blob: bea03f682674c1f6a9b7654fc6fda827ae9a9c43 [file] [log] [blame]
Zhu Yib481de92007-09-25 17:54:57 -07001/******************************************************************************
2 *
3 * This file is provided under a dual BSD/GPLv2 license. When using or
4 * redistributing this file, you may do so under either license.
5 *
6 * GPL LICENSE SUMMARY
7 *
Reinette Chatreeb7ae892008-03-11 16:17:17 -07008 * Copyright(c) 2005 - 2008 Intel Corporation. All rights reserved.
Zhu Yib481de92007-09-25 17:54:57 -07009 *
10 * This program is free software; you can redistribute it and/or modify
Ian Schram01ebd062007-10-25 17:15:22 +080011 * it under the terms of version 2 of the GNU General Public License as
Zhu Yib481de92007-09-25 17:54:57 -070012 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
22 * USA
23 *
24 * The full GNU General Public License is included in this distribution
25 * in the file called LICENSE.GPL.
26 *
27 * Contact Information:
28 * James P. Ketrenos <ipw2100-admin@linux.intel.com>
29 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
30 *
31 * BSD LICENSE
32 *
Reinette Chatreeb7ae892008-03-11 16:17:17 -070033 * Copyright(c) 2005 - 2008 Intel Corporation. All rights reserved.
Zhu Yib481de92007-09-25 17:54:57 -070034 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 *
40 * * Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * * Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in
44 * the documentation and/or other materials provided with the
45 * distribution.
46 * * Neither the name Intel Corporation nor the names of its
47 * contributors may be used to endorse or promote products derived
48 * from this software without specific prior written permission.
49 *
50 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
51 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
52 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
53 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
54 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
55 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
56 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
57 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
58 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
59 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
60 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
61 *
62 *****************************************************************************/
Ben Cahillfcd427b2007-11-29 11:10:00 +080063/*
64 * Please use this file (iwl-4965-hw.h) only for hardware-related definitions.
65 * Use iwl-4965-commands.h for uCode API definitions.
66 * Use iwl-4965.h for driver implementation definitions.
67 */
Zhu Yib481de92007-09-25 17:54:57 -070068
69#ifndef __iwl_4965_hw_h__
70#define __iwl_4965_hw_h__
71
Emmanuel Grumbach4b52c392008-04-23 17:15:07 -070072#include "iwl-fh.h"
73
Tomas Winkler073d3f52008-04-21 15:41:52 -070074/* EERPROM */
75#define IWL4965_EEPROM_IMG_SIZE 1024
76
Ben Cahill1fea8e82007-11-29 11:09:52 +080077/*
78 * uCode queue management definitions ...
79 * Queue #4 is the command queue for 3945 and 4965; map it to Tx FIFO chnl 4.
80 * The first queue used for block-ack aggregation is #7 (4965 only).
81 * All block-ack aggregation queues should map to Tx DMA/FIFO channel 7.
82 */
Christoph Hellwig5d08cd12007-10-25 17:15:50 +080083#define IWL_CMD_QUEUE_NUM 4
84#define IWL_CMD_FIFO_NUM 4
85#define IWL_BACK_QUEUE_FIRST_ID 7
86
87/* Tx rates */
88#define IWL_CCK_RATES 4
89#define IWL_OFDM_RATES 8
Christoph Hellwig5d08cd12007-10-25 17:15:50 +080090#define IWL_HT_RATES 16
Christoph Hellwig5d08cd12007-10-25 17:15:50 +080091#define IWL_MAX_RATES (IWL_CCK_RATES+IWL_OFDM_RATES+IWL_HT_RATES)
92
93/* Time constants */
94#define SHORT_SLOT_TIME 9
95#define LONG_SLOT_TIME 20
96
97/* RSSI to dBm */
98#define IWL_RSSI_OFFSET 44
99
Christoph Hellwig5d08cd12007-10-25 17:15:50 +0800100
101#include "iwl-4965-commands.h"
102
103#define PCI_LINK_CTRL 0x0F0
104#define PCI_POWER_SOURCE 0x0C8
105#define PCI_REG_WUM8 0x0E8
106#define PCI_CFG_PMC_PME_FROM_D3COLD_SUPPORT (0x80000000)
107
Christoph Hellwig5d08cd12007-10-25 17:15:50 +0800108#define TFD_QUEUE_SIZE_MAX (256)
109
Christoph Hellwig5d08cd12007-10-25 17:15:50 +0800110#define IWL_NUM_SCAN_RATES (2)
111
Christoph Hellwig5d08cd12007-10-25 17:15:50 +0800112#define IWL_DEFAULT_TX_RETRY 15
Christoph Hellwig5d08cd12007-10-25 17:15:50 +0800113
114#define RX_QUEUE_SIZE 256
115#define RX_QUEUE_MASK 255
116#define RX_QUEUE_SIZE_LOG 8
117
Christoph Hellwig5d08cd12007-10-25 17:15:50 +0800118#define TFD_TX_CMD_SLOTS 256
119#define TFD_CMD_SLOTS 32
120
Christoph Hellwig5d08cd12007-10-25 17:15:50 +0800121/*
122 * RX related structures and functions
123 */
124#define RX_FREE_BUFFERS 64
125#define RX_LOW_WATERMARK 8
126
Ben Cahillfcd427b2007-11-29 11:10:00 +0800127/* Size of one Rx buffer in host DRAM */
Ron Rindjunsky9ee1ba42007-11-26 16:14:42 +0200128#define IWL_RX_BUF_SIZE_4K (4 * 1024)
129#define IWL_RX_BUF_SIZE_8K (8 * 1024)
Ben Cahillfcd427b2007-11-29 11:10:00 +0800130
131/* Sizes and addresses for instruction and data memory (SRAM) in
132 * 4965's embedded processor. Driver access is via HBUS_TARG_MEM_* regs. */
133#define RTC_INST_LOWER_BOUND (0x000000)
Tomas Winkler12a81f62008-04-03 16:05:20 -0700134#define IWL49_RTC_INST_UPPER_BOUND (0x018000)
Ben Cahillfcd427b2007-11-29 11:10:00 +0800135
136#define RTC_DATA_LOWER_BOUND (0x800000)
Tomas Winkler12a81f62008-04-03 16:05:20 -0700137#define IWL49_RTC_DATA_UPPER_BOUND (0x80A000)
Ben Cahillfcd427b2007-11-29 11:10:00 +0800138
Ron Rindjunsky099b40b2008-04-21 15:41:53 -0700139#define IWL49_RTC_INST_SIZE (IWL49_RTC_INST_UPPER_BOUND - RTC_INST_LOWER_BOUND)
140#define IWL49_RTC_DATA_SIZE (IWL49_RTC_DATA_UPPER_BOUND - RTC_DATA_LOWER_BOUND)
Zhu Yib481de92007-09-25 17:54:57 -0700141
Tomas Winkler12a81f62008-04-03 16:05:20 -0700142#define IWL_MAX_INST_SIZE IWL49_RTC_INST_SIZE
143#define IWL_MAX_DATA_SIZE IWL49_RTC_DATA_SIZE
Zhu Yib481de92007-09-25 17:54:57 -0700144
Ben Cahillfcd427b2007-11-29 11:10:00 +0800145/* Size of uCode instruction memory in bootstrap state machine */
146#define IWL_MAX_BSM_SIZE BSM_SRAM_SIZE
147
Christoph Hellwigbb8c0932008-01-27 16:41:47 -0800148static inline int iwl4965_hw_valid_rtc_data_addr(u32 addr)
Zhu Yib481de92007-09-25 17:54:57 -0700149{
150 return (addr >= RTC_DATA_LOWER_BOUND) &&
Tomas Winkler12a81f62008-04-03 16:05:20 -0700151 (addr < IWL49_RTC_DATA_UPPER_BOUND);
Zhu Yib481de92007-09-25 17:54:57 -0700152}
153
Ben Cahill5991b412007-11-29 11:10:01 +0800154/********************* START TEMPERATURE *************************************/
155
Ben Cahill0c434c52007-11-29 11:10:02 +0800156/**
Ben Cahill5991b412007-11-29 11:10:01 +0800157 * 4965 temperature calculation.
158 *
159 * The driver must calculate the device temperature before calculating
160 * a txpower setting (amplifier gain is temperature dependent). The
161 * calculation uses 4 measurements, 3 of which (R1, R2, R3) are calibration
162 * values used for the life of the driver, and one of which (R4) is the
163 * real-time temperature indicator.
164 *
165 * uCode provides all 4 values to the driver via the "initialize alive"
166 * notification (see struct iwl4965_init_alive_resp). After the runtime uCode
167 * image loads, uCode updates the R4 value via statistics notifications
168 * (see STATISTICS_NOTIFICATION), which occur after each received beacon
169 * when associated, or can be requested via REPLY_STATISTICS_CMD.
170 *
171 * NOTE: uCode provides the R4 value as a 23-bit signed value. Driver
172 * must sign-extend to 32 bits before applying formula below.
173 *
174 * Formula:
175 *
176 * degrees Kelvin = ((97 * 259 * (R4 - R2) / (R3 - R1)) / 100) + 8
177 *
178 * NOTE: The basic formula is 259 * (R4-R2) / (R3-R1). The 97/100 is
179 * an additional correction, which should be centered around 0 degrees
180 * Celsius (273 degrees Kelvin). The 8 (3 percent of 273) compensates for
181 * centering the 97/100 correction around 0 degrees K.
182 *
183 * Add 273 to Kelvin value to find degrees Celsius, for comparing current
184 * temperature with factory-measured temperatures when calculating txpower
185 * settings.
186 */
187#define TEMPERATURE_CALIB_KELVIN_OFFSET 8
188#define TEMPERATURE_CALIB_A_VAL 259
189
190/* Limit range of calculated temperature to be between these Kelvin values */
191#define IWL_TX_POWER_TEMPERATURE_MIN (263)
192#define IWL_TX_POWER_TEMPERATURE_MAX (410)
193
194#define IWL_TX_POWER_TEMPERATURE_OUT_OF_RANGE(t) \
195 (((t) < IWL_TX_POWER_TEMPERATURE_MIN) || \
196 ((t) > IWL_TX_POWER_TEMPERATURE_MAX))
197
198/********************* END TEMPERATURE ***************************************/
199
Zhu Yib481de92007-09-25 17:54:57 -0700200/********************* START TXPOWER *****************************************/
Zhu Yib481de92007-09-25 17:54:57 -0700201
Ben Cahill0c434c52007-11-29 11:10:02 +0800202/**
203 * 4965 txpower calculations rely on information from three sources:
204 *
205 * 1) EEPROM
206 * 2) "initialize" alive notification
207 * 3) statistics notifications
208 *
209 * EEPROM data consists of:
210 *
211 * 1) Regulatory information (max txpower and channel usage flags) is provided
212 * separately for each channel that can possibly supported by 4965.
213 * 40 MHz wide (.11n fat) channels are listed separately from 20 MHz
214 * (legacy) channels.
215 *
216 * See struct iwl4965_eeprom_channel for format, and struct iwl4965_eeprom
217 * for locations in EEPROM.
218 *
219 * 2) Factory txpower calibration information is provided separately for
220 * sub-bands of contiguous channels. 2.4GHz has just one sub-band,
221 * but 5 GHz has several sub-bands.
222 *
223 * In addition, per-band (2.4 and 5 Ghz) saturation txpowers are provided.
224 *
225 * See struct iwl4965_eeprom_calib_info (and the tree of structures
226 * contained within it) for format, and struct iwl4965_eeprom for
227 * locations in EEPROM.
228 *
229 * "Initialization alive" notification (see struct iwl4965_init_alive_resp)
230 * consists of:
231 *
232 * 1) Temperature calculation parameters.
233 *
234 * 2) Power supply voltage measurement.
235 *
236 * 3) Tx gain compensation to balance 2 transmitters for MIMO use.
237 *
238 * Statistics notifications deliver:
239 *
240 * 1) Current values for temperature param R4.
241 */
242
243/**
244 * To calculate a txpower setting for a given desired target txpower, channel,
245 * modulation bit rate, and transmitter chain (4965 has 2 transmitters to
246 * support MIMO and transmit diversity), driver must do the following:
247 *
248 * 1) Compare desired txpower vs. (EEPROM) regulatory limit for this channel.
249 * Do not exceed regulatory limit; reduce target txpower if necessary.
250 *
251 * If setting up txpowers for MIMO rates (rate indexes 8-15, 24-31),
252 * 2 transmitters will be used simultaneously; driver must reduce the
253 * regulatory limit by 3 dB (half-power) for each transmitter, so the
254 * combined total output of the 2 transmitters is within regulatory limits.
255 *
256 *
257 * 2) Compare target txpower vs. (EEPROM) saturation txpower *reduced by
258 * backoff for this bit rate*. Do not exceed (saturation - backoff[rate]);
259 * reduce target txpower if necessary.
260 *
261 * Backoff values below are in 1/2 dB units (equivalent to steps in
262 * txpower gain tables):
263 *
264 * OFDM 6 - 36 MBit: 10 steps (5 dB)
265 * OFDM 48 MBit: 15 steps (7.5 dB)
266 * OFDM 54 MBit: 17 steps (8.5 dB)
267 * OFDM 60 MBit: 20 steps (10 dB)
268 * CCK all rates: 10 steps (5 dB)
269 *
270 * Backoff values apply to saturation txpower on a per-transmitter basis;
271 * when using MIMO (2 transmitters), each transmitter uses the same
272 * saturation level provided in EEPROM, and the same backoff values;
273 * no reduction (such as with regulatory txpower limits) is required.
274 *
275 * Saturation and Backoff values apply equally to 20 Mhz (legacy) channel
276 * widths and 40 Mhz (.11n fat) channel widths; there is no separate
277 * factory measurement for fat channels.
278 *
279 * The result of this step is the final target txpower. The rest of
280 * the steps figure out the proper settings for the device to achieve
281 * that target txpower.
282 *
283 *
284 * 3) Determine (EEPROM) calibration subband for the target channel, by
285 * comparing against first and last channels in each subband
286 * (see struct iwl4965_eeprom_calib_subband_info).
287 *
288 *
289 * 4) Linearly interpolate (EEPROM) factory calibration measurement sets,
290 * referencing the 2 factory-measured (sample) channels within the subband.
291 *
292 * Interpolation is based on difference between target channel's frequency
293 * and the sample channels' frequencies. Since channel numbers are based
294 * on frequency (5 MHz between each channel number), this is equivalent
295 * to interpolating based on channel number differences.
296 *
297 * Note that the sample channels may or may not be the channels at the
298 * edges of the subband. The target channel may be "outside" of the
299 * span of the sampled channels.
300 *
301 * Driver may choose the pair (for 2 Tx chains) of measurements (see
302 * struct iwl4965_eeprom_calib_ch_info) for which the actual measured
303 * txpower comes closest to the desired txpower. Usually, though,
304 * the middle set of measurements is closest to the regulatory limits,
305 * and is therefore a good choice for all txpower calculations (this
306 * assumes that high accuracy is needed for maximizing legal txpower,
307 * while lower txpower configurations do not need as much accuracy).
308 *
309 * Driver should interpolate both members of the chosen measurement pair,
310 * i.e. for both Tx chains (radio transmitters), unless the driver knows
311 * that only one of the chains will be used (e.g. only one tx antenna
312 * connected, but this should be unusual). The rate scaling algorithm
313 * switches antennas to find best performance, so both Tx chains will
314 * be used (although only one at a time) even for non-MIMO transmissions.
315 *
316 * Driver should interpolate factory values for temperature, gain table
317 * index, and actual power. The power amplifier detector values are
318 * not used by the driver.
319 *
320 * Sanity check: If the target channel happens to be one of the sample
321 * channels, the results should agree with the sample channel's
322 * measurements!
323 *
324 *
325 * 5) Find difference between desired txpower and (interpolated)
326 * factory-measured txpower. Using (interpolated) factory gain table index
327 * (shown elsewhere) as a starting point, adjust this index lower to
328 * increase txpower, or higher to decrease txpower, until the target
329 * txpower is reached. Each step in the gain table is 1/2 dB.
330 *
331 * For example, if factory measured txpower is 16 dBm, and target txpower
332 * is 13 dBm, add 6 steps to the factory gain index to reduce txpower
333 * by 3 dB.
334 *
335 *
336 * 6) Find difference between current device temperature and (interpolated)
337 * factory-measured temperature for sub-band. Factory values are in
338 * degrees Celsius. To calculate current temperature, see comments for
339 * "4965 temperature calculation".
340 *
341 * If current temperature is higher than factory temperature, driver must
342 * increase gain (lower gain table index), and vice versa.
343 *
344 * Temperature affects gain differently for different channels:
345 *
346 * 2.4 GHz all channels: 3.5 degrees per half-dB step
347 * 5 GHz channels 34-43: 4.5 degrees per half-dB step
348 * 5 GHz channels >= 44: 4.0 degrees per half-dB step
349 *
350 * NOTE: Temperature can increase rapidly when transmitting, especially
351 * with heavy traffic at high txpowers. Driver should update
352 * temperature calculations often under these conditions to
353 * maintain strong txpower in the face of rising temperature.
354 *
355 *
356 * 7) Find difference between current power supply voltage indicator
357 * (from "initialize alive") and factory-measured power supply voltage
358 * indicator (EEPROM).
359 *
360 * If the current voltage is higher (indicator is lower) than factory
361 * voltage, gain should be reduced (gain table index increased) by:
362 *
363 * (eeprom - current) / 7
364 *
365 * If the current voltage is lower (indicator is higher) than factory
366 * voltage, gain should be increased (gain table index decreased) by:
367 *
368 * 2 * (current - eeprom) / 7
369 *
370 * If number of index steps in either direction turns out to be > 2,
371 * something is wrong ... just use 0.
372 *
373 * NOTE: Voltage compensation is independent of band/channel.
374 *
375 * NOTE: "Initialize" uCode measures current voltage, which is assumed
376 * to be constant after this initial measurement. Voltage
377 * compensation for txpower (number of steps in gain table)
378 * may be calculated once and used until the next uCode bootload.
379 *
380 *
381 * 8) If setting up txpowers for MIMO rates (rate indexes 8-15, 24-31),
382 * adjust txpower for each transmitter chain, so txpower is balanced
383 * between the two chains. There are 5 pairs of tx_atten[group][chain]
384 * values in "initialize alive", one pair for each of 5 channel ranges:
385 *
386 * Group 0: 5 GHz channel 34-43
387 * Group 1: 5 GHz channel 44-70
388 * Group 2: 5 GHz channel 71-124
389 * Group 3: 5 GHz channel 125-200
390 * Group 4: 2.4 GHz all channels
391 *
392 * Add the tx_atten[group][chain] value to the index for the target chain.
393 * The values are signed, but are in pairs of 0 and a non-negative number,
394 * so as to reduce gain (if necessary) of the "hotter" channel. This
395 * avoids any need to double-check for regulatory compliance after
396 * this step.
397 *
398 *
399 * 9) If setting up for a CCK rate, lower the gain by adding a CCK compensation
400 * value to the index:
401 *
402 * Hardware rev B: 9 steps (4.5 dB)
403 * Hardware rev C: 5 steps (2.5 dB)
404 *
405 * Hardware rev for 4965 can be determined by reading CSR_HW_REV_WA_REG,
406 * bits [3:2], 1 = B, 2 = C.
407 *
408 * NOTE: This compensation is in addition to any saturation backoff that
409 * might have been applied in an earlier step.
410 *
411 *
412 * 10) Select the gain table, based on band (2.4 vs 5 GHz).
413 *
414 * Limit the adjusted index to stay within the table!
415 *
416 *
417 * 11) Read gain table entries for DSP and radio gain, place into appropriate
418 * location(s) in command (struct iwl4965_txpowertable_cmd).
419 */
420
421/* Limit range of txpower output target to be between these values */
422#define IWL_TX_POWER_TARGET_POWER_MIN (0) /* 0 dBm = 1 milliwatt */
423#define IWL_TX_POWER_TARGET_POWER_MAX (16) /* 16 dBm */
424
425/**
426 * When MIMO is used (2 transmitters operating simultaneously), driver should
427 * limit each transmitter to deliver a max of 3 dB below the regulatory limit
428 * for the device. That is, use half power for each transmitter, so total
429 * txpower is within regulatory limits.
430 *
431 * The value "6" represents number of steps in gain table to reduce power 3 dB.
432 * Each step is 1/2 dB.
433 */
434#define IWL_TX_POWER_MIMO_REGULATORY_COMPENSATION (6)
435
436/**
437 * CCK gain compensation.
438 *
439 * When calculating txpowers for CCK, after making sure that the target power
440 * is within regulatory and saturation limits, driver must additionally
441 * back off gain by adding these values to the gain table index.
442 *
443 * Hardware rev for 4965 can be determined by reading CSR_HW_REV_WA_REG,
444 * bits [3:2], 1 = B, 2 = C.
445 */
446#define IWL_TX_POWER_CCK_COMPENSATION_B_STEP (9)
447#define IWL_TX_POWER_CCK_COMPENSATION_C_STEP (5)
448
449/*
450 * 4965 power supply voltage compensation for txpower
451 */
452#define TX_POWER_IWL_VOLTAGE_CODES_PER_03V (7)
453
454/**
455 * Gain tables.
456 *
457 * The following tables contain pair of values for setting txpower, i.e.
458 * gain settings for the output of the device's digital signal processor (DSP),
459 * and for the analog gain structure of the transmitter.
460 *
461 * Each entry in the gain tables represents a step of 1/2 dB. Note that these
462 * are *relative* steps, not indications of absolute output power. Output
463 * power varies with temperature, voltage, and channel frequency, and also
464 * requires consideration of average power (to satisfy regulatory constraints),
465 * and peak power (to avoid distortion of the output signal).
466 *
467 * Each entry contains two values:
468 * 1) DSP gain (or sometimes called DSP attenuation). This is a fine-grained
469 * linear value that multiplies the output of the digital signal processor,
470 * before being sent to the analog radio.
471 * 2) Radio gain. This sets the analog gain of the radio Tx path.
472 * It is a coarser setting, and behaves in a logarithmic (dB) fashion.
473 *
474 * EEPROM contains factory calibration data for txpower. This maps actual
475 * measured txpower levels to gain settings in the "well known" tables
476 * below ("well-known" means here that both factory calibration *and* the
477 * driver work with the same table).
478 *
479 * There are separate tables for 2.4 GHz and 5 GHz bands. The 5 GHz table
480 * has an extension (into negative indexes), in case the driver needs to
481 * boost power setting for high device temperatures (higher than would be
482 * present during factory calibration). A 5 Ghz EEPROM index of "40"
483 * corresponds to the 49th entry in the table used by the driver.
484 */
485#define MIN_TX_GAIN_INDEX (0) /* highest gain, lowest idx, 2.4 */
486#define MIN_TX_GAIN_INDEX_52GHZ_EXT (-9) /* highest gain, lowest idx, 5 */
487
488/**
489 * 2.4 GHz gain table
490 *
491 * Index Dsp gain Radio gain
492 * 0 110 0x3f (highest gain)
493 * 1 104 0x3f
494 * 2 98 0x3f
495 * 3 110 0x3e
496 * 4 104 0x3e
497 * 5 98 0x3e
498 * 6 110 0x3d
499 * 7 104 0x3d
500 * 8 98 0x3d
501 * 9 110 0x3c
502 * 10 104 0x3c
503 * 11 98 0x3c
504 * 12 110 0x3b
505 * 13 104 0x3b
506 * 14 98 0x3b
507 * 15 110 0x3a
508 * 16 104 0x3a
509 * 17 98 0x3a
510 * 18 110 0x39
511 * 19 104 0x39
512 * 20 98 0x39
513 * 21 110 0x38
514 * 22 104 0x38
515 * 23 98 0x38
516 * 24 110 0x37
517 * 25 104 0x37
518 * 26 98 0x37
519 * 27 110 0x36
520 * 28 104 0x36
521 * 29 98 0x36
522 * 30 110 0x35
523 * 31 104 0x35
524 * 32 98 0x35
525 * 33 110 0x34
526 * 34 104 0x34
527 * 35 98 0x34
528 * 36 110 0x33
529 * 37 104 0x33
530 * 38 98 0x33
531 * 39 110 0x32
532 * 40 104 0x32
533 * 41 98 0x32
534 * 42 110 0x31
535 * 43 104 0x31
536 * 44 98 0x31
537 * 45 110 0x30
538 * 46 104 0x30
539 * 47 98 0x30
540 * 48 110 0x6
541 * 49 104 0x6
542 * 50 98 0x6
543 * 51 110 0x5
544 * 52 104 0x5
545 * 53 98 0x5
546 * 54 110 0x4
547 * 55 104 0x4
548 * 56 98 0x4
549 * 57 110 0x3
550 * 58 104 0x3
551 * 59 98 0x3
552 * 60 110 0x2
553 * 61 104 0x2
554 * 62 98 0x2
555 * 63 110 0x1
556 * 64 104 0x1
557 * 65 98 0x1
558 * 66 110 0x0
559 * 67 104 0x0
560 * 68 98 0x0
561 * 69 97 0
562 * 70 96 0
563 * 71 95 0
564 * 72 94 0
565 * 73 93 0
566 * 74 92 0
567 * 75 91 0
568 * 76 90 0
569 * 77 89 0
570 * 78 88 0
571 * 79 87 0
572 * 80 86 0
573 * 81 85 0
574 * 82 84 0
575 * 83 83 0
576 * 84 82 0
577 * 85 81 0
578 * 86 80 0
579 * 87 79 0
580 * 88 78 0
581 * 89 77 0
582 * 90 76 0
583 * 91 75 0
584 * 92 74 0
585 * 93 73 0
586 * 94 72 0
587 * 95 71 0
588 * 96 70 0
589 * 97 69 0
590 * 98 68 0
591 */
592
593/**
594 * 5 GHz gain table
595 *
596 * Index Dsp gain Radio gain
597 * -9 123 0x3F (highest gain)
598 * -8 117 0x3F
599 * -7 110 0x3F
600 * -6 104 0x3F
601 * -5 98 0x3F
602 * -4 110 0x3E
603 * -3 104 0x3E
604 * -2 98 0x3E
605 * -1 110 0x3D
606 * 0 104 0x3D
607 * 1 98 0x3D
608 * 2 110 0x3C
609 * 3 104 0x3C
610 * 4 98 0x3C
611 * 5 110 0x3B
612 * 6 104 0x3B
613 * 7 98 0x3B
614 * 8 110 0x3A
615 * 9 104 0x3A
616 * 10 98 0x3A
617 * 11 110 0x39
618 * 12 104 0x39
619 * 13 98 0x39
620 * 14 110 0x38
621 * 15 104 0x38
622 * 16 98 0x38
623 * 17 110 0x37
624 * 18 104 0x37
625 * 19 98 0x37
626 * 20 110 0x36
627 * 21 104 0x36
628 * 22 98 0x36
629 * 23 110 0x35
630 * 24 104 0x35
631 * 25 98 0x35
632 * 26 110 0x34
633 * 27 104 0x34
634 * 28 98 0x34
635 * 29 110 0x33
636 * 30 104 0x33
637 * 31 98 0x33
638 * 32 110 0x32
639 * 33 104 0x32
640 * 34 98 0x32
641 * 35 110 0x31
642 * 36 104 0x31
643 * 37 98 0x31
644 * 38 110 0x30
645 * 39 104 0x30
646 * 40 98 0x30
647 * 41 110 0x25
648 * 42 104 0x25
649 * 43 98 0x25
650 * 44 110 0x24
651 * 45 104 0x24
652 * 46 98 0x24
653 * 47 110 0x23
654 * 48 104 0x23
655 * 49 98 0x23
656 * 50 110 0x22
657 * 51 104 0x18
658 * 52 98 0x18
659 * 53 110 0x17
660 * 54 104 0x17
661 * 55 98 0x17
662 * 56 110 0x16
663 * 57 104 0x16
664 * 58 98 0x16
665 * 59 110 0x15
666 * 60 104 0x15
667 * 61 98 0x15
668 * 62 110 0x14
669 * 63 104 0x14
670 * 64 98 0x14
671 * 65 110 0x13
672 * 66 104 0x13
673 * 67 98 0x13
674 * 68 110 0x12
675 * 69 104 0x08
676 * 70 98 0x08
677 * 71 110 0x07
678 * 72 104 0x07
679 * 73 98 0x07
680 * 74 110 0x06
681 * 75 104 0x06
682 * 76 98 0x06
683 * 77 110 0x05
684 * 78 104 0x05
685 * 79 98 0x05
686 * 80 110 0x04
687 * 81 104 0x04
688 * 82 98 0x04
689 * 83 110 0x03
690 * 84 104 0x03
691 * 85 98 0x03
692 * 86 110 0x02
693 * 87 104 0x02
694 * 88 98 0x02
695 * 89 110 0x01
696 * 90 104 0x01
697 * 91 98 0x01
698 * 92 110 0x00
699 * 93 104 0x00
700 * 94 98 0x00
701 * 95 93 0x00
702 * 96 88 0x00
703 * 97 83 0x00
704 * 98 78 0x00
705 */
706
707
708/**
709 * Sanity checks and default values for EEPROM regulatory levels.
710 * If EEPROM values fall outside MIN/MAX range, use default values.
711 *
712 * Regulatory limits refer to the maximum average txpower allowed by
713 * regulatory agencies in the geographies in which the device is meant
714 * to be operated. These limits are SKU-specific (i.e. geography-specific),
715 * and channel-specific; each channel has an individual regulatory limit
716 * listed in the EEPROM.
717 *
718 * Units are in half-dBm (i.e. "34" means 17 dBm).
719 */
720#define IWL_TX_POWER_DEFAULT_REGULATORY_24 (34)
721#define IWL_TX_POWER_DEFAULT_REGULATORY_52 (34)
722#define IWL_TX_POWER_REGULATORY_MIN (0)
723#define IWL_TX_POWER_REGULATORY_MAX (34)
724
725/**
726 * Sanity checks and default values for EEPROM saturation levels.
727 * If EEPROM values fall outside MIN/MAX range, use default values.
728 *
729 * Saturation is the highest level that the output power amplifier can produce
730 * without significant clipping distortion. This is a "peak" power level.
731 * Different types of modulation (i.e. various "rates", and OFDM vs. CCK)
732 * require differing amounts of backoff, relative to their average power output,
733 * in order to avoid clipping distortion.
734 *
735 * Driver must make sure that it is violating neither the saturation limit,
736 * nor the regulatory limit, when calculating Tx power settings for various
737 * rates.
738 *
739 * Units are in half-dBm (i.e. "38" means 19 dBm).
740 */
741#define IWL_TX_POWER_DEFAULT_SATURATION_24 (38)
742#define IWL_TX_POWER_DEFAULT_SATURATION_52 (38)
743#define IWL_TX_POWER_SATURATION_MIN (20)
744#define IWL_TX_POWER_SATURATION_MAX (50)
745
746/**
747 * Channel groups used for Tx Attenuation calibration (MIMO tx channel balance)
748 * and thermal Txpower calibration.
749 *
750 * When calculating txpower, driver must compensate for current device
751 * temperature; higher temperature requires higher gain. Driver must calculate
752 * current temperature (see "4965 temperature calculation"), then compare vs.
753 * factory calibration temperature in EEPROM; if current temperature is higher
754 * than factory temperature, driver must *increase* gain by proportions shown
755 * in table below. If current temperature is lower than factory, driver must
756 * *decrease* gain.
757 *
758 * Different frequency ranges require different compensation, as shown below.
759 */
760/* Group 0, 5.2 GHz ch 34-43: 4.5 degrees per 1/2 dB. */
761#define CALIB_IWL_TX_ATTEN_GR1_FCH 34
762#define CALIB_IWL_TX_ATTEN_GR1_LCH 43
763
764/* Group 1, 5.3 GHz ch 44-70: 4.0 degrees per 1/2 dB. */
765#define CALIB_IWL_TX_ATTEN_GR2_FCH 44
766#define CALIB_IWL_TX_ATTEN_GR2_LCH 70
767
768/* Group 2, 5.5 GHz ch 71-124: 4.0 degrees per 1/2 dB. */
769#define CALIB_IWL_TX_ATTEN_GR3_FCH 71
770#define CALIB_IWL_TX_ATTEN_GR3_LCH 124
771
772/* Group 3, 5.7 GHz ch 125-200: 4.0 degrees per 1/2 dB. */
773#define CALIB_IWL_TX_ATTEN_GR4_FCH 125
774#define CALIB_IWL_TX_ATTEN_GR4_LCH 200
775
776/* Group 4, 2.4 GHz all channels: 3.5 degrees per 1/2 dB. */
777#define CALIB_IWL_TX_ATTEN_GR5_FCH 1
778#define CALIB_IWL_TX_ATTEN_GR5_LCH 20
779
Zhu Yib481de92007-09-25 17:54:57 -0700780enum {
781 CALIB_CH_GROUP_1 = 0,
782 CALIB_CH_GROUP_2 = 1,
783 CALIB_CH_GROUP_3 = 2,
784 CALIB_CH_GROUP_4 = 3,
785 CALIB_CH_GROUP_5 = 4,
786 CALIB_CH_GROUP_MAX
787};
788
Zhu Yib481de92007-09-25 17:54:57 -0700789/********************* END TXPOWER *****************************************/
790
Christoph Hellwigbb8c0932008-01-27 16:41:47 -0800791static inline u8 iwl4965_hw_get_rate(__le32 rate_n_flags)
Zhu Yib481de92007-09-25 17:54:57 -0700792{
793 return le32_to_cpu(rate_n_flags) & 0xFF;
794}
Guy Cohenf935a6d2008-04-23 17:15:02 -0700795static inline u32 iwl4965_hw_get_rate_n_flags(__le32 rate_n_flags)
Zhu Yib481de92007-09-25 17:54:57 -0700796{
Guy Cohenf935a6d2008-04-23 17:15:02 -0700797 return le32_to_cpu(rate_n_flags) & 0x1FFFF;
Zhu Yib481de92007-09-25 17:54:57 -0700798}
Christoph Hellwigbb8c0932008-01-27 16:41:47 -0800799static inline __le32 iwl4965_hw_set_rate_n_flags(u8 rate, u16 flags)
Zhu Yib481de92007-09-25 17:54:57 -0700800{
801 return cpu_to_le32(flags|(u16)rate);
802}
803
Ben Cahill5d5456f2007-11-29 11:10:06 +0800804
805/**
806 * Tx/Rx Queues
807 *
808 * Most communication between driver and 4965 is via queues of data buffers.
809 * For example, all commands that the driver issues to device's embedded
810 * controller (uCode) are via the command queue (one of the Tx queues). All
811 * uCode command responses/replies/notifications, including Rx frames, are
812 * conveyed from uCode to driver via the Rx queue.
813 *
814 * Most support for these queues, including handshake support, resides in
815 * structures in host DRAM, shared between the driver and the device. When
816 * allocating this memory, the driver must make sure that data written by
817 * the host CPU updates DRAM immediately (and does not get "stuck" in CPU's
818 * cache memory), so DRAM and cache are consistent, and the device can
819 * immediately see changes made by the driver.
820 *
821 * 4965 supports up to 16 DRAM-based Tx queues, and services these queues via
822 * up to 7 DMA channels (FIFOs). Each Tx queue is supported by a circular array
823 * in DRAM containing 256 Transmit Frame Descriptors (TFDs).
824 */
Emmanuel Grumbach038669e2008-04-23 17:15:04 -0700825#define IWL49_MAX_WIN_SIZE 64
826#define IWL49_QUEUE_SIZE 256
827#define IWL49_NUM_FIFOS 7
828#define IWL49_CMD_FIFO_NUM 4
829#define IWL49_NUM_QUEUES 16
Ben Cahill5d5456f2007-11-29 11:10:06 +0800830
831/**
832 * struct iwl4965_tfd_frame_data
833 *
834 * Describes up to 2 buffers containing (contiguous) portions of a Tx frame.
835 * Each buffer must be on dword boundary.
836 * Up to 10 iwl_tfd_frame_data structures, describing up to 20 buffers,
837 * may be filled within a TFD (iwl_tfd_frame).
838 *
839 * Bit fields in tb1_addr:
840 * 31- 0: Tx buffer 1 address bits [31:0]
841 *
842 * Bit fields in val1:
843 * 31-16: Tx buffer 2 address bits [15:0]
844 * 15- 4: Tx buffer 1 length (bytes)
845 * 3- 0: Tx buffer 1 address bits [32:32]
846 *
847 * Bit fields in val2:
848 * 31-20: Tx buffer 2 length (bytes)
849 * 19- 0: Tx buffer 2 address bits [35:16]
850 */
Christoph Hellwigbb8c0932008-01-27 16:41:47 -0800851struct iwl4965_tfd_frame_data {
Zhu Yib481de92007-09-25 17:54:57 -0700852 __le32 tb1_addr;
853
854 __le32 val1;
855 /* __le32 ptb1_32_35:4; */
856#define IWL_tb1_addr_hi_POS 0
857#define IWL_tb1_addr_hi_LEN 4
858#define IWL_tb1_addr_hi_SYM val1
859 /* __le32 tb_len1:12; */
860#define IWL_tb1_len_POS 4
861#define IWL_tb1_len_LEN 12
862#define IWL_tb1_len_SYM val1
863 /* __le32 ptb2_0_15:16; */
864#define IWL_tb2_addr_lo16_POS 16
865#define IWL_tb2_addr_lo16_LEN 16
866#define IWL_tb2_addr_lo16_SYM val1
867
868 __le32 val2;
869 /* __le32 ptb2_16_35:20; */
870#define IWL_tb2_addr_hi20_POS 0
871#define IWL_tb2_addr_hi20_LEN 20
872#define IWL_tb2_addr_hi20_SYM val2
873 /* __le32 tb_len2:12; */
874#define IWL_tb2_len_POS 20
875#define IWL_tb2_len_LEN 12
876#define IWL_tb2_len_SYM val2
877} __attribute__ ((packed));
878
Ben Cahill5d5456f2007-11-29 11:10:06 +0800879
880/**
881 * struct iwl4965_tfd_frame
882 *
883 * Transmit Frame Descriptor (TFD)
884 *
885 * 4965 supports up to 16 Tx queues resident in host DRAM.
886 * Each Tx queue uses a circular buffer of 256 TFDs stored in host DRAM.
887 * Both driver and device share these circular buffers, each of which must be
888 * contiguous 256 TFDs x 128 bytes-per-TFD = 32 KBytes for 4965.
889 *
890 * Driver must indicate the physical address of the base of each
891 * circular buffer via the 4965's FH_MEM_CBBC_QUEUE registers.
892 *
893 * Each TFD contains pointer/size information for up to 20 data buffers
894 * in host DRAM. These buffers collectively contain the (one) frame described
895 * by the TFD. Each buffer must be a single contiguous block of memory within
896 * itself, but buffers may be scattered in host DRAM. Each buffer has max size
897 * of (4K - 4). The 4965 concatenates all of a TFD's buffers into a single
898 * Tx frame, up to 8 KBytes in size.
899 *
900 * Bit fields in the control dword (val0):
901 * 31-30: # dwords (0-3) of padding required at end of frame for 16-byte bound
902 * 29: reserved
903 * 28-24: # Transmit Buffer Descriptors in TFD
904 * 23- 0: reserved
905 *
906 * A maximum of 255 (not 256!) TFDs may be on a queue waiting for Tx.
907 */
Christoph Hellwigbb8c0932008-01-27 16:41:47 -0800908struct iwl4965_tfd_frame {
Zhu Yib481de92007-09-25 17:54:57 -0700909 __le32 val0;
910 /* __le32 rsvd1:24; */
911 /* __le32 num_tbs:5; */
912#define IWL_num_tbs_POS 24
913#define IWL_num_tbs_LEN 5
914#define IWL_num_tbs_SYM val0
915 /* __le32 rsvd2:1; */
916 /* __le32 padding:2; */
Christoph Hellwigbb8c0932008-01-27 16:41:47 -0800917 struct iwl4965_tfd_frame_data pa[10];
Zhu Yib481de92007-09-25 17:54:57 -0700918 __le32 reserved;
919} __attribute__ ((packed));
920
Zhu Yib481de92007-09-25 17:54:57 -0700921
Ben Cahill5d5456f2007-11-29 11:10:06 +0800922/**
923 * struct iwl4965_queue_byte_cnt_entry
924 *
925 * Byte Count Table Entry
926 *
927 * Bit fields:
928 * 15-12: reserved
929 * 11- 0: total to-be-transmitted byte count of frame (does not include command)
930 */
Zhu Yib481de92007-09-25 17:54:57 -0700931struct iwl4965_queue_byte_cnt_entry {
932 __le16 val;
933 /* __le16 byte_cnt:12; */
934#define IWL_byte_cnt_POS 0
935#define IWL_byte_cnt_LEN 12
936#define IWL_byte_cnt_SYM val
937 /* __le16 rsvd:4; */
938} __attribute__ ((packed));
939
Ben Cahill5d5456f2007-11-29 11:10:06 +0800940
941/**
942 * struct iwl4965_sched_queue_byte_cnt_tbl
943 *
944 * Byte Count table
945 *
946 * Each Tx queue uses a byte-count table containing 320 entries:
947 * one 16-bit entry for each of 256 TFDs, plus an additional 64 entries that
948 * duplicate the first 64 entries (to avoid wrap-around within a Tx window;
949 * max Tx window is 64 TFDs).
950 *
951 * When driver sets up a new TFD, it must also enter the total byte count
952 * of the frame to be transmitted into the corresponding entry in the byte
953 * count table for the chosen Tx queue. If the TFD index is 0-63, the driver
954 * must duplicate the byte count entry in corresponding index 256-319.
955 *
956 * "dont_care" padding puts each byte count table on a 1024-byte boundary;
957 * 4965 assumes tables are separated by 1024 bytes.
958 */
Zhu Yib481de92007-09-25 17:54:57 -0700959struct iwl4965_sched_queue_byte_cnt_tbl {
Emmanuel Grumbach038669e2008-04-23 17:15:04 -0700960 struct iwl4965_queue_byte_cnt_entry tfd_offset[IWL49_QUEUE_SIZE +
961 IWL49_MAX_WIN_SIZE];
Zhu Yib481de92007-09-25 17:54:57 -0700962 u8 dont_care[1024 -
Emmanuel Grumbach038669e2008-04-23 17:15:04 -0700963 (IWL49_QUEUE_SIZE + IWL49_MAX_WIN_SIZE) *
Zhu Yib481de92007-09-25 17:54:57 -0700964 sizeof(__le16)];
965} __attribute__ ((packed));
966
Ben Cahill5d5456f2007-11-29 11:10:06 +0800967
968/**
969 * struct iwl4965_shared - handshake area for Tx and Rx
970 *
971 * For convenience in allocating memory, this structure combines 2 areas of
972 * DRAM which must be shared between driver and 4965. These do not need to
973 * be combined, if better allocation would result from keeping them separate:
974 *
975 * 1) The Tx byte count tables occupy 1024 bytes each (16 KBytes total for
976 * 16 queues). Driver uses SCD_DRAM_BASE_ADDR to tell 4965 where to find
977 * the first of these tables. 4965 assumes tables are 1024 bytes apart.
978 *
979 * 2) The Rx status (val0 and val1) occupies only 8 bytes. Driver uses
980 * FH_RSCSR_CHNL0_STTS_WPTR_REG to tell 4965 where to find this area.
981 * Driver reads val0 to determine the latest Receive Buffer Descriptor (RBD)
982 * that has been filled by the 4965.
983 *
984 * Bit fields val0:
985 * 31-12: Not used
986 * 11- 0: Index of last filled Rx buffer descriptor (4965 writes, driver reads)
987 *
988 * Bit fields val1:
989 * 31- 0: Not used
990 */
Christoph Hellwigbb8c0932008-01-27 16:41:47 -0800991struct iwl4965_shared {
Zhu Yib481de92007-09-25 17:54:57 -0700992 struct iwl4965_sched_queue_byte_cnt_tbl
Emmanuel Grumbach038669e2008-04-23 17:15:04 -0700993 queues_byte_cnt_tbls[IWL49_NUM_QUEUES];
Tomas Winkler059ff822008-04-14 21:16:14 -0700994 __le32 rb_closed;
Zhu Yib481de92007-09-25 17:54:57 -0700995
996 /* __le32 rb_closed_stts_rb_num:12; */
997#define IWL_rb_closed_stts_rb_num_POS 0
998#define IWL_rb_closed_stts_rb_num_LEN 12
Tomas Winkler059ff822008-04-14 21:16:14 -0700999#define IWL_rb_closed_stts_rb_num_SYM rb_closed
Zhu Yib481de92007-09-25 17:54:57 -07001000 /* __le32 rsrv1:4; */
1001 /* __le32 rb_closed_stts_rx_frame_num:12; */
1002#define IWL_rb_closed_stts_rx_frame_num_POS 16
1003#define IWL_rb_closed_stts_rx_frame_num_LEN 12
Tomas Winkler059ff822008-04-14 21:16:14 -07001004#define IWL_rb_closed_stts_rx_frame_num_SYM rb_closed
Zhu Yib481de92007-09-25 17:54:57 -07001005 /* __le32 rsrv2:4; */
1006
Tomas Winkler059ff822008-04-14 21:16:14 -07001007 __le32 frm_finished;
Zhu Yib481de92007-09-25 17:54:57 -07001008 /* __le32 frame_finished_stts_rb_num:12; */
1009#define IWL_frame_finished_stts_rb_num_POS 0
1010#define IWL_frame_finished_stts_rb_num_LEN 12
Tomas Winkler059ff822008-04-14 21:16:14 -07001011#define IWL_frame_finished_stts_rb_num_SYM frm_finished
Zhu Yib481de92007-09-25 17:54:57 -07001012 /* __le32 rsrv3:4; */
1013 /* __le32 frame_finished_stts_rx_frame_num:12; */
1014#define IWL_frame_finished_stts_rx_frame_num_POS 16
1015#define IWL_frame_finished_stts_rx_frame_num_LEN 12
Tomas Winkler059ff822008-04-14 21:16:14 -07001016#define IWL_frame_finished_stts_rx_frame_num_SYM frm_finished
Zhu Yib481de92007-09-25 17:54:57 -07001017 /* __le32 rsrv4:4; */
1018
1019 __le32 padding1; /* so that allocation will be aligned to 16B */
1020 __le32 padding2;
1021} __attribute__ ((packed));
1022
Christoph Hellwigbb8c0932008-01-27 16:41:47 -08001023#endif /* __iwl4965_4965_hw_h__ */