Robin Murphy | 0db2e5d | 2015-10-01 20:13:58 +0100 | [diff] [blame] | 1 | /* |
| 2 | * A fairly generic DMA-API to IOMMU-API glue layer. |
| 3 | * |
| 4 | * Copyright (C) 2014-2015 ARM Ltd. |
| 5 | * |
| 6 | * based in part on arch/arm/mm/dma-mapping.c: |
| 7 | * Copyright (C) 2000-2004 Russell King |
| 8 | * |
| 9 | * This program is free software; you can redistribute it and/or modify |
| 10 | * it under the terms of the GNU General Public License version 2 as |
| 11 | * published by the Free Software Foundation. |
| 12 | * |
| 13 | * This program is distributed in the hope that it will be useful, |
| 14 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 15 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 16 | * GNU General Public License for more details. |
| 17 | * |
| 18 | * You should have received a copy of the GNU General Public License |
| 19 | * along with this program. If not, see <http://www.gnu.org/licenses/>. |
| 20 | */ |
| 21 | |
| 22 | #include <linux/device.h> |
| 23 | #include <linux/dma-iommu.h> |
| 24 | #include <linux/huge_mm.h> |
| 25 | #include <linux/iommu.h> |
| 26 | #include <linux/iova.h> |
| 27 | #include <linux/mm.h> |
| 28 | |
| 29 | int iommu_dma_init(void) |
| 30 | { |
| 31 | return iova_cache_get(); |
| 32 | } |
| 33 | |
| 34 | /** |
| 35 | * iommu_get_dma_cookie - Acquire DMA-API resources for a domain |
| 36 | * @domain: IOMMU domain to prepare for DMA-API usage |
| 37 | * |
| 38 | * IOMMU drivers should normally call this from their domain_alloc |
| 39 | * callback when domain->type == IOMMU_DOMAIN_DMA. |
| 40 | */ |
| 41 | int iommu_get_dma_cookie(struct iommu_domain *domain) |
| 42 | { |
| 43 | struct iova_domain *iovad; |
| 44 | |
| 45 | if (domain->iova_cookie) |
| 46 | return -EEXIST; |
| 47 | |
| 48 | iovad = kzalloc(sizeof(*iovad), GFP_KERNEL); |
| 49 | domain->iova_cookie = iovad; |
| 50 | |
| 51 | return iovad ? 0 : -ENOMEM; |
| 52 | } |
| 53 | EXPORT_SYMBOL(iommu_get_dma_cookie); |
| 54 | |
| 55 | /** |
| 56 | * iommu_put_dma_cookie - Release a domain's DMA mapping resources |
| 57 | * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() |
| 58 | * |
| 59 | * IOMMU drivers should normally call this from their domain_free callback. |
| 60 | */ |
| 61 | void iommu_put_dma_cookie(struct iommu_domain *domain) |
| 62 | { |
| 63 | struct iova_domain *iovad = domain->iova_cookie; |
| 64 | |
| 65 | if (!iovad) |
| 66 | return; |
| 67 | |
| 68 | put_iova_domain(iovad); |
| 69 | kfree(iovad); |
| 70 | domain->iova_cookie = NULL; |
| 71 | } |
| 72 | EXPORT_SYMBOL(iommu_put_dma_cookie); |
| 73 | |
| 74 | /** |
| 75 | * iommu_dma_init_domain - Initialise a DMA mapping domain |
| 76 | * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() |
| 77 | * @base: IOVA at which the mappable address space starts |
| 78 | * @size: Size of IOVA space |
| 79 | * |
| 80 | * @base and @size should be exact multiples of IOMMU page granularity to |
| 81 | * avoid rounding surprises. If necessary, we reserve the page at address 0 |
| 82 | * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but |
| 83 | * any change which could make prior IOVAs invalid will fail. |
| 84 | */ |
| 85 | int iommu_dma_init_domain(struct iommu_domain *domain, dma_addr_t base, u64 size) |
| 86 | { |
| 87 | struct iova_domain *iovad = domain->iova_cookie; |
| 88 | unsigned long order, base_pfn, end_pfn; |
| 89 | |
| 90 | if (!iovad) |
| 91 | return -ENODEV; |
| 92 | |
| 93 | /* Use the smallest supported page size for IOVA granularity */ |
| 94 | order = __ffs(domain->ops->pgsize_bitmap); |
| 95 | base_pfn = max_t(unsigned long, 1, base >> order); |
| 96 | end_pfn = (base + size - 1) >> order; |
| 97 | |
| 98 | /* Check the domain allows at least some access to the device... */ |
| 99 | if (domain->geometry.force_aperture) { |
| 100 | if (base > domain->geometry.aperture_end || |
| 101 | base + size <= domain->geometry.aperture_start) { |
| 102 | pr_warn("specified DMA range outside IOMMU capability\n"); |
| 103 | return -EFAULT; |
| 104 | } |
| 105 | /* ...then finally give it a kicking to make sure it fits */ |
| 106 | base_pfn = max_t(unsigned long, base_pfn, |
| 107 | domain->geometry.aperture_start >> order); |
| 108 | end_pfn = min_t(unsigned long, end_pfn, |
| 109 | domain->geometry.aperture_end >> order); |
| 110 | } |
| 111 | |
| 112 | /* All we can safely do with an existing domain is enlarge it */ |
| 113 | if (iovad->start_pfn) { |
| 114 | if (1UL << order != iovad->granule || |
| 115 | base_pfn != iovad->start_pfn || |
| 116 | end_pfn < iovad->dma_32bit_pfn) { |
| 117 | pr_warn("Incompatible range for DMA domain\n"); |
| 118 | return -EFAULT; |
| 119 | } |
| 120 | iovad->dma_32bit_pfn = end_pfn; |
| 121 | } else { |
| 122 | init_iova_domain(iovad, 1UL << order, base_pfn, end_pfn); |
| 123 | } |
| 124 | return 0; |
| 125 | } |
| 126 | EXPORT_SYMBOL(iommu_dma_init_domain); |
| 127 | |
| 128 | /** |
| 129 | * dma_direction_to_prot - Translate DMA API directions to IOMMU API page flags |
| 130 | * @dir: Direction of DMA transfer |
| 131 | * @coherent: Is the DMA master cache-coherent? |
| 132 | * |
| 133 | * Return: corresponding IOMMU API page protection flags |
| 134 | */ |
| 135 | int dma_direction_to_prot(enum dma_data_direction dir, bool coherent) |
| 136 | { |
| 137 | int prot = coherent ? IOMMU_CACHE : 0; |
| 138 | |
| 139 | switch (dir) { |
| 140 | case DMA_BIDIRECTIONAL: |
| 141 | return prot | IOMMU_READ | IOMMU_WRITE; |
| 142 | case DMA_TO_DEVICE: |
| 143 | return prot | IOMMU_READ; |
| 144 | case DMA_FROM_DEVICE: |
| 145 | return prot | IOMMU_WRITE; |
| 146 | default: |
| 147 | return 0; |
| 148 | } |
| 149 | } |
| 150 | |
| 151 | static struct iova *__alloc_iova(struct iova_domain *iovad, size_t size, |
| 152 | dma_addr_t dma_limit) |
| 153 | { |
| 154 | unsigned long shift = iova_shift(iovad); |
| 155 | unsigned long length = iova_align(iovad, size) >> shift; |
| 156 | |
| 157 | /* |
| 158 | * Enforce size-alignment to be safe - there could perhaps be an |
| 159 | * attribute to control this per-device, or at least per-domain... |
| 160 | */ |
| 161 | return alloc_iova(iovad, length, dma_limit >> shift, true); |
| 162 | } |
| 163 | |
| 164 | /* The IOVA allocator knows what we mapped, so just unmap whatever that was */ |
| 165 | static void __iommu_dma_unmap(struct iommu_domain *domain, dma_addr_t dma_addr) |
| 166 | { |
| 167 | struct iova_domain *iovad = domain->iova_cookie; |
| 168 | unsigned long shift = iova_shift(iovad); |
| 169 | unsigned long pfn = dma_addr >> shift; |
| 170 | struct iova *iova = find_iova(iovad, pfn); |
| 171 | size_t size; |
| 172 | |
| 173 | if (WARN_ON(!iova)) |
| 174 | return; |
| 175 | |
| 176 | size = iova_size(iova) << shift; |
| 177 | size -= iommu_unmap(domain, pfn << shift, size); |
| 178 | /* ...and if we can't, then something is horribly, horribly wrong */ |
| 179 | WARN_ON(size > 0); |
| 180 | __free_iova(iovad, iova); |
| 181 | } |
| 182 | |
| 183 | static void __iommu_dma_free_pages(struct page **pages, int count) |
| 184 | { |
| 185 | while (count--) |
| 186 | __free_page(pages[count]); |
| 187 | kvfree(pages); |
| 188 | } |
| 189 | |
| 190 | static struct page **__iommu_dma_alloc_pages(unsigned int count, gfp_t gfp) |
| 191 | { |
| 192 | struct page **pages; |
| 193 | unsigned int i = 0, array_size = count * sizeof(*pages); |
| 194 | |
| 195 | if (array_size <= PAGE_SIZE) |
| 196 | pages = kzalloc(array_size, GFP_KERNEL); |
| 197 | else |
| 198 | pages = vzalloc(array_size); |
| 199 | if (!pages) |
| 200 | return NULL; |
| 201 | |
| 202 | /* IOMMU can map any pages, so himem can also be used here */ |
| 203 | gfp |= __GFP_NOWARN | __GFP_HIGHMEM; |
| 204 | |
| 205 | while (count) { |
| 206 | struct page *page = NULL; |
| 207 | int j, order = __fls(count); |
| 208 | |
| 209 | /* |
| 210 | * Higher-order allocations are a convenience rather |
| 211 | * than a necessity, hence using __GFP_NORETRY until |
| 212 | * falling back to single-page allocations. |
| 213 | */ |
| 214 | for (order = min(order, MAX_ORDER); order > 0; order--) { |
| 215 | page = alloc_pages(gfp | __GFP_NORETRY, order); |
| 216 | if (!page) |
| 217 | continue; |
| 218 | if (PageCompound(page)) { |
| 219 | if (!split_huge_page(page)) |
| 220 | break; |
| 221 | __free_pages(page, order); |
| 222 | } else { |
| 223 | split_page(page, order); |
| 224 | break; |
| 225 | } |
| 226 | } |
| 227 | if (!page) |
| 228 | page = alloc_page(gfp); |
| 229 | if (!page) { |
| 230 | __iommu_dma_free_pages(pages, i); |
| 231 | return NULL; |
| 232 | } |
| 233 | j = 1 << order; |
| 234 | count -= j; |
| 235 | while (j--) |
| 236 | pages[i++] = page++; |
| 237 | } |
| 238 | return pages; |
| 239 | } |
| 240 | |
| 241 | /** |
| 242 | * iommu_dma_free - Free a buffer allocated by iommu_dma_alloc() |
| 243 | * @dev: Device which owns this buffer |
| 244 | * @pages: Array of buffer pages as returned by iommu_dma_alloc() |
| 245 | * @size: Size of buffer in bytes |
| 246 | * @handle: DMA address of buffer |
| 247 | * |
| 248 | * Frees both the pages associated with the buffer, and the array |
| 249 | * describing them |
| 250 | */ |
| 251 | void iommu_dma_free(struct device *dev, struct page **pages, size_t size, |
| 252 | dma_addr_t *handle) |
| 253 | { |
| 254 | __iommu_dma_unmap(iommu_get_domain_for_dev(dev), *handle); |
| 255 | __iommu_dma_free_pages(pages, PAGE_ALIGN(size) >> PAGE_SHIFT); |
| 256 | *handle = DMA_ERROR_CODE; |
| 257 | } |
| 258 | |
| 259 | /** |
| 260 | * iommu_dma_alloc - Allocate and map a buffer contiguous in IOVA space |
| 261 | * @dev: Device to allocate memory for. Must be a real device |
| 262 | * attached to an iommu_dma_domain |
| 263 | * @size: Size of buffer in bytes |
| 264 | * @gfp: Allocation flags |
| 265 | * @prot: IOMMU mapping flags |
| 266 | * @handle: Out argument for allocated DMA handle |
| 267 | * @flush_page: Arch callback which must ensure PAGE_SIZE bytes from the |
| 268 | * given VA/PA are visible to the given non-coherent device. |
| 269 | * |
| 270 | * If @size is less than PAGE_SIZE, then a full CPU page will be allocated, |
| 271 | * but an IOMMU which supports smaller pages might not map the whole thing. |
| 272 | * |
| 273 | * Return: Array of struct page pointers describing the buffer, |
| 274 | * or NULL on failure. |
| 275 | */ |
| 276 | struct page **iommu_dma_alloc(struct device *dev, size_t size, |
| 277 | gfp_t gfp, int prot, dma_addr_t *handle, |
| 278 | void (*flush_page)(struct device *, const void *, phys_addr_t)) |
| 279 | { |
| 280 | struct iommu_domain *domain = iommu_get_domain_for_dev(dev); |
| 281 | struct iova_domain *iovad = domain->iova_cookie; |
| 282 | struct iova *iova; |
| 283 | struct page **pages; |
| 284 | struct sg_table sgt; |
| 285 | dma_addr_t dma_addr; |
| 286 | unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT; |
| 287 | |
| 288 | *handle = DMA_ERROR_CODE; |
| 289 | |
| 290 | pages = __iommu_dma_alloc_pages(count, gfp); |
| 291 | if (!pages) |
| 292 | return NULL; |
| 293 | |
| 294 | iova = __alloc_iova(iovad, size, dev->coherent_dma_mask); |
| 295 | if (!iova) |
| 296 | goto out_free_pages; |
| 297 | |
| 298 | size = iova_align(iovad, size); |
| 299 | if (sg_alloc_table_from_pages(&sgt, pages, count, 0, size, GFP_KERNEL)) |
| 300 | goto out_free_iova; |
| 301 | |
| 302 | if (!(prot & IOMMU_CACHE)) { |
| 303 | struct sg_mapping_iter miter; |
| 304 | /* |
| 305 | * The CPU-centric flushing implied by SG_MITER_TO_SG isn't |
| 306 | * sufficient here, so skip it by using the "wrong" direction. |
| 307 | */ |
| 308 | sg_miter_start(&miter, sgt.sgl, sgt.orig_nents, SG_MITER_FROM_SG); |
| 309 | while (sg_miter_next(&miter)) |
| 310 | flush_page(dev, miter.addr, page_to_phys(miter.page)); |
| 311 | sg_miter_stop(&miter); |
| 312 | } |
| 313 | |
| 314 | dma_addr = iova_dma_addr(iovad, iova); |
| 315 | if (iommu_map_sg(domain, dma_addr, sgt.sgl, sgt.orig_nents, prot) |
| 316 | < size) |
| 317 | goto out_free_sg; |
| 318 | |
| 319 | *handle = dma_addr; |
| 320 | sg_free_table(&sgt); |
| 321 | return pages; |
| 322 | |
| 323 | out_free_sg: |
| 324 | sg_free_table(&sgt); |
| 325 | out_free_iova: |
| 326 | __free_iova(iovad, iova); |
| 327 | out_free_pages: |
| 328 | __iommu_dma_free_pages(pages, count); |
| 329 | return NULL; |
| 330 | } |
| 331 | |
| 332 | /** |
| 333 | * iommu_dma_mmap - Map a buffer into provided user VMA |
| 334 | * @pages: Array representing buffer from iommu_dma_alloc() |
| 335 | * @size: Size of buffer in bytes |
| 336 | * @vma: VMA describing requested userspace mapping |
| 337 | * |
| 338 | * Maps the pages of the buffer in @pages into @vma. The caller is responsible |
| 339 | * for verifying the correct size and protection of @vma beforehand. |
| 340 | */ |
| 341 | |
| 342 | int iommu_dma_mmap(struct page **pages, size_t size, struct vm_area_struct *vma) |
| 343 | { |
| 344 | unsigned long uaddr = vma->vm_start; |
| 345 | unsigned int i, count = PAGE_ALIGN(size) >> PAGE_SHIFT; |
| 346 | int ret = -ENXIO; |
| 347 | |
| 348 | for (i = vma->vm_pgoff; i < count && uaddr < vma->vm_end; i++) { |
| 349 | ret = vm_insert_page(vma, uaddr, pages[i]); |
| 350 | if (ret) |
| 351 | break; |
| 352 | uaddr += PAGE_SIZE; |
| 353 | } |
| 354 | return ret; |
| 355 | } |
| 356 | |
| 357 | dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page, |
| 358 | unsigned long offset, size_t size, int prot) |
| 359 | { |
| 360 | dma_addr_t dma_addr; |
| 361 | struct iommu_domain *domain = iommu_get_domain_for_dev(dev); |
| 362 | struct iova_domain *iovad = domain->iova_cookie; |
| 363 | phys_addr_t phys = page_to_phys(page) + offset; |
| 364 | size_t iova_off = iova_offset(iovad, phys); |
| 365 | size_t len = iova_align(iovad, size + iova_off); |
| 366 | struct iova *iova = __alloc_iova(iovad, len, dma_get_mask(dev)); |
| 367 | |
| 368 | if (!iova) |
| 369 | return DMA_ERROR_CODE; |
| 370 | |
| 371 | dma_addr = iova_dma_addr(iovad, iova); |
| 372 | if (iommu_map(domain, dma_addr, phys - iova_off, len, prot)) { |
| 373 | __free_iova(iovad, iova); |
| 374 | return DMA_ERROR_CODE; |
| 375 | } |
| 376 | return dma_addr + iova_off; |
| 377 | } |
| 378 | |
| 379 | void iommu_dma_unmap_page(struct device *dev, dma_addr_t handle, size_t size, |
| 380 | enum dma_data_direction dir, struct dma_attrs *attrs) |
| 381 | { |
| 382 | __iommu_dma_unmap(iommu_get_domain_for_dev(dev), handle); |
| 383 | } |
| 384 | |
| 385 | /* |
| 386 | * Prepare a successfully-mapped scatterlist to give back to the caller. |
| 387 | * Handling IOVA concatenation can come later, if needed |
| 388 | */ |
| 389 | static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents, |
| 390 | dma_addr_t dma_addr) |
| 391 | { |
| 392 | struct scatterlist *s; |
| 393 | int i; |
| 394 | |
| 395 | for_each_sg(sg, s, nents, i) { |
| 396 | /* Un-swizzling the fields here, hence the naming mismatch */ |
| 397 | unsigned int s_offset = sg_dma_address(s); |
| 398 | unsigned int s_length = sg_dma_len(s); |
| 399 | unsigned int s_dma_len = s->length; |
| 400 | |
| 401 | s->offset = s_offset; |
| 402 | s->length = s_length; |
| 403 | sg_dma_address(s) = dma_addr + s_offset; |
| 404 | dma_addr += s_dma_len; |
| 405 | } |
| 406 | return i; |
| 407 | } |
| 408 | |
| 409 | /* |
| 410 | * If mapping failed, then just restore the original list, |
| 411 | * but making sure the DMA fields are invalidated. |
| 412 | */ |
| 413 | static void __invalidate_sg(struct scatterlist *sg, int nents) |
| 414 | { |
| 415 | struct scatterlist *s; |
| 416 | int i; |
| 417 | |
| 418 | for_each_sg(sg, s, nents, i) { |
| 419 | if (sg_dma_address(s) != DMA_ERROR_CODE) |
| 420 | s->offset = sg_dma_address(s); |
| 421 | if (sg_dma_len(s)) |
| 422 | s->length = sg_dma_len(s); |
| 423 | sg_dma_address(s) = DMA_ERROR_CODE; |
| 424 | sg_dma_len(s) = 0; |
| 425 | } |
| 426 | } |
| 427 | |
| 428 | /* |
| 429 | * The DMA API client is passing in a scatterlist which could describe |
| 430 | * any old buffer layout, but the IOMMU API requires everything to be |
| 431 | * aligned to IOMMU pages. Hence the need for this complicated bit of |
| 432 | * impedance-matching, to be able to hand off a suitably-aligned list, |
| 433 | * but still preserve the original offsets and sizes for the caller. |
| 434 | */ |
| 435 | int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg, |
| 436 | int nents, int prot) |
| 437 | { |
| 438 | struct iommu_domain *domain = iommu_get_domain_for_dev(dev); |
| 439 | struct iova_domain *iovad = domain->iova_cookie; |
| 440 | struct iova *iova; |
| 441 | struct scatterlist *s, *prev = NULL; |
| 442 | dma_addr_t dma_addr; |
| 443 | size_t iova_len = 0; |
| 444 | int i; |
| 445 | |
| 446 | /* |
| 447 | * Work out how much IOVA space we need, and align the segments to |
| 448 | * IOVA granules for the IOMMU driver to handle. With some clever |
| 449 | * trickery we can modify the list in-place, but reversibly, by |
| 450 | * hiding the original data in the as-yet-unused DMA fields. |
| 451 | */ |
| 452 | for_each_sg(sg, s, nents, i) { |
| 453 | size_t s_offset = iova_offset(iovad, s->offset); |
| 454 | size_t s_length = s->length; |
| 455 | |
| 456 | sg_dma_address(s) = s->offset; |
| 457 | sg_dma_len(s) = s_length; |
| 458 | s->offset -= s_offset; |
| 459 | s_length = iova_align(iovad, s_length + s_offset); |
| 460 | s->length = s_length; |
| 461 | |
| 462 | /* |
| 463 | * The simple way to avoid the rare case of a segment |
| 464 | * crossing the boundary mask is to pad the previous one |
| 465 | * to end at a naturally-aligned IOVA for this one's size, |
| 466 | * at the cost of potentially over-allocating a little. |
| 467 | */ |
| 468 | if (prev) { |
| 469 | size_t pad_len = roundup_pow_of_two(s_length); |
| 470 | |
| 471 | pad_len = (pad_len - iova_len) & (pad_len - 1); |
| 472 | prev->length += pad_len; |
| 473 | iova_len += pad_len; |
| 474 | } |
| 475 | |
| 476 | iova_len += s_length; |
| 477 | prev = s; |
| 478 | } |
| 479 | |
| 480 | iova = __alloc_iova(iovad, iova_len, dma_get_mask(dev)); |
| 481 | if (!iova) |
| 482 | goto out_restore_sg; |
| 483 | |
| 484 | /* |
| 485 | * We'll leave any physical concatenation to the IOMMU driver's |
| 486 | * implementation - it knows better than we do. |
| 487 | */ |
| 488 | dma_addr = iova_dma_addr(iovad, iova); |
| 489 | if (iommu_map_sg(domain, dma_addr, sg, nents, prot) < iova_len) |
| 490 | goto out_free_iova; |
| 491 | |
| 492 | return __finalise_sg(dev, sg, nents, dma_addr); |
| 493 | |
| 494 | out_free_iova: |
| 495 | __free_iova(iovad, iova); |
| 496 | out_restore_sg: |
| 497 | __invalidate_sg(sg, nents); |
| 498 | return 0; |
| 499 | } |
| 500 | |
| 501 | void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, |
| 502 | enum dma_data_direction dir, struct dma_attrs *attrs) |
| 503 | { |
| 504 | /* |
| 505 | * The scatterlist segments are mapped into a single |
| 506 | * contiguous IOVA allocation, so this is incredibly easy. |
| 507 | */ |
| 508 | __iommu_dma_unmap(iommu_get_domain_for_dev(dev), sg_dma_address(sg)); |
| 509 | } |
| 510 | |
| 511 | int iommu_dma_supported(struct device *dev, u64 mask) |
| 512 | { |
| 513 | /* |
| 514 | * 'Special' IOMMUs which don't have the same addressing capability |
| 515 | * as the CPU will have to wait until we have some way to query that |
| 516 | * before they'll be able to use this framework. |
| 517 | */ |
| 518 | return 1; |
| 519 | } |
| 520 | |
| 521 | int iommu_dma_mapping_error(struct device *dev, dma_addr_t dma_addr) |
| 522 | { |
| 523 | return dma_addr == DMA_ERROR_CODE; |
| 524 | } |