blob: e7c7f71db8e177f13e013174b7dbf8dc417b4f37 [file] [log] [blame]
Zhu Yib481de92007-09-25 17:54:57 -07001/******************************************************************************
2 *
3 * This file is provided under a dual BSD/GPLv2 license. When using or
4 * redistributing this file, you may do so under either license.
5 *
6 * GPL LICENSE SUMMARY
7 *
8 * Copyright(c) 2005 - 2007 Intel Corporation. All rights reserved.
9 *
10 * This program is free software; you can redistribute it and/or modify
Ian Schram01ebd062007-10-25 17:15:22 +080011 * it under the terms of version 2 of the GNU General Public License as
Zhu Yib481de92007-09-25 17:54:57 -070012 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
22 * USA
23 *
24 * The full GNU General Public License is included in this distribution
25 * in the file called LICENSE.GPL.
26 *
27 * Contact Information:
28 * James P. Ketrenos <ipw2100-admin@linux.intel.com>
29 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
30 *
31 * BSD LICENSE
32 *
33 * Copyright(c) 2005 - 2007 Intel Corporation. All rights reserved.
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 *
40 * * Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * * Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in
44 * the documentation and/or other materials provided with the
45 * distribution.
46 * * Neither the name Intel Corporation nor the names of its
47 * contributors may be used to endorse or promote products derived
48 * from this software without specific prior written permission.
49 *
50 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
51 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
52 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
53 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
54 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
55 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
56 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
57 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
58 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
59 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
60 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
61 *
62 *****************************************************************************/
Ben Cahillfcd427b2007-11-29 11:10:00 +080063/*
64 * Please use this file (iwl-4965-hw.h) only for hardware-related definitions.
65 * Use iwl-4965-commands.h for uCode API definitions.
66 * Use iwl-4965.h for driver implementation definitions.
67 */
Zhu Yib481de92007-09-25 17:54:57 -070068
69#ifndef __iwl_4965_hw_h__
70#define __iwl_4965_hw_h__
71
Ben Cahill1fea8e82007-11-29 11:09:52 +080072/*
73 * uCode queue management definitions ...
74 * Queue #4 is the command queue for 3945 and 4965; map it to Tx FIFO chnl 4.
75 * The first queue used for block-ack aggregation is #7 (4965 only).
76 * All block-ack aggregation queues should map to Tx DMA/FIFO channel 7.
77 */
Christoph Hellwig5d08cd12007-10-25 17:15:50 +080078#define IWL_CMD_QUEUE_NUM 4
79#define IWL_CMD_FIFO_NUM 4
80#define IWL_BACK_QUEUE_FIRST_ID 7
81
82/* Tx rates */
83#define IWL_CCK_RATES 4
84#define IWL_OFDM_RATES 8
Christoph Hellwig5d08cd12007-10-25 17:15:50 +080085#define IWL_HT_RATES 16
Christoph Hellwig5d08cd12007-10-25 17:15:50 +080086#define IWL_MAX_RATES (IWL_CCK_RATES+IWL_OFDM_RATES+IWL_HT_RATES)
87
88/* Time constants */
89#define SHORT_SLOT_TIME 9
90#define LONG_SLOT_TIME 20
91
92/* RSSI to dBm */
93#define IWL_RSSI_OFFSET 44
94
95/*
Ben Cahill796083c2007-11-29 11:09:45 +080096 * EEPROM related constants, enums, and structures.
Christoph Hellwig5d08cd12007-10-25 17:15:50 +080097 */
98
Ben Cahill796083c2007-11-29 11:09:45 +080099/*
100 * EEPROM access time values:
101 *
102 * Driver initiates EEPROM read by writing byte address << 1 to CSR_EEPROM_REG,
103 * then clearing (with subsequent read/modify/write) CSR_EEPROM_REG bit
104 * CSR_EEPROM_REG_BIT_CMD (0x2).
105 * Driver then polls CSR_EEPROM_REG for CSR_EEPROM_REG_READ_VALID_MSK (0x1).
106 * When polling, wait 10 uSec between polling loops, up to a maximum 5000 uSec.
107 * Driver reads 16-bit value from bits 31-16 of CSR_EEPROM_REG.
108 */
Christoph Hellwig5d08cd12007-10-25 17:15:50 +0800109#define IWL_EEPROM_ACCESS_TIMEOUT 5000 /* uSec */
110#define IWL_EEPROM_ACCESS_DELAY 10 /* uSec */
Ben Cahill796083c2007-11-29 11:09:45 +0800111
Ben Cahill796083c2007-11-29 11:09:45 +0800112/*
113 * Regulatory channel usage flags in EEPROM struct iwl4965_eeprom_channel.flags.
114 *
115 * IBSS and/or AP operation is allowed *only* on those channels with
116 * (VALID && IBSS && ACTIVE && !RADAR). This restriction is in place because
117 * RADAR detection is not supported by the 4965 driver, but is a
118 * requirement for establishing a new network for legal operation on channels
119 * requiring RADAR detection or restricting ACTIVE scanning.
120 *
121 * NOTE: "WIDE" flag does not indicate anything about "FAT" 40 MHz channels.
122 * It only indicates that 20 MHz channel use is supported; FAT channel
123 * usage is indicated by a separate set of regulatory flags for each
124 * FAT channel pair.
125 *
126 * NOTE: Using a channel inappropriately will result in a uCode error!
127 */
Christoph Hellwig5d08cd12007-10-25 17:15:50 +0800128enum {
129 EEPROM_CHANNEL_VALID = (1 << 0), /* usable for this SKU/geo */
Ben Cahill796083c2007-11-29 11:09:45 +0800130 EEPROM_CHANNEL_IBSS = (1 << 1), /* usable as an IBSS channel */
Christoph Hellwig5d08cd12007-10-25 17:15:50 +0800131 /* Bit 2 Reserved */
132 EEPROM_CHANNEL_ACTIVE = (1 << 3), /* active scanning allowed */
133 EEPROM_CHANNEL_RADAR = (1 << 4), /* radar detection required */
Ben Cahill796083c2007-11-29 11:09:45 +0800134 EEPROM_CHANNEL_WIDE = (1 << 5), /* 20 MHz channel okay */
Ben Cahill2248d8d2007-11-29 11:09:58 +0800135 EEPROM_CHANNEL_NARROW = (1 << 6), /* 10 MHz channel (not used) */
Christoph Hellwig5d08cd12007-10-25 17:15:50 +0800136 EEPROM_CHANNEL_DFS = (1 << 7), /* dynamic freq selection candidate */
137};
138
Christoph Hellwig5d08cd12007-10-25 17:15:50 +0800139/* SKU Capabilities */
140#define EEPROM_SKU_CAP_SW_RF_KILL_ENABLE (1 << 0)
141#define EEPROM_SKU_CAP_HW_RF_KILL_ENABLE (1 << 1)
Christoph Hellwig5d08cd12007-10-25 17:15:50 +0800142
Ben Cahill796083c2007-11-29 11:09:45 +0800143/* *regulatory* channel data format in eeprom, one for each channel.
144 * There are separate entries for FAT (40 MHz) vs. normal (20 MHz) channels. */
Christoph Hellwigbb8c0932008-01-27 16:41:47 -0800145struct iwl4965_eeprom_channel {
Ben Cahill796083c2007-11-29 11:09:45 +0800146 u8 flags; /* EEPROM_CHANNEL_* flags copied from EEPROM */
Christoph Hellwig5d08cd12007-10-25 17:15:50 +0800147 s8 max_power_avg; /* max power (dBm) on this chnl, limit 31 */
148} __attribute__ ((packed));
149
Ben Cahill796083c2007-11-29 11:09:45 +0800150/* 4965 has two radio transmitters (and 3 radio receivers) */
Christoph Hellwig5d08cd12007-10-25 17:15:50 +0800151#define EEPROM_TX_POWER_TX_CHAINS (2)
Ben Cahill796083c2007-11-29 11:09:45 +0800152
153/* 4965 has room for up to 8 sets of txpower calibration data */
Christoph Hellwig5d08cd12007-10-25 17:15:50 +0800154#define EEPROM_TX_POWER_BANDS (8)
Ben Cahill796083c2007-11-29 11:09:45 +0800155
156/* 4965 factory calibration measures txpower gain settings for
157 * each of 3 target output levels */
Christoph Hellwig5d08cd12007-10-25 17:15:50 +0800158#define EEPROM_TX_POWER_MEASUREMENTS (3)
Ben Cahill796083c2007-11-29 11:09:45 +0800159
Ben Cahill796083c2007-11-29 11:09:45 +0800160/* 4965 driver does not work with txpower calibration version < 5.
161 * Look for this in calib_version member of struct iwl4965_eeprom. */
Christoph Hellwig5d08cd12007-10-25 17:15:50 +0800162#define EEPROM_TX_POWER_VERSION_NEW (5)
163
Ben Cahill796083c2007-11-29 11:09:45 +0800164
165/*
166 * 4965 factory calibration data for one txpower level, on one channel,
167 * measured on one of the 2 tx chains (radio transmitter and associated
168 * antenna). EEPROM contains:
169 *
170 * 1) Temperature (degrees Celsius) of device when measurement was made.
171 *
172 * 2) Gain table index used to achieve the target measurement power.
173 * This refers to the "well-known" gain tables (see iwl-4965-hw.h).
174 *
175 * 3) Actual measured output power, in half-dBm ("34" = 17 dBm).
176 *
177 * 4) RF power amplifier detector level measurement (not used).
178 */
Christoph Hellwigbb8c0932008-01-27 16:41:47 -0800179struct iwl4965_eeprom_calib_measure {
Ben Cahill796083c2007-11-29 11:09:45 +0800180 u8 temperature; /* Device temperature (Celsius) */
181 u8 gain_idx; /* Index into gain table */
182 u8 actual_pow; /* Measured RF output power, half-dBm */
183 s8 pa_det; /* Power amp detector level (not used) */
Christoph Hellwig5d08cd12007-10-25 17:15:50 +0800184} __attribute__ ((packed));
185
Ben Cahill796083c2007-11-29 11:09:45 +0800186
187/*
188 * 4965 measurement set for one channel. EEPROM contains:
189 *
190 * 1) Channel number measured
191 *
192 * 2) Measurements for each of 3 power levels for each of 2 radio transmitters
193 * (a.k.a. "tx chains") (6 measurements altogether)
194 */
Christoph Hellwigbb8c0932008-01-27 16:41:47 -0800195struct iwl4965_eeprom_calib_ch_info {
Christoph Hellwig5d08cd12007-10-25 17:15:50 +0800196 u8 ch_num;
Christoph Hellwigbb8c0932008-01-27 16:41:47 -0800197 struct iwl4965_eeprom_calib_measure measurements[EEPROM_TX_POWER_TX_CHAINS]
Christoph Hellwig5d08cd12007-10-25 17:15:50 +0800198 [EEPROM_TX_POWER_MEASUREMENTS];
199} __attribute__ ((packed));
200
Ben Cahill796083c2007-11-29 11:09:45 +0800201/*
202 * 4965 txpower subband info.
203 *
204 * For each frequency subband, EEPROM contains the following:
205 *
206 * 1) First and last channels within range of the subband. "0" values
207 * indicate that this sample set is not being used.
208 *
209 * 2) Sample measurement sets for 2 channels close to the range endpoints.
210 */
Christoph Hellwigbb8c0932008-01-27 16:41:47 -0800211struct iwl4965_eeprom_calib_subband_info {
Ben Cahill796083c2007-11-29 11:09:45 +0800212 u8 ch_from; /* channel number of lowest channel in subband */
213 u8 ch_to; /* channel number of highest channel in subband */
Christoph Hellwigbb8c0932008-01-27 16:41:47 -0800214 struct iwl4965_eeprom_calib_ch_info ch1;
215 struct iwl4965_eeprom_calib_ch_info ch2;
Christoph Hellwig5d08cd12007-10-25 17:15:50 +0800216} __attribute__ ((packed));
217
Ben Cahill796083c2007-11-29 11:09:45 +0800218
219/*
220 * 4965 txpower calibration info. EEPROM contains:
221 *
222 * 1) Factory-measured saturation power levels (maximum levels at which
223 * tx power amplifier can output a signal without too much distortion).
224 * There is one level for 2.4 GHz band and one for 5 GHz band. These
225 * values apply to all channels within each of the bands.
226 *
227 * 2) Factory-measured power supply voltage level. This is assumed to be
228 * constant (i.e. same value applies to all channels/bands) while the
229 * factory measurements are being made.
230 *
231 * 3) Up to 8 sets of factory-measured txpower calibration values.
232 * These are for different frequency ranges, since txpower gain
233 * characteristics of the analog radio circuitry vary with frequency.
234 *
235 * Not all sets need to be filled with data;
236 * struct iwl4965_eeprom_calib_subband_info contains range of channels
237 * (0 if unused) for each set of data.
238 */
Christoph Hellwigbb8c0932008-01-27 16:41:47 -0800239struct iwl4965_eeprom_calib_info {
Ben Cahill796083c2007-11-29 11:09:45 +0800240 u8 saturation_power24; /* half-dBm (e.g. "34" = 17 dBm) */
241 u8 saturation_power52; /* half-dBm */
Christoph Hellwig5d08cd12007-10-25 17:15:50 +0800242 s16 voltage; /* signed */
Christoph Hellwigbb8c0932008-01-27 16:41:47 -0800243 struct iwl4965_eeprom_calib_subband_info band_info[EEPROM_TX_POWER_BANDS];
Christoph Hellwig5d08cd12007-10-25 17:15:50 +0800244} __attribute__ ((packed));
245
246
Ben Cahill796083c2007-11-29 11:09:45 +0800247/*
248 * 4965 EEPROM map
249 */
Christoph Hellwigbb8c0932008-01-27 16:41:47 -0800250struct iwl4965_eeprom {
Christoph Hellwig5d08cd12007-10-25 17:15:50 +0800251 u8 reserved0[16];
252#define EEPROM_DEVICE_ID (2*0x08) /* 2 bytes */
Ben Cahill796083c2007-11-29 11:09:45 +0800253 u16 device_id; /* abs.ofs: 16 */
Christoph Hellwig5d08cd12007-10-25 17:15:50 +0800254 u8 reserved1[2];
255#define EEPROM_PMC (2*0x0A) /* 2 bytes */
256 u16 pmc; /* abs.ofs: 20 */
257 u8 reserved2[20];
258#define EEPROM_MAC_ADDRESS (2*0x15) /* 6 bytes */
259 u8 mac_address[6]; /* abs.ofs: 42 */
260 u8 reserved3[58];
261#define EEPROM_BOARD_REVISION (2*0x35) /* 2 bytes */
262 u16 board_revision; /* abs.ofs: 106 */
263 u8 reserved4[11];
264#define EEPROM_BOARD_PBA_NUMBER (2*0x3B+1) /* 9 bytes */
265 u8 board_pba_number[9]; /* abs.ofs: 119 */
266 u8 reserved5[8];
267#define EEPROM_VERSION (2*0x44) /* 2 bytes */
268 u16 version; /* abs.ofs: 136 */
269#define EEPROM_SKU_CAP (2*0x45) /* 1 bytes */
270 u8 sku_cap; /* abs.ofs: 138 */
271#define EEPROM_LEDS_MODE (2*0x45+1) /* 1 bytes */
272 u8 leds_mode; /* abs.ofs: 139 */
273#define EEPROM_OEM_MODE (2*0x46) /* 2 bytes */
274 u16 oem_mode;
275#define EEPROM_WOWLAN_MODE (2*0x47) /* 2 bytes */
276 u16 wowlan_mode; /* abs.ofs: 142 */
277#define EEPROM_LEDS_TIME_INTERVAL (2*0x48) /* 2 bytes */
278 u16 leds_time_interval; /* abs.ofs: 144 */
279#define EEPROM_LEDS_OFF_TIME (2*0x49) /* 1 bytes */
280 u8 leds_off_time; /* abs.ofs: 146 */
281#define EEPROM_LEDS_ON_TIME (2*0x49+1) /* 1 bytes */
282 u8 leds_on_time; /* abs.ofs: 147 */
283#define EEPROM_ALMGOR_M_VERSION (2*0x4A) /* 1 bytes */
284 u8 almgor_m_version; /* abs.ofs: 148 */
285#define EEPROM_ANTENNA_SWITCH_TYPE (2*0x4A+1) /* 1 bytes */
286 u8 antenna_switch_type; /* abs.ofs: 149 */
287 u8 reserved6[8];
288#define EEPROM_4965_BOARD_REVISION (2*0x4F) /* 2 bytes */
289 u16 board_revision_4965; /* abs.ofs: 158 */
290 u8 reserved7[13];
291#define EEPROM_4965_BOARD_PBA (2*0x56+1) /* 9 bytes */
292 u8 board_pba_number_4965[9]; /* abs.ofs: 173 */
293 u8 reserved8[10];
294#define EEPROM_REGULATORY_SKU_ID (2*0x60) /* 4 bytes */
295 u8 sku_id[4]; /* abs.ofs: 192 */
Ben Cahill796083c2007-11-29 11:09:45 +0800296
297/*
298 * Per-channel regulatory data.
299 *
300 * Each channel that *might* be supported by 3945 or 4965 has a fixed location
301 * in EEPROM containing EEPROM_CHANNEL_* usage flags (LSB) and max regulatory
302 * txpower (MSB).
303 *
304 * Entries immediately below are for 20 MHz channel width. FAT (40 MHz)
305 * channels (only for 4965, not supported by 3945) appear later in the EEPROM.
306 *
307 * 2.4 GHz channels 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
308 */
Christoph Hellwig5d08cd12007-10-25 17:15:50 +0800309#define EEPROM_REGULATORY_BAND_1 (2*0x62) /* 2 bytes */
310 u16 band_1_count; /* abs.ofs: 196 */
311#define EEPROM_REGULATORY_BAND_1_CHANNELS (2*0x63) /* 28 bytes */
Ben Cahill796083c2007-11-29 11:09:45 +0800312 struct iwl4965_eeprom_channel band_1_channels[14]; /* abs.ofs: 196 */
313
314/*
315 * 4.9 GHz channels 183, 184, 185, 187, 188, 189, 192, 196,
316 * 5.0 GHz channels 7, 8, 11, 12, 16
317 * (4915-5080MHz) (none of these is ever supported)
318 */
Christoph Hellwig5d08cd12007-10-25 17:15:50 +0800319#define EEPROM_REGULATORY_BAND_2 (2*0x71) /* 2 bytes */
320 u16 band_2_count; /* abs.ofs: 226 */
321#define EEPROM_REGULATORY_BAND_2_CHANNELS (2*0x72) /* 26 bytes */
Ben Cahill796083c2007-11-29 11:09:45 +0800322 struct iwl4965_eeprom_channel band_2_channels[13]; /* abs.ofs: 228 */
323
324/*
325 * 5.2 GHz channels 34, 36, 38, 40, 42, 44, 46, 48, 52, 56, 60, 64
326 * (5170-5320MHz)
327 */
Christoph Hellwig5d08cd12007-10-25 17:15:50 +0800328#define EEPROM_REGULATORY_BAND_3 (2*0x7F) /* 2 bytes */
329 u16 band_3_count; /* abs.ofs: 254 */
330#define EEPROM_REGULATORY_BAND_3_CHANNELS (2*0x80) /* 24 bytes */
Ben Cahill796083c2007-11-29 11:09:45 +0800331 struct iwl4965_eeprom_channel band_3_channels[12]; /* abs.ofs: 256 */
332
333/*
334 * 5.5 GHz channels 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140
335 * (5500-5700MHz)
336 */
Christoph Hellwig5d08cd12007-10-25 17:15:50 +0800337#define EEPROM_REGULATORY_BAND_4 (2*0x8C) /* 2 bytes */
338 u16 band_4_count; /* abs.ofs: 280 */
339#define EEPROM_REGULATORY_BAND_4_CHANNELS (2*0x8D) /* 22 bytes */
Ben Cahill796083c2007-11-29 11:09:45 +0800340 struct iwl4965_eeprom_channel band_4_channels[11]; /* abs.ofs: 282 */
341
342/*
343 * 5.7 GHz channels 145, 149, 153, 157, 161, 165
344 * (5725-5825MHz)
345 */
Christoph Hellwig5d08cd12007-10-25 17:15:50 +0800346#define EEPROM_REGULATORY_BAND_5 (2*0x98) /* 2 bytes */
347 u16 band_5_count; /* abs.ofs: 304 */
348#define EEPROM_REGULATORY_BAND_5_CHANNELS (2*0x99) /* 12 bytes */
Ben Cahill796083c2007-11-29 11:09:45 +0800349 struct iwl4965_eeprom_channel band_5_channels[6]; /* abs.ofs: 306 */
Christoph Hellwig5d08cd12007-10-25 17:15:50 +0800350
351 u8 reserved10[2];
Ben Cahill796083c2007-11-29 11:09:45 +0800352
353
354/*
355 * 2.4 GHz FAT channels 1 (5), 2 (6), 3 (7), 4 (8), 5 (9), 6 (10), 7 (11)
356 *
357 * The channel listed is the center of the lower 20 MHz half of the channel.
358 * The overall center frequency is actually 2 channels (10 MHz) above that,
359 * and the upper half of each FAT channel is centered 4 channels (20 MHz) away
360 * from the lower half; e.g. the upper half of FAT channel 1 is channel 5,
361 * and the overall FAT channel width centers on channel 3.
362 *
363 * NOTE: The RXON command uses 20 MHz channel numbers to specify the
364 * control channel to which to tune. RXON also specifies whether the
365 * control channel is the upper or lower half of a FAT channel.
366 *
367 * NOTE: 4965 does not support FAT channels on 2.4 GHz.
368 */
Christoph Hellwig5d08cd12007-10-25 17:15:50 +0800369#define EEPROM_REGULATORY_BAND_24_FAT_CHANNELS (2*0xA0) /* 14 bytes */
Ben Cahill796083c2007-11-29 11:09:45 +0800370 struct iwl4965_eeprom_channel band_24_channels[7]; /* abs.ofs: 320 */
Christoph Hellwig5d08cd12007-10-25 17:15:50 +0800371 u8 reserved11[2];
Ben Cahill796083c2007-11-29 11:09:45 +0800372
373/*
374 * 5.2 GHz FAT channels 36 (40), 44 (48), 52 (56), 60 (64),
375 * 100 (104), 108 (112), 116 (120), 124 (128), 132 (136), 149 (153), 157 (161)
376 */
Christoph Hellwig5d08cd12007-10-25 17:15:50 +0800377#define EEPROM_REGULATORY_BAND_52_FAT_CHANNELS (2*0xA8) /* 22 bytes */
Ben Cahill796083c2007-11-29 11:09:45 +0800378 struct iwl4965_eeprom_channel band_52_channels[11]; /* abs.ofs: 336 */
Christoph Hellwig5d08cd12007-10-25 17:15:50 +0800379 u8 reserved12[6];
Ben Cahill796083c2007-11-29 11:09:45 +0800380
381/*
382 * 4965 driver requires txpower calibration format version 5 or greater.
383 * Driver does not work with txpower calibration version < 5.
384 * This value is simply a 16-bit number, no major/minor versions here.
385 */
Christoph Hellwig5d08cd12007-10-25 17:15:50 +0800386#define EEPROM_CALIB_VERSION_OFFSET (2*0xB6) /* 2 bytes */
387 u16 calib_version; /* abs.ofs: 364 */
388 u8 reserved13[2];
Ben Cahill40ac81a2007-11-29 11:09:46 +0800389 u8 reserved14[96]; /* abs.ofs: 368 */
Ben Cahill796083c2007-11-29 11:09:45 +0800390
391/*
392 * 4965 Txpower calibration data.
393 */
Christoph Hellwig5d08cd12007-10-25 17:15:50 +0800394#define EEPROM_IWL_CALIB_TXPOWER_OFFSET (2*0xE8) /* 48 bytes */
Christoph Hellwigbb8c0932008-01-27 16:41:47 -0800395 struct iwl4965_eeprom_calib_info calib_info; /* abs.ofs: 464 */
Christoph Hellwig5d08cd12007-10-25 17:15:50 +0800396
397 u8 reserved16[140]; /* fill out to full 1024 byte block */
398
399
400} __attribute__ ((packed));
401
402#define IWL_EEPROM_IMAGE_SIZE 1024
403
Ben Cahill796083c2007-11-29 11:09:45 +0800404/* End of EEPROM */
Christoph Hellwig5d08cd12007-10-25 17:15:50 +0800405
406#include "iwl-4965-commands.h"
407
408#define PCI_LINK_CTRL 0x0F0
409#define PCI_POWER_SOURCE 0x0C8
410#define PCI_REG_WUM8 0x0E8
411#define PCI_CFG_PMC_PME_FROM_D3COLD_SUPPORT (0x80000000)
412
413/*=== CSR (control and status registers) ===*/
414#define CSR_BASE (0x000)
415
416#define CSR_SW_VER (CSR_BASE+0x000)
417#define CSR_HW_IF_CONFIG_REG (CSR_BASE+0x000) /* hardware interface config */
418#define CSR_INT_COALESCING (CSR_BASE+0x004) /* accum ints, 32-usec units */
419#define CSR_INT (CSR_BASE+0x008) /* host interrupt status/ack */
420#define CSR_INT_MASK (CSR_BASE+0x00c) /* host interrupt enable */
421#define CSR_FH_INT_STATUS (CSR_BASE+0x010) /* busmaster int status/ack*/
422#define CSR_GPIO_IN (CSR_BASE+0x018) /* read external chip pins */
423#define CSR_RESET (CSR_BASE+0x020) /* busmaster enable, NMI, etc*/
424#define CSR_GP_CNTRL (CSR_BASE+0x024)
Ben Cahill1fea8e82007-11-29 11:09:52 +0800425
426/*
427 * Hardware revision info
428 * Bit fields:
429 * 31-8: Reserved
430 * 7-4: Type of device: 0x0 = 4965, 0xd = 3945
431 * 3-2: Revision step: 0 = A, 1 = B, 2 = C, 3 = D
432 * 1-0: "Dash" value, as in A-1, etc.
433 *
434 * NOTE: Revision step affects calculation of CCK txpower for 4965.
435 */
Christoph Hellwig5d08cd12007-10-25 17:15:50 +0800436#define CSR_HW_REV (CSR_BASE+0x028)
Ben Cahill1fea8e82007-11-29 11:09:52 +0800437
438/* EEPROM reads */
Christoph Hellwig5d08cd12007-10-25 17:15:50 +0800439#define CSR_EEPROM_REG (CSR_BASE+0x02c)
440#define CSR_EEPROM_GP (CSR_BASE+0x030)
441#define CSR_GP_UCODE (CSR_BASE+0x044)
442#define CSR_UCODE_DRV_GP1 (CSR_BASE+0x054)
443#define CSR_UCODE_DRV_GP1_SET (CSR_BASE+0x058)
444#define CSR_UCODE_DRV_GP1_CLR (CSR_BASE+0x05c)
445#define CSR_UCODE_DRV_GP2 (CSR_BASE+0x060)
Christoph Hellwig5d08cd12007-10-25 17:15:50 +0800446#define CSR_GIO_CHICKEN_BITS (CSR_BASE+0x100)
Ben Cahill1fea8e82007-11-29 11:09:52 +0800447
448/*
449 * Indicates hardware rev, to determine CCK backoff for txpower calculation.
450 * Bit fields:
451 * 3-2: 0 = A, 1 = B, 2 = C, 3 = D step
452 */
Christoph Hellwig5d08cd12007-10-25 17:15:50 +0800453#define CSR_HW_REV_WA_REG (CSR_BASE+0x22C)
454
Christoph Hellwig5d08cd12007-10-25 17:15:50 +0800455/* interrupt flags in INTA, set by uCode or hardware (e.g. dma),
456 * acknowledged (reset) by host writing "1" to flagged bits. */
457#define CSR_INT_BIT_FH_RX (1<<31) /* Rx DMA, cmd responses, FH_INT[17:16] */
458#define CSR_INT_BIT_HW_ERR (1<<29) /* DMA hardware error FH_INT[31] */
459#define CSR_INT_BIT_DNLD (1<<28) /* uCode Download */
460#define CSR_INT_BIT_FH_TX (1<<27) /* Tx DMA FH_INT[1:0] */
461#define CSR_INT_BIT_MAC_CLK_ACTV (1<<26) /* NIC controller's clock toggled on/off */
462#define CSR_INT_BIT_SW_ERR (1<<25) /* uCode error */
463#define CSR_INT_BIT_RF_KILL (1<<7) /* HW RFKILL switch GP_CNTRL[27] toggled */
464#define CSR_INT_BIT_CT_KILL (1<<6) /* Critical temp (chip too hot) rfkill */
465#define CSR_INT_BIT_SW_RX (1<<3) /* Rx, command responses, 3945 */
466#define CSR_INT_BIT_WAKEUP (1<<1) /* NIC controller waking up (pwr mgmt) */
467#define CSR_INT_BIT_ALIVE (1<<0) /* uCode interrupts once it initializes */
468
469#define CSR_INI_SET_MASK (CSR_INT_BIT_FH_RX | \
470 CSR_INT_BIT_HW_ERR | \
471 CSR_INT_BIT_FH_TX | \
472 CSR_INT_BIT_SW_ERR | \
473 CSR_INT_BIT_RF_KILL | \
474 CSR_INT_BIT_SW_RX | \
475 CSR_INT_BIT_WAKEUP | \
476 CSR_INT_BIT_ALIVE)
477
478/* interrupt flags in FH (flow handler) (PCI busmaster DMA) */
479#define CSR_FH_INT_BIT_ERR (1<<31) /* Error */
480#define CSR_FH_INT_BIT_HI_PRIOR (1<<30) /* High priority Rx, bypass coalescing */
Christoph Hellwig5d08cd12007-10-25 17:15:50 +0800481#define CSR_FH_INT_BIT_RX_CHNL1 (1<<17) /* Rx channel 1 */
482#define CSR_FH_INT_BIT_RX_CHNL0 (1<<16) /* Rx channel 0 */
Christoph Hellwig5d08cd12007-10-25 17:15:50 +0800483#define CSR_FH_INT_BIT_TX_CHNL1 (1<<1) /* Tx channel 1 */
484#define CSR_FH_INT_BIT_TX_CHNL0 (1<<0) /* Tx channel 0 */
485
486#define CSR_FH_INT_RX_MASK (CSR_FH_INT_BIT_HI_PRIOR | \
Christoph Hellwig5d08cd12007-10-25 17:15:50 +0800487 CSR_FH_INT_BIT_RX_CHNL1 | \
488 CSR_FH_INT_BIT_RX_CHNL0)
489
Ben Cahill2248d8d2007-11-29 11:09:58 +0800490#define CSR_FH_INT_TX_MASK (CSR_FH_INT_BIT_TX_CHNL1 | \
Jeff Garzik93a3b602007-11-23 21:50:20 -0500491 CSR_FH_INT_BIT_TX_CHNL0)
Christoph Hellwig5d08cd12007-10-25 17:15:50 +0800492
493
494/* RESET */
495#define CSR_RESET_REG_FLAG_NEVO_RESET (0x00000001)
496#define CSR_RESET_REG_FLAG_FORCE_NMI (0x00000002)
497#define CSR_RESET_REG_FLAG_SW_RESET (0x00000080)
498#define CSR_RESET_REG_FLAG_MASTER_DISABLED (0x00000100)
499#define CSR_RESET_REG_FLAG_STOP_MASTER (0x00000200)
500
501/* GP (general purpose) CONTROL */
502#define CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY (0x00000001)
503#define CSR_GP_CNTRL_REG_FLAG_INIT_DONE (0x00000004)
504#define CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ (0x00000008)
505#define CSR_GP_CNTRL_REG_FLAG_GOING_TO_SLEEP (0x00000010)
506
507#define CSR_GP_CNTRL_REG_VAL_MAC_ACCESS_EN (0x00000001)
508
509#define CSR_GP_CNTRL_REG_MSK_POWER_SAVE_TYPE (0x07000000)
510#define CSR_GP_CNTRL_REG_FLAG_MAC_POWER_SAVE (0x04000000)
511#define CSR_GP_CNTRL_REG_FLAG_HW_RF_KILL_SW (0x08000000)
512
513
514/* EEPROM REG */
515#define CSR_EEPROM_REG_READ_VALID_MSK (0x00000001)
516#define CSR_EEPROM_REG_BIT_CMD (0x00000002)
517
518/* EEPROM GP */
519#define CSR_EEPROM_GP_VALID_MSK (0x00000006)
520#define CSR_EEPROM_GP_BAD_SIGNATURE (0x00000000)
521#define CSR_EEPROM_GP_IF_OWNER_MSK (0x00000180)
522
523/* UCODE DRV GP */
524#define CSR_UCODE_DRV_GP1_BIT_MAC_SLEEP (0x00000001)
525#define CSR_UCODE_SW_BIT_RFKILL (0x00000002)
526#define CSR_UCODE_DRV_GP1_BIT_CMD_BLOCKED (0x00000004)
527#define CSR_UCODE_DRV_GP1_REG_BIT_CT_KILL_EXIT (0x00000008)
528
529/* GPIO */
530#define CSR_GPIO_IN_BIT_AUX_POWER (0x00000200)
531#define CSR_GPIO_IN_VAL_VAUX_PWR_SRC (0x00000000)
532#define CSR_GPIO_IN_VAL_VMAIN_PWR_SRC CSR_GPIO_IN_BIT_AUX_POWER
533
534/* GI Chicken Bits */
535#define CSR_GIO_CHICKEN_BITS_REG_BIT_L1A_NO_L0S_RX (0x00800000)
536#define CSR_GIO_CHICKEN_BITS_REG_BIT_DIS_L0S_EXIT_TIMER (0x20000000)
537
Christoph Hellwig5d08cd12007-10-25 17:15:50 +0800538/*=== HBUS (Host-side Bus) ===*/
539#define HBUS_BASE (0x400)
540
Ben Cahill1fea8e82007-11-29 11:09:52 +0800541/*
542 * Registers for accessing device's internal SRAM memory (e.g. SCD SRAM
543 * structures, error log, event log, verifying uCode load).
544 * First write to address register, then read from or write to data register
545 * to complete the job. Once the address register is set up, accesses to
546 * data registers auto-increment the address by one dword.
547 * Bit usage for address registers (read or write):
548 * 0-31: memory address within device
549 */
Christoph Hellwig5d08cd12007-10-25 17:15:50 +0800550#define HBUS_TARG_MEM_RADDR (HBUS_BASE+0x00c)
551#define HBUS_TARG_MEM_WADDR (HBUS_BASE+0x010)
552#define HBUS_TARG_MEM_WDAT (HBUS_BASE+0x018)
553#define HBUS_TARG_MEM_RDAT (HBUS_BASE+0x01c)
Ben Cahill1fea8e82007-11-29 11:09:52 +0800554
555/*
556 * Registers for accessing device's internal peripheral registers
557 * (e.g. SCD, BSM, etc.). First write to address register,
558 * then read from or write to data register to complete the job.
559 * Bit usage for address registers (read or write):
560 * 0-15: register address (offset) within device
561 * 24-25: (# bytes - 1) to read or write (e.g. 3 for dword)
562 */
Christoph Hellwig5d08cd12007-10-25 17:15:50 +0800563#define HBUS_TARG_PRPH_WADDR (HBUS_BASE+0x044)
564#define HBUS_TARG_PRPH_RADDR (HBUS_BASE+0x048)
565#define HBUS_TARG_PRPH_WDAT (HBUS_BASE+0x04c)
566#define HBUS_TARG_PRPH_RDAT (HBUS_BASE+0x050)
Ben Cahill1fea8e82007-11-29 11:09:52 +0800567
568/*
569 * Per-Tx-queue write pointer (index, really!) (3945 and 4965).
Ben Cahill483fd7e2007-11-29 11:10:05 +0800570 * Driver sets this to indicate index to next TFD that driver will fill
571 * (1 past latest filled).
Ben Cahill1fea8e82007-11-29 11:09:52 +0800572 * Bit usage:
573 * 0-7: queue write index (0-255)
574 * 11-8: queue selector (0-15)
575 */
Christoph Hellwig5d08cd12007-10-25 17:15:50 +0800576#define HBUS_TARG_WRPTR (HBUS_BASE+0x060)
577
578#define HBUS_TARG_MBX_C (HBUS_BASE+0x030)
579
Christoph Hellwig5d08cd12007-10-25 17:15:50 +0800580#define HBUS_TARG_MBX_C_REG_BIT_CMD_BLOCKED (0x00000004)
581
Christoph Hellwig5d08cd12007-10-25 17:15:50 +0800582#define TFD_QUEUE_SIZE_MAX (256)
583
Christoph Hellwig5d08cd12007-10-25 17:15:50 +0800584#define IWL_NUM_SCAN_RATES (2)
585
Christoph Hellwig5d08cd12007-10-25 17:15:50 +0800586#define IWL_DEFAULT_TX_RETRY 15
Christoph Hellwig5d08cd12007-10-25 17:15:50 +0800587
588#define RX_QUEUE_SIZE 256
589#define RX_QUEUE_MASK 255
590#define RX_QUEUE_SIZE_LOG 8
591
Christoph Hellwig5d08cd12007-10-25 17:15:50 +0800592#define TFD_TX_CMD_SLOTS 256
593#define TFD_CMD_SLOTS 32
594
Christoph Hellwigbb8c0932008-01-27 16:41:47 -0800595#define TFD_MAX_PAYLOAD_SIZE (sizeof(struct iwl4965_cmd) - \
596 sizeof(struct iwl4965_cmd_meta))
Christoph Hellwig5d08cd12007-10-25 17:15:50 +0800597
598/*
599 * RX related structures and functions
600 */
601#define RX_FREE_BUFFERS 64
602#define RX_LOW_WATERMARK 8
603
Ben Cahillfcd427b2007-11-29 11:10:00 +0800604/* Size of one Rx buffer in host DRAM */
Zhu Yib481de92007-09-25 17:54:57 -0700605#define IWL_RX_BUF_SIZE (4 * 1024)
Ben Cahillfcd427b2007-11-29 11:10:00 +0800606
607/* Sizes and addresses for instruction and data memory (SRAM) in
608 * 4965's embedded processor. Driver access is via HBUS_TARG_MEM_* regs. */
609#define RTC_INST_LOWER_BOUND (0x000000)
Zhu Yib481de92007-09-25 17:54:57 -0700610#define KDR_RTC_INST_UPPER_BOUND (0x018000)
Ben Cahillfcd427b2007-11-29 11:10:00 +0800611
612#define RTC_DATA_LOWER_BOUND (0x800000)
Zhu Yib481de92007-09-25 17:54:57 -0700613#define KDR_RTC_DATA_UPPER_BOUND (0x80A000)
Ben Cahillfcd427b2007-11-29 11:10:00 +0800614
Zhu Yib481de92007-09-25 17:54:57 -0700615#define KDR_RTC_INST_SIZE (KDR_RTC_INST_UPPER_BOUND - RTC_INST_LOWER_BOUND)
616#define KDR_RTC_DATA_SIZE (KDR_RTC_DATA_UPPER_BOUND - RTC_DATA_LOWER_BOUND)
617
618#define IWL_MAX_INST_SIZE KDR_RTC_INST_SIZE
619#define IWL_MAX_DATA_SIZE KDR_RTC_DATA_SIZE
620
Ben Cahillfcd427b2007-11-29 11:10:00 +0800621/* Size of uCode instruction memory in bootstrap state machine */
622#define IWL_MAX_BSM_SIZE BSM_SRAM_SIZE
623
Christoph Hellwigbb8c0932008-01-27 16:41:47 -0800624static inline int iwl4965_hw_valid_rtc_data_addr(u32 addr)
Zhu Yib481de92007-09-25 17:54:57 -0700625{
626 return (addr >= RTC_DATA_LOWER_BOUND) &&
627 (addr < KDR_RTC_DATA_UPPER_BOUND);
628}
629
Ben Cahill5991b412007-11-29 11:10:01 +0800630/********************* START TEMPERATURE *************************************/
631
Ben Cahill0c434c52007-11-29 11:10:02 +0800632/**
Ben Cahill5991b412007-11-29 11:10:01 +0800633 * 4965 temperature calculation.
634 *
635 * The driver must calculate the device temperature before calculating
636 * a txpower setting (amplifier gain is temperature dependent). The
637 * calculation uses 4 measurements, 3 of which (R1, R2, R3) are calibration
638 * values used for the life of the driver, and one of which (R4) is the
639 * real-time temperature indicator.
640 *
641 * uCode provides all 4 values to the driver via the "initialize alive"
642 * notification (see struct iwl4965_init_alive_resp). After the runtime uCode
643 * image loads, uCode updates the R4 value via statistics notifications
644 * (see STATISTICS_NOTIFICATION), which occur after each received beacon
645 * when associated, or can be requested via REPLY_STATISTICS_CMD.
646 *
647 * NOTE: uCode provides the R4 value as a 23-bit signed value. Driver
648 * must sign-extend to 32 bits before applying formula below.
649 *
650 * Formula:
651 *
652 * degrees Kelvin = ((97 * 259 * (R4 - R2) / (R3 - R1)) / 100) + 8
653 *
654 * NOTE: The basic formula is 259 * (R4-R2) / (R3-R1). The 97/100 is
655 * an additional correction, which should be centered around 0 degrees
656 * Celsius (273 degrees Kelvin). The 8 (3 percent of 273) compensates for
657 * centering the 97/100 correction around 0 degrees K.
658 *
659 * Add 273 to Kelvin value to find degrees Celsius, for comparing current
660 * temperature with factory-measured temperatures when calculating txpower
661 * settings.
662 */
663#define TEMPERATURE_CALIB_KELVIN_OFFSET 8
664#define TEMPERATURE_CALIB_A_VAL 259
665
666/* Limit range of calculated temperature to be between these Kelvin values */
667#define IWL_TX_POWER_TEMPERATURE_MIN (263)
668#define IWL_TX_POWER_TEMPERATURE_MAX (410)
669
670#define IWL_TX_POWER_TEMPERATURE_OUT_OF_RANGE(t) \
671 (((t) < IWL_TX_POWER_TEMPERATURE_MIN) || \
672 ((t) > IWL_TX_POWER_TEMPERATURE_MAX))
673
674/********************* END TEMPERATURE ***************************************/
675
Zhu Yib481de92007-09-25 17:54:57 -0700676/********************* START TXPOWER *****************************************/
Zhu Yib481de92007-09-25 17:54:57 -0700677
Ben Cahill0c434c52007-11-29 11:10:02 +0800678/**
679 * 4965 txpower calculations rely on information from three sources:
680 *
681 * 1) EEPROM
682 * 2) "initialize" alive notification
683 * 3) statistics notifications
684 *
685 * EEPROM data consists of:
686 *
687 * 1) Regulatory information (max txpower and channel usage flags) is provided
688 * separately for each channel that can possibly supported by 4965.
689 * 40 MHz wide (.11n fat) channels are listed separately from 20 MHz
690 * (legacy) channels.
691 *
692 * See struct iwl4965_eeprom_channel for format, and struct iwl4965_eeprom
693 * for locations in EEPROM.
694 *
695 * 2) Factory txpower calibration information is provided separately for
696 * sub-bands of contiguous channels. 2.4GHz has just one sub-band,
697 * but 5 GHz has several sub-bands.
698 *
699 * In addition, per-band (2.4 and 5 Ghz) saturation txpowers are provided.
700 *
701 * See struct iwl4965_eeprom_calib_info (and the tree of structures
702 * contained within it) for format, and struct iwl4965_eeprom for
703 * locations in EEPROM.
704 *
705 * "Initialization alive" notification (see struct iwl4965_init_alive_resp)
706 * consists of:
707 *
708 * 1) Temperature calculation parameters.
709 *
710 * 2) Power supply voltage measurement.
711 *
712 * 3) Tx gain compensation to balance 2 transmitters for MIMO use.
713 *
714 * Statistics notifications deliver:
715 *
716 * 1) Current values for temperature param R4.
717 */
718
719/**
720 * To calculate a txpower setting for a given desired target txpower, channel,
721 * modulation bit rate, and transmitter chain (4965 has 2 transmitters to
722 * support MIMO and transmit diversity), driver must do the following:
723 *
724 * 1) Compare desired txpower vs. (EEPROM) regulatory limit for this channel.
725 * Do not exceed regulatory limit; reduce target txpower if necessary.
726 *
727 * If setting up txpowers for MIMO rates (rate indexes 8-15, 24-31),
728 * 2 transmitters will be used simultaneously; driver must reduce the
729 * regulatory limit by 3 dB (half-power) for each transmitter, so the
730 * combined total output of the 2 transmitters is within regulatory limits.
731 *
732 *
733 * 2) Compare target txpower vs. (EEPROM) saturation txpower *reduced by
734 * backoff for this bit rate*. Do not exceed (saturation - backoff[rate]);
735 * reduce target txpower if necessary.
736 *
737 * Backoff values below are in 1/2 dB units (equivalent to steps in
738 * txpower gain tables):
739 *
740 * OFDM 6 - 36 MBit: 10 steps (5 dB)
741 * OFDM 48 MBit: 15 steps (7.5 dB)
742 * OFDM 54 MBit: 17 steps (8.5 dB)
743 * OFDM 60 MBit: 20 steps (10 dB)
744 * CCK all rates: 10 steps (5 dB)
745 *
746 * Backoff values apply to saturation txpower on a per-transmitter basis;
747 * when using MIMO (2 transmitters), each transmitter uses the same
748 * saturation level provided in EEPROM, and the same backoff values;
749 * no reduction (such as with regulatory txpower limits) is required.
750 *
751 * Saturation and Backoff values apply equally to 20 Mhz (legacy) channel
752 * widths and 40 Mhz (.11n fat) channel widths; there is no separate
753 * factory measurement for fat channels.
754 *
755 * The result of this step is the final target txpower. The rest of
756 * the steps figure out the proper settings for the device to achieve
757 * that target txpower.
758 *
759 *
760 * 3) Determine (EEPROM) calibration subband for the target channel, by
761 * comparing against first and last channels in each subband
762 * (see struct iwl4965_eeprom_calib_subband_info).
763 *
764 *
765 * 4) Linearly interpolate (EEPROM) factory calibration measurement sets,
766 * referencing the 2 factory-measured (sample) channels within the subband.
767 *
768 * Interpolation is based on difference between target channel's frequency
769 * and the sample channels' frequencies. Since channel numbers are based
770 * on frequency (5 MHz between each channel number), this is equivalent
771 * to interpolating based on channel number differences.
772 *
773 * Note that the sample channels may or may not be the channels at the
774 * edges of the subband. The target channel may be "outside" of the
775 * span of the sampled channels.
776 *
777 * Driver may choose the pair (for 2 Tx chains) of measurements (see
778 * struct iwl4965_eeprom_calib_ch_info) for which the actual measured
779 * txpower comes closest to the desired txpower. Usually, though,
780 * the middle set of measurements is closest to the regulatory limits,
781 * and is therefore a good choice for all txpower calculations (this
782 * assumes that high accuracy is needed for maximizing legal txpower,
783 * while lower txpower configurations do not need as much accuracy).
784 *
785 * Driver should interpolate both members of the chosen measurement pair,
786 * i.e. for both Tx chains (radio transmitters), unless the driver knows
787 * that only one of the chains will be used (e.g. only one tx antenna
788 * connected, but this should be unusual). The rate scaling algorithm
789 * switches antennas to find best performance, so both Tx chains will
790 * be used (although only one at a time) even for non-MIMO transmissions.
791 *
792 * Driver should interpolate factory values for temperature, gain table
793 * index, and actual power. The power amplifier detector values are
794 * not used by the driver.
795 *
796 * Sanity check: If the target channel happens to be one of the sample
797 * channels, the results should agree with the sample channel's
798 * measurements!
799 *
800 *
801 * 5) Find difference between desired txpower and (interpolated)
802 * factory-measured txpower. Using (interpolated) factory gain table index
803 * (shown elsewhere) as a starting point, adjust this index lower to
804 * increase txpower, or higher to decrease txpower, until the target
805 * txpower is reached. Each step in the gain table is 1/2 dB.
806 *
807 * For example, if factory measured txpower is 16 dBm, and target txpower
808 * is 13 dBm, add 6 steps to the factory gain index to reduce txpower
809 * by 3 dB.
810 *
811 *
812 * 6) Find difference between current device temperature and (interpolated)
813 * factory-measured temperature for sub-band. Factory values are in
814 * degrees Celsius. To calculate current temperature, see comments for
815 * "4965 temperature calculation".
816 *
817 * If current temperature is higher than factory temperature, driver must
818 * increase gain (lower gain table index), and vice versa.
819 *
820 * Temperature affects gain differently for different channels:
821 *
822 * 2.4 GHz all channels: 3.5 degrees per half-dB step
823 * 5 GHz channels 34-43: 4.5 degrees per half-dB step
824 * 5 GHz channels >= 44: 4.0 degrees per half-dB step
825 *
826 * NOTE: Temperature can increase rapidly when transmitting, especially
827 * with heavy traffic at high txpowers. Driver should update
828 * temperature calculations often under these conditions to
829 * maintain strong txpower in the face of rising temperature.
830 *
831 *
832 * 7) Find difference between current power supply voltage indicator
833 * (from "initialize alive") and factory-measured power supply voltage
834 * indicator (EEPROM).
835 *
836 * If the current voltage is higher (indicator is lower) than factory
837 * voltage, gain should be reduced (gain table index increased) by:
838 *
839 * (eeprom - current) / 7
840 *
841 * If the current voltage is lower (indicator is higher) than factory
842 * voltage, gain should be increased (gain table index decreased) by:
843 *
844 * 2 * (current - eeprom) / 7
845 *
846 * If number of index steps in either direction turns out to be > 2,
847 * something is wrong ... just use 0.
848 *
849 * NOTE: Voltage compensation is independent of band/channel.
850 *
851 * NOTE: "Initialize" uCode measures current voltage, which is assumed
852 * to be constant after this initial measurement. Voltage
853 * compensation for txpower (number of steps in gain table)
854 * may be calculated once and used until the next uCode bootload.
855 *
856 *
857 * 8) If setting up txpowers for MIMO rates (rate indexes 8-15, 24-31),
858 * adjust txpower for each transmitter chain, so txpower is balanced
859 * between the two chains. There are 5 pairs of tx_atten[group][chain]
860 * values in "initialize alive", one pair for each of 5 channel ranges:
861 *
862 * Group 0: 5 GHz channel 34-43
863 * Group 1: 5 GHz channel 44-70
864 * Group 2: 5 GHz channel 71-124
865 * Group 3: 5 GHz channel 125-200
866 * Group 4: 2.4 GHz all channels
867 *
868 * Add the tx_atten[group][chain] value to the index for the target chain.
869 * The values are signed, but are in pairs of 0 and a non-negative number,
870 * so as to reduce gain (if necessary) of the "hotter" channel. This
871 * avoids any need to double-check for regulatory compliance after
872 * this step.
873 *
874 *
875 * 9) If setting up for a CCK rate, lower the gain by adding a CCK compensation
876 * value to the index:
877 *
878 * Hardware rev B: 9 steps (4.5 dB)
879 * Hardware rev C: 5 steps (2.5 dB)
880 *
881 * Hardware rev for 4965 can be determined by reading CSR_HW_REV_WA_REG,
882 * bits [3:2], 1 = B, 2 = C.
883 *
884 * NOTE: This compensation is in addition to any saturation backoff that
885 * might have been applied in an earlier step.
886 *
887 *
888 * 10) Select the gain table, based on band (2.4 vs 5 GHz).
889 *
890 * Limit the adjusted index to stay within the table!
891 *
892 *
893 * 11) Read gain table entries for DSP and radio gain, place into appropriate
894 * location(s) in command (struct iwl4965_txpowertable_cmd).
895 */
896
897/* Limit range of txpower output target to be between these values */
898#define IWL_TX_POWER_TARGET_POWER_MIN (0) /* 0 dBm = 1 milliwatt */
899#define IWL_TX_POWER_TARGET_POWER_MAX (16) /* 16 dBm */
900
901/**
902 * When MIMO is used (2 transmitters operating simultaneously), driver should
903 * limit each transmitter to deliver a max of 3 dB below the regulatory limit
904 * for the device. That is, use half power for each transmitter, so total
905 * txpower is within regulatory limits.
906 *
907 * The value "6" represents number of steps in gain table to reduce power 3 dB.
908 * Each step is 1/2 dB.
909 */
910#define IWL_TX_POWER_MIMO_REGULATORY_COMPENSATION (6)
911
912/**
913 * CCK gain compensation.
914 *
915 * When calculating txpowers for CCK, after making sure that the target power
916 * is within regulatory and saturation limits, driver must additionally
917 * back off gain by adding these values to the gain table index.
918 *
919 * Hardware rev for 4965 can be determined by reading CSR_HW_REV_WA_REG,
920 * bits [3:2], 1 = B, 2 = C.
921 */
922#define IWL_TX_POWER_CCK_COMPENSATION_B_STEP (9)
923#define IWL_TX_POWER_CCK_COMPENSATION_C_STEP (5)
924
925/*
926 * 4965 power supply voltage compensation for txpower
927 */
928#define TX_POWER_IWL_VOLTAGE_CODES_PER_03V (7)
929
930/**
931 * Gain tables.
932 *
933 * The following tables contain pair of values for setting txpower, i.e.
934 * gain settings for the output of the device's digital signal processor (DSP),
935 * and for the analog gain structure of the transmitter.
936 *
937 * Each entry in the gain tables represents a step of 1/2 dB. Note that these
938 * are *relative* steps, not indications of absolute output power. Output
939 * power varies with temperature, voltage, and channel frequency, and also
940 * requires consideration of average power (to satisfy regulatory constraints),
941 * and peak power (to avoid distortion of the output signal).
942 *
943 * Each entry contains two values:
944 * 1) DSP gain (or sometimes called DSP attenuation). This is a fine-grained
945 * linear value that multiplies the output of the digital signal processor,
946 * before being sent to the analog radio.
947 * 2) Radio gain. This sets the analog gain of the radio Tx path.
948 * It is a coarser setting, and behaves in a logarithmic (dB) fashion.
949 *
950 * EEPROM contains factory calibration data for txpower. This maps actual
951 * measured txpower levels to gain settings in the "well known" tables
952 * below ("well-known" means here that both factory calibration *and* the
953 * driver work with the same table).
954 *
955 * There are separate tables for 2.4 GHz and 5 GHz bands. The 5 GHz table
956 * has an extension (into negative indexes), in case the driver needs to
957 * boost power setting for high device temperatures (higher than would be
958 * present during factory calibration). A 5 Ghz EEPROM index of "40"
959 * corresponds to the 49th entry in the table used by the driver.
960 */
961#define MIN_TX_GAIN_INDEX (0) /* highest gain, lowest idx, 2.4 */
962#define MIN_TX_GAIN_INDEX_52GHZ_EXT (-9) /* highest gain, lowest idx, 5 */
963
964/**
965 * 2.4 GHz gain table
966 *
967 * Index Dsp gain Radio gain
968 * 0 110 0x3f (highest gain)
969 * 1 104 0x3f
970 * 2 98 0x3f
971 * 3 110 0x3e
972 * 4 104 0x3e
973 * 5 98 0x3e
974 * 6 110 0x3d
975 * 7 104 0x3d
976 * 8 98 0x3d
977 * 9 110 0x3c
978 * 10 104 0x3c
979 * 11 98 0x3c
980 * 12 110 0x3b
981 * 13 104 0x3b
982 * 14 98 0x3b
983 * 15 110 0x3a
984 * 16 104 0x3a
985 * 17 98 0x3a
986 * 18 110 0x39
987 * 19 104 0x39
988 * 20 98 0x39
989 * 21 110 0x38
990 * 22 104 0x38
991 * 23 98 0x38
992 * 24 110 0x37
993 * 25 104 0x37
994 * 26 98 0x37
995 * 27 110 0x36
996 * 28 104 0x36
997 * 29 98 0x36
998 * 30 110 0x35
999 * 31 104 0x35
1000 * 32 98 0x35
1001 * 33 110 0x34
1002 * 34 104 0x34
1003 * 35 98 0x34
1004 * 36 110 0x33
1005 * 37 104 0x33
1006 * 38 98 0x33
1007 * 39 110 0x32
1008 * 40 104 0x32
1009 * 41 98 0x32
1010 * 42 110 0x31
1011 * 43 104 0x31
1012 * 44 98 0x31
1013 * 45 110 0x30
1014 * 46 104 0x30
1015 * 47 98 0x30
1016 * 48 110 0x6
1017 * 49 104 0x6
1018 * 50 98 0x6
1019 * 51 110 0x5
1020 * 52 104 0x5
1021 * 53 98 0x5
1022 * 54 110 0x4
1023 * 55 104 0x4
1024 * 56 98 0x4
1025 * 57 110 0x3
1026 * 58 104 0x3
1027 * 59 98 0x3
1028 * 60 110 0x2
1029 * 61 104 0x2
1030 * 62 98 0x2
1031 * 63 110 0x1
1032 * 64 104 0x1
1033 * 65 98 0x1
1034 * 66 110 0x0
1035 * 67 104 0x0
1036 * 68 98 0x0
1037 * 69 97 0
1038 * 70 96 0
1039 * 71 95 0
1040 * 72 94 0
1041 * 73 93 0
1042 * 74 92 0
1043 * 75 91 0
1044 * 76 90 0
1045 * 77 89 0
1046 * 78 88 0
1047 * 79 87 0
1048 * 80 86 0
1049 * 81 85 0
1050 * 82 84 0
1051 * 83 83 0
1052 * 84 82 0
1053 * 85 81 0
1054 * 86 80 0
1055 * 87 79 0
1056 * 88 78 0
1057 * 89 77 0
1058 * 90 76 0
1059 * 91 75 0
1060 * 92 74 0
1061 * 93 73 0
1062 * 94 72 0
1063 * 95 71 0
1064 * 96 70 0
1065 * 97 69 0
1066 * 98 68 0
1067 */
1068
1069/**
1070 * 5 GHz gain table
1071 *
1072 * Index Dsp gain Radio gain
1073 * -9 123 0x3F (highest gain)
1074 * -8 117 0x3F
1075 * -7 110 0x3F
1076 * -6 104 0x3F
1077 * -5 98 0x3F
1078 * -4 110 0x3E
1079 * -3 104 0x3E
1080 * -2 98 0x3E
1081 * -1 110 0x3D
1082 * 0 104 0x3D
1083 * 1 98 0x3D
1084 * 2 110 0x3C
1085 * 3 104 0x3C
1086 * 4 98 0x3C
1087 * 5 110 0x3B
1088 * 6 104 0x3B
1089 * 7 98 0x3B
1090 * 8 110 0x3A
1091 * 9 104 0x3A
1092 * 10 98 0x3A
1093 * 11 110 0x39
1094 * 12 104 0x39
1095 * 13 98 0x39
1096 * 14 110 0x38
1097 * 15 104 0x38
1098 * 16 98 0x38
1099 * 17 110 0x37
1100 * 18 104 0x37
1101 * 19 98 0x37
1102 * 20 110 0x36
1103 * 21 104 0x36
1104 * 22 98 0x36
1105 * 23 110 0x35
1106 * 24 104 0x35
1107 * 25 98 0x35
1108 * 26 110 0x34
1109 * 27 104 0x34
1110 * 28 98 0x34
1111 * 29 110 0x33
1112 * 30 104 0x33
1113 * 31 98 0x33
1114 * 32 110 0x32
1115 * 33 104 0x32
1116 * 34 98 0x32
1117 * 35 110 0x31
1118 * 36 104 0x31
1119 * 37 98 0x31
1120 * 38 110 0x30
1121 * 39 104 0x30
1122 * 40 98 0x30
1123 * 41 110 0x25
1124 * 42 104 0x25
1125 * 43 98 0x25
1126 * 44 110 0x24
1127 * 45 104 0x24
1128 * 46 98 0x24
1129 * 47 110 0x23
1130 * 48 104 0x23
1131 * 49 98 0x23
1132 * 50 110 0x22
1133 * 51 104 0x18
1134 * 52 98 0x18
1135 * 53 110 0x17
1136 * 54 104 0x17
1137 * 55 98 0x17
1138 * 56 110 0x16
1139 * 57 104 0x16
1140 * 58 98 0x16
1141 * 59 110 0x15
1142 * 60 104 0x15
1143 * 61 98 0x15
1144 * 62 110 0x14
1145 * 63 104 0x14
1146 * 64 98 0x14
1147 * 65 110 0x13
1148 * 66 104 0x13
1149 * 67 98 0x13
1150 * 68 110 0x12
1151 * 69 104 0x08
1152 * 70 98 0x08
1153 * 71 110 0x07
1154 * 72 104 0x07
1155 * 73 98 0x07
1156 * 74 110 0x06
1157 * 75 104 0x06
1158 * 76 98 0x06
1159 * 77 110 0x05
1160 * 78 104 0x05
1161 * 79 98 0x05
1162 * 80 110 0x04
1163 * 81 104 0x04
1164 * 82 98 0x04
1165 * 83 110 0x03
1166 * 84 104 0x03
1167 * 85 98 0x03
1168 * 86 110 0x02
1169 * 87 104 0x02
1170 * 88 98 0x02
1171 * 89 110 0x01
1172 * 90 104 0x01
1173 * 91 98 0x01
1174 * 92 110 0x00
1175 * 93 104 0x00
1176 * 94 98 0x00
1177 * 95 93 0x00
1178 * 96 88 0x00
1179 * 97 83 0x00
1180 * 98 78 0x00
1181 */
1182
1183
1184/**
1185 * Sanity checks and default values for EEPROM regulatory levels.
1186 * If EEPROM values fall outside MIN/MAX range, use default values.
1187 *
1188 * Regulatory limits refer to the maximum average txpower allowed by
1189 * regulatory agencies in the geographies in which the device is meant
1190 * to be operated. These limits are SKU-specific (i.e. geography-specific),
1191 * and channel-specific; each channel has an individual regulatory limit
1192 * listed in the EEPROM.
1193 *
1194 * Units are in half-dBm (i.e. "34" means 17 dBm).
1195 */
1196#define IWL_TX_POWER_DEFAULT_REGULATORY_24 (34)
1197#define IWL_TX_POWER_DEFAULT_REGULATORY_52 (34)
1198#define IWL_TX_POWER_REGULATORY_MIN (0)
1199#define IWL_TX_POWER_REGULATORY_MAX (34)
1200
1201/**
1202 * Sanity checks and default values for EEPROM saturation levels.
1203 * If EEPROM values fall outside MIN/MAX range, use default values.
1204 *
1205 * Saturation is the highest level that the output power amplifier can produce
1206 * without significant clipping distortion. This is a "peak" power level.
1207 * Different types of modulation (i.e. various "rates", and OFDM vs. CCK)
1208 * require differing amounts of backoff, relative to their average power output,
1209 * in order to avoid clipping distortion.
1210 *
1211 * Driver must make sure that it is violating neither the saturation limit,
1212 * nor the regulatory limit, when calculating Tx power settings for various
1213 * rates.
1214 *
1215 * Units are in half-dBm (i.e. "38" means 19 dBm).
1216 */
1217#define IWL_TX_POWER_DEFAULT_SATURATION_24 (38)
1218#define IWL_TX_POWER_DEFAULT_SATURATION_52 (38)
1219#define IWL_TX_POWER_SATURATION_MIN (20)
1220#define IWL_TX_POWER_SATURATION_MAX (50)
1221
1222/**
1223 * Channel groups used for Tx Attenuation calibration (MIMO tx channel balance)
1224 * and thermal Txpower calibration.
1225 *
1226 * When calculating txpower, driver must compensate for current device
1227 * temperature; higher temperature requires higher gain. Driver must calculate
1228 * current temperature (see "4965 temperature calculation"), then compare vs.
1229 * factory calibration temperature in EEPROM; if current temperature is higher
1230 * than factory temperature, driver must *increase* gain by proportions shown
1231 * in table below. If current temperature is lower than factory, driver must
1232 * *decrease* gain.
1233 *
1234 * Different frequency ranges require different compensation, as shown below.
1235 */
1236/* Group 0, 5.2 GHz ch 34-43: 4.5 degrees per 1/2 dB. */
1237#define CALIB_IWL_TX_ATTEN_GR1_FCH 34
1238#define CALIB_IWL_TX_ATTEN_GR1_LCH 43
1239
1240/* Group 1, 5.3 GHz ch 44-70: 4.0 degrees per 1/2 dB. */
1241#define CALIB_IWL_TX_ATTEN_GR2_FCH 44
1242#define CALIB_IWL_TX_ATTEN_GR2_LCH 70
1243
1244/* Group 2, 5.5 GHz ch 71-124: 4.0 degrees per 1/2 dB. */
1245#define CALIB_IWL_TX_ATTEN_GR3_FCH 71
1246#define CALIB_IWL_TX_ATTEN_GR3_LCH 124
1247
1248/* Group 3, 5.7 GHz ch 125-200: 4.0 degrees per 1/2 dB. */
1249#define CALIB_IWL_TX_ATTEN_GR4_FCH 125
1250#define CALIB_IWL_TX_ATTEN_GR4_LCH 200
1251
1252/* Group 4, 2.4 GHz all channels: 3.5 degrees per 1/2 dB. */
1253#define CALIB_IWL_TX_ATTEN_GR5_FCH 1
1254#define CALIB_IWL_TX_ATTEN_GR5_LCH 20
1255
Zhu Yib481de92007-09-25 17:54:57 -07001256enum {
1257 CALIB_CH_GROUP_1 = 0,
1258 CALIB_CH_GROUP_2 = 1,
1259 CALIB_CH_GROUP_3 = 2,
1260 CALIB_CH_GROUP_4 = 3,
1261 CALIB_CH_GROUP_5 = 4,
1262 CALIB_CH_GROUP_MAX
1263};
1264
Zhu Yib481de92007-09-25 17:54:57 -07001265/********************* END TXPOWER *****************************************/
1266
Ben Cahillaad14142007-11-29 11:10:03 +08001267/****************************/
Zhu Yib481de92007-09-25 17:54:57 -07001268/* Flow Handler Definitions */
Ben Cahillaad14142007-11-29 11:10:03 +08001269/****************************/
Zhu Yib481de92007-09-25 17:54:57 -07001270
Ben Cahill4d3cf5f2007-11-29 11:10:04 +08001271/**
Ben Cahillaad14142007-11-29 11:10:03 +08001272 * This I/O area is directly read/writable by driver (e.g. Linux uses writel())
1273 * Addresses are offsets from device's PCI hardware base address.
1274 */
Zhu Yib481de92007-09-25 17:54:57 -07001275#define FH_MEM_LOWER_BOUND (0x1000)
1276#define FH_MEM_UPPER_BOUND (0x1EF0)
1277
Ben Cahillaad14142007-11-29 11:10:03 +08001278/**
1279 * Keep-Warm (KW) buffer base address.
1280 *
1281 * Driver must allocate a 4KByte buffer that is used by 4965 for keeping the
1282 * host DRAM powered on (via dummy accesses to DRAM) to maintain low-latency
1283 * DRAM access when 4965 is Txing or Rxing. The dummy accesses prevent host
1284 * from going into a power-savings mode that would cause higher DRAM latency,
1285 * and possible data over/under-runs, before all Tx/Rx is complete.
1286 *
1287 * Driver loads IWL_FH_KW_MEM_ADDR_REG with the physical address (bits 35:4)
1288 * of the buffer, which must be 4K aligned. Once this is set up, the 4965
1289 * automatically invokes keep-warm accesses when normal accesses might not
1290 * be sufficient to maintain fast DRAM response.
1291 *
1292 * Bit fields:
1293 * 31-0: Keep-warm buffer physical base address [35:4], must be 4K aligned
1294 */
Zhu Yib481de92007-09-25 17:54:57 -07001295#define IWL_FH_KW_MEM_ADDR_REG (FH_MEM_LOWER_BOUND + 0x97C)
1296
Ben Cahillaad14142007-11-29 11:10:03 +08001297
Ben Cahill4d3cf5f2007-11-29 11:10:04 +08001298/**
1299 * TFD Circular Buffers Base (CBBC) addresses
1300 *
1301 * 4965 has 16 base pointer registers, one for each of 16 host-DRAM-resident
1302 * circular buffers (CBs/queues) containing Transmit Frame Descriptors (TFDs)
1303 * (see struct iwl_tfd_frame). These 16 pointer registers are offset by 0x04
1304 * bytes from one another. Each TFD circular buffer in DRAM must be 256-byte
1305 * aligned (address bits 0-7 must be 0).
1306 *
1307 * Bit fields in each pointer register:
1308 * 27-0: TFD CB physical base address [35:8], must be 256-byte aligned
1309 */
Zhu Yib481de92007-09-25 17:54:57 -07001310#define FH_MEM_CBBC_LOWER_BOUND (FH_MEM_LOWER_BOUND + 0x9D0)
1311#define FH_MEM_CBBC_UPPER_BOUND (FH_MEM_LOWER_BOUND + 0xA10)
Ben Cahill4d3cf5f2007-11-29 11:10:04 +08001312
1313/* Find TFD CB base pointer for given queue (range 0-15). */
Zhu Yib481de92007-09-25 17:54:57 -07001314#define FH_MEM_CBBC_QUEUE(x) (FH_MEM_CBBC_LOWER_BOUND + (x) * 0x4)
1315
Ben Cahill4d3cf5f2007-11-29 11:10:04 +08001316
1317/**
1318 * Rx SRAM Control and Status Registers (RSCSR)
1319 *
1320 * These registers provide handshake between driver and 4965 for the Rx queue
1321 * (this queue handles *all* command responses, notifications, Rx data, etc.
1322 * sent from 4965 uCode to host driver). Unlike Tx, there is only one Rx
1323 * queue, and only one Rx DMA/FIFO channel. Also unlike Tx, which can
1324 * concatenate up to 20 DRAM buffers to form a Tx frame, each Receive Buffer
1325 * Descriptor (RBD) points to only one Rx Buffer (RB); there is a 1:1
1326 * mapping between RBDs and RBs.
1327 *
1328 * Driver must allocate host DRAM memory for the following, and set the
1329 * physical address of each into 4965 registers:
1330 *
1331 * 1) Receive Buffer Descriptor (RBD) circular buffer (CB), typically with 256
1332 * entries (although any power of 2, up to 4096, is selectable by driver).
1333 * Each entry (1 dword) points to a receive buffer (RB) of consistent size
1334 * (typically 4K, although 8K or 16K are also selectable by driver).
1335 * Driver sets up RB size and number of RBDs in the CB via Rx config
1336 * register FH_MEM_RCSR_CHNL0_CONFIG_REG.
1337 *
1338 * Bit fields within one RBD:
1339 * 27-0: Receive Buffer physical address bits [35:8], 256-byte aligned
1340 *
1341 * Driver sets physical address [35:8] of base of RBD circular buffer
1342 * into FH_RSCSR_CHNL0_RBDCB_BASE_REG [27:0].
1343 *
1344 * 2) Rx status buffer, 8 bytes, in which 4965 indicates which Rx Buffers
1345 * (RBs) have been filled, via a "write pointer", actually the index of
1346 * the RB's corresponding RBD within the circular buffer. Driver sets
1347 * physical address [35:4] into FH_RSCSR_CHNL0_STTS_WPTR_REG [31:0].
1348 *
1349 * Bit fields in lower dword of Rx status buffer (upper dword not used
1350 * by driver; see struct iwl4965_shared, val0):
1351 * 31-12: Not used by driver
1352 * 11- 0: Index of last filled Rx buffer descriptor
1353 * (4965 writes, driver reads this value)
1354 *
1355 * As the driver prepares Receive Buffers (RBs) for 4965 to fill, driver must
1356 * enter pointers to these RBs into contiguous RBD circular buffer entries,
1357 * and update the 4965's "write" index register, FH_RSCSR_CHNL0_RBDCB_WPTR_REG.
1358 *
1359 * This "write" index corresponds to the *next* RBD that the driver will make
1360 * available, i.e. one RBD past the tail of the ready-to-fill RBDs within
1361 * the circular buffer. This value should initially be 0 (before preparing any
1362 * RBs), should be 8 after preparing the first 8 RBs (for example), and must
1363 * wrap back to 0 at the end of the circular buffer (but don't wrap before
1364 * "read" index has advanced past 1! See below).
1365 * NOTE: 4965 EXPECTS THE WRITE INDEX TO BE INCREMENTED IN MULTIPLES OF 8.
1366 *
1367 * As the 4965 fills RBs (referenced from contiguous RBDs within the circular
1368 * buffer), it updates the Rx status buffer in host DRAM, 2) described above,
1369 * to tell the driver the index of the latest filled RBD. The driver must
1370 * read this "read" index from DRAM after receiving an Rx interrupt from 4965.
1371 *
1372 * The driver must also internally keep track of a third index, which is the
1373 * next RBD to process. When receiving an Rx interrupt, driver should process
1374 * all filled but unprocessed RBs up to, but not including, the RB
1375 * corresponding to the "read" index. For example, if "read" index becomes "1",
1376 * driver may process the RB pointed to by RBD 0. Depending on volume of
1377 * traffic, there may be many RBs to process.
1378 *
1379 * If read index == write index, 4965 thinks there is no room to put new data.
1380 * Due to this, the maximum number of filled RBs is 255, instead of 256. To
1381 * be safe, make sure that there is a gap of at least 2 RBDs between "write"
1382 * and "read" indexes; that is, make sure that there are no more than 254
1383 * buffers waiting to be filled.
1384 */
Zhu Yib481de92007-09-25 17:54:57 -07001385#define FH_MEM_RSCSR_LOWER_BOUND (FH_MEM_LOWER_BOUND + 0xBC0)
1386#define FH_MEM_RSCSR_UPPER_BOUND (FH_MEM_LOWER_BOUND + 0xC00)
1387#define FH_MEM_RSCSR_CHNL0 (FH_MEM_RSCSR_LOWER_BOUND)
1388
Ben Cahill4d3cf5f2007-11-29 11:10:04 +08001389/**
1390 * Physical base address of 8-byte Rx Status buffer.
1391 * Bit fields:
1392 * 31-0: Rx status buffer physical base address [35:4], must 16-byte aligned.
1393 */
Zhu Yib481de92007-09-25 17:54:57 -07001394#define FH_RSCSR_CHNL0_STTS_WPTR_REG (FH_MEM_RSCSR_CHNL0)
Ben Cahill4d3cf5f2007-11-29 11:10:04 +08001395
1396/**
1397 * Physical base address of Rx Buffer Descriptor Circular Buffer.
1398 * Bit fields:
1399 * 27-0: RBD CD physical base address [35:8], must be 256-byte aligned.
1400 */
Zhu Yib481de92007-09-25 17:54:57 -07001401#define FH_RSCSR_CHNL0_RBDCB_BASE_REG (FH_MEM_RSCSR_CHNL0 + 0x004)
Ben Cahill4d3cf5f2007-11-29 11:10:04 +08001402
1403/**
1404 * Rx write pointer (index, really!).
1405 * Bit fields:
1406 * 11-0: Index of driver's most recent prepared-to-be-filled RBD, + 1.
1407 * NOTE: For 256-entry circular buffer, use only bits [7:0].
1408 */
Zhu Yib481de92007-09-25 17:54:57 -07001409#define FH_RSCSR_CHNL0_RBDCB_WPTR_REG (FH_MEM_RSCSR_CHNL0 + 0x008)
Ben Cahill483fd7e2007-11-29 11:10:05 +08001410#define FH_RSCSR_CHNL0_WPTR (FH_RSCSR_CHNL0_RBDCB_WPTR_REG)
Zhu Yib481de92007-09-25 17:54:57 -07001411
Ben Cahill4d3cf5f2007-11-29 11:10:04 +08001412
1413/**
1414 * Rx Config/Status Registers (RCSR)
1415 * Rx Config Reg for channel 0 (only channel used)
1416 *
1417 * Driver must initialize FH_MEM_RCSR_CHNL0_CONFIG_REG as follows for
1418 * normal operation (see bit fields).
1419 *
1420 * Clearing FH_MEM_RCSR_CHNL0_CONFIG_REG to 0 turns off Rx DMA.
1421 * Driver should poll FH_MEM_RSSR_RX_STATUS_REG for
1422 * FH_RSSR_CHNL0_RX_STATUS_CHNL_IDLE (bit 24) before continuing.
1423 *
1424 * Bit fields:
1425 * 31-30: Rx DMA channel enable: '00' off/pause, '01' pause at end of frame,
1426 * '10' operate normally
1427 * 29-24: reserved
1428 * 23-20: # RBDs in circular buffer = 2^value; use "8" for 256 RBDs (normal),
1429 * min "5" for 32 RBDs, max "12" for 4096 RBDs.
1430 * 19-18: reserved
1431 * 17-16: size of each receive buffer; '00' 4K (normal), '01' 8K,
1432 * '10' 12K, '11' 16K.
1433 * 15-14: reserved
1434 * 13-12: IRQ destination; '00' none, '01' host driver (normal operation)
1435 * 11- 4: timeout for closing Rx buffer and interrupting host (units 32 usec)
1436 * typical value 0x10 (about 1/2 msec)
1437 * 3- 0: reserved
1438 */
Zhu Yib481de92007-09-25 17:54:57 -07001439#define FH_MEM_RCSR_LOWER_BOUND (FH_MEM_LOWER_BOUND + 0xC00)
1440#define FH_MEM_RCSR_UPPER_BOUND (FH_MEM_LOWER_BOUND + 0xCC0)
1441#define FH_MEM_RCSR_CHNL0 (FH_MEM_RCSR_LOWER_BOUND)
1442
1443#define FH_MEM_RCSR_CHNL0_CONFIG_REG (FH_MEM_RCSR_CHNL0)
1444
Ben Cahill4d3cf5f2007-11-29 11:10:04 +08001445#define FH_RCSR_CHNL0_RX_CONFIG_RB_TIMEOUT_MASK (0x00000FF0) /* bit 4-11 */
1446#define FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_MASK (0x00001000) /* bit 12 */
1447#define FH_RCSR_CHNL0_RX_CONFIG_SINGLE_FRAME_MASK (0x00008000) /* bit 15 */
1448#define FH_RCSR_CHNL0_RX_CONFIG_RB_SIZE_MASK (0x00030000) /* bits 16-17 */
1449#define FH_RCSR_CHNL0_RX_CONFIG_RBDBC_SIZE_MASK (0x00F00000) /* bits 20-23 */
1450#define FH_RCSR_CHNL0_RX_CONFIG_DMA_CHNL_EN_MASK (0xC0000000) /* bits 30-31 */
1451
1452#define FH_RCSR_RX_CONFIG_RBDCB_SIZE_BITSHIFT (20)
1453#define FH_RCSR_RX_CONFIG_RB_SIZE_BITSHIFT (16)
1454
1455#define FH_RCSR_RX_CONFIG_CHNL_EN_PAUSE_VAL (0x00000000)
1456#define FH_RCSR_RX_CONFIG_CHNL_EN_PAUSE_EOF_VAL (0x40000000)
1457#define FH_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL (0x80000000)
1458
1459#define IWL_FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K (0x00000000)
1460
1461#define FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_NO_INT_VAL (0x00000000)
1462#define FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL (0x00001000)
1463
1464
1465/**
1466 * Rx Shared Status Registers (RSSR)
1467 *
1468 * After stopping Rx DMA channel (writing 0 to FH_MEM_RCSR_CHNL0_CONFIG_REG),
1469 * driver must poll FH_MEM_RSSR_RX_STATUS_REG until Rx channel is idle.
1470 *
1471 * Bit fields:
1472 * 24: 1 = Channel 0 is idle
1473 *
1474 * FH_MEM_RSSR_SHARED_CTRL_REG and FH_MEM_RSSR_RX_ENABLE_ERR_IRQ2DRV contain
1475 * default values that should not be altered by the driver.
1476 */
Zhu Yib481de92007-09-25 17:54:57 -07001477#define FH_MEM_RSSR_LOWER_BOUND (FH_MEM_LOWER_BOUND + 0xC40)
1478#define FH_MEM_RSSR_UPPER_BOUND (FH_MEM_LOWER_BOUND + 0xD00)
Ben Cahill4d3cf5f2007-11-29 11:10:04 +08001479
Zhu Yib481de92007-09-25 17:54:57 -07001480#define FH_MEM_RSSR_SHARED_CTRL_REG (FH_MEM_RSSR_LOWER_BOUND)
1481#define FH_MEM_RSSR_RX_STATUS_REG (FH_MEM_RSSR_LOWER_BOUND + 0x004)
1482#define FH_MEM_RSSR_RX_ENABLE_ERR_IRQ2DRV (FH_MEM_RSSR_LOWER_BOUND + 0x008)
1483
Ben Cahill4d3cf5f2007-11-29 11:10:04 +08001484#define FH_RSSR_CHNL0_RX_STATUS_CHNL_IDLE (0x01000000)
1485
Ben Cahill483fd7e2007-11-29 11:10:05 +08001486
1487/**
1488 * Transmit DMA Channel Control/Status Registers (TCSR)
1489 *
1490 * 4965 has one configuration register for each of 8 Tx DMA/FIFO channels
1491 * supported in hardware (don't confuse these with the 16 Tx queues in DRAM,
1492 * which feed the DMA/FIFO channels); config regs are separated by 0x20 bytes.
1493 *
1494 * To use a Tx DMA channel, driver must initialize its
1495 * IWL_FH_TCSR_CHNL_TX_CONFIG_REG(chnl) with:
1496 *
1497 * IWL_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_ENABLE |
1498 * IWL_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_ENABLE_VAL
1499 *
1500 * All other bits should be 0.
1501 *
1502 * Bit fields:
1503 * 31-30: Tx DMA channel enable: '00' off/pause, '01' pause at end of frame,
1504 * '10' operate normally
1505 * 29- 4: Reserved, set to "0"
1506 * 3: Enable internal DMA requests (1, normal operation), disable (0)
1507 * 2- 0: Reserved, set to "0"
1508 */
Ben Cahillaad14142007-11-29 11:10:03 +08001509#define IWL_FH_TCSR_LOWER_BOUND (FH_MEM_LOWER_BOUND + 0xD00)
1510#define IWL_FH_TCSR_UPPER_BOUND (FH_MEM_LOWER_BOUND + 0xE60)
Zhu Yib481de92007-09-25 17:54:57 -07001511
Ben Cahill483fd7e2007-11-29 11:10:05 +08001512/* Find Control/Status reg for given Tx DMA/FIFO channel */
Zhu Yib481de92007-09-25 17:54:57 -07001513#define IWL_FH_TCSR_CHNL_TX_CONFIG_REG(_chnl) \
1514 (IWL_FH_TCSR_LOWER_BOUND + 0x20 * _chnl)
1515
Ben Cahill483fd7e2007-11-29 11:10:05 +08001516#define IWL_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_DISABLE_VAL (0x00000000)
1517#define IWL_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_ENABLE_VAL (0x00000008)
1518
1519#define IWL_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_PAUSE (0x00000000)
1520#define IWL_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_PAUSE_EOF (0x40000000)
1521#define IWL_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_ENABLE (0x80000000)
1522
1523/**
1524 * Tx Shared Status Registers (TSSR)
1525 *
1526 * After stopping Tx DMA channel (writing 0 to
1527 * IWL_FH_TCSR_CHNL_TX_CONFIG_REG(chnl)), driver must poll
1528 * IWL_FH_TSSR_TX_STATUS_REG until selected Tx channel is idle
1529 * (channel's buffers empty | no pending requests).
1530 *
1531 * Bit fields:
1532 * 31-24: 1 = Channel buffers empty (channel 7:0)
1533 * 23-16: 1 = No pending requests (channel 7:0)
1534 */
Ben Cahillaad14142007-11-29 11:10:03 +08001535#define IWL_FH_TSSR_LOWER_BOUND (FH_MEM_LOWER_BOUND + 0xEA0)
1536#define IWL_FH_TSSR_UPPER_BOUND (FH_MEM_LOWER_BOUND + 0xEC0)
Zhu Yib481de92007-09-25 17:54:57 -07001537
Zhu Yib481de92007-09-25 17:54:57 -07001538#define IWL_FH_TSSR_TX_STATUS_REG (IWL_FH_TSSR_LOWER_BOUND + 0x010)
1539
Zhu Yib481de92007-09-25 17:54:57 -07001540#define IWL_FH_TSSR_TX_STATUS_REG_BIT_BUFS_EMPTY(_chnl) \
1541 ((1 << (_chnl)) << 24)
1542#define IWL_FH_TSSR_TX_STATUS_REG_BIT_NO_PEND_REQ(_chnl) \
1543 ((1 << (_chnl)) << 16)
1544
1545#define IWL_FH_TSSR_TX_STATUS_REG_MSK_CHNL_IDLE(_chnl) \
1546 (IWL_FH_TSSR_TX_STATUS_REG_BIT_BUFS_EMPTY(_chnl) | \
1547 IWL_FH_TSSR_TX_STATUS_REG_BIT_NO_PEND_REQ(_chnl))
1548
Zhu Yib481de92007-09-25 17:54:57 -07001549
Zhu Yib481de92007-09-25 17:54:57 -07001550#define SCD_WIN_SIZE 64
1551#define SCD_FRAME_LIMIT 64
1552
Zhu Yib481de92007-09-25 17:54:57 -07001553/* SRAM structures */
1554#define SCD_CONTEXT_DATA_OFFSET 0x380
1555#define SCD_TX_STTS_BITMAP_OFFSET 0x400
1556#define SCD_TRANSLATE_TBL_OFFSET 0x500
1557#define SCD_CONTEXT_QUEUE_OFFSET(x) (SCD_CONTEXT_DATA_OFFSET + ((x) * 8))
1558#define SCD_TRANSLATE_TBL_OFFSET_QUEUE(x) \
1559 ((SCD_TRANSLATE_TBL_OFFSET + ((x) * 2)) & 0xfffffffc)
1560
1561#define SCD_TXFACT_REG_TXFIFO_MASK(lo, hi) \
1562 ((1<<(hi))|((1<<(hi))-(1<<(lo))))
1563
Zhu Yib481de92007-09-25 17:54:57 -07001564#define SCD_QUEUE_STTS_REG_POS_ACTIVE (0)
1565#define SCD_QUEUE_STTS_REG_POS_TXF (1)
1566#define SCD_QUEUE_STTS_REG_POS_WSL (5)
1567#define SCD_QUEUE_STTS_REG_POS_SCD_ACK (8)
1568#define SCD_QUEUE_STTS_REG_POS_SCD_ACT_EN (10)
1569#define SCD_QUEUE_STTS_REG_MSK (0x0007FC00)
1570
Zhu Yib481de92007-09-25 17:54:57 -07001571#define SCD_QUEUE_CTX_REG1_WIN_SIZE_POS (0)
1572#define SCD_QUEUE_CTX_REG1_WIN_SIZE_MSK (0x0000007F)
Ben Cahill2248d8d2007-11-29 11:09:58 +08001573
Zhu Yib481de92007-09-25 17:54:57 -07001574#define SCD_QUEUE_CTX_REG2_FRAME_LIMIT_POS (16)
1575#define SCD_QUEUE_CTX_REG2_FRAME_LIMIT_MSK (0x007F0000)
1576
1577#define CSR_HW_IF_CONFIG_REG_BIT_KEDRON_R (0x00000010)
1578#define CSR_HW_IF_CONFIG_REG_MSK_BOARD_VER (0x00000C00)
1579#define CSR_HW_IF_CONFIG_REG_BIT_MAC_SI (0x00000100)
1580#define CSR_HW_IF_CONFIG_REG_BIT_RADIO_SI (0x00000200)
Ben Cahillfcd427b2007-11-29 11:10:00 +08001581#define CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM (0x00200000)
Zhu Yib481de92007-09-25 17:54:57 -07001582
Christoph Hellwigbb8c0932008-01-27 16:41:47 -08001583static inline u8 iwl4965_hw_get_rate(__le32 rate_n_flags)
Zhu Yib481de92007-09-25 17:54:57 -07001584{
1585 return le32_to_cpu(rate_n_flags) & 0xFF;
1586}
Christoph Hellwigbb8c0932008-01-27 16:41:47 -08001587static inline u16 iwl4965_hw_get_rate_n_flags(__le32 rate_n_flags)
Zhu Yib481de92007-09-25 17:54:57 -07001588{
1589 return le32_to_cpu(rate_n_flags) & 0xFFFF;
1590}
Christoph Hellwigbb8c0932008-01-27 16:41:47 -08001591static inline __le32 iwl4965_hw_set_rate_n_flags(u8 rate, u16 flags)
Zhu Yib481de92007-09-25 17:54:57 -07001592{
1593 return cpu_to_le32(flags|(u16)rate);
1594}
1595
Christoph Hellwigbb8c0932008-01-27 16:41:47 -08001596struct iwl4965_tfd_frame_data {
Zhu Yib481de92007-09-25 17:54:57 -07001597 __le32 tb1_addr;
1598
1599 __le32 val1;
1600 /* __le32 ptb1_32_35:4; */
1601#define IWL_tb1_addr_hi_POS 0
1602#define IWL_tb1_addr_hi_LEN 4
1603#define IWL_tb1_addr_hi_SYM val1
1604 /* __le32 tb_len1:12; */
1605#define IWL_tb1_len_POS 4
1606#define IWL_tb1_len_LEN 12
1607#define IWL_tb1_len_SYM val1
1608 /* __le32 ptb2_0_15:16; */
1609#define IWL_tb2_addr_lo16_POS 16
1610#define IWL_tb2_addr_lo16_LEN 16
1611#define IWL_tb2_addr_lo16_SYM val1
1612
1613 __le32 val2;
1614 /* __le32 ptb2_16_35:20; */
1615#define IWL_tb2_addr_hi20_POS 0
1616#define IWL_tb2_addr_hi20_LEN 20
1617#define IWL_tb2_addr_hi20_SYM val2
1618 /* __le32 tb_len2:12; */
1619#define IWL_tb2_len_POS 20
1620#define IWL_tb2_len_LEN 12
1621#define IWL_tb2_len_SYM val2
1622} __attribute__ ((packed));
1623
Christoph Hellwigbb8c0932008-01-27 16:41:47 -08001624struct iwl4965_tfd_frame {
Zhu Yib481de92007-09-25 17:54:57 -07001625 __le32 val0;
1626 /* __le32 rsvd1:24; */
1627 /* __le32 num_tbs:5; */
1628#define IWL_num_tbs_POS 24
1629#define IWL_num_tbs_LEN 5
1630#define IWL_num_tbs_SYM val0
1631 /* __le32 rsvd2:1; */
1632 /* __le32 padding:2; */
Christoph Hellwigbb8c0932008-01-27 16:41:47 -08001633 struct iwl4965_tfd_frame_data pa[10];
Zhu Yib481de92007-09-25 17:54:57 -07001634 __le32 reserved;
1635} __attribute__ ((packed));
1636
1637#define IWL4965_MAX_WIN_SIZE 64
1638#define IWL4965_QUEUE_SIZE 256
1639#define IWL4965_NUM_FIFOS 7
1640#define IWL_MAX_NUM_QUEUES 16
1641
1642struct iwl4965_queue_byte_cnt_entry {
1643 __le16 val;
1644 /* __le16 byte_cnt:12; */
1645#define IWL_byte_cnt_POS 0
1646#define IWL_byte_cnt_LEN 12
1647#define IWL_byte_cnt_SYM val
1648 /* __le16 rsvd:4; */
1649} __attribute__ ((packed));
1650
1651struct iwl4965_sched_queue_byte_cnt_tbl {
1652 struct iwl4965_queue_byte_cnt_entry tfd_offset[IWL4965_QUEUE_SIZE +
1653 IWL4965_MAX_WIN_SIZE];
1654 u8 dont_care[1024 -
1655 (IWL4965_QUEUE_SIZE + IWL4965_MAX_WIN_SIZE) *
1656 sizeof(__le16)];
1657} __attribute__ ((packed));
1658
Christoph Hellwigbb8c0932008-01-27 16:41:47 -08001659/* Base physical address of iwl4965_shared is provided to KDR_SCD_DRAM_BASE_ADDR
1660 * and &iwl4965_shared.val0 is provided to FH_RSCSR_CHNL0_STTS_WPTR_REG */
1661struct iwl4965_shared {
Zhu Yib481de92007-09-25 17:54:57 -07001662 struct iwl4965_sched_queue_byte_cnt_tbl
1663 queues_byte_cnt_tbls[IWL_MAX_NUM_QUEUES];
1664 __le32 val0;
1665
1666 /* __le32 rb_closed_stts_rb_num:12; */
1667#define IWL_rb_closed_stts_rb_num_POS 0
1668#define IWL_rb_closed_stts_rb_num_LEN 12
1669#define IWL_rb_closed_stts_rb_num_SYM val0
1670 /* __le32 rsrv1:4; */
1671 /* __le32 rb_closed_stts_rx_frame_num:12; */
1672#define IWL_rb_closed_stts_rx_frame_num_POS 16
1673#define IWL_rb_closed_stts_rx_frame_num_LEN 12
1674#define IWL_rb_closed_stts_rx_frame_num_SYM val0
1675 /* __le32 rsrv2:4; */
1676
1677 __le32 val1;
1678 /* __le32 frame_finished_stts_rb_num:12; */
1679#define IWL_frame_finished_stts_rb_num_POS 0
1680#define IWL_frame_finished_stts_rb_num_LEN 12
1681#define IWL_frame_finished_stts_rb_num_SYM val1
1682 /* __le32 rsrv3:4; */
1683 /* __le32 frame_finished_stts_rx_frame_num:12; */
1684#define IWL_frame_finished_stts_rx_frame_num_POS 16
1685#define IWL_frame_finished_stts_rx_frame_num_LEN 12
1686#define IWL_frame_finished_stts_rx_frame_num_SYM val1
1687 /* __le32 rsrv4:4; */
1688
1689 __le32 padding1; /* so that allocation will be aligned to 16B */
1690 __le32 padding2;
1691} __attribute__ ((packed));
1692
Christoph Hellwigbb8c0932008-01-27 16:41:47 -08001693#endif /* __iwl4965_4965_hw_h__ */