]" : "",
904 rx_ev_tcp_udp_chksum_err ?
905 " [TCP_UDP_CHKSUM_ERR]" : "",
906 rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
907 rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
908 rx_ev_drib_nib ? " [DRIB_NIB]" : "",
909 rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
910 rx_ev_pause_frm ? " [PAUSE]" : "");
911 }
912#endif
913
914 /* The frame must be discarded if any of these are true. */
915 return (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib |
916 rx_ev_tobe_disc | rx_ev_pause_frm) ?
917 EFX_RX_PKT_DISCARD : 0;
918}
919
920/* Handle receive events that are not in-order. Return true if this
921 * can be handled as a partial packet discard, false if it's more
922 * serious.
923 */
924static bool
925efx_farch_handle_rx_bad_index(struct efx_rx_queue *rx_queue, unsigned index)
926{
927 struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
928 struct efx_nic *efx = rx_queue->efx;
929 unsigned expected, dropped;
930
931 if (rx_queue->scatter_n &&
932 index == ((rx_queue->removed_count + rx_queue->scatter_n - 1) &
933 rx_queue->ptr_mask)) {
934 ++channel->n_rx_nodesc_trunc;
935 return true;
936 }
937
938 expected = rx_queue->removed_count & rx_queue->ptr_mask;
939 dropped = (index - expected) & rx_queue->ptr_mask;
940 netif_info(efx, rx_err, efx->net_dev,
941 "dropped %d events (index=%d expected=%d)\n",
942 dropped, index, expected);
943
944 efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ?
945 RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
946 return false;
947}
948
949/* Handle a packet received event
950 *
951 * The NIC gives a "discard" flag if it's a unicast packet with the
952 * wrong destination address
953 * Also "is multicast" and "matches multicast filter" flags can be used to
954 * discard non-matching multicast packets.
955 */
956static void
957efx_farch_handle_rx_event(struct efx_channel *channel, const efx_qword_t *event)
958{
959 unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
960 unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
961 unsigned expected_ptr;
962 bool rx_ev_pkt_ok, rx_ev_sop, rx_ev_cont;
963 u16 flags;
964 struct efx_rx_queue *rx_queue;
965 struct efx_nic *efx = channel->efx;
966
967 if (unlikely(ACCESS_ONCE(efx->reset_pending)))
968 return;
969
970 rx_ev_cont = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT);
971 rx_ev_sop = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP);
972 WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) !=
973 channel->channel);
974
975 rx_queue = efx_channel_get_rx_queue(channel);
976
977 rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR);
978 expected_ptr = ((rx_queue->removed_count + rx_queue->scatter_n) &
979 rx_queue->ptr_mask);
980
981 /* Check for partial drops and other errors */
982 if (unlikely(rx_ev_desc_ptr != expected_ptr) ||
983 unlikely(rx_ev_sop != (rx_queue->scatter_n == 0))) {
984 if (rx_ev_desc_ptr != expected_ptr &&
985 !efx_farch_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr))
986 return;
987
988 /* Discard all pending fragments */
989 if (rx_queue->scatter_n) {
990 efx_rx_packet(
991 rx_queue,
992 rx_queue->removed_count & rx_queue->ptr_mask,
993 rx_queue->scatter_n, 0, EFX_RX_PKT_DISCARD);
994 rx_queue->removed_count += rx_queue->scatter_n;
995 rx_queue->scatter_n = 0;
996 }
997
998 /* Return if there is no new fragment */
999 if (rx_ev_desc_ptr != expected_ptr)
1000 return;
1001
1002 /* Discard new fragment if not SOP */
1003 if (!rx_ev_sop) {
1004 efx_rx_packet(
1005 rx_queue,
1006 rx_queue->removed_count & rx_queue->ptr_mask,
1007 1, 0, EFX_RX_PKT_DISCARD);
1008 ++rx_queue->removed_count;
1009 return;
1010 }
1011 }
1012
1013 ++rx_queue->scatter_n;
1014 if (rx_ev_cont)
1015 return;
1016
1017 rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT);
1018 rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK);
1019 rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
1020
1021 if (likely(rx_ev_pkt_ok)) {
1022 /* If packet is marked as OK then we can rely on the
1023 * hardware checksum and classification.
1024 */
1025 flags = 0;
1026 switch (rx_ev_hdr_type) {
1027 case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP:
1028 flags |= EFX_RX_PKT_TCP;
1029 /* fall through */
1030 case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP:
1031 flags |= EFX_RX_PKT_CSUMMED;
1032 /* fall through */
1033 case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_OTHER:
1034 case FSE_AZ_RX_EV_HDR_TYPE_OTHER:
1035 break;
1036 }
1037 } else {
1038 flags = efx_farch_handle_rx_not_ok(rx_queue, event);
1039 }
1040
1041 /* Detect multicast packets that didn't match the filter */
1042 rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
1043 if (rx_ev_mcast_pkt) {
1044 unsigned int rx_ev_mcast_hash_match =
1045 EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH);
1046
1047 if (unlikely(!rx_ev_mcast_hash_match)) {
1048 ++channel->n_rx_mcast_mismatch;
1049 flags |= EFX_RX_PKT_DISCARD;
1050 }
1051 }
1052
1053 channel->irq_mod_score += 2;
1054
1055 /* Handle received packet */
1056 efx_rx_packet(rx_queue,
1057 rx_queue->removed_count & rx_queue->ptr_mask,
1058 rx_queue->scatter_n, rx_ev_byte_cnt, flags);
1059 rx_queue->removed_count += rx_queue->scatter_n;
1060 rx_queue->scatter_n = 0;
1061}
1062
1063/* If this flush done event corresponds to a &struct efx_tx_queue, then
1064 * send an %EFX_CHANNEL_MAGIC_TX_DRAIN event to drain the event queue
1065 * of all transmit completions.
1066 */
1067static void
1068efx_farch_handle_tx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1069{
1070 struct efx_tx_queue *tx_queue;
1071 int qid;
1072
1073 qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1074 if (qid < EFX_TXQ_TYPES * efx->n_tx_channels) {
1075 tx_queue = efx_get_tx_queue(efx, qid / EFX_TXQ_TYPES,
1076 qid % EFX_TXQ_TYPES);
1077 if (atomic_cmpxchg(&tx_queue->flush_outstanding, 1, 0)) {
1078 efx_farch_magic_event(tx_queue->channel,
1079 EFX_CHANNEL_MAGIC_TX_DRAIN(tx_queue));
1080 }
1081 }
1082}
1083
1084/* If this flush done event corresponds to a &struct efx_rx_queue: If the flush
1085 * was succesful then send an %EFX_CHANNEL_MAGIC_RX_DRAIN, otherwise add
1086 * the RX queue back to the mask of RX queues in need of flushing.
1087 */
1088static void
1089efx_farch_handle_rx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1090{
1091 struct efx_channel *channel;
1092 struct efx_rx_queue *rx_queue;
1093 int qid;
1094 bool failed;
1095
1096 qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
1097 failed = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
1098 if (qid >= efx->n_channels)
1099 return;
1100 channel = efx_get_channel(efx, qid);
1101 if (!efx_channel_has_rx_queue(channel))
1102 return;
1103 rx_queue = efx_channel_get_rx_queue(channel);
1104
1105 if (failed) {
1106 netif_info(efx, hw, efx->net_dev,
1107 "RXQ %d flush retry\n", qid);
1108 rx_queue->flush_pending = true;
1109 atomic_inc(&efx->rxq_flush_pending);
1110 } else {
1111 efx_farch_magic_event(efx_rx_queue_channel(rx_queue),
1112 EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue));
1113 }
1114 atomic_dec(&efx->rxq_flush_outstanding);
1115 if (efx_farch_flush_wake(efx))
1116 wake_up(&efx->flush_wq);
1117}
1118
1119static void
1120efx_farch_handle_drain_event(struct efx_channel *channel)
1121{
1122 struct efx_nic *efx = channel->efx;
1123
Alexandre Rames3881d8a2013-06-10 11:03:21 +01001124 WARN_ON(atomic_read(&efx->active_queues) == 0);
1125 atomic_dec(&efx->active_queues);
Ben Hutchings86094f72013-08-21 19:51:04 +01001126 if (efx_farch_flush_wake(efx))
1127 wake_up(&efx->flush_wq);
1128}
1129
1130static void efx_farch_handle_generated_event(struct efx_channel *channel,
1131 efx_qword_t *event)
1132{
1133 struct efx_nic *efx = channel->efx;
1134 struct efx_rx_queue *rx_queue =
1135 efx_channel_has_rx_queue(channel) ?
1136 efx_channel_get_rx_queue(channel) : NULL;
1137 unsigned magic, code;
1138
1139 magic = EFX_QWORD_FIELD(*event, FSF_AZ_DRV_GEN_EV_MAGIC);
1140 code = _EFX_CHANNEL_MAGIC_CODE(magic);
1141
1142 if (magic == EFX_CHANNEL_MAGIC_TEST(channel)) {
1143 channel->event_test_cpu = raw_smp_processor_id();
1144 } else if (rx_queue && magic == EFX_CHANNEL_MAGIC_FILL(rx_queue)) {
1145 /* The queue must be empty, so we won't receive any rx
1146 * events, so efx_process_channel() won't refill the
1147 * queue. Refill it here */
1148 efx_fast_push_rx_descriptors(rx_queue);
1149 } else if (rx_queue && magic == EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue)) {
1150 efx_farch_handle_drain_event(channel);
1151 } else if (code == _EFX_CHANNEL_MAGIC_TX_DRAIN) {
1152 efx_farch_handle_drain_event(channel);
1153 } else {
1154 netif_dbg(efx, hw, efx->net_dev, "channel %d received "
1155 "generated event "EFX_QWORD_FMT"\n",
1156 channel->channel, EFX_QWORD_VAL(*event));
1157 }
1158}
1159
1160static void
1161efx_farch_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
1162{
1163 struct efx_nic *efx = channel->efx;
1164 unsigned int ev_sub_code;
1165 unsigned int ev_sub_data;
1166
1167 ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE);
1168 ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1169
1170 switch (ev_sub_code) {
1171 case FSE_AZ_TX_DESCQ_FLS_DONE_EV:
1172 netif_vdbg(efx, hw, efx->net_dev, "channel %d TXQ %d flushed\n",
1173 channel->channel, ev_sub_data);
1174 efx_farch_handle_tx_flush_done(efx, event);
1175 efx_sriov_tx_flush_done(efx, event);
1176 break;
1177 case FSE_AZ_RX_DESCQ_FLS_DONE_EV:
1178 netif_vdbg(efx, hw, efx->net_dev, "channel %d RXQ %d flushed\n",
1179 channel->channel, ev_sub_data);
1180 efx_farch_handle_rx_flush_done(efx, event);
1181 efx_sriov_rx_flush_done(efx, event);
1182 break;
1183 case FSE_AZ_EVQ_INIT_DONE_EV:
1184 netif_dbg(efx, hw, efx->net_dev,
1185 "channel %d EVQ %d initialised\n",
1186 channel->channel, ev_sub_data);
1187 break;
1188 case FSE_AZ_SRM_UPD_DONE_EV:
1189 netif_vdbg(efx, hw, efx->net_dev,
1190 "channel %d SRAM update done\n", channel->channel);
1191 break;
1192 case FSE_AZ_WAKE_UP_EV:
1193 netif_vdbg(efx, hw, efx->net_dev,
1194 "channel %d RXQ %d wakeup event\n",
1195 channel->channel, ev_sub_data);
1196 break;
1197 case FSE_AZ_TIMER_EV:
1198 netif_vdbg(efx, hw, efx->net_dev,
1199 "channel %d RX queue %d timer expired\n",
1200 channel->channel, ev_sub_data);
1201 break;
1202 case FSE_AA_RX_RECOVER_EV:
1203 netif_err(efx, rx_err, efx->net_dev,
1204 "channel %d seen DRIVER RX_RESET event. "
1205 "Resetting.\n", channel->channel);
1206 atomic_inc(&efx->rx_reset);
1207 efx_schedule_reset(efx,
1208 EFX_WORKAROUND_6555(efx) ?
1209 RESET_TYPE_RX_RECOVERY :
1210 RESET_TYPE_DISABLE);
1211 break;
1212 case FSE_BZ_RX_DSC_ERROR_EV:
1213 if (ev_sub_data < EFX_VI_BASE) {
1214 netif_err(efx, rx_err, efx->net_dev,
1215 "RX DMA Q %d reports descriptor fetch error."
1216 " RX Q %d is disabled.\n", ev_sub_data,
1217 ev_sub_data);
Alexandre Rames3de82b92013-06-13 11:36:15 +01001218 efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
Ben Hutchings86094f72013-08-21 19:51:04 +01001219 } else
1220 efx_sriov_desc_fetch_err(efx, ev_sub_data);
1221 break;
1222 case FSE_BZ_TX_DSC_ERROR_EV:
1223 if (ev_sub_data < EFX_VI_BASE) {
1224 netif_err(efx, tx_err, efx->net_dev,
1225 "TX DMA Q %d reports descriptor fetch error."
1226 " TX Q %d is disabled.\n", ev_sub_data,
1227 ev_sub_data);
Alexandre Rames3de82b92013-06-13 11:36:15 +01001228 efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
Ben Hutchings86094f72013-08-21 19:51:04 +01001229 } else
1230 efx_sriov_desc_fetch_err(efx, ev_sub_data);
1231 break;
1232 default:
1233 netif_vdbg(efx, hw, efx->net_dev,
1234 "channel %d unknown driver event code %d "
1235 "data %04x\n", channel->channel, ev_sub_code,
1236 ev_sub_data);
1237 break;
1238 }
1239}
1240
1241int efx_farch_ev_process(struct efx_channel *channel, int budget)
1242{
1243 struct efx_nic *efx = channel->efx;
1244 unsigned int read_ptr;
1245 efx_qword_t event, *p_event;
1246 int ev_code;
1247 int tx_packets = 0;
1248 int spent = 0;
1249
1250 read_ptr = channel->eventq_read_ptr;
1251
1252 for (;;) {
1253 p_event = efx_event(channel, read_ptr);
1254 event = *p_event;
1255
1256 if (!efx_event_present(&event))
1257 /* End of events */
1258 break;
1259
1260 netif_vdbg(channel->efx, intr, channel->efx->net_dev,
1261 "channel %d event is "EFX_QWORD_FMT"\n",
1262 channel->channel, EFX_QWORD_VAL(event));
1263
1264 /* Clear this event by marking it all ones */
1265 EFX_SET_QWORD(*p_event);
1266
1267 ++read_ptr;
1268
1269 ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE);
1270
1271 switch (ev_code) {
1272 case FSE_AZ_EV_CODE_RX_EV:
1273 efx_farch_handle_rx_event(channel, &event);
1274 if (++spent == budget)
1275 goto out;
1276 break;
1277 case FSE_AZ_EV_CODE_TX_EV:
1278 tx_packets += efx_farch_handle_tx_event(channel,
1279 &event);
1280 if (tx_packets > efx->txq_entries) {
1281 spent = budget;
1282 goto out;
1283 }
1284 break;
1285 case FSE_AZ_EV_CODE_DRV_GEN_EV:
1286 efx_farch_handle_generated_event(channel, &event);
1287 break;
1288 case FSE_AZ_EV_CODE_DRIVER_EV:
1289 efx_farch_handle_driver_event(channel, &event);
1290 break;
1291 case FSE_CZ_EV_CODE_USER_EV:
1292 efx_sriov_event(channel, &event);
1293 break;
1294 case FSE_CZ_EV_CODE_MCDI_EV:
1295 efx_mcdi_process_event(channel, &event);
1296 break;
1297 case FSE_AZ_EV_CODE_GLOBAL_EV:
1298 if (efx->type->handle_global_event &&
1299 efx->type->handle_global_event(channel, &event))
1300 break;
1301 /* else fall through */
1302 default:
1303 netif_err(channel->efx, hw, channel->efx->net_dev,
1304 "channel %d unknown event type %d (data "
1305 EFX_QWORD_FMT ")\n", channel->channel,
1306 ev_code, EFX_QWORD_VAL(event));
1307 }
1308 }
1309
1310out:
1311 channel->eventq_read_ptr = read_ptr;
1312 return spent;
1313}
1314
1315/* Allocate buffer table entries for event queue */
1316int efx_farch_ev_probe(struct efx_channel *channel)
1317{
1318 struct efx_nic *efx = channel->efx;
1319 unsigned entries;
1320
1321 entries = channel->eventq_mask + 1;
1322 return efx_alloc_special_buffer(efx, &channel->eventq,
1323 entries * sizeof(efx_qword_t));
1324}
1325
Jon Cooper261e4d92013-04-15 18:51:54 +01001326int efx_farch_ev_init(struct efx_channel *channel)
Ben Hutchings86094f72013-08-21 19:51:04 +01001327{
1328 efx_oword_t reg;
1329 struct efx_nic *efx = channel->efx;
1330
1331 netif_dbg(efx, hw, efx->net_dev,
1332 "channel %d event queue in special buffers %d-%d\n",
1333 channel->channel, channel->eventq.index,
1334 channel->eventq.index + channel->eventq.entries - 1);
1335
1336 if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
1337 EFX_POPULATE_OWORD_3(reg,
1338 FRF_CZ_TIMER_Q_EN, 1,
1339 FRF_CZ_HOST_NOTIFY_MODE, 0,
1340 FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
1341 efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1342 }
1343
1344 /* Pin event queue buffer */
1345 efx_init_special_buffer(efx, &channel->eventq);
1346
1347 /* Fill event queue with all ones (i.e. empty events) */
1348 memset(channel->eventq.buf.addr, 0xff, channel->eventq.buf.len);
1349
1350 /* Push event queue to card */
1351 EFX_POPULATE_OWORD_3(reg,
1352 FRF_AZ_EVQ_EN, 1,
1353 FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries),
1354 FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index);
1355 efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1356 channel->channel);
1357
Jon Cooper261e4d92013-04-15 18:51:54 +01001358 return 0;
Ben Hutchings86094f72013-08-21 19:51:04 +01001359}
1360
1361void efx_farch_ev_fini(struct efx_channel *channel)
1362{
1363 efx_oword_t reg;
1364 struct efx_nic *efx = channel->efx;
1365
1366 /* Remove event queue from card */
1367 EFX_ZERO_OWORD(reg);
1368 efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1369 channel->channel);
1370 if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
1371 efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1372
1373 /* Unpin event queue */
1374 efx_fini_special_buffer(efx, &channel->eventq);
1375}
1376
1377/* Free buffers backing event queue */
1378void efx_farch_ev_remove(struct efx_channel *channel)
1379{
1380 efx_free_special_buffer(channel->efx, &channel->eventq);
1381}
1382
1383
1384void efx_farch_ev_test_generate(struct efx_channel *channel)
1385{
1386 efx_farch_magic_event(channel, EFX_CHANNEL_MAGIC_TEST(channel));
1387}
1388
1389void efx_farch_rx_defer_refill(struct efx_rx_queue *rx_queue)
1390{
1391 efx_farch_magic_event(efx_rx_queue_channel(rx_queue),
1392 EFX_CHANNEL_MAGIC_FILL(rx_queue));
1393}
1394
1395/**************************************************************************
1396 *
1397 * Hardware interrupts
1398 * The hardware interrupt handler does very little work; all the event
1399 * queue processing is carried out by per-channel tasklets.
1400 *
1401 **************************************************************************/
1402
1403/* Enable/disable/generate interrupts */
1404static inline void efx_farch_interrupts(struct efx_nic *efx,
1405 bool enabled, bool force)
1406{
1407 efx_oword_t int_en_reg_ker;
1408
1409 EFX_POPULATE_OWORD_3(int_en_reg_ker,
1410 FRF_AZ_KER_INT_LEVE_SEL, efx->irq_level,
1411 FRF_AZ_KER_INT_KER, force,
1412 FRF_AZ_DRV_INT_EN_KER, enabled);
1413 efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER);
1414}
1415
1416void efx_farch_irq_enable_master(struct efx_nic *efx)
1417{
1418 EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
1419 wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1420
1421 efx_farch_interrupts(efx, true, false);
1422}
1423
1424void efx_farch_irq_disable_master(struct efx_nic *efx)
1425{
1426 /* Disable interrupts */
1427 efx_farch_interrupts(efx, false, false);
1428}
1429
1430/* Generate a test interrupt
1431 * Interrupt must already have been enabled, otherwise nasty things
1432 * may happen.
1433 */
1434void efx_farch_irq_test_generate(struct efx_nic *efx)
1435{
1436 efx_farch_interrupts(efx, true, true);
1437}
1438
1439/* Process a fatal interrupt
1440 * Disable bus mastering ASAP and schedule a reset
1441 */
1442irqreturn_t efx_farch_fatal_interrupt(struct efx_nic *efx)
1443{
1444 struct falcon_nic_data *nic_data = efx->nic_data;
1445 efx_oword_t *int_ker = efx->irq_status.addr;
1446 efx_oword_t fatal_intr;
1447 int error, mem_perr;
1448
1449 efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER);
1450 error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR);
1451
1452 netif_err(efx, hw, efx->net_dev, "SYSTEM ERROR "EFX_OWORD_FMT" status "
1453 EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
1454 EFX_OWORD_VAL(fatal_intr),
1455 error ? "disabling bus mastering" : "no recognised error");
1456
1457 /* If this is a memory parity error dump which blocks are offending */
1458 mem_perr = (EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER) ||
1459 EFX_OWORD_FIELD(fatal_intr, FRF_AZ_SRM_PERR_INT_KER));
1460 if (mem_perr) {
1461 efx_oword_t reg;
1462 efx_reado(efx, &reg, FR_AZ_MEM_STAT);
1463 netif_err(efx, hw, efx->net_dev,
1464 "SYSTEM ERROR: memory parity error "EFX_OWORD_FMT"\n",
1465 EFX_OWORD_VAL(reg));
1466 }
1467
1468 /* Disable both devices */
1469 pci_clear_master(efx->pci_dev);
1470 if (efx_nic_is_dual_func(efx))
1471 pci_clear_master(nic_data->pci_dev2);
1472 efx_farch_irq_disable_master(efx);
1473
1474 /* Count errors and reset or disable the NIC accordingly */
1475 if (efx->int_error_count == 0 ||
1476 time_after(jiffies, efx->int_error_expire)) {
1477 efx->int_error_count = 0;
1478 efx->int_error_expire =
1479 jiffies + EFX_INT_ERROR_EXPIRE * HZ;
1480 }
1481 if (++efx->int_error_count < EFX_MAX_INT_ERRORS) {
1482 netif_err(efx, hw, efx->net_dev,
1483 "SYSTEM ERROR - reset scheduled\n");
1484 efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
1485 } else {
1486 netif_err(efx, hw, efx->net_dev,
1487 "SYSTEM ERROR - max number of errors seen."
1488 "NIC will be disabled\n");
1489 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1490 }
1491
1492 return IRQ_HANDLED;
1493}
1494
1495/* Handle a legacy interrupt
1496 * Acknowledges the interrupt and schedule event queue processing.
1497 */
1498irqreturn_t efx_farch_legacy_interrupt(int irq, void *dev_id)
1499{
1500 struct efx_nic *efx = dev_id;
1501 bool soft_enabled = ACCESS_ONCE(efx->irq_soft_enabled);
1502 efx_oword_t *int_ker = efx->irq_status.addr;
1503 irqreturn_t result = IRQ_NONE;
1504 struct efx_channel *channel;
1505 efx_dword_t reg;
1506 u32 queues;
1507 int syserr;
1508
1509 /* Read the ISR which also ACKs the interrupts */
1510 efx_readd(efx, &reg, FR_BZ_INT_ISR0);
1511 queues = EFX_EXTRACT_DWORD(reg, 0, 31);
1512
1513 /* Legacy interrupts are disabled too late by the EEH kernel
1514 * code. Disable them earlier.
1515 * If an EEH error occurred, the read will have returned all ones.
1516 */
1517 if (EFX_DWORD_IS_ALL_ONES(reg) && efx_try_recovery(efx) &&
1518 !efx->eeh_disabled_legacy_irq) {
1519 disable_irq_nosync(efx->legacy_irq);
1520 efx->eeh_disabled_legacy_irq = true;
1521 }
1522
1523 /* Handle non-event-queue sources */
1524 if (queues & (1U << efx->irq_level) && soft_enabled) {
1525 syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1526 if (unlikely(syserr))
1527 return efx_farch_fatal_interrupt(efx);
1528 efx->last_irq_cpu = raw_smp_processor_id();
1529 }
1530
1531 if (queues != 0) {
Ben Hutchingsab3b8252012-10-05 19:31:02 +01001532 efx->irq_zero_count = 0;
Ben Hutchings86094f72013-08-21 19:51:04 +01001533
1534 /* Schedule processing of any interrupting queues */
1535 if (likely(soft_enabled)) {
1536 efx_for_each_channel(channel, efx) {
1537 if (queues & 1)
1538 efx_schedule_channel_irq(channel);
1539 queues >>= 1;
1540 }
1541 }
1542 result = IRQ_HANDLED;
1543
Ben Hutchingsab3b8252012-10-05 19:31:02 +01001544 } else {
Ben Hutchings86094f72013-08-21 19:51:04 +01001545 efx_qword_t *event;
1546
Ben Hutchingsab3b8252012-10-05 19:31:02 +01001547 /* Legacy ISR read can return zero once (SF bug 15783) */
1548
Ben Hutchings86094f72013-08-21 19:51:04 +01001549 /* We can't return IRQ_HANDLED more than once on seeing ISR=0
1550 * because this might be a shared interrupt. */
1551 if (efx->irq_zero_count++ == 0)
1552 result = IRQ_HANDLED;
1553
1554 /* Ensure we schedule or rearm all event queues */
1555 if (likely(soft_enabled)) {
1556 efx_for_each_channel(channel, efx) {
1557 event = efx_event(channel,
1558 channel->eventq_read_ptr);
1559 if (efx_event_present(event))
1560 efx_schedule_channel_irq(channel);
1561 else
1562 efx_farch_ev_read_ack(channel);
1563 }
1564 }
1565 }
1566
1567 if (result == IRQ_HANDLED)
1568 netif_vdbg(efx, intr, efx->net_dev,
1569 "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
1570 irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
1571
1572 return result;
1573}
1574
1575/* Handle an MSI interrupt
1576 *
1577 * Handle an MSI hardware interrupt. This routine schedules event
1578 * queue processing. No interrupt acknowledgement cycle is necessary.
1579 * Also, we never need to check that the interrupt is for us, since
1580 * MSI interrupts cannot be shared.
1581 */
1582irqreturn_t efx_farch_msi_interrupt(int irq, void *dev_id)
1583{
1584 struct efx_msi_context *context = dev_id;
1585 struct efx_nic *efx = context->efx;
1586 efx_oword_t *int_ker = efx->irq_status.addr;
1587 int syserr;
1588
1589 netif_vdbg(efx, intr, efx->net_dev,
1590 "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1591 irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1592
1593 if (!likely(ACCESS_ONCE(efx->irq_soft_enabled)))
1594 return IRQ_HANDLED;
1595
1596 /* Handle non-event-queue sources */
1597 if (context->index == efx->irq_level) {
1598 syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1599 if (unlikely(syserr))
1600 return efx_farch_fatal_interrupt(efx);
1601 efx->last_irq_cpu = raw_smp_processor_id();
1602 }
1603
1604 /* Schedule processing of the channel */
1605 efx_schedule_channel_irq(efx->channel[context->index]);
1606
1607 return IRQ_HANDLED;
1608}
1609
1610
1611/* Setup RSS indirection table.
1612 * This maps from the hash value of the packet to RXQ
1613 */
1614void efx_farch_rx_push_indir_table(struct efx_nic *efx)
1615{
1616 size_t i = 0;
1617 efx_dword_t dword;
1618
1619 if (efx_nic_rev(efx) < EFX_REV_FALCON_B0)
1620 return;
1621
1622 BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) !=
1623 FR_BZ_RX_INDIRECTION_TBL_ROWS);
1624
1625 for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) {
1626 EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE,
1627 efx->rx_indir_table[i]);
1628 efx_writed(efx, &dword,
1629 FR_BZ_RX_INDIRECTION_TBL +
1630 FR_BZ_RX_INDIRECTION_TBL_STEP * i);
1631 }
1632}
1633
1634/* Looks at available SRAM resources and works out how many queues we
1635 * can support, and where things like descriptor caches should live.
1636 *
1637 * SRAM is split up as follows:
1638 * 0 buftbl entries for channels
1639 * efx->vf_buftbl_base buftbl entries for SR-IOV
1640 * efx->rx_dc_base RX descriptor caches
1641 * efx->tx_dc_base TX descriptor caches
1642 */
1643void efx_farch_dimension_resources(struct efx_nic *efx, unsigned sram_lim_qw)
1644{
1645 unsigned vi_count, buftbl_min;
1646
1647 /* Account for the buffer table entries backing the datapath channels
1648 * and the descriptor caches for those channels.
1649 */
1650 buftbl_min = ((efx->n_rx_channels * EFX_MAX_DMAQ_SIZE +
1651 efx->n_tx_channels * EFX_TXQ_TYPES * EFX_MAX_DMAQ_SIZE +
1652 efx->n_channels * EFX_MAX_EVQ_SIZE)
1653 * sizeof(efx_qword_t) / EFX_BUF_SIZE);
1654 vi_count = max(efx->n_channels, efx->n_tx_channels * EFX_TXQ_TYPES);
1655
1656#ifdef CONFIG_SFC_SRIOV
1657 if (efx_sriov_wanted(efx)) {
1658 unsigned vi_dc_entries, buftbl_free, entries_per_vf, vf_limit;
1659
1660 efx->vf_buftbl_base = buftbl_min;
1661
1662 vi_dc_entries = RX_DC_ENTRIES + TX_DC_ENTRIES;
1663 vi_count = max(vi_count, EFX_VI_BASE);
1664 buftbl_free = (sram_lim_qw - buftbl_min -
1665 vi_count * vi_dc_entries);
1666
1667 entries_per_vf = ((vi_dc_entries + EFX_VF_BUFTBL_PER_VI) *
1668 efx_vf_size(efx));
1669 vf_limit = min(buftbl_free / entries_per_vf,
1670 (1024U - EFX_VI_BASE) >> efx->vi_scale);
1671
1672 if (efx->vf_count > vf_limit) {
1673 netif_err(efx, probe, efx->net_dev,
1674 "Reducing VF count from from %d to %d\n",
1675 efx->vf_count, vf_limit);
1676 efx->vf_count = vf_limit;
1677 }
1678 vi_count += efx->vf_count * efx_vf_size(efx);
1679 }
1680#endif
1681
1682 efx->tx_dc_base = sram_lim_qw - vi_count * TX_DC_ENTRIES;
1683 efx->rx_dc_base = efx->tx_dc_base - vi_count * RX_DC_ENTRIES;
1684}
1685
1686u32 efx_farch_fpga_ver(struct efx_nic *efx)
1687{
1688 efx_oword_t altera_build;
1689 efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD);
1690 return EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER);
1691}
1692
1693void efx_farch_init_common(struct efx_nic *efx)
1694{
1695 efx_oword_t temp;
1696
1697 /* Set positions of descriptor caches in SRAM. */
1698 EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR, efx->tx_dc_base);
1699 efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG);
1700 EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR, efx->rx_dc_base);
1701 efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG);
1702
1703 /* Set TX descriptor cache size. */
1704 BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER));
1705 EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
1706 efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG);
1707
1708 /* Set RX descriptor cache size. Set low watermark to size-8, as
1709 * this allows most efficient prefetching.
1710 */
1711 BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER));
1712 EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
1713 efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG);
1714 EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
1715 efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM);
1716
1717 /* Program INT_KER address */
1718 EFX_POPULATE_OWORD_2(temp,
1719 FRF_AZ_NORM_INT_VEC_DIS_KER,
1720 EFX_INT_MODE_USE_MSI(efx),
1721 FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr);
1722 efx_writeo(efx, &temp, FR_AZ_INT_ADR_KER);
1723
1724 if (EFX_WORKAROUND_17213(efx) && !EFX_INT_MODE_USE_MSI(efx))
1725 /* Use an interrupt level unused by event queues */
1726 efx->irq_level = 0x1f;
1727 else
1728 /* Use a valid MSI-X vector */
1729 efx->irq_level = 0;
1730
1731 /* Enable all the genuinely fatal interrupts. (They are still
1732 * masked by the overall interrupt mask, controlled by
1733 * falcon_interrupts()).
1734 *
1735 * Note: All other fatal interrupts are enabled
1736 */
1737 EFX_POPULATE_OWORD_3(temp,
1738 FRF_AZ_ILL_ADR_INT_KER_EN, 1,
1739 FRF_AZ_RBUF_OWN_INT_KER_EN, 1,
1740 FRF_AZ_TBUF_OWN_INT_KER_EN, 1);
1741 if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
1742 EFX_SET_OWORD_FIELD(temp, FRF_CZ_SRAM_PERR_INT_P_KER_EN, 1);
1743 EFX_INVERT_OWORD(temp);
1744 efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER);
1745
1746 efx_farch_rx_push_indir_table(efx);
1747
1748 /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
1749 * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
1750 */
1751 efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
1752 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
1753 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
1754 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
1755 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 1);
1756 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
1757 /* Enable SW_EV to inherit in char driver - assume harmless here */
1758 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
1759 /* Prefetch threshold 2 => fetch when descriptor cache half empty */
1760 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2);
1761 /* Disable hardware watchdog which can misfire */
1762 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_WD_TMR, 0x3fffff);
1763 /* Squash TX of packets of 16 bytes or less */
1764 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1765 EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
1766 efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
1767
1768 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
1769 EFX_POPULATE_OWORD_4(temp,
1770 /* Default values */
1771 FRF_BZ_TX_PACE_SB_NOT_AF, 0x15,
1772 FRF_BZ_TX_PACE_SB_AF, 0xb,
1773 FRF_BZ_TX_PACE_FB_BASE, 0,
1774 /* Allow large pace values in the
1775 * fast bin. */
1776 FRF_BZ_TX_PACE_BIN_TH,
1777 FFE_BZ_TX_PACE_RESERVED);
1778 efx_writeo(efx, &temp, FR_BZ_TX_PACE);
1779 }
1780}
Ben Hutchingsadd72472012-11-08 01:46:53 +00001781
1782/**************************************************************************
1783 *
1784 * Filter tables
1785 *
1786 **************************************************************************
1787 */
1788
1789/* "Fudge factors" - difference between programmed value and actual depth.
1790 * Due to pipelined implementation we need to program H/W with a value that
1791 * is larger than the hop limit we want.
1792 */
1793#define EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD 3
1794#define EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL 1
1795
1796/* Hard maximum search limit. Hardware will time-out beyond 200-something.
1797 * We also need to avoid infinite loops in efx_farch_filter_search() when the
1798 * table is full.
1799 */
1800#define EFX_FARCH_FILTER_CTL_SRCH_MAX 200
1801
1802/* Don't try very hard to find space for performance hints, as this is
1803 * counter-productive. */
1804#define EFX_FARCH_FILTER_CTL_SRCH_HINT_MAX 5
1805
1806enum efx_farch_filter_type {
1807 EFX_FARCH_FILTER_TCP_FULL = 0,
1808 EFX_FARCH_FILTER_TCP_WILD,
1809 EFX_FARCH_FILTER_UDP_FULL,
1810 EFX_FARCH_FILTER_UDP_WILD,
1811 EFX_FARCH_FILTER_MAC_FULL = 4,
1812 EFX_FARCH_FILTER_MAC_WILD,
1813 EFX_FARCH_FILTER_UC_DEF = 8,
1814 EFX_FARCH_FILTER_MC_DEF,
1815 EFX_FARCH_FILTER_TYPE_COUNT, /* number of specific types */
1816};
1817
1818enum efx_farch_filter_table_id {
1819 EFX_FARCH_FILTER_TABLE_RX_IP = 0,
1820 EFX_FARCH_FILTER_TABLE_RX_MAC,
1821 EFX_FARCH_FILTER_TABLE_RX_DEF,
1822 EFX_FARCH_FILTER_TABLE_TX_MAC,
1823 EFX_FARCH_FILTER_TABLE_COUNT,
1824};
1825
1826enum efx_farch_filter_index {
1827 EFX_FARCH_FILTER_INDEX_UC_DEF,
1828 EFX_FARCH_FILTER_INDEX_MC_DEF,
1829 EFX_FARCH_FILTER_SIZE_RX_DEF,
1830};
1831
1832struct efx_farch_filter_spec {
1833 u8 type:4;
1834 u8 priority:4;
1835 u8 flags;
1836 u16 dmaq_id;
1837 u32 data[3];
1838};
1839
1840struct efx_farch_filter_table {
1841 enum efx_farch_filter_table_id id;
1842 u32 offset; /* address of table relative to BAR */
1843 unsigned size; /* number of entries */
1844 unsigned step; /* step between entries */
1845 unsigned used; /* number currently used */
1846 unsigned long *used_bitmap;
1847 struct efx_farch_filter_spec *spec;
1848 unsigned search_limit[EFX_FARCH_FILTER_TYPE_COUNT];
1849};
1850
1851struct efx_farch_filter_state {
1852 struct efx_farch_filter_table table[EFX_FARCH_FILTER_TABLE_COUNT];
1853};
1854
1855static void
1856efx_farch_filter_table_clear_entry(struct efx_nic *efx,
1857 struct efx_farch_filter_table *table,
1858 unsigned int filter_idx);
1859
1860/* The filter hash function is LFSR polynomial x^16 + x^3 + 1 of a 32-bit
1861 * key derived from the n-tuple. The initial LFSR state is 0xffff. */
1862static u16 efx_farch_filter_hash(u32 key)
1863{
1864 u16 tmp;
1865
1866 /* First 16 rounds */
1867 tmp = 0x1fff ^ key >> 16;
1868 tmp = tmp ^ tmp >> 3 ^ tmp >> 6;
1869 tmp = tmp ^ tmp >> 9;
1870 /* Last 16 rounds */
1871 tmp = tmp ^ tmp << 13 ^ key;
1872 tmp = tmp ^ tmp >> 3 ^ tmp >> 6;
1873 return tmp ^ tmp >> 9;
1874}
1875
1876/* To allow for hash collisions, filter search continues at these
1877 * increments from the first possible entry selected by the hash. */
1878static u16 efx_farch_filter_increment(u32 key)
1879{
1880 return key * 2 - 1;
1881}
1882
1883static enum efx_farch_filter_table_id
1884efx_farch_filter_spec_table_id(const struct efx_farch_filter_spec *spec)
1885{
1886 BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1887 (EFX_FARCH_FILTER_TCP_FULL >> 2));
1888 BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1889 (EFX_FARCH_FILTER_TCP_WILD >> 2));
1890 BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1891 (EFX_FARCH_FILTER_UDP_FULL >> 2));
1892 BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1893 (EFX_FARCH_FILTER_UDP_WILD >> 2));
1894 BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_MAC !=
1895 (EFX_FARCH_FILTER_MAC_FULL >> 2));
1896 BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_MAC !=
1897 (EFX_FARCH_FILTER_MAC_WILD >> 2));
1898 BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_TX_MAC !=
1899 EFX_FARCH_FILTER_TABLE_RX_MAC + 2);
1900 return (spec->type >> 2) + ((spec->flags & EFX_FILTER_FLAG_TX) ? 2 : 0);
1901}
1902
1903static void efx_farch_filter_push_rx_config(struct efx_nic *efx)
1904{
1905 struct efx_farch_filter_state *state = efx->filter_state;
1906 struct efx_farch_filter_table *table;
1907 efx_oword_t filter_ctl;
1908
1909 efx_reado(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL);
1910
1911 table = &state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
1912 EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_FULL_SRCH_LIMIT,
1913 table->search_limit[EFX_FARCH_FILTER_TCP_FULL] +
1914 EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1915 EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_WILD_SRCH_LIMIT,
1916 table->search_limit[EFX_FARCH_FILTER_TCP_WILD] +
1917 EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1918 EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_FULL_SRCH_LIMIT,
1919 table->search_limit[EFX_FARCH_FILTER_UDP_FULL] +
1920 EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1921 EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_WILD_SRCH_LIMIT,
1922 table->search_limit[EFX_FARCH_FILTER_UDP_WILD] +
1923 EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1924
1925 table = &state->table[EFX_FARCH_FILTER_TABLE_RX_MAC];
1926 if (table->size) {
1927 EFX_SET_OWORD_FIELD(
1928 filter_ctl, FRF_CZ_ETHERNET_FULL_SEARCH_LIMIT,
1929 table->search_limit[EFX_FARCH_FILTER_MAC_FULL] +
1930 EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1931 EFX_SET_OWORD_FIELD(
1932 filter_ctl, FRF_CZ_ETHERNET_WILDCARD_SEARCH_LIMIT,
1933 table->search_limit[EFX_FARCH_FILTER_MAC_WILD] +
1934 EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1935 }
1936
1937 table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
1938 if (table->size) {
1939 EFX_SET_OWORD_FIELD(
1940 filter_ctl, FRF_CZ_UNICAST_NOMATCH_Q_ID,
1941 table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].dmaq_id);
1942 EFX_SET_OWORD_FIELD(
1943 filter_ctl, FRF_CZ_UNICAST_NOMATCH_RSS_ENABLED,
1944 !!(table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].flags &
1945 EFX_FILTER_FLAG_RX_RSS));
1946 EFX_SET_OWORD_FIELD(
1947 filter_ctl, FRF_CZ_MULTICAST_NOMATCH_Q_ID,
1948 table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].dmaq_id);
1949 EFX_SET_OWORD_FIELD(
1950 filter_ctl, FRF_CZ_MULTICAST_NOMATCH_RSS_ENABLED,
1951 !!(table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].flags &
1952 EFX_FILTER_FLAG_RX_RSS));
1953
1954 /* There is a single bit to enable RX scatter for all
1955 * unmatched packets. Only set it if scatter is
1956 * enabled in both filter specs.
1957 */
1958 EFX_SET_OWORD_FIELD(
1959 filter_ctl, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q,
1960 !!(table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].flags &
1961 table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].flags &
1962 EFX_FILTER_FLAG_RX_SCATTER));
1963 } else if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
1964 /* We don't expose 'default' filters because unmatched
1965 * packets always go to the queue number found in the
1966 * RSS table. But we still need to set the RX scatter
1967 * bit here.
1968 */
1969 EFX_SET_OWORD_FIELD(
1970 filter_ctl, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q,
1971 efx->rx_scatter);
1972 }
1973
1974 efx_writeo(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL);
1975}
1976
1977static void efx_farch_filter_push_tx_limits(struct efx_nic *efx)
1978{
1979 struct efx_farch_filter_state *state = efx->filter_state;
1980 struct efx_farch_filter_table *table;
1981 efx_oword_t tx_cfg;
1982
1983 efx_reado(efx, &tx_cfg, FR_AZ_TX_CFG);
1984
1985 table = &state->table[EFX_FARCH_FILTER_TABLE_TX_MAC];
1986 if (table->size) {
1987 EFX_SET_OWORD_FIELD(
1988 tx_cfg, FRF_CZ_TX_ETH_FILTER_FULL_SEARCH_RANGE,
1989 table->search_limit[EFX_FARCH_FILTER_MAC_FULL] +
1990 EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1991 EFX_SET_OWORD_FIELD(
1992 tx_cfg, FRF_CZ_TX_ETH_FILTER_WILD_SEARCH_RANGE,
1993 table->search_limit[EFX_FARCH_FILTER_MAC_WILD] +
1994 EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1995 }
1996
1997 efx_writeo(efx, &tx_cfg, FR_AZ_TX_CFG);
1998}
1999
2000static int
2001efx_farch_filter_from_gen_spec(struct efx_farch_filter_spec *spec,
2002 const struct efx_filter_spec *gen_spec)
2003{
2004 bool is_full = false;
2005
2006 if ((gen_spec->flags & EFX_FILTER_FLAG_RX_RSS) &&
2007 gen_spec->rss_context != EFX_FILTER_RSS_CONTEXT_DEFAULT)
2008 return -EINVAL;
2009
2010 spec->priority = gen_spec->priority;
2011 spec->flags = gen_spec->flags;
2012 spec->dmaq_id = gen_spec->dmaq_id;
2013
2014 switch (gen_spec->match_flags) {
2015 case (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO |
2016 EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT |
2017 EFX_FILTER_MATCH_REM_HOST | EFX_FILTER_MATCH_REM_PORT):
2018 is_full = true;
2019 /* fall through */
2020 case (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO |
2021 EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT): {
2022 __be32 rhost, host1, host2;
2023 __be16 rport, port1, port2;
2024
2025 EFX_BUG_ON_PARANOID(!(gen_spec->flags & EFX_FILTER_FLAG_RX));
2026
2027 if (gen_spec->ether_type != htons(ETH_P_IP))
2028 return -EPROTONOSUPPORT;
2029 if (gen_spec->loc_port == 0 ||
2030 (is_full && gen_spec->rem_port == 0))
2031 return -EADDRNOTAVAIL;
2032 switch (gen_spec->ip_proto) {
2033 case IPPROTO_TCP:
2034 spec->type = (is_full ? EFX_FARCH_FILTER_TCP_FULL :
2035 EFX_FARCH_FILTER_TCP_WILD);
2036 break;
2037 case IPPROTO_UDP:
2038 spec->type = (is_full ? EFX_FARCH_FILTER_UDP_FULL :
2039 EFX_FARCH_FILTER_UDP_WILD);
2040 break;
2041 default:
2042 return -EPROTONOSUPPORT;
2043 }
2044
2045 /* Filter is constructed in terms of source and destination,
2046 * with the odd wrinkle that the ports are swapped in a UDP
2047 * wildcard filter. We need to convert from local and remote
2048 * (= zero for wildcard) addresses.
2049 */
2050 rhost = is_full ? gen_spec->rem_host[0] : 0;
2051 rport = is_full ? gen_spec->rem_port : 0;
2052 host1 = rhost;
2053 host2 = gen_spec->loc_host[0];
2054 if (!is_full && gen_spec->ip_proto == IPPROTO_UDP) {
2055 port1 = gen_spec->loc_port;
2056 port2 = rport;
2057 } else {
2058 port1 = rport;
2059 port2 = gen_spec->loc_port;
2060 }
2061 spec->data[0] = ntohl(host1) << 16 | ntohs(port1);
2062 spec->data[1] = ntohs(port2) << 16 | ntohl(host1) >> 16;
2063 spec->data[2] = ntohl(host2);
2064
2065 break;
2066 }
2067
2068 case EFX_FILTER_MATCH_LOC_MAC | EFX_FILTER_MATCH_OUTER_VID:
2069 is_full = true;
2070 /* fall through */
2071 case EFX_FILTER_MATCH_LOC_MAC:
2072 spec->type = (is_full ? EFX_FARCH_FILTER_MAC_FULL :
2073 EFX_FARCH_FILTER_MAC_WILD);
2074 spec->data[0] = is_full ? ntohs(gen_spec->outer_vid) : 0;
2075 spec->data[1] = (gen_spec->loc_mac[2] << 24 |
2076 gen_spec->loc_mac[3] << 16 |
2077 gen_spec->loc_mac[4] << 8 |
2078 gen_spec->loc_mac[5]);
2079 spec->data[2] = (gen_spec->loc_mac[0] << 8 |
2080 gen_spec->loc_mac[1]);
2081 break;
2082
2083 case EFX_FILTER_MATCH_LOC_MAC_IG:
2084 spec->type = (is_multicast_ether_addr(gen_spec->loc_mac) ?
2085 EFX_FARCH_FILTER_MC_DEF :
2086 EFX_FARCH_FILTER_UC_DEF);
2087 memset(spec->data, 0, sizeof(spec->data)); /* ensure equality */
2088 break;
2089
2090 default:
2091 return -EPROTONOSUPPORT;
2092 }
2093
2094 return 0;
2095}
2096
2097static void
2098efx_farch_filter_to_gen_spec(struct efx_filter_spec *gen_spec,
2099 const struct efx_farch_filter_spec *spec)
2100{
2101 bool is_full = false;
2102
2103 /* *gen_spec should be completely initialised, to be consistent
2104 * with efx_filter_init_{rx,tx}() and in case we want to copy
2105 * it back to userland.
2106 */
2107 memset(gen_spec, 0, sizeof(*gen_spec));
2108
2109 gen_spec->priority = spec->priority;
2110 gen_spec->flags = spec->flags;
2111 gen_spec->dmaq_id = spec->dmaq_id;
2112
2113 switch (spec->type) {
2114 case EFX_FARCH_FILTER_TCP_FULL:
2115 case EFX_FARCH_FILTER_UDP_FULL:
2116 is_full = true;
2117 /* fall through */
2118 case EFX_FARCH_FILTER_TCP_WILD:
2119 case EFX_FARCH_FILTER_UDP_WILD: {
2120 __be32 host1, host2;
2121 __be16 port1, port2;
2122
2123 gen_spec->match_flags =
2124 EFX_FILTER_MATCH_ETHER_TYPE |
2125 EFX_FILTER_MATCH_IP_PROTO |
2126 EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT;
2127 if (is_full)
2128 gen_spec->match_flags |= (EFX_FILTER_MATCH_REM_HOST |
2129 EFX_FILTER_MATCH_REM_PORT);
2130 gen_spec->ether_type = htons(ETH_P_IP);
2131 gen_spec->ip_proto =
2132 (spec->type == EFX_FARCH_FILTER_TCP_FULL ||
2133 spec->type == EFX_FARCH_FILTER_TCP_WILD) ?
2134 IPPROTO_TCP : IPPROTO_UDP;
2135
2136 host1 = htonl(spec->data[0] >> 16 | spec->data[1] << 16);
2137 port1 = htons(spec->data[0]);
2138 host2 = htonl(spec->data[2]);
2139 port2 = htons(spec->data[1] >> 16);
2140 if (spec->flags & EFX_FILTER_FLAG_TX) {
2141 gen_spec->loc_host[0] = host1;
2142 gen_spec->rem_host[0] = host2;
2143 } else {
2144 gen_spec->loc_host[0] = host2;
2145 gen_spec->rem_host[0] = host1;
2146 }
2147 if (!!(gen_spec->flags & EFX_FILTER_FLAG_TX) ^
2148 (!is_full && gen_spec->ip_proto == IPPROTO_UDP)) {
2149 gen_spec->loc_port = port1;
2150 gen_spec->rem_port = port2;
2151 } else {
2152 gen_spec->loc_port = port2;
2153 gen_spec->rem_port = port1;
2154 }
2155
2156 break;
2157 }
2158
2159 case EFX_FARCH_FILTER_MAC_FULL:
2160 is_full = true;
2161 /* fall through */
2162 case EFX_FARCH_FILTER_MAC_WILD:
2163 gen_spec->match_flags = EFX_FILTER_MATCH_LOC_MAC;
2164 if (is_full)
2165 gen_spec->match_flags |= EFX_FILTER_MATCH_OUTER_VID;
2166 gen_spec->loc_mac[0] = spec->data[2] >> 8;
2167 gen_spec->loc_mac[1] = spec->data[2];
2168 gen_spec->loc_mac[2] = spec->data[1] >> 24;
2169 gen_spec->loc_mac[3] = spec->data[1] >> 16;
2170 gen_spec->loc_mac[4] = spec->data[1] >> 8;
2171 gen_spec->loc_mac[5] = spec->data[1];
2172 gen_spec->outer_vid = htons(spec->data[0]);
2173 break;
2174
2175 case EFX_FARCH_FILTER_UC_DEF:
2176 case EFX_FARCH_FILTER_MC_DEF:
2177 gen_spec->match_flags = EFX_FILTER_MATCH_LOC_MAC_IG;
2178 gen_spec->loc_mac[0] = spec->type == EFX_FARCH_FILTER_MC_DEF;
2179 break;
2180
2181 default:
2182 WARN_ON(1);
2183 break;
2184 }
2185}
2186
2187static void
Ben Hutchings8803e152012-11-19 23:08:20 +00002188efx_farch_filter_init_rx_for_stack(struct efx_nic *efx,
2189 struct efx_farch_filter_spec *spec)
Ben Hutchingsadd72472012-11-08 01:46:53 +00002190{
Ben Hutchingsadd72472012-11-08 01:46:53 +00002191 /* If there's only one channel then disable RSS for non VF
2192 * traffic, thereby allowing VFs to use RSS when the PF can't.
2193 */
Ben Hutchings8803e152012-11-19 23:08:20 +00002194 spec->priority = EFX_FILTER_PRI_REQUIRED;
2195 spec->flags = (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_RX_STACK |
Ben Hutchingsadd72472012-11-08 01:46:53 +00002196 (efx->n_rx_channels > 1 ? EFX_FILTER_FLAG_RX_RSS : 0) |
2197 (efx->rx_scatter ? EFX_FILTER_FLAG_RX_SCATTER : 0));
2198 spec->dmaq_id = 0;
Ben Hutchingsadd72472012-11-08 01:46:53 +00002199}
2200
2201/* Build a filter entry and return its n-tuple key. */
2202static u32 efx_farch_filter_build(efx_oword_t *filter,
2203 struct efx_farch_filter_spec *spec)
2204{
2205 u32 data3;
2206
2207 switch (efx_farch_filter_spec_table_id(spec)) {
2208 case EFX_FARCH_FILTER_TABLE_RX_IP: {
2209 bool is_udp = (spec->type == EFX_FARCH_FILTER_UDP_FULL ||
2210 spec->type == EFX_FARCH_FILTER_UDP_WILD);
2211 EFX_POPULATE_OWORD_7(
2212 *filter,
2213 FRF_BZ_RSS_EN,
2214 !!(spec->flags & EFX_FILTER_FLAG_RX_RSS),
2215 FRF_BZ_SCATTER_EN,
2216 !!(spec->flags & EFX_FILTER_FLAG_RX_SCATTER),
2217 FRF_BZ_TCP_UDP, is_udp,
2218 FRF_BZ_RXQ_ID, spec->dmaq_id,
2219 EFX_DWORD_2, spec->data[2],
2220 EFX_DWORD_1, spec->data[1],
2221 EFX_DWORD_0, spec->data[0]);
2222 data3 = is_udp;
2223 break;
2224 }
2225
2226 case EFX_FARCH_FILTER_TABLE_RX_MAC: {
2227 bool is_wild = spec->type == EFX_FARCH_FILTER_MAC_WILD;
2228 EFX_POPULATE_OWORD_7(
2229 *filter,
2230 FRF_CZ_RMFT_RSS_EN,
2231 !!(spec->flags & EFX_FILTER_FLAG_RX_RSS),
2232 FRF_CZ_RMFT_SCATTER_EN,
2233 !!(spec->flags & EFX_FILTER_FLAG_RX_SCATTER),
2234 FRF_CZ_RMFT_RXQ_ID, spec->dmaq_id,
2235 FRF_CZ_RMFT_WILDCARD_MATCH, is_wild,
2236 FRF_CZ_RMFT_DEST_MAC_HI, spec->data[2],
2237 FRF_CZ_RMFT_DEST_MAC_LO, spec->data[1],
2238 FRF_CZ_RMFT_VLAN_ID, spec->data[0]);
2239 data3 = is_wild;
2240 break;
2241 }
2242
2243 case EFX_FARCH_FILTER_TABLE_TX_MAC: {
2244 bool is_wild = spec->type == EFX_FARCH_FILTER_MAC_WILD;
2245 EFX_POPULATE_OWORD_5(*filter,
2246 FRF_CZ_TMFT_TXQ_ID, spec->dmaq_id,
2247 FRF_CZ_TMFT_WILDCARD_MATCH, is_wild,
2248 FRF_CZ_TMFT_SRC_MAC_HI, spec->data[2],
2249 FRF_CZ_TMFT_SRC_MAC_LO, spec->data[1],
2250 FRF_CZ_TMFT_VLAN_ID, spec->data[0]);
2251 data3 = is_wild | spec->dmaq_id << 1;
2252 break;
2253 }
2254
2255 default:
2256 BUG();
2257 }
2258
2259 return spec->data[0] ^ spec->data[1] ^ spec->data[2] ^ data3;
2260}
2261
2262static bool efx_farch_filter_equal(const struct efx_farch_filter_spec *left,
2263 const struct efx_farch_filter_spec *right)
2264{
2265 if (left->type != right->type ||
2266 memcmp(left->data, right->data, sizeof(left->data)))
2267 return false;
2268
2269 if (left->flags & EFX_FILTER_FLAG_TX &&
2270 left->dmaq_id != right->dmaq_id)
2271 return false;
2272
2273 return true;
2274}
2275
2276/*
2277 * Construct/deconstruct external filter IDs. At least the RX filter
2278 * IDs must be ordered by matching priority, for RX NFC semantics.
2279 *
2280 * Deconstruction needs to be robust against invalid IDs so that
2281 * efx_filter_remove_id_safe() and efx_filter_get_filter_safe() can
2282 * accept user-provided IDs.
2283 */
2284
2285#define EFX_FARCH_FILTER_MATCH_PRI_COUNT 5
2286
2287static const u8 efx_farch_filter_type_match_pri[EFX_FARCH_FILTER_TYPE_COUNT] = {
2288 [EFX_FARCH_FILTER_TCP_FULL] = 0,
2289 [EFX_FARCH_FILTER_UDP_FULL] = 0,
2290 [EFX_FARCH_FILTER_TCP_WILD] = 1,
2291 [EFX_FARCH_FILTER_UDP_WILD] = 1,
2292 [EFX_FARCH_FILTER_MAC_FULL] = 2,
2293 [EFX_FARCH_FILTER_MAC_WILD] = 3,
2294 [EFX_FARCH_FILTER_UC_DEF] = 4,
2295 [EFX_FARCH_FILTER_MC_DEF] = 4,
2296};
2297
2298static const enum efx_farch_filter_table_id efx_farch_filter_range_table[] = {
2299 EFX_FARCH_FILTER_TABLE_RX_IP, /* RX match pri 0 */
2300 EFX_FARCH_FILTER_TABLE_RX_IP,
2301 EFX_FARCH_FILTER_TABLE_RX_MAC,
2302 EFX_FARCH_FILTER_TABLE_RX_MAC,
2303 EFX_FARCH_FILTER_TABLE_RX_DEF, /* RX match pri 4 */
2304 EFX_FARCH_FILTER_TABLE_TX_MAC, /* TX match pri 0 */
2305 EFX_FARCH_FILTER_TABLE_TX_MAC, /* TX match pri 1 */
2306};
2307
2308#define EFX_FARCH_FILTER_INDEX_WIDTH 13
2309#define EFX_FARCH_FILTER_INDEX_MASK ((1 << EFX_FARCH_FILTER_INDEX_WIDTH) - 1)
2310
2311static inline u32
2312efx_farch_filter_make_id(const struct efx_farch_filter_spec *spec,
2313 unsigned int index)
2314{
2315 unsigned int range;
2316
2317 range = efx_farch_filter_type_match_pri[spec->type];
2318 if (!(spec->flags & EFX_FILTER_FLAG_RX))
2319 range += EFX_FARCH_FILTER_MATCH_PRI_COUNT;
2320
2321 return range << EFX_FARCH_FILTER_INDEX_WIDTH | index;
2322}
2323
2324static inline enum efx_farch_filter_table_id
2325efx_farch_filter_id_table_id(u32 id)
2326{
2327 unsigned int range = id >> EFX_FARCH_FILTER_INDEX_WIDTH;
2328
2329 if (range < ARRAY_SIZE(efx_farch_filter_range_table))
2330 return efx_farch_filter_range_table[range];
2331 else
2332 return EFX_FARCH_FILTER_TABLE_COUNT; /* invalid */
2333}
2334
2335static inline unsigned int efx_farch_filter_id_index(u32 id)
2336{
2337 return id & EFX_FARCH_FILTER_INDEX_MASK;
2338}
2339
2340u32 efx_farch_filter_get_rx_id_limit(struct efx_nic *efx)
2341{
2342 struct efx_farch_filter_state *state = efx->filter_state;
2343 unsigned int range = EFX_FARCH_FILTER_MATCH_PRI_COUNT - 1;
2344 enum efx_farch_filter_table_id table_id;
2345
2346 do {
2347 table_id = efx_farch_filter_range_table[range];
2348 if (state->table[table_id].size != 0)
2349 return range << EFX_FARCH_FILTER_INDEX_WIDTH |
2350 state->table[table_id].size;
2351 } while (range--);
2352
2353 return 0;
2354}
2355
2356s32 efx_farch_filter_insert(struct efx_nic *efx,
2357 struct efx_filter_spec *gen_spec,
2358 bool replace_equal)
2359{
2360 struct efx_farch_filter_state *state = efx->filter_state;
2361 struct efx_farch_filter_table *table;
2362 struct efx_farch_filter_spec spec;
2363 efx_oword_t filter;
2364 int rep_index, ins_index;
2365 unsigned int depth = 0;
2366 int rc;
2367
2368 rc = efx_farch_filter_from_gen_spec(&spec, gen_spec);
2369 if (rc)
2370 return rc;
2371
2372 table = &state->table[efx_farch_filter_spec_table_id(&spec)];
2373 if (table->size == 0)
2374 return -EINVAL;
2375
2376 netif_vdbg(efx, hw, efx->net_dev,
2377 "%s: type %d search_limit=%d", __func__, spec.type,
2378 table->search_limit[spec.type]);
2379
2380 if (table->id == EFX_FARCH_FILTER_TABLE_RX_DEF) {
2381 /* One filter spec per type */
2382 BUILD_BUG_ON(EFX_FARCH_FILTER_INDEX_UC_DEF != 0);
2383 BUILD_BUG_ON(EFX_FARCH_FILTER_INDEX_MC_DEF !=
2384 EFX_FARCH_FILTER_MC_DEF - EFX_FARCH_FILTER_UC_DEF);
2385 rep_index = spec.type - EFX_FARCH_FILTER_UC_DEF;
2386 ins_index = rep_index;
2387
2388 spin_lock_bh(&efx->filter_lock);
2389 } else {
2390 /* Search concurrently for
2391 * (1) a filter to be replaced (rep_index): any filter
2392 * with the same match values, up to the current
2393 * search depth for this type, and
2394 * (2) the insertion point (ins_index): (1) or any
2395 * free slot before it or up to the maximum search
2396 * depth for this priority
2397 * We fail if we cannot find (2).
2398 *
2399 * We can stop once either
2400 * (a) we find (1), in which case we have definitely
2401 * found (2) as well; or
2402 * (b) we have searched exhaustively for (1), and have
2403 * either found (2) or searched exhaustively for it
2404 */
2405 u32 key = efx_farch_filter_build(&filter, &spec);
2406 unsigned int hash = efx_farch_filter_hash(key);
2407 unsigned int incr = efx_farch_filter_increment(key);
2408 unsigned int max_rep_depth = table->search_limit[spec.type];
2409 unsigned int max_ins_depth =
2410 spec.priority <= EFX_FILTER_PRI_HINT ?
2411 EFX_FARCH_FILTER_CTL_SRCH_HINT_MAX :
2412 EFX_FARCH_FILTER_CTL_SRCH_MAX;
2413 unsigned int i = hash & (table->size - 1);
2414
2415 ins_index = -1;
2416 depth = 1;
2417
2418 spin_lock_bh(&efx->filter_lock);
2419
2420 for (;;) {
2421 if (!test_bit(i, table->used_bitmap)) {
2422 if (ins_index < 0)
2423 ins_index = i;
2424 } else if (efx_farch_filter_equal(&spec,
2425 &table->spec[i])) {
2426 /* Case (a) */
2427 if (ins_index < 0)
2428 ins_index = i;
2429 rep_index = i;
2430 break;
2431 }
2432
2433 if (depth >= max_rep_depth &&
2434 (ins_index >= 0 || depth >= max_ins_depth)) {
2435 /* Case (b) */
2436 if (ins_index < 0) {
2437 rc = -EBUSY;
2438 goto out;
2439 }
2440 rep_index = -1;
2441 break;
2442 }
2443
2444 i = (i + incr) & (table->size - 1);
2445 ++depth;
2446 }
2447 }
2448
2449 /* If we found a filter to be replaced, check whether we
2450 * should do so
2451 */
2452 if (rep_index >= 0) {
2453 struct efx_farch_filter_spec *saved_spec =
2454 &table->spec[rep_index];
2455
2456 if (spec.priority == saved_spec->priority && !replace_equal) {
2457 rc = -EEXIST;
2458 goto out;
2459 }
Ben Hutchings8803e152012-11-19 23:08:20 +00002460 if (spec.priority < saved_spec->priority &&
2461 !(saved_spec->priority == EFX_FILTER_PRI_REQUIRED &&
2462 saved_spec->flags & EFX_FILTER_FLAG_RX_STACK)) {
Ben Hutchingsadd72472012-11-08 01:46:53 +00002463 rc = -EPERM;
2464 goto out;
2465 }
Ben Hutchings8803e152012-11-19 23:08:20 +00002466 if (spec.flags & EFX_FILTER_FLAG_RX_STACK) {
2467 /* Just make sure it won't be removed */
2468 saved_spec->flags |= EFX_FILTER_FLAG_RX_STACK;
2469 rc = 0;
2470 goto out;
2471 }
2472 /* Retain the RX_STACK flag */
2473 spec.flags |= saved_spec->flags & EFX_FILTER_FLAG_RX_STACK;
Ben Hutchingsadd72472012-11-08 01:46:53 +00002474 }
2475
2476 /* Insert the filter */
2477 if (ins_index != rep_index) {
2478 __set_bit(ins_index, table->used_bitmap);
2479 ++table->used;
2480 }
2481 table->spec[ins_index] = spec;
2482
2483 if (table->id == EFX_FARCH_FILTER_TABLE_RX_DEF) {
2484 efx_farch_filter_push_rx_config(efx);
2485 } else {
2486 if (table->search_limit[spec.type] < depth) {
2487 table->search_limit[spec.type] = depth;
2488 if (spec.flags & EFX_FILTER_FLAG_TX)
2489 efx_farch_filter_push_tx_limits(efx);
2490 else
2491 efx_farch_filter_push_rx_config(efx);
2492 }
2493
2494 efx_writeo(efx, &filter,
2495 table->offset + table->step * ins_index);
2496
2497 /* If we were able to replace a filter by inserting
2498 * at a lower depth, clear the replaced filter
2499 */
2500 if (ins_index != rep_index && rep_index >= 0)
2501 efx_farch_filter_table_clear_entry(efx, table,
2502 rep_index);
2503 }
2504
2505 netif_vdbg(efx, hw, efx->net_dev,
2506 "%s: filter type %d index %d rxq %u set",
2507 __func__, spec.type, ins_index, spec.dmaq_id);
2508 rc = efx_farch_filter_make_id(&spec, ins_index);
2509
2510out:
2511 spin_unlock_bh(&efx->filter_lock);
2512 return rc;
2513}
2514
2515static void
2516efx_farch_filter_table_clear_entry(struct efx_nic *efx,
2517 struct efx_farch_filter_table *table,
2518 unsigned int filter_idx)
2519{
2520 static efx_oword_t filter;
2521
Ben Hutchings14990a52012-11-19 23:08:19 +00002522 EFX_WARN_ON_PARANOID(!test_bit(filter_idx, table->used_bitmap));
Ben Hutchings8803e152012-11-19 23:08:20 +00002523 BUG_ON(table->offset == 0); /* can't clear MAC default filters */
Ben Hutchings14990a52012-11-19 23:08:19 +00002524
2525 __clear_bit(filter_idx, table->used_bitmap);
2526 --table->used;
2527 memset(&table->spec[filter_idx], 0, sizeof(table->spec[0]));
2528
2529 efx_writeo(efx, &filter, table->offset + table->step * filter_idx);
2530
2531 /* If this filter required a greater search depth than
2532 * any other, the search limit for its type can now be
2533 * decreased. However, it is hard to determine that
2534 * unless the table has become completely empty - in
2535 * which case, all its search limits can be set to 0.
2536 */
2537 if (unlikely(table->used == 0)) {
2538 memset(table->search_limit, 0, sizeof(table->search_limit));
2539 if (table->id == EFX_FARCH_FILTER_TABLE_TX_MAC)
2540 efx_farch_filter_push_tx_limits(efx);
2541 else
2542 efx_farch_filter_push_rx_config(efx);
2543 }
2544}
2545
2546static int efx_farch_filter_remove(struct efx_nic *efx,
2547 struct efx_farch_filter_table *table,
2548 unsigned int filter_idx,
2549 enum efx_filter_priority priority)
2550{
2551 struct efx_farch_filter_spec *spec = &table->spec[filter_idx];
2552
2553 if (!test_bit(filter_idx, table->used_bitmap) ||
2554 spec->priority > priority)
2555 return -ENOENT;
2556
Ben Hutchings8803e152012-11-19 23:08:20 +00002557 if (spec->flags & EFX_FILTER_FLAG_RX_STACK) {
2558 efx_farch_filter_init_rx_for_stack(efx, spec);
Ben Hutchingsadd72472012-11-08 01:46:53 +00002559 efx_farch_filter_push_rx_config(efx);
Ben Hutchings14990a52012-11-19 23:08:19 +00002560 } else {
2561 efx_farch_filter_table_clear_entry(efx, table, filter_idx);
Ben Hutchingsadd72472012-11-08 01:46:53 +00002562 }
Ben Hutchings14990a52012-11-19 23:08:19 +00002563
2564 return 0;
Ben Hutchingsadd72472012-11-08 01:46:53 +00002565}
2566
2567int efx_farch_filter_remove_safe(struct efx_nic *efx,
2568 enum efx_filter_priority priority,
2569 u32 filter_id)
2570{
2571 struct efx_farch_filter_state *state = efx->filter_state;
2572 enum efx_farch_filter_table_id table_id;
2573 struct efx_farch_filter_table *table;
2574 unsigned int filter_idx;
2575 struct efx_farch_filter_spec *spec;
2576 int rc;
2577
2578 table_id = efx_farch_filter_id_table_id(filter_id);
2579 if ((unsigned int)table_id >= EFX_FARCH_FILTER_TABLE_COUNT)
2580 return -ENOENT;
2581 table = &state->table[table_id];
2582
2583 filter_idx = efx_farch_filter_id_index(filter_id);
2584 if (filter_idx >= table->size)
2585 return -ENOENT;
2586 spec = &table->spec[filter_idx];
2587
2588 spin_lock_bh(&efx->filter_lock);
Ben Hutchings14990a52012-11-19 23:08:19 +00002589 rc = efx_farch_filter_remove(efx, table, filter_idx, priority);
Ben Hutchingsadd72472012-11-08 01:46:53 +00002590 spin_unlock_bh(&efx->filter_lock);
2591
2592 return rc;
2593}
2594
2595int efx_farch_filter_get_safe(struct efx_nic *efx,
2596 enum efx_filter_priority priority,
2597 u32 filter_id, struct efx_filter_spec *spec_buf)
2598{
2599 struct efx_farch_filter_state *state = efx->filter_state;
2600 enum efx_farch_filter_table_id table_id;
2601 struct efx_farch_filter_table *table;
2602 struct efx_farch_filter_spec *spec;
2603 unsigned int filter_idx;
2604 int rc;
2605
2606 table_id = efx_farch_filter_id_table_id(filter_id);
2607 if ((unsigned int)table_id >= EFX_FARCH_FILTER_TABLE_COUNT)
2608 return -ENOENT;
2609 table = &state->table[table_id];
2610
2611 filter_idx = efx_farch_filter_id_index(filter_id);
2612 if (filter_idx >= table->size)
2613 return -ENOENT;
2614 spec = &table->spec[filter_idx];
2615
2616 spin_lock_bh(&efx->filter_lock);
2617
2618 if (test_bit(filter_idx, table->used_bitmap) &&
2619 spec->priority == priority) {
2620 efx_farch_filter_to_gen_spec(spec_buf, spec);
2621 rc = 0;
2622 } else {
2623 rc = -ENOENT;
2624 }
2625
2626 spin_unlock_bh(&efx->filter_lock);
2627
2628 return rc;
2629}
2630
2631static void
2632efx_farch_filter_table_clear(struct efx_nic *efx,
2633 enum efx_farch_filter_table_id table_id,
2634 enum efx_filter_priority priority)
2635{
2636 struct efx_farch_filter_state *state = efx->filter_state;
2637 struct efx_farch_filter_table *table = &state->table[table_id];
2638 unsigned int filter_idx;
2639
2640 spin_lock_bh(&efx->filter_lock);
2641 for (filter_idx = 0; filter_idx < table->size; ++filter_idx)
Ben Hutchings14990a52012-11-19 23:08:19 +00002642 efx_farch_filter_remove(efx, table, filter_idx, priority);
Ben Hutchingsadd72472012-11-08 01:46:53 +00002643 spin_unlock_bh(&efx->filter_lock);
2644}
2645
2646void efx_farch_filter_clear_rx(struct efx_nic *efx,
2647 enum efx_filter_priority priority)
2648{
2649 efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_IP,
2650 priority);
2651 efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_MAC,
2652 priority);
Ben Hutchings8803e152012-11-19 23:08:20 +00002653 efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_DEF,
2654 priority);
Ben Hutchingsadd72472012-11-08 01:46:53 +00002655}
2656
2657u32 efx_farch_filter_count_rx_used(struct efx_nic *efx,
2658 enum efx_filter_priority priority)
2659{
2660 struct efx_farch_filter_state *state = efx->filter_state;
2661 enum efx_farch_filter_table_id table_id;
2662 struct efx_farch_filter_table *table;
2663 unsigned int filter_idx;
2664 u32 count = 0;
2665
2666 spin_lock_bh(&efx->filter_lock);
2667
2668 for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
2669 table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
2670 table_id++) {
2671 table = &state->table[table_id];
2672 for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2673 if (test_bit(filter_idx, table->used_bitmap) &&
2674 table->spec[filter_idx].priority == priority)
2675 ++count;
2676 }
2677 }
2678
2679 spin_unlock_bh(&efx->filter_lock);
2680
2681 return count;
2682}
2683
2684s32 efx_farch_filter_get_rx_ids(struct efx_nic *efx,
2685 enum efx_filter_priority priority,
2686 u32 *buf, u32 size)
2687{
2688 struct efx_farch_filter_state *state = efx->filter_state;
2689 enum efx_farch_filter_table_id table_id;
2690 struct efx_farch_filter_table *table;
2691 unsigned int filter_idx;
2692 s32 count = 0;
2693
2694 spin_lock_bh(&efx->filter_lock);
2695
2696 for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
2697 table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
2698 table_id++) {
2699 table = &state->table[table_id];
2700 for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2701 if (test_bit(filter_idx, table->used_bitmap) &&
2702 table->spec[filter_idx].priority == priority) {
2703 if (count == size) {
2704 count = -EMSGSIZE;
2705 goto out;
2706 }
2707 buf[count++] = efx_farch_filter_make_id(
2708 &table->spec[filter_idx], filter_idx);
2709 }
2710 }
2711 }
2712out:
2713 spin_unlock_bh(&efx->filter_lock);
2714
2715 return count;
2716}
2717
2718/* Restore filter stater after reset */
2719void efx_farch_filter_table_restore(struct efx_nic *efx)
2720{
2721 struct efx_farch_filter_state *state = efx->filter_state;
2722 enum efx_farch_filter_table_id table_id;
2723 struct efx_farch_filter_table *table;
2724 efx_oword_t filter;
2725 unsigned int filter_idx;
2726
2727 spin_lock_bh(&efx->filter_lock);
2728
2729 for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
2730 table = &state->table[table_id];
2731
2732 /* Check whether this is a regular register table */
2733 if (table->step == 0)
2734 continue;
2735
2736 for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2737 if (!test_bit(filter_idx, table->used_bitmap))
2738 continue;
2739 efx_farch_filter_build(&filter, &table->spec[filter_idx]);
2740 efx_writeo(efx, &filter,
2741 table->offset + table->step * filter_idx);
2742 }
2743 }
2744
2745 efx_farch_filter_push_rx_config(efx);
2746 efx_farch_filter_push_tx_limits(efx);
2747
2748 spin_unlock_bh(&efx->filter_lock);
2749}
2750
2751void efx_farch_filter_table_remove(struct efx_nic *efx)
2752{
2753 struct efx_farch_filter_state *state = efx->filter_state;
2754 enum efx_farch_filter_table_id table_id;
2755
2756 for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
2757 kfree(state->table[table_id].used_bitmap);
2758 vfree(state->table[table_id].spec);
2759 }
2760 kfree(state);
2761}
2762
2763int efx_farch_filter_table_probe(struct efx_nic *efx)
2764{
2765 struct efx_farch_filter_state *state;
2766 struct efx_farch_filter_table *table;
2767 unsigned table_id;
2768
2769 state = kzalloc(sizeof(struct efx_farch_filter_state), GFP_KERNEL);
2770 if (!state)
2771 return -ENOMEM;
2772 efx->filter_state = state;
2773
2774 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
2775 table = &state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
2776 table->id = EFX_FARCH_FILTER_TABLE_RX_IP;
2777 table->offset = FR_BZ_RX_FILTER_TBL0;
2778 table->size = FR_BZ_RX_FILTER_TBL0_ROWS;
2779 table->step = FR_BZ_RX_FILTER_TBL0_STEP;
2780 }
2781
2782 if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
2783 table = &state->table[EFX_FARCH_FILTER_TABLE_RX_MAC];
2784 table->id = EFX_FARCH_FILTER_TABLE_RX_MAC;
2785 table->offset = FR_CZ_RX_MAC_FILTER_TBL0;
2786 table->size = FR_CZ_RX_MAC_FILTER_TBL0_ROWS;
2787 table->step = FR_CZ_RX_MAC_FILTER_TBL0_STEP;
2788
2789 table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
2790 table->id = EFX_FARCH_FILTER_TABLE_RX_DEF;
2791 table->size = EFX_FARCH_FILTER_SIZE_RX_DEF;
2792
2793 table = &state->table[EFX_FARCH_FILTER_TABLE_TX_MAC];
2794 table->id = EFX_FARCH_FILTER_TABLE_TX_MAC;
2795 table->offset = FR_CZ_TX_MAC_FILTER_TBL0;
2796 table->size = FR_CZ_TX_MAC_FILTER_TBL0_ROWS;
2797 table->step = FR_CZ_TX_MAC_FILTER_TBL0_STEP;
2798 }
2799
2800 for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
2801 table = &state->table[table_id];
2802 if (table->size == 0)
2803 continue;
2804 table->used_bitmap = kcalloc(BITS_TO_LONGS(table->size),
2805 sizeof(unsigned long),
2806 GFP_KERNEL);
2807 if (!table->used_bitmap)
2808 goto fail;
2809 table->spec = vzalloc(table->size * sizeof(*table->spec));
2810 if (!table->spec)
2811 goto fail;
2812 }
2813
Ben Hutchings8803e152012-11-19 23:08:20 +00002814 table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
2815 if (table->size) {
Ben Hutchingsadd72472012-11-08 01:46:53 +00002816 /* RX default filters must always exist */
Ben Hutchings8803e152012-11-19 23:08:20 +00002817 struct efx_farch_filter_spec *spec;
Ben Hutchingsadd72472012-11-08 01:46:53 +00002818 unsigned i;
Ben Hutchings8803e152012-11-19 23:08:20 +00002819
2820 for (i = 0; i < EFX_FARCH_FILTER_SIZE_RX_DEF; i++) {
2821 spec = &table->spec[i];
2822 spec->type = EFX_FARCH_FILTER_UC_DEF + i;
2823 efx_farch_filter_init_rx_for_stack(efx, spec);
2824 __set_bit(i, table->used_bitmap);
2825 }
Ben Hutchingsadd72472012-11-08 01:46:53 +00002826 }
2827
2828 efx_farch_filter_push_rx_config(efx);
2829
2830 return 0;
2831
2832fail:
2833 efx_farch_filter_table_remove(efx);
2834 return -ENOMEM;
2835}
2836
2837/* Update scatter enable flags for filters pointing to our own RX queues */
2838void efx_farch_filter_update_rx_scatter(struct efx_nic *efx)
2839{
2840 struct efx_farch_filter_state *state = efx->filter_state;
2841 enum efx_farch_filter_table_id table_id;
2842 struct efx_farch_filter_table *table;
2843 efx_oword_t filter;
2844 unsigned int filter_idx;
2845
2846 spin_lock_bh(&efx->filter_lock);
2847
2848 for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
2849 table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
2850 table_id++) {
2851 table = &state->table[table_id];
2852
2853 for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2854 if (!test_bit(filter_idx, table->used_bitmap) ||
2855 table->spec[filter_idx].dmaq_id >=
2856 efx->n_rx_channels)
2857 continue;
2858
2859 if (efx->rx_scatter)
2860 table->spec[filter_idx].flags |=
2861 EFX_FILTER_FLAG_RX_SCATTER;
2862 else
2863 table->spec[filter_idx].flags &=
2864 ~EFX_FILTER_FLAG_RX_SCATTER;
2865
2866 if (table_id == EFX_FARCH_FILTER_TABLE_RX_DEF)
2867 /* Pushed by efx_farch_filter_push_rx_config() */
2868 continue;
2869
2870 efx_farch_filter_build(&filter, &table->spec[filter_idx]);
2871 efx_writeo(efx, &filter,
2872 table->offset + table->step * filter_idx);
2873 }
2874 }
2875
2876 efx_farch_filter_push_rx_config(efx);
2877
2878 spin_unlock_bh(&efx->filter_lock);
2879}
2880
2881#ifdef CONFIG_RFS_ACCEL
2882
2883s32 efx_farch_filter_rfs_insert(struct efx_nic *efx,
2884 struct efx_filter_spec *gen_spec)
2885{
2886 return efx_farch_filter_insert(efx, gen_spec, true);
2887}
2888
2889bool efx_farch_filter_rfs_expire_one(struct efx_nic *efx, u32 flow_id,
2890 unsigned int index)
2891{
2892 struct efx_farch_filter_state *state = efx->filter_state;
2893 struct efx_farch_filter_table *table =
2894 &state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
2895
2896 if (test_bit(index, table->used_bitmap) &&
2897 table->spec[index].priority == EFX_FILTER_PRI_HINT &&
2898 rps_may_expire_flow(efx->net_dev, table->spec[index].dmaq_id,
2899 flow_id, index)) {
2900 efx_farch_filter_table_clear_entry(efx, table, index);
2901 return true;
2902 }
2903
2904 return false;
2905}
2906
2907#endif /* CONFIG_RFS_ACCEL */
Ben Hutchings964e6132012-11-19 23:08:22 +00002908
2909void efx_farch_filter_sync_rx_mode(struct efx_nic *efx)
2910{
2911 struct net_device *net_dev = efx->net_dev;
2912 struct netdev_hw_addr *ha;
2913 union efx_multicast_hash *mc_hash = &efx->multicast_hash;
2914 u32 crc;
2915 int bit;
2916
2917 netif_addr_lock_bh(net_dev);
2918
2919 efx->unicast_filter = !(net_dev->flags & IFF_PROMISC);
2920
2921 /* Build multicast hash table */
2922 if (net_dev->flags & (IFF_PROMISC | IFF_ALLMULTI)) {
2923 memset(mc_hash, 0xff, sizeof(*mc_hash));
2924 } else {
2925 memset(mc_hash, 0x00, sizeof(*mc_hash));
2926 netdev_for_each_mc_addr(ha, net_dev) {
2927 crc = ether_crc_le(ETH_ALEN, ha->addr);
2928 bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
2929 __set_bit_le(bit, mc_hash);
2930 }
2931
2932 /* Broadcast packets go through the multicast hash filter.
2933 * ether_crc_le() of the broadcast address is 0xbe2612ff
2934 * so we always add bit 0xff to the mask.
2935 */
2936 __set_bit_le(0xff, mc_hash);
2937 }
2938
2939 netif_addr_unlock_bh(net_dev);
2940}