Thomas Dahlmann | 55d402d | 2007-07-16 21:40:54 -0700 | [diff] [blame] | 1 | /* |
| 2 | * amd5536.c -- AMD 5536 UDC high/full speed USB device controller |
| 3 | * |
| 4 | * Copyright (C) 2005-2007 AMD (http://www.amd.com) |
| 5 | * Author: Thomas Dahlmann |
| 6 | * |
| 7 | * This program is free software; you can redistribute it and/or modify |
| 8 | * it under the terms of the GNU General Public License as published by |
| 9 | * the Free Software Foundation; either version 2 of the License, or |
| 10 | * (at your option) any later version. |
| 11 | * |
| 12 | * This program is distributed in the hope that it will be useful, |
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 15 | * GNU General Public License for more details. |
| 16 | * |
| 17 | * You should have received a copy of the GNU General Public License |
| 18 | * along with this program; if not, write to the Free Software |
| 19 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| 20 | */ |
| 21 | |
| 22 | /* |
| 23 | * The AMD5536 UDC is part of the x86 southbridge AMD Geode CS5536. |
| 24 | * It is a USB Highspeed DMA capable USB device controller. Beside ep0 it |
| 25 | * provides 4 IN and 4 OUT endpoints (bulk or interrupt type). |
| 26 | * |
| 27 | * Make sure that UDC is assigned to port 4 by BIOS settings (port can also |
| 28 | * be used as host port) and UOC bits PAD_EN and APU are set (should be done |
| 29 | * by BIOS init). |
| 30 | * |
| 31 | * UDC DMA requires 32-bit aligned buffers so DMA with gadget ether does not |
| 32 | * work without updating NET_IP_ALIGN. Or PIO mode (module param "use_dma=0") |
| 33 | * can be used with gadget ether. |
| 34 | */ |
| 35 | |
| 36 | /* debug control */ |
| 37 | /* #define UDC_VERBOSE */ |
| 38 | |
| 39 | /* Driver strings */ |
| 40 | #define UDC_MOD_DESCRIPTION "AMD 5536 UDC - USB Device Controller" |
| 41 | #define UDC_DRIVER_VERSION_STRING "01.00.0206 - $Revision: #3 $" |
| 42 | |
| 43 | /* system */ |
| 44 | #include <linux/module.h> |
| 45 | #include <linux/pci.h> |
| 46 | #include <linux/kernel.h> |
| 47 | #include <linux/version.h> |
| 48 | #include <linux/delay.h> |
| 49 | #include <linux/ioport.h> |
| 50 | #include <linux/sched.h> |
| 51 | #include <linux/slab.h> |
| 52 | #include <linux/smp_lock.h> |
| 53 | #include <linux/errno.h> |
| 54 | #include <linux/init.h> |
| 55 | #include <linux/timer.h> |
| 56 | #include <linux/list.h> |
| 57 | #include <linux/interrupt.h> |
| 58 | #include <linux/ioctl.h> |
| 59 | #include <linux/fs.h> |
| 60 | #include <linux/dmapool.h> |
| 61 | #include <linux/moduleparam.h> |
| 62 | #include <linux/device.h> |
| 63 | #include <linux/io.h> |
| 64 | #include <linux/irq.h> |
| 65 | |
| 66 | #include <asm/byteorder.h> |
| 67 | #include <asm/system.h> |
| 68 | #include <asm/unaligned.h> |
| 69 | |
| 70 | /* gadget stack */ |
| 71 | #include <linux/usb/ch9.h> |
David Brownell | 9454a57 | 2007-10-04 18:05:17 -0700 | [diff] [blame] | 72 | #include <linux/usb/gadget.h> |
Thomas Dahlmann | 55d402d | 2007-07-16 21:40:54 -0700 | [diff] [blame] | 73 | |
| 74 | /* udc specific */ |
| 75 | #include "amd5536udc.h" |
| 76 | |
| 77 | |
| 78 | static void udc_tasklet_disconnect(unsigned long); |
| 79 | static void empty_req_queue(struct udc_ep *); |
| 80 | static int udc_probe(struct udc *dev); |
| 81 | static void udc_basic_init(struct udc *dev); |
| 82 | static void udc_setup_endpoints(struct udc *dev); |
| 83 | static void udc_soft_reset(struct udc *dev); |
| 84 | static struct udc_request *udc_alloc_bna_dummy(struct udc_ep *ep); |
| 85 | static void udc_free_request(struct usb_ep *usbep, struct usb_request *usbreq); |
| 86 | static int udc_free_dma_chain(struct udc *dev, struct udc_request *req); |
| 87 | static int udc_create_dma_chain(struct udc_ep *ep, struct udc_request *req, |
| 88 | unsigned long buf_len, gfp_t gfp_flags); |
| 89 | static int udc_remote_wakeup(struct udc *dev); |
| 90 | static int udc_pci_probe(struct pci_dev *pdev, const struct pci_device_id *id); |
| 91 | static void udc_pci_remove(struct pci_dev *pdev); |
| 92 | |
| 93 | /* description */ |
| 94 | static const char mod_desc[] = UDC_MOD_DESCRIPTION; |
| 95 | static const char name[] = "amd5536udc"; |
| 96 | |
| 97 | /* structure to hold endpoint function pointers */ |
| 98 | static const struct usb_ep_ops udc_ep_ops; |
| 99 | |
| 100 | /* received setup data */ |
| 101 | static union udc_setup_data setup_data; |
| 102 | |
| 103 | /* pointer to device object */ |
| 104 | static struct udc *udc; |
| 105 | |
| 106 | /* irq spin lock for soft reset */ |
| 107 | static DEFINE_SPINLOCK(udc_irq_spinlock); |
| 108 | /* stall spin lock */ |
| 109 | static DEFINE_SPINLOCK(udc_stall_spinlock); |
| 110 | |
| 111 | /* |
| 112 | * slave mode: pending bytes in rx fifo after nyet, |
| 113 | * used if EPIN irq came but no req was available |
| 114 | */ |
| 115 | static unsigned int udc_rxfifo_pending; |
| 116 | |
| 117 | /* count soft resets after suspend to avoid loop */ |
| 118 | static int soft_reset_occured; |
| 119 | static int soft_reset_after_usbreset_occured; |
| 120 | |
| 121 | /* timer */ |
| 122 | static struct timer_list udc_timer; |
| 123 | static int stop_timer; |
| 124 | |
| 125 | /* set_rde -- Is used to control enabling of RX DMA. Problem is |
| 126 | * that UDC has only one bit (RDE) to enable/disable RX DMA for |
| 127 | * all OUT endpoints. So we have to handle race conditions like |
| 128 | * when OUT data reaches the fifo but no request was queued yet. |
| 129 | * This cannot be solved by letting the RX DMA disabled until a |
| 130 | * request gets queued because there may be other OUT packets |
| 131 | * in the FIFO (important for not blocking control traffic). |
| 132 | * The value of set_rde controls the correspondig timer. |
| 133 | * |
| 134 | * set_rde -1 == not used, means it is alloed to be set to 0 or 1 |
| 135 | * set_rde 0 == do not touch RDE, do no start the RDE timer |
| 136 | * set_rde 1 == timer function will look whether FIFO has data |
| 137 | * set_rde 2 == set by timer function to enable RX DMA on next call |
| 138 | */ |
| 139 | static int set_rde = -1; |
| 140 | |
| 141 | static DECLARE_COMPLETION(on_exit); |
| 142 | static struct timer_list udc_pollstall_timer; |
| 143 | static int stop_pollstall_timer; |
| 144 | static DECLARE_COMPLETION(on_pollstall_exit); |
| 145 | |
| 146 | /* tasklet for usb disconnect */ |
| 147 | static DECLARE_TASKLET(disconnect_tasklet, udc_tasklet_disconnect, |
| 148 | (unsigned long) &udc); |
| 149 | |
| 150 | |
| 151 | /* endpoint names used for print */ |
| 152 | static const char ep0_string[] = "ep0in"; |
| 153 | static const char *ep_string[] = { |
| 154 | ep0_string, |
| 155 | "ep1in-int", "ep2in-bulk", "ep3in-bulk", "ep4in-bulk", "ep5in-bulk", |
| 156 | "ep6in-bulk", "ep7in-bulk", "ep8in-bulk", "ep9in-bulk", "ep10in-bulk", |
| 157 | "ep11in-bulk", "ep12in-bulk", "ep13in-bulk", "ep14in-bulk", |
| 158 | "ep15in-bulk", "ep0out", "ep1out-bulk", "ep2out-bulk", "ep3out-bulk", |
| 159 | "ep4out-bulk", "ep5out-bulk", "ep6out-bulk", "ep7out-bulk", |
| 160 | "ep8out-bulk", "ep9out-bulk", "ep10out-bulk", "ep11out-bulk", |
| 161 | "ep12out-bulk", "ep13out-bulk", "ep14out-bulk", "ep15out-bulk" |
| 162 | }; |
| 163 | |
| 164 | /* DMA usage flag */ |
| 165 | static int use_dma = 1; |
| 166 | /* packet per buffer dma */ |
| 167 | static int use_dma_ppb = 1; |
| 168 | /* with per descr. update */ |
| 169 | static int use_dma_ppb_du; |
| 170 | /* buffer fill mode */ |
| 171 | static int use_dma_bufferfill_mode; |
| 172 | /* full speed only mode */ |
| 173 | static int use_fullspeed; |
| 174 | /* tx buffer size for high speed */ |
| 175 | static unsigned long hs_tx_buf = UDC_EPIN_BUFF_SIZE; |
| 176 | |
| 177 | /* module parameters */ |
| 178 | module_param(use_dma, bool, S_IRUGO); |
| 179 | MODULE_PARM_DESC(use_dma, "true for DMA"); |
| 180 | module_param(use_dma_ppb, bool, S_IRUGO); |
| 181 | MODULE_PARM_DESC(use_dma_ppb, "true for DMA in packet per buffer mode"); |
| 182 | module_param(use_dma_ppb_du, bool, S_IRUGO); |
| 183 | MODULE_PARM_DESC(use_dma_ppb_du, |
| 184 | "true for DMA in packet per buffer mode with descriptor update"); |
| 185 | module_param(use_fullspeed, bool, S_IRUGO); |
| 186 | MODULE_PARM_DESC(use_fullspeed, "true for fullspeed only"); |
| 187 | |
| 188 | /*---------------------------------------------------------------------------*/ |
| 189 | /* Prints UDC device registers and endpoint irq registers */ |
| 190 | static void print_regs(struct udc *dev) |
| 191 | { |
| 192 | DBG(dev, "------- Device registers -------\n"); |
| 193 | DBG(dev, "dev config = %08x\n", readl(&dev->regs->cfg)); |
| 194 | DBG(dev, "dev control = %08x\n", readl(&dev->regs->ctl)); |
| 195 | DBG(dev, "dev status = %08x\n", readl(&dev->regs->sts)); |
| 196 | DBG(dev, "\n"); |
| 197 | DBG(dev, "dev int's = %08x\n", readl(&dev->regs->irqsts)); |
| 198 | DBG(dev, "dev intmask = %08x\n", readl(&dev->regs->irqmsk)); |
| 199 | DBG(dev, "\n"); |
| 200 | DBG(dev, "dev ep int's = %08x\n", readl(&dev->regs->ep_irqsts)); |
| 201 | DBG(dev, "dev ep intmask = %08x\n", readl(&dev->regs->ep_irqmsk)); |
| 202 | DBG(dev, "\n"); |
| 203 | DBG(dev, "USE DMA = %d\n", use_dma); |
| 204 | if (use_dma && use_dma_ppb && !use_dma_ppb_du) { |
| 205 | DBG(dev, "DMA mode = PPBNDU (packet per buffer " |
| 206 | "WITHOUT desc. update)\n"); |
| 207 | dev_info(&dev->pdev->dev, "DMA mode (%s)\n", "PPBNDU"); |
| 208 | } else if (use_dma && use_dma_ppb_du && use_dma_ppb_du) { |
| 209 | DBG(dev, "DMA mode = PPBDU (packet per buffer " |
| 210 | "WITH desc. update)\n"); |
| 211 | dev_info(&dev->pdev->dev, "DMA mode (%s)\n", "PPBDU"); |
| 212 | } |
| 213 | if (use_dma && use_dma_bufferfill_mode) { |
| 214 | DBG(dev, "DMA mode = BF (buffer fill mode)\n"); |
| 215 | dev_info(&dev->pdev->dev, "DMA mode (%s)\n", "BF"); |
| 216 | } |
| 217 | if (!use_dma) { |
| 218 | dev_info(&dev->pdev->dev, "FIFO mode\n"); |
| 219 | } |
| 220 | DBG(dev, "-------------------------------------------------------\n"); |
| 221 | } |
| 222 | |
| 223 | /* Masks unused interrupts */ |
| 224 | static int udc_mask_unused_interrupts(struct udc *dev) |
| 225 | { |
| 226 | u32 tmp; |
| 227 | |
| 228 | /* mask all dev interrupts */ |
| 229 | tmp = AMD_BIT(UDC_DEVINT_SVC) | |
| 230 | AMD_BIT(UDC_DEVINT_ENUM) | |
| 231 | AMD_BIT(UDC_DEVINT_US) | |
| 232 | AMD_BIT(UDC_DEVINT_UR) | |
| 233 | AMD_BIT(UDC_DEVINT_ES) | |
| 234 | AMD_BIT(UDC_DEVINT_SI) | |
| 235 | AMD_BIT(UDC_DEVINT_SOF)| |
| 236 | AMD_BIT(UDC_DEVINT_SC); |
| 237 | writel(tmp, &dev->regs->irqmsk); |
| 238 | |
| 239 | /* mask all ep interrupts */ |
| 240 | writel(UDC_EPINT_MSK_DISABLE_ALL, &dev->regs->ep_irqmsk); |
| 241 | |
| 242 | return 0; |
| 243 | } |
| 244 | |
| 245 | /* Enables endpoint 0 interrupts */ |
| 246 | static int udc_enable_ep0_interrupts(struct udc *dev) |
| 247 | { |
| 248 | u32 tmp; |
| 249 | |
| 250 | DBG(dev, "udc_enable_ep0_interrupts()\n"); |
| 251 | |
| 252 | /* read irq mask */ |
| 253 | tmp = readl(&dev->regs->ep_irqmsk); |
| 254 | /* enable ep0 irq's */ |
| 255 | tmp &= AMD_UNMASK_BIT(UDC_EPINT_IN_EP0) |
| 256 | & AMD_UNMASK_BIT(UDC_EPINT_OUT_EP0); |
| 257 | writel(tmp, &dev->regs->ep_irqmsk); |
| 258 | |
| 259 | return 0; |
| 260 | } |
| 261 | |
| 262 | /* Enables device interrupts for SET_INTF and SET_CONFIG */ |
| 263 | static int udc_enable_dev_setup_interrupts(struct udc *dev) |
| 264 | { |
| 265 | u32 tmp; |
| 266 | |
| 267 | DBG(dev, "enable device interrupts for setup data\n"); |
| 268 | |
| 269 | /* read irq mask */ |
| 270 | tmp = readl(&dev->regs->irqmsk); |
| 271 | |
| 272 | /* enable SET_INTERFACE, SET_CONFIG and other needed irq's */ |
| 273 | tmp &= AMD_UNMASK_BIT(UDC_DEVINT_SI) |
| 274 | & AMD_UNMASK_BIT(UDC_DEVINT_SC) |
| 275 | & AMD_UNMASK_BIT(UDC_DEVINT_UR) |
| 276 | & AMD_UNMASK_BIT(UDC_DEVINT_SVC) |
| 277 | & AMD_UNMASK_BIT(UDC_DEVINT_ENUM); |
| 278 | writel(tmp, &dev->regs->irqmsk); |
| 279 | |
| 280 | return 0; |
| 281 | } |
| 282 | |
| 283 | /* Calculates fifo start of endpoint based on preceeding endpoints */ |
| 284 | static int udc_set_txfifo_addr(struct udc_ep *ep) |
| 285 | { |
| 286 | struct udc *dev; |
| 287 | u32 tmp; |
| 288 | int i; |
| 289 | |
| 290 | if (!ep || !(ep->in)) |
| 291 | return -EINVAL; |
| 292 | |
| 293 | dev = ep->dev; |
| 294 | ep->txfifo = dev->txfifo; |
| 295 | |
| 296 | /* traverse ep's */ |
| 297 | for (i = 0; i < ep->num; i++) { |
| 298 | if (dev->ep[i].regs) { |
| 299 | /* read fifo size */ |
| 300 | tmp = readl(&dev->ep[i].regs->bufin_framenum); |
| 301 | tmp = AMD_GETBITS(tmp, UDC_EPIN_BUFF_SIZE); |
| 302 | ep->txfifo += tmp; |
| 303 | } |
| 304 | } |
| 305 | return 0; |
| 306 | } |
| 307 | |
| 308 | /* CNAK pending field: bit0 = ep0in, bit16 = ep0out */ |
| 309 | static u32 cnak_pending; |
| 310 | |
| 311 | static void UDC_QUEUE_CNAK(struct udc_ep *ep, unsigned num) |
| 312 | { |
| 313 | if (readl(&ep->regs->ctl) & AMD_BIT(UDC_EPCTL_NAK)) { |
| 314 | DBG(ep->dev, "NAK could not be cleared for ep%d\n", num); |
| 315 | cnak_pending |= 1 << (num); |
| 316 | ep->naking = 1; |
| 317 | } else |
| 318 | cnak_pending = cnak_pending & (~(1 << (num))); |
| 319 | } |
| 320 | |
| 321 | |
| 322 | /* Enables endpoint, is called by gadget driver */ |
| 323 | static int |
| 324 | udc_ep_enable(struct usb_ep *usbep, const struct usb_endpoint_descriptor *desc) |
| 325 | { |
| 326 | struct udc_ep *ep; |
| 327 | struct udc *dev; |
| 328 | u32 tmp; |
| 329 | unsigned long iflags; |
| 330 | u8 udc_csr_epix; |
| 331 | |
| 332 | if (!usbep |
| 333 | || usbep->name == ep0_string |
| 334 | || !desc |
| 335 | || desc->bDescriptorType != USB_DT_ENDPOINT) |
| 336 | return -EINVAL; |
| 337 | |
| 338 | ep = container_of(usbep, struct udc_ep, ep); |
| 339 | dev = ep->dev; |
| 340 | |
| 341 | DBG(dev, "udc_ep_enable() ep %d\n", ep->num); |
| 342 | |
| 343 | if (!dev->driver || dev->gadget.speed == USB_SPEED_UNKNOWN) |
| 344 | return -ESHUTDOWN; |
| 345 | |
| 346 | spin_lock_irqsave(&dev->lock, iflags); |
| 347 | ep->desc = desc; |
| 348 | |
| 349 | ep->halted = 0; |
| 350 | |
| 351 | /* set traffic type */ |
| 352 | tmp = readl(&dev->ep[ep->num].regs->ctl); |
| 353 | tmp = AMD_ADDBITS(tmp, desc->bmAttributes, UDC_EPCTL_ET); |
| 354 | writel(tmp, &dev->ep[ep->num].regs->ctl); |
| 355 | |
| 356 | /* set max packet size */ |
| 357 | tmp = readl(&dev->ep[ep->num].regs->bufout_maxpkt); |
| 358 | tmp = AMD_ADDBITS(tmp, desc->wMaxPacketSize, UDC_EP_MAX_PKT_SIZE); |
| 359 | ep->ep.maxpacket = desc->wMaxPacketSize; |
| 360 | writel(tmp, &dev->ep[ep->num].regs->bufout_maxpkt); |
| 361 | |
| 362 | /* IN ep */ |
| 363 | if (ep->in) { |
| 364 | |
| 365 | /* ep ix in UDC CSR register space */ |
| 366 | udc_csr_epix = ep->num; |
| 367 | |
| 368 | /* set buffer size (tx fifo entries) */ |
| 369 | tmp = readl(&dev->ep[ep->num].regs->bufin_framenum); |
| 370 | /* double buffering: fifo size = 2 x max packet size */ |
| 371 | tmp = AMD_ADDBITS( |
| 372 | tmp, |
| 373 | desc->wMaxPacketSize * UDC_EPIN_BUFF_SIZE_MULT |
| 374 | / UDC_DWORD_BYTES, |
| 375 | UDC_EPIN_BUFF_SIZE); |
| 376 | writel(tmp, &dev->ep[ep->num].regs->bufin_framenum); |
| 377 | |
| 378 | /* calc. tx fifo base addr */ |
| 379 | udc_set_txfifo_addr(ep); |
| 380 | |
| 381 | /* flush fifo */ |
| 382 | tmp = readl(&ep->regs->ctl); |
| 383 | tmp |= AMD_BIT(UDC_EPCTL_F); |
| 384 | writel(tmp, &ep->regs->ctl); |
| 385 | |
| 386 | /* OUT ep */ |
| 387 | } else { |
| 388 | /* ep ix in UDC CSR register space */ |
| 389 | udc_csr_epix = ep->num - UDC_CSR_EP_OUT_IX_OFS; |
| 390 | |
| 391 | /* set max packet size UDC CSR */ |
| 392 | tmp = readl(&dev->csr->ne[ep->num - UDC_CSR_EP_OUT_IX_OFS]); |
| 393 | tmp = AMD_ADDBITS(tmp, desc->wMaxPacketSize, |
| 394 | UDC_CSR_NE_MAX_PKT); |
| 395 | writel(tmp, &dev->csr->ne[ep->num - UDC_CSR_EP_OUT_IX_OFS]); |
| 396 | |
| 397 | if (use_dma && !ep->in) { |
| 398 | /* alloc and init BNA dummy request */ |
| 399 | ep->bna_dummy_req = udc_alloc_bna_dummy(ep); |
| 400 | ep->bna_occurred = 0; |
| 401 | } |
| 402 | |
| 403 | if (ep->num != UDC_EP0OUT_IX) |
| 404 | dev->data_ep_enabled = 1; |
| 405 | } |
| 406 | |
| 407 | /* set ep values */ |
| 408 | tmp = readl(&dev->csr->ne[udc_csr_epix]); |
| 409 | /* max packet */ |
| 410 | tmp = AMD_ADDBITS(tmp, desc->wMaxPacketSize, UDC_CSR_NE_MAX_PKT); |
| 411 | /* ep number */ |
| 412 | tmp = AMD_ADDBITS(tmp, desc->bEndpointAddress, UDC_CSR_NE_NUM); |
| 413 | /* ep direction */ |
| 414 | tmp = AMD_ADDBITS(tmp, ep->in, UDC_CSR_NE_DIR); |
| 415 | /* ep type */ |
| 416 | tmp = AMD_ADDBITS(tmp, desc->bmAttributes, UDC_CSR_NE_TYPE); |
| 417 | /* ep config */ |
| 418 | tmp = AMD_ADDBITS(tmp, ep->dev->cur_config, UDC_CSR_NE_CFG); |
| 419 | /* ep interface */ |
| 420 | tmp = AMD_ADDBITS(tmp, ep->dev->cur_intf, UDC_CSR_NE_INTF); |
| 421 | /* ep alt */ |
| 422 | tmp = AMD_ADDBITS(tmp, ep->dev->cur_alt, UDC_CSR_NE_ALT); |
| 423 | /* write reg */ |
| 424 | writel(tmp, &dev->csr->ne[udc_csr_epix]); |
| 425 | |
| 426 | /* enable ep irq */ |
| 427 | tmp = readl(&dev->regs->ep_irqmsk); |
| 428 | tmp &= AMD_UNMASK_BIT(ep->num); |
| 429 | writel(tmp, &dev->regs->ep_irqmsk); |
| 430 | |
| 431 | /* |
| 432 | * clear NAK by writing CNAK |
| 433 | * avoid BNA for OUT DMA, don't clear NAK until DMA desc. written |
| 434 | */ |
| 435 | if (!use_dma || ep->in) { |
| 436 | tmp = readl(&ep->regs->ctl); |
| 437 | tmp |= AMD_BIT(UDC_EPCTL_CNAK); |
| 438 | writel(tmp, &ep->regs->ctl); |
| 439 | ep->naking = 0; |
| 440 | UDC_QUEUE_CNAK(ep, ep->num); |
| 441 | } |
| 442 | tmp = desc->bEndpointAddress; |
| 443 | DBG(dev, "%s enabled\n", usbep->name); |
| 444 | |
| 445 | spin_unlock_irqrestore(&dev->lock, iflags); |
| 446 | return 0; |
| 447 | } |
| 448 | |
| 449 | /* Resets endpoint */ |
| 450 | static void ep_init(struct udc_regs __iomem *regs, struct udc_ep *ep) |
| 451 | { |
| 452 | u32 tmp; |
| 453 | |
| 454 | VDBG(ep->dev, "ep-%d reset\n", ep->num); |
| 455 | ep->desc = NULL; |
| 456 | ep->ep.ops = &udc_ep_ops; |
| 457 | INIT_LIST_HEAD(&ep->queue); |
| 458 | |
| 459 | ep->ep.maxpacket = (u16) ~0; |
| 460 | /* set NAK */ |
| 461 | tmp = readl(&ep->regs->ctl); |
| 462 | tmp |= AMD_BIT(UDC_EPCTL_SNAK); |
| 463 | writel(tmp, &ep->regs->ctl); |
| 464 | ep->naking = 1; |
| 465 | |
| 466 | /* disable interrupt */ |
| 467 | tmp = readl(®s->ep_irqmsk); |
| 468 | tmp |= AMD_BIT(ep->num); |
| 469 | writel(tmp, ®s->ep_irqmsk); |
| 470 | |
| 471 | if (ep->in) { |
| 472 | /* unset P and IN bit of potential former DMA */ |
| 473 | tmp = readl(&ep->regs->ctl); |
| 474 | tmp &= AMD_UNMASK_BIT(UDC_EPCTL_P); |
| 475 | writel(tmp, &ep->regs->ctl); |
| 476 | |
| 477 | tmp = readl(&ep->regs->sts); |
| 478 | tmp |= AMD_BIT(UDC_EPSTS_IN); |
| 479 | writel(tmp, &ep->regs->sts); |
| 480 | |
| 481 | /* flush the fifo */ |
| 482 | tmp = readl(&ep->regs->ctl); |
| 483 | tmp |= AMD_BIT(UDC_EPCTL_F); |
| 484 | writel(tmp, &ep->regs->ctl); |
| 485 | |
| 486 | } |
| 487 | /* reset desc pointer */ |
| 488 | writel(0, &ep->regs->desptr); |
| 489 | } |
| 490 | |
| 491 | /* Disables endpoint, is called by gadget driver */ |
| 492 | static int udc_ep_disable(struct usb_ep *usbep) |
| 493 | { |
| 494 | struct udc_ep *ep = NULL; |
| 495 | unsigned long iflags; |
| 496 | |
| 497 | if (!usbep) |
| 498 | return -EINVAL; |
| 499 | |
| 500 | ep = container_of(usbep, struct udc_ep, ep); |
| 501 | if (usbep->name == ep0_string || !ep->desc) |
| 502 | return -EINVAL; |
| 503 | |
| 504 | DBG(ep->dev, "Disable ep-%d\n", ep->num); |
| 505 | |
| 506 | spin_lock_irqsave(&ep->dev->lock, iflags); |
| 507 | udc_free_request(&ep->ep, &ep->bna_dummy_req->req); |
| 508 | empty_req_queue(ep); |
| 509 | ep_init(ep->dev->regs, ep); |
| 510 | spin_unlock_irqrestore(&ep->dev->lock, iflags); |
| 511 | |
| 512 | return 0; |
| 513 | } |
| 514 | |
| 515 | /* Allocates request packet, called by gadget driver */ |
| 516 | static struct usb_request * |
| 517 | udc_alloc_request(struct usb_ep *usbep, gfp_t gfp) |
| 518 | { |
| 519 | struct udc_request *req; |
| 520 | struct udc_data_dma *dma_desc; |
| 521 | struct udc_ep *ep; |
| 522 | |
| 523 | if (!usbep) |
| 524 | return NULL; |
| 525 | |
| 526 | ep = container_of(usbep, struct udc_ep, ep); |
| 527 | |
| 528 | VDBG(ep->dev, "udc_alloc_req(): ep%d\n", ep->num); |
| 529 | req = kzalloc(sizeof(struct udc_request), gfp); |
| 530 | if (!req) |
| 531 | return NULL; |
| 532 | |
| 533 | req->req.dma = DMA_DONT_USE; |
| 534 | INIT_LIST_HEAD(&req->queue); |
| 535 | |
| 536 | if (ep->dma) { |
| 537 | /* ep0 in requests are allocated from data pool here */ |
| 538 | dma_desc = pci_pool_alloc(ep->dev->data_requests, gfp, |
| 539 | &req->td_phys); |
| 540 | if (!dma_desc) { |
| 541 | kfree(req); |
| 542 | return NULL; |
| 543 | } |
| 544 | |
| 545 | VDBG(ep->dev, "udc_alloc_req: req = %p dma_desc = %p, " |
| 546 | "td_phys = %lx\n", |
| 547 | req, dma_desc, |
| 548 | (unsigned long)req->td_phys); |
| 549 | /* prevent from using desc. - set HOST BUSY */ |
| 550 | dma_desc->status = AMD_ADDBITS(dma_desc->status, |
| 551 | UDC_DMA_STP_STS_BS_HOST_BUSY, |
| 552 | UDC_DMA_STP_STS_BS); |
| 553 | dma_desc->bufptr = __constant_cpu_to_le32(DMA_DONT_USE); |
| 554 | req->td_data = dma_desc; |
| 555 | req->td_data_last = NULL; |
| 556 | req->chain_len = 1; |
| 557 | } |
| 558 | |
| 559 | return &req->req; |
| 560 | } |
| 561 | |
| 562 | /* Frees request packet, called by gadget driver */ |
| 563 | static void |
| 564 | udc_free_request(struct usb_ep *usbep, struct usb_request *usbreq) |
| 565 | { |
| 566 | struct udc_ep *ep; |
| 567 | struct udc_request *req; |
| 568 | |
| 569 | if (!usbep || !usbreq) |
| 570 | return; |
| 571 | |
| 572 | ep = container_of(usbep, struct udc_ep, ep); |
| 573 | req = container_of(usbreq, struct udc_request, req); |
| 574 | VDBG(ep->dev, "free_req req=%p\n", req); |
| 575 | BUG_ON(!list_empty(&req->queue)); |
| 576 | if (req->td_data) { |
| 577 | VDBG(ep->dev, "req->td_data=%p\n", req->td_data); |
| 578 | |
| 579 | /* free dma chain if created */ |
| 580 | if (req->chain_len > 1) { |
| 581 | udc_free_dma_chain(ep->dev, req); |
| 582 | } |
| 583 | |
| 584 | pci_pool_free(ep->dev->data_requests, req->td_data, |
| 585 | req->td_phys); |
| 586 | } |
| 587 | kfree(req); |
| 588 | } |
| 589 | |
| 590 | /* Init BNA dummy descriptor for HOST BUSY and pointing to itself */ |
| 591 | static void udc_init_bna_dummy(struct udc_request *req) |
| 592 | { |
| 593 | if (req) { |
| 594 | /* set last bit */ |
| 595 | req->td_data->status |= AMD_BIT(UDC_DMA_IN_STS_L); |
| 596 | /* set next pointer to itself */ |
| 597 | req->td_data->next = req->td_phys; |
| 598 | /* set HOST BUSY */ |
| 599 | req->td_data->status |
| 600 | = AMD_ADDBITS(req->td_data->status, |
| 601 | UDC_DMA_STP_STS_BS_DMA_DONE, |
| 602 | UDC_DMA_STP_STS_BS); |
| 603 | #ifdef UDC_VERBOSE |
| 604 | pr_debug("bna desc = %p, sts = %08x\n", |
| 605 | req->td_data, req->td_data->status); |
| 606 | #endif |
| 607 | } |
| 608 | } |
| 609 | |
| 610 | /* Allocate BNA dummy descriptor */ |
| 611 | static struct udc_request *udc_alloc_bna_dummy(struct udc_ep *ep) |
| 612 | { |
| 613 | struct udc_request *req = NULL; |
| 614 | struct usb_request *_req = NULL; |
| 615 | |
| 616 | /* alloc the dummy request */ |
| 617 | _req = udc_alloc_request(&ep->ep, GFP_ATOMIC); |
| 618 | if (_req) { |
| 619 | req = container_of(_req, struct udc_request, req); |
| 620 | ep->bna_dummy_req = req; |
| 621 | udc_init_bna_dummy(req); |
| 622 | } |
| 623 | return req; |
| 624 | } |
| 625 | |
| 626 | /* Write data to TX fifo for IN packets */ |
| 627 | static void |
| 628 | udc_txfifo_write(struct udc_ep *ep, struct usb_request *req) |
| 629 | { |
| 630 | u8 *req_buf; |
| 631 | u32 *buf; |
| 632 | int i, j; |
| 633 | unsigned bytes = 0; |
| 634 | unsigned remaining = 0; |
| 635 | |
| 636 | if (!req || !ep) |
| 637 | return; |
| 638 | |
| 639 | req_buf = req->buf + req->actual; |
| 640 | prefetch(req_buf); |
| 641 | remaining = req->length - req->actual; |
| 642 | |
| 643 | buf = (u32 *) req_buf; |
| 644 | |
| 645 | bytes = ep->ep.maxpacket; |
| 646 | if (bytes > remaining) |
| 647 | bytes = remaining; |
| 648 | |
| 649 | /* dwords first */ |
| 650 | for (i = 0; i < bytes / UDC_DWORD_BYTES; i++) { |
| 651 | writel(*(buf + i), ep->txfifo); |
| 652 | } |
| 653 | |
| 654 | /* remaining bytes must be written by byte access */ |
| 655 | for (j = 0; j < bytes % UDC_DWORD_BYTES; j++) { |
| 656 | writeb((u8)(*(buf + i) >> (j << UDC_BITS_PER_BYTE_SHIFT)), |
| 657 | ep->txfifo); |
| 658 | } |
| 659 | |
| 660 | /* dummy write confirm */ |
| 661 | writel(0, &ep->regs->confirm); |
| 662 | } |
| 663 | |
| 664 | /* Read dwords from RX fifo for OUT transfers */ |
| 665 | static int udc_rxfifo_read_dwords(struct udc *dev, u32 *buf, int dwords) |
| 666 | { |
| 667 | int i; |
| 668 | |
| 669 | VDBG(dev, "udc_read_dwords(): %d dwords\n", dwords); |
| 670 | |
| 671 | for (i = 0; i < dwords; i++) { |
| 672 | *(buf + i) = readl(dev->rxfifo); |
| 673 | } |
| 674 | return 0; |
| 675 | } |
| 676 | |
| 677 | /* Read bytes from RX fifo for OUT transfers */ |
| 678 | static int udc_rxfifo_read_bytes(struct udc *dev, u8 *buf, int bytes) |
| 679 | { |
| 680 | int i, j; |
| 681 | u32 tmp; |
| 682 | |
| 683 | VDBG(dev, "udc_read_bytes(): %d bytes\n", bytes); |
| 684 | |
| 685 | /* dwords first */ |
| 686 | for (i = 0; i < bytes / UDC_DWORD_BYTES; i++) { |
| 687 | *((u32 *)(buf + (i<<2))) = readl(dev->rxfifo); |
| 688 | } |
| 689 | |
| 690 | /* remaining bytes must be read by byte access */ |
| 691 | if (bytes % UDC_DWORD_BYTES) { |
| 692 | tmp = readl(dev->rxfifo); |
| 693 | for (j = 0; j < bytes % UDC_DWORD_BYTES; j++) { |
| 694 | *(buf + (i<<2) + j) = (u8)(tmp & UDC_BYTE_MASK); |
| 695 | tmp = tmp >> UDC_BITS_PER_BYTE; |
| 696 | } |
| 697 | } |
| 698 | |
| 699 | return 0; |
| 700 | } |
| 701 | |
| 702 | /* Read data from RX fifo for OUT transfers */ |
| 703 | static int |
| 704 | udc_rxfifo_read(struct udc_ep *ep, struct udc_request *req) |
| 705 | { |
| 706 | u8 *buf; |
| 707 | unsigned buf_space; |
| 708 | unsigned bytes = 0; |
| 709 | unsigned finished = 0; |
| 710 | |
| 711 | /* received number bytes */ |
| 712 | bytes = readl(&ep->regs->sts); |
| 713 | bytes = AMD_GETBITS(bytes, UDC_EPSTS_RX_PKT_SIZE); |
| 714 | |
| 715 | buf_space = req->req.length - req->req.actual; |
| 716 | buf = req->req.buf + req->req.actual; |
| 717 | if (bytes > buf_space) { |
| 718 | if ((buf_space % ep->ep.maxpacket) != 0) { |
| 719 | DBG(ep->dev, |
| 720 | "%s: rx %d bytes, rx-buf space = %d bytesn\n", |
| 721 | ep->ep.name, bytes, buf_space); |
| 722 | req->req.status = -EOVERFLOW; |
| 723 | } |
| 724 | bytes = buf_space; |
| 725 | } |
| 726 | req->req.actual += bytes; |
| 727 | |
| 728 | /* last packet ? */ |
| 729 | if (((bytes % ep->ep.maxpacket) != 0) || (!bytes) |
| 730 | || ((req->req.actual == req->req.length) && !req->req.zero)) |
| 731 | finished = 1; |
| 732 | |
| 733 | /* read rx fifo bytes */ |
| 734 | VDBG(ep->dev, "ep %s: rxfifo read %d bytes\n", ep->ep.name, bytes); |
| 735 | udc_rxfifo_read_bytes(ep->dev, buf, bytes); |
| 736 | |
| 737 | return finished; |
| 738 | } |
| 739 | |
| 740 | /* create/re-init a DMA descriptor or a DMA descriptor chain */ |
| 741 | static int prep_dma(struct udc_ep *ep, struct udc_request *req, gfp_t gfp) |
| 742 | { |
| 743 | int retval = 0; |
| 744 | u32 tmp; |
| 745 | |
| 746 | VDBG(ep->dev, "prep_dma\n"); |
| 747 | VDBG(ep->dev, "prep_dma ep%d req->td_data=%p\n", |
| 748 | ep->num, req->td_data); |
| 749 | |
| 750 | /* set buffer pointer */ |
| 751 | req->td_data->bufptr = req->req.dma; |
| 752 | |
| 753 | /* set last bit */ |
| 754 | req->td_data->status |= AMD_BIT(UDC_DMA_IN_STS_L); |
| 755 | |
| 756 | /* build/re-init dma chain if maxpkt scatter mode, not for EP0 */ |
| 757 | if (use_dma_ppb) { |
| 758 | |
| 759 | retval = udc_create_dma_chain(ep, req, ep->ep.maxpacket, gfp); |
| 760 | if (retval != 0) { |
| 761 | if (retval == -ENOMEM) |
| 762 | DBG(ep->dev, "Out of DMA memory\n"); |
| 763 | return retval; |
| 764 | } |
| 765 | if (ep->in) { |
| 766 | if (req->req.length == ep->ep.maxpacket) { |
| 767 | /* write tx bytes */ |
| 768 | req->td_data->status = |
| 769 | AMD_ADDBITS(req->td_data->status, |
| 770 | ep->ep.maxpacket, |
| 771 | UDC_DMA_IN_STS_TXBYTES); |
| 772 | |
| 773 | } |
| 774 | } |
| 775 | |
| 776 | } |
| 777 | |
| 778 | if (ep->in) { |
| 779 | VDBG(ep->dev, "IN: use_dma_ppb=%d req->req.len=%d " |
| 780 | "maxpacket=%d ep%d\n", |
| 781 | use_dma_ppb, req->req.length, |
| 782 | ep->ep.maxpacket, ep->num); |
| 783 | /* |
| 784 | * if bytes < max packet then tx bytes must |
| 785 | * be written in packet per buffer mode |
| 786 | */ |
| 787 | if (!use_dma_ppb || req->req.length < ep->ep.maxpacket |
| 788 | || ep->num == UDC_EP0OUT_IX |
| 789 | || ep->num == UDC_EP0IN_IX) { |
| 790 | /* write tx bytes */ |
| 791 | req->td_data->status = |
| 792 | AMD_ADDBITS(req->td_data->status, |
| 793 | req->req.length, |
| 794 | UDC_DMA_IN_STS_TXBYTES); |
| 795 | /* reset frame num */ |
| 796 | req->td_data->status = |
| 797 | AMD_ADDBITS(req->td_data->status, |
| 798 | 0, |
| 799 | UDC_DMA_IN_STS_FRAMENUM); |
| 800 | } |
| 801 | /* set HOST BUSY */ |
| 802 | req->td_data->status = |
| 803 | AMD_ADDBITS(req->td_data->status, |
| 804 | UDC_DMA_STP_STS_BS_HOST_BUSY, |
| 805 | UDC_DMA_STP_STS_BS); |
| 806 | } else { |
| 807 | VDBG(ep->dev, "OUT set host ready\n"); |
| 808 | /* set HOST READY */ |
| 809 | req->td_data->status = |
| 810 | AMD_ADDBITS(req->td_data->status, |
| 811 | UDC_DMA_STP_STS_BS_HOST_READY, |
| 812 | UDC_DMA_STP_STS_BS); |
| 813 | |
| 814 | |
| 815 | /* clear NAK by writing CNAK */ |
| 816 | if (ep->naking) { |
| 817 | tmp = readl(&ep->regs->ctl); |
| 818 | tmp |= AMD_BIT(UDC_EPCTL_CNAK); |
| 819 | writel(tmp, &ep->regs->ctl); |
| 820 | ep->naking = 0; |
| 821 | UDC_QUEUE_CNAK(ep, ep->num); |
| 822 | } |
| 823 | |
| 824 | } |
| 825 | |
| 826 | return retval; |
| 827 | } |
| 828 | |
| 829 | /* Completes request packet ... caller MUST hold lock */ |
| 830 | static void |
| 831 | complete_req(struct udc_ep *ep, struct udc_request *req, int sts) |
| 832 | __releases(ep->dev->lock) |
| 833 | __acquires(ep->dev->lock) |
| 834 | { |
| 835 | struct udc *dev; |
| 836 | unsigned halted; |
| 837 | |
| 838 | VDBG(ep->dev, "complete_req(): ep%d\n", ep->num); |
| 839 | |
| 840 | dev = ep->dev; |
| 841 | /* unmap DMA */ |
| 842 | if (req->dma_mapping) { |
| 843 | if (ep->in) |
| 844 | pci_unmap_single(dev->pdev, |
| 845 | req->req.dma, |
| 846 | req->req.length, |
| 847 | PCI_DMA_TODEVICE); |
| 848 | else |
| 849 | pci_unmap_single(dev->pdev, |
| 850 | req->req.dma, |
| 851 | req->req.length, |
| 852 | PCI_DMA_FROMDEVICE); |
| 853 | req->dma_mapping = 0; |
| 854 | req->req.dma = DMA_DONT_USE; |
| 855 | } |
| 856 | |
| 857 | halted = ep->halted; |
| 858 | ep->halted = 1; |
| 859 | |
| 860 | /* set new status if pending */ |
| 861 | if (req->req.status == -EINPROGRESS) |
| 862 | req->req.status = sts; |
| 863 | |
| 864 | /* remove from ep queue */ |
| 865 | list_del_init(&req->queue); |
| 866 | |
| 867 | VDBG(ep->dev, "req %p => complete %d bytes at %s with sts %d\n", |
| 868 | &req->req, req->req.length, ep->ep.name, sts); |
| 869 | |
| 870 | spin_unlock(&dev->lock); |
| 871 | req->req.complete(&ep->ep, &req->req); |
| 872 | spin_lock(&dev->lock); |
| 873 | ep->halted = halted; |
| 874 | } |
| 875 | |
| 876 | /* frees pci pool descriptors of a DMA chain */ |
| 877 | static int udc_free_dma_chain(struct udc *dev, struct udc_request *req) |
| 878 | { |
| 879 | |
| 880 | int ret_val = 0; |
| 881 | struct udc_data_dma *td; |
| 882 | struct udc_data_dma *td_last = NULL; |
| 883 | unsigned int i; |
| 884 | |
| 885 | DBG(dev, "free chain req = %p\n", req); |
| 886 | |
| 887 | /* do not free first desc., will be done by free for request */ |
| 888 | td_last = req->td_data; |
| 889 | td = phys_to_virt(td_last->next); |
| 890 | |
| 891 | for (i = 1; i < req->chain_len; i++) { |
| 892 | |
| 893 | pci_pool_free(dev->data_requests, td, |
| 894 | (dma_addr_t) td_last->next); |
| 895 | td_last = td; |
| 896 | td = phys_to_virt(td_last->next); |
| 897 | } |
| 898 | |
| 899 | return ret_val; |
| 900 | } |
| 901 | |
| 902 | /* Iterates to the end of a DMA chain and returns last descriptor */ |
| 903 | static struct udc_data_dma *udc_get_last_dma_desc(struct udc_request *req) |
| 904 | { |
| 905 | struct udc_data_dma *td; |
| 906 | |
| 907 | td = req->td_data; |
| 908 | while (td && !(td->status & AMD_BIT(UDC_DMA_IN_STS_L))) { |
| 909 | td = phys_to_virt(td->next); |
| 910 | } |
| 911 | |
| 912 | return td; |
| 913 | |
| 914 | } |
| 915 | |
| 916 | /* Iterates to the end of a DMA chain and counts bytes received */ |
| 917 | static u32 udc_get_ppbdu_rxbytes(struct udc_request *req) |
| 918 | { |
| 919 | struct udc_data_dma *td; |
| 920 | u32 count; |
| 921 | |
| 922 | td = req->td_data; |
| 923 | /* received number bytes */ |
| 924 | count = AMD_GETBITS(td->status, UDC_DMA_OUT_STS_RXBYTES); |
| 925 | |
| 926 | while (td && !(td->status & AMD_BIT(UDC_DMA_IN_STS_L))) { |
| 927 | td = phys_to_virt(td->next); |
| 928 | /* received number bytes */ |
| 929 | if (td) { |
| 930 | count += AMD_GETBITS(td->status, |
| 931 | UDC_DMA_OUT_STS_RXBYTES); |
| 932 | } |
| 933 | } |
| 934 | |
| 935 | return count; |
| 936 | |
| 937 | } |
| 938 | |
| 939 | /* Creates or re-inits a DMA chain */ |
| 940 | static int udc_create_dma_chain( |
| 941 | struct udc_ep *ep, |
| 942 | struct udc_request *req, |
| 943 | unsigned long buf_len, gfp_t gfp_flags |
| 944 | ) |
| 945 | { |
| 946 | unsigned long bytes = req->req.length; |
| 947 | unsigned int i; |
| 948 | dma_addr_t dma_addr; |
| 949 | struct udc_data_dma *td = NULL; |
| 950 | struct udc_data_dma *last = NULL; |
| 951 | unsigned long txbytes; |
| 952 | unsigned create_new_chain = 0; |
| 953 | unsigned len; |
| 954 | |
| 955 | VDBG(ep->dev, "udc_create_dma_chain: bytes=%ld buf_len=%ld\n", |
| 956 | bytes, buf_len); |
| 957 | dma_addr = DMA_DONT_USE; |
| 958 | |
| 959 | /* unset L bit in first desc for OUT */ |
| 960 | if (!ep->in) { |
| 961 | req->td_data->status &= AMD_CLEAR_BIT(UDC_DMA_IN_STS_L); |
| 962 | } |
| 963 | |
| 964 | /* alloc only new desc's if not already available */ |
| 965 | len = req->req.length / ep->ep.maxpacket; |
| 966 | if (req->req.length % ep->ep.maxpacket) { |
| 967 | len++; |
| 968 | } |
| 969 | |
| 970 | if (len > req->chain_len) { |
| 971 | /* shorter chain already allocated before */ |
| 972 | if (req->chain_len > 1) { |
| 973 | udc_free_dma_chain(ep->dev, req); |
| 974 | } |
| 975 | req->chain_len = len; |
| 976 | create_new_chain = 1; |
| 977 | } |
| 978 | |
| 979 | td = req->td_data; |
| 980 | /* gen. required number of descriptors and buffers */ |
| 981 | for (i = buf_len; i < bytes; i += buf_len) { |
| 982 | /* create or determine next desc. */ |
| 983 | if (create_new_chain) { |
| 984 | |
| 985 | td = pci_pool_alloc(ep->dev->data_requests, |
| 986 | gfp_flags, &dma_addr); |
| 987 | if (!td) |
| 988 | return -ENOMEM; |
| 989 | |
| 990 | td->status = 0; |
| 991 | } else if (i == buf_len) { |
| 992 | /* first td */ |
| 993 | td = (struct udc_data_dma *) phys_to_virt( |
| 994 | req->td_data->next); |
| 995 | td->status = 0; |
| 996 | } else { |
| 997 | td = (struct udc_data_dma *) phys_to_virt(last->next); |
| 998 | td->status = 0; |
| 999 | } |
| 1000 | |
| 1001 | |
| 1002 | if (td) |
| 1003 | td->bufptr = req->req.dma + i; /* assign buffer */ |
| 1004 | else |
| 1005 | break; |
| 1006 | |
| 1007 | /* short packet ? */ |
| 1008 | if ((bytes - i) >= buf_len) { |
| 1009 | txbytes = buf_len; |
| 1010 | } else { |
| 1011 | /* short packet */ |
| 1012 | txbytes = bytes - i; |
| 1013 | } |
| 1014 | |
| 1015 | /* link td and assign tx bytes */ |
| 1016 | if (i == buf_len) { |
| 1017 | if (create_new_chain) { |
| 1018 | req->td_data->next = dma_addr; |
| 1019 | } else { |
| 1020 | /* req->td_data->next = virt_to_phys(td); */ |
| 1021 | } |
| 1022 | /* write tx bytes */ |
| 1023 | if (ep->in) { |
| 1024 | /* first desc */ |
| 1025 | req->td_data->status = |
| 1026 | AMD_ADDBITS(req->td_data->status, |
| 1027 | ep->ep.maxpacket, |
| 1028 | UDC_DMA_IN_STS_TXBYTES); |
| 1029 | /* second desc */ |
| 1030 | td->status = AMD_ADDBITS(td->status, |
| 1031 | txbytes, |
| 1032 | UDC_DMA_IN_STS_TXBYTES); |
| 1033 | } |
| 1034 | } else { |
| 1035 | if (create_new_chain) { |
| 1036 | last->next = dma_addr; |
| 1037 | } else { |
| 1038 | /* last->next = virt_to_phys(td); */ |
| 1039 | } |
| 1040 | if (ep->in) { |
| 1041 | /* write tx bytes */ |
| 1042 | td->status = AMD_ADDBITS(td->status, |
| 1043 | txbytes, |
| 1044 | UDC_DMA_IN_STS_TXBYTES); |
| 1045 | } |
| 1046 | } |
| 1047 | last = td; |
| 1048 | } |
| 1049 | /* set last bit */ |
| 1050 | if (td) { |
| 1051 | td->status |= AMD_BIT(UDC_DMA_IN_STS_L); |
| 1052 | /* last desc. points to itself */ |
| 1053 | req->td_data_last = td; |
| 1054 | } |
| 1055 | |
| 1056 | return 0; |
| 1057 | } |
| 1058 | |
| 1059 | /* Enabling RX DMA */ |
| 1060 | static void udc_set_rde(struct udc *dev) |
| 1061 | { |
| 1062 | u32 tmp; |
| 1063 | |
| 1064 | VDBG(dev, "udc_set_rde()\n"); |
| 1065 | /* stop RDE timer */ |
| 1066 | if (timer_pending(&udc_timer)) { |
| 1067 | set_rde = 0; |
| 1068 | mod_timer(&udc_timer, jiffies - 1); |
| 1069 | } |
| 1070 | /* set RDE */ |
| 1071 | tmp = readl(&dev->regs->ctl); |
| 1072 | tmp |= AMD_BIT(UDC_DEVCTL_RDE); |
| 1073 | writel(tmp, &dev->regs->ctl); |
| 1074 | } |
| 1075 | |
| 1076 | /* Queues a request packet, called by gadget driver */ |
| 1077 | static int |
| 1078 | udc_queue(struct usb_ep *usbep, struct usb_request *usbreq, gfp_t gfp) |
| 1079 | { |
| 1080 | int retval = 0; |
| 1081 | u8 open_rxfifo = 0; |
| 1082 | unsigned long iflags; |
| 1083 | struct udc_ep *ep; |
| 1084 | struct udc_request *req; |
| 1085 | struct udc *dev; |
| 1086 | u32 tmp; |
| 1087 | |
| 1088 | /* check the inputs */ |
| 1089 | req = container_of(usbreq, struct udc_request, req); |
| 1090 | |
| 1091 | if (!usbep || !usbreq || !usbreq->complete || !usbreq->buf |
| 1092 | || !list_empty(&req->queue)) |
| 1093 | return -EINVAL; |
| 1094 | |
| 1095 | ep = container_of(usbep, struct udc_ep, ep); |
| 1096 | if (!ep->desc && (ep->num != 0 && ep->num != UDC_EP0OUT_IX)) |
| 1097 | return -EINVAL; |
| 1098 | |
| 1099 | VDBG(ep->dev, "udc_queue(): ep%d-in=%d\n", ep->num, ep->in); |
| 1100 | dev = ep->dev; |
| 1101 | |
| 1102 | if (!dev->driver || dev->gadget.speed == USB_SPEED_UNKNOWN) |
| 1103 | return -ESHUTDOWN; |
| 1104 | |
| 1105 | /* map dma (usually done before) */ |
| 1106 | if (ep->dma && usbreq->length != 0 |
| 1107 | && (usbreq->dma == DMA_DONT_USE || usbreq->dma == 0)) { |
| 1108 | VDBG(dev, "DMA map req %p\n", req); |
| 1109 | if (ep->in) |
| 1110 | usbreq->dma = pci_map_single(dev->pdev, |
| 1111 | usbreq->buf, |
| 1112 | usbreq->length, |
| 1113 | PCI_DMA_TODEVICE); |
| 1114 | else |
| 1115 | usbreq->dma = pci_map_single(dev->pdev, |
| 1116 | usbreq->buf, |
| 1117 | usbreq->length, |
| 1118 | PCI_DMA_FROMDEVICE); |
| 1119 | req->dma_mapping = 1; |
| 1120 | } |
| 1121 | |
| 1122 | VDBG(dev, "%s queue req %p, len %d req->td_data=%p buf %p\n", |
| 1123 | usbep->name, usbreq, usbreq->length, |
| 1124 | req->td_data, usbreq->buf); |
| 1125 | |
| 1126 | spin_lock_irqsave(&dev->lock, iflags); |
| 1127 | usbreq->actual = 0; |
| 1128 | usbreq->status = -EINPROGRESS; |
| 1129 | req->dma_done = 0; |
| 1130 | |
| 1131 | /* on empty queue just do first transfer */ |
| 1132 | if (list_empty(&ep->queue)) { |
| 1133 | /* zlp */ |
| 1134 | if (usbreq->length == 0) { |
| 1135 | /* IN zlp's are handled by hardware */ |
| 1136 | complete_req(ep, req, 0); |
| 1137 | VDBG(dev, "%s: zlp\n", ep->ep.name); |
| 1138 | /* |
| 1139 | * if set_config or set_intf is waiting for ack by zlp |
| 1140 | * then set CSR_DONE |
| 1141 | */ |
| 1142 | if (dev->set_cfg_not_acked) { |
| 1143 | tmp = readl(&dev->regs->ctl); |
| 1144 | tmp |= AMD_BIT(UDC_DEVCTL_CSR_DONE); |
| 1145 | writel(tmp, &dev->regs->ctl); |
| 1146 | dev->set_cfg_not_acked = 0; |
| 1147 | } |
| 1148 | /* setup command is ACK'ed now by zlp */ |
| 1149 | if (dev->waiting_zlp_ack_ep0in) { |
| 1150 | /* clear NAK by writing CNAK in EP0_IN */ |
| 1151 | tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl); |
| 1152 | tmp |= AMD_BIT(UDC_EPCTL_CNAK); |
| 1153 | writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl); |
| 1154 | dev->ep[UDC_EP0IN_IX].naking = 0; |
| 1155 | UDC_QUEUE_CNAK(&dev->ep[UDC_EP0IN_IX], |
| 1156 | UDC_EP0IN_IX); |
| 1157 | dev->waiting_zlp_ack_ep0in = 0; |
| 1158 | } |
| 1159 | goto finished; |
| 1160 | } |
| 1161 | if (ep->dma) { |
| 1162 | retval = prep_dma(ep, req, gfp); |
| 1163 | if (retval != 0) |
| 1164 | goto finished; |
| 1165 | /* write desc pointer to enable DMA */ |
| 1166 | if (ep->in) { |
| 1167 | /* set HOST READY */ |
| 1168 | req->td_data->status = |
| 1169 | AMD_ADDBITS(req->td_data->status, |
| 1170 | UDC_DMA_IN_STS_BS_HOST_READY, |
| 1171 | UDC_DMA_IN_STS_BS); |
| 1172 | } |
| 1173 | |
| 1174 | /* disabled rx dma while descriptor update */ |
| 1175 | if (!ep->in) { |
| 1176 | /* stop RDE timer */ |
| 1177 | if (timer_pending(&udc_timer)) { |
| 1178 | set_rde = 0; |
| 1179 | mod_timer(&udc_timer, jiffies - 1); |
| 1180 | } |
| 1181 | /* clear RDE */ |
| 1182 | tmp = readl(&dev->regs->ctl); |
| 1183 | tmp &= AMD_UNMASK_BIT(UDC_DEVCTL_RDE); |
| 1184 | writel(tmp, &dev->regs->ctl); |
| 1185 | open_rxfifo = 1; |
| 1186 | |
| 1187 | /* |
| 1188 | * if BNA occurred then let BNA dummy desc. |
| 1189 | * point to current desc. |
| 1190 | */ |
| 1191 | if (ep->bna_occurred) { |
| 1192 | VDBG(dev, "copy to BNA dummy desc.\n"); |
| 1193 | memcpy(ep->bna_dummy_req->td_data, |
| 1194 | req->td_data, |
| 1195 | sizeof(struct udc_data_dma)); |
| 1196 | } |
| 1197 | } |
| 1198 | /* write desc pointer */ |
| 1199 | writel(req->td_phys, &ep->regs->desptr); |
| 1200 | |
| 1201 | /* clear NAK by writing CNAK */ |
| 1202 | if (ep->naking) { |
| 1203 | tmp = readl(&ep->regs->ctl); |
| 1204 | tmp |= AMD_BIT(UDC_EPCTL_CNAK); |
| 1205 | writel(tmp, &ep->regs->ctl); |
| 1206 | ep->naking = 0; |
| 1207 | UDC_QUEUE_CNAK(ep, ep->num); |
| 1208 | } |
| 1209 | |
| 1210 | if (ep->in) { |
| 1211 | /* enable ep irq */ |
| 1212 | tmp = readl(&dev->regs->ep_irqmsk); |
| 1213 | tmp &= AMD_UNMASK_BIT(ep->num); |
| 1214 | writel(tmp, &dev->regs->ep_irqmsk); |
| 1215 | } |
| 1216 | } |
| 1217 | |
| 1218 | } else if (ep->dma) { |
| 1219 | |
| 1220 | /* |
| 1221 | * prep_dma not used for OUT ep's, this is not possible |
| 1222 | * for PPB modes, because of chain creation reasons |
| 1223 | */ |
| 1224 | if (ep->in) { |
| 1225 | retval = prep_dma(ep, req, gfp); |
| 1226 | if (retval != 0) |
| 1227 | goto finished; |
| 1228 | } |
| 1229 | } |
| 1230 | VDBG(dev, "list_add\n"); |
| 1231 | /* add request to ep queue */ |
| 1232 | if (req) { |
| 1233 | |
| 1234 | list_add_tail(&req->queue, &ep->queue); |
| 1235 | |
| 1236 | /* open rxfifo if out data queued */ |
| 1237 | if (open_rxfifo) { |
| 1238 | /* enable DMA */ |
| 1239 | req->dma_going = 1; |
| 1240 | udc_set_rde(dev); |
| 1241 | if (ep->num != UDC_EP0OUT_IX) |
| 1242 | dev->data_ep_queued = 1; |
| 1243 | } |
| 1244 | /* stop OUT naking */ |
| 1245 | if (!ep->in) { |
| 1246 | if (!use_dma && udc_rxfifo_pending) { |
| 1247 | DBG(dev, "udc_queue(): pending bytes in" |
| 1248 | "rxfifo after nyet\n"); |
| 1249 | /* |
| 1250 | * read pending bytes afer nyet: |
| 1251 | * referring to isr |
| 1252 | */ |
| 1253 | if (udc_rxfifo_read(ep, req)) { |
| 1254 | /* finish */ |
| 1255 | complete_req(ep, req, 0); |
| 1256 | } |
| 1257 | udc_rxfifo_pending = 0; |
| 1258 | |
| 1259 | } |
| 1260 | } |
| 1261 | } |
| 1262 | |
| 1263 | finished: |
| 1264 | spin_unlock_irqrestore(&dev->lock, iflags); |
| 1265 | return retval; |
| 1266 | } |
| 1267 | |
| 1268 | /* Empty request queue of an endpoint; caller holds spinlock */ |
| 1269 | static void empty_req_queue(struct udc_ep *ep) |
| 1270 | { |
| 1271 | struct udc_request *req; |
| 1272 | |
| 1273 | ep->halted = 1; |
| 1274 | while (!list_empty(&ep->queue)) { |
| 1275 | req = list_entry(ep->queue.next, |
| 1276 | struct udc_request, |
| 1277 | queue); |
| 1278 | complete_req(ep, req, -ESHUTDOWN); |
| 1279 | } |
| 1280 | } |
| 1281 | |
| 1282 | /* Dequeues a request packet, called by gadget driver */ |
| 1283 | static int udc_dequeue(struct usb_ep *usbep, struct usb_request *usbreq) |
| 1284 | { |
| 1285 | struct udc_ep *ep; |
| 1286 | struct udc_request *req; |
| 1287 | unsigned halted; |
| 1288 | unsigned long iflags; |
| 1289 | |
| 1290 | ep = container_of(usbep, struct udc_ep, ep); |
| 1291 | if (!usbep || !usbreq || (!ep->desc && (ep->num != 0 |
| 1292 | && ep->num != UDC_EP0OUT_IX))) |
| 1293 | return -EINVAL; |
| 1294 | |
| 1295 | req = container_of(usbreq, struct udc_request, req); |
| 1296 | |
| 1297 | spin_lock_irqsave(&ep->dev->lock, iflags); |
| 1298 | halted = ep->halted; |
| 1299 | ep->halted = 1; |
| 1300 | /* request in processing or next one */ |
| 1301 | if (ep->queue.next == &req->queue) { |
| 1302 | if (ep->dma && req->dma_going) { |
| 1303 | if (ep->in) |
| 1304 | ep->cancel_transfer = 1; |
| 1305 | else { |
| 1306 | u32 tmp; |
| 1307 | u32 dma_sts; |
| 1308 | /* stop potential receive DMA */ |
| 1309 | tmp = readl(&udc->regs->ctl); |
| 1310 | writel(tmp & AMD_UNMASK_BIT(UDC_DEVCTL_RDE), |
| 1311 | &udc->regs->ctl); |
| 1312 | /* |
| 1313 | * Cancel transfer later in ISR |
| 1314 | * if descriptor was touched. |
| 1315 | */ |
| 1316 | dma_sts = AMD_GETBITS(req->td_data->status, |
| 1317 | UDC_DMA_OUT_STS_BS); |
| 1318 | if (dma_sts != UDC_DMA_OUT_STS_BS_HOST_READY) |
| 1319 | ep->cancel_transfer = 1; |
| 1320 | else { |
| 1321 | udc_init_bna_dummy(ep->req); |
| 1322 | writel(ep->bna_dummy_req->td_phys, |
| 1323 | &ep->regs->desptr); |
| 1324 | } |
| 1325 | writel(tmp, &udc->regs->ctl); |
| 1326 | } |
| 1327 | } |
| 1328 | } |
| 1329 | complete_req(ep, req, -ECONNRESET); |
| 1330 | ep->halted = halted; |
| 1331 | |
| 1332 | spin_unlock_irqrestore(&ep->dev->lock, iflags); |
| 1333 | return 0; |
| 1334 | } |
| 1335 | |
| 1336 | /* Halt or clear halt of endpoint */ |
| 1337 | static int |
| 1338 | udc_set_halt(struct usb_ep *usbep, int halt) |
| 1339 | { |
| 1340 | struct udc_ep *ep; |
| 1341 | u32 tmp; |
| 1342 | unsigned long iflags; |
| 1343 | int retval = 0; |
| 1344 | |
| 1345 | if (!usbep) |
| 1346 | return -EINVAL; |
| 1347 | |
| 1348 | pr_debug("set_halt %s: halt=%d\n", usbep->name, halt); |
| 1349 | |
| 1350 | ep = container_of(usbep, struct udc_ep, ep); |
| 1351 | if (!ep->desc && (ep->num != 0 && ep->num != UDC_EP0OUT_IX)) |
| 1352 | return -EINVAL; |
| 1353 | if (!ep->dev->driver || ep->dev->gadget.speed == USB_SPEED_UNKNOWN) |
| 1354 | return -ESHUTDOWN; |
| 1355 | |
| 1356 | spin_lock_irqsave(&udc_stall_spinlock, iflags); |
| 1357 | /* halt or clear halt */ |
| 1358 | if (halt) { |
| 1359 | if (ep->num == 0) |
| 1360 | ep->dev->stall_ep0in = 1; |
| 1361 | else { |
| 1362 | /* |
| 1363 | * set STALL |
| 1364 | * rxfifo empty not taken into acount |
| 1365 | */ |
| 1366 | tmp = readl(&ep->regs->ctl); |
| 1367 | tmp |= AMD_BIT(UDC_EPCTL_S); |
| 1368 | writel(tmp, &ep->regs->ctl); |
| 1369 | ep->halted = 1; |
| 1370 | |
| 1371 | /* setup poll timer */ |
| 1372 | if (!timer_pending(&udc_pollstall_timer)) { |
| 1373 | udc_pollstall_timer.expires = jiffies + |
| 1374 | HZ * UDC_POLLSTALL_TIMER_USECONDS |
| 1375 | / (1000 * 1000); |
| 1376 | if (!stop_pollstall_timer) { |
| 1377 | DBG(ep->dev, "start polltimer\n"); |
| 1378 | add_timer(&udc_pollstall_timer); |
| 1379 | } |
| 1380 | } |
| 1381 | } |
| 1382 | } else { |
| 1383 | /* ep is halted by set_halt() before */ |
| 1384 | if (ep->halted) { |
| 1385 | tmp = readl(&ep->regs->ctl); |
| 1386 | /* clear stall bit */ |
| 1387 | tmp = tmp & AMD_CLEAR_BIT(UDC_EPCTL_S); |
| 1388 | /* clear NAK by writing CNAK */ |
| 1389 | tmp |= AMD_BIT(UDC_EPCTL_CNAK); |
| 1390 | writel(tmp, &ep->regs->ctl); |
| 1391 | ep->halted = 0; |
| 1392 | UDC_QUEUE_CNAK(ep, ep->num); |
| 1393 | } |
| 1394 | } |
| 1395 | spin_unlock_irqrestore(&udc_stall_spinlock, iflags); |
| 1396 | return retval; |
| 1397 | } |
| 1398 | |
| 1399 | /* gadget interface */ |
| 1400 | static const struct usb_ep_ops udc_ep_ops = { |
| 1401 | .enable = udc_ep_enable, |
| 1402 | .disable = udc_ep_disable, |
| 1403 | |
| 1404 | .alloc_request = udc_alloc_request, |
| 1405 | .free_request = udc_free_request, |
| 1406 | |
| 1407 | .queue = udc_queue, |
| 1408 | .dequeue = udc_dequeue, |
| 1409 | |
| 1410 | .set_halt = udc_set_halt, |
| 1411 | /* fifo ops not implemented */ |
| 1412 | }; |
| 1413 | |
| 1414 | /*-------------------------------------------------------------------------*/ |
| 1415 | |
| 1416 | /* Get frame counter (not implemented) */ |
| 1417 | static int udc_get_frame(struct usb_gadget *gadget) |
| 1418 | { |
| 1419 | return -EOPNOTSUPP; |
| 1420 | } |
| 1421 | |
| 1422 | /* Remote wakeup gadget interface */ |
| 1423 | static int udc_wakeup(struct usb_gadget *gadget) |
| 1424 | { |
| 1425 | struct udc *dev; |
| 1426 | |
| 1427 | if (!gadget) |
| 1428 | return -EINVAL; |
| 1429 | dev = container_of(gadget, struct udc, gadget); |
| 1430 | udc_remote_wakeup(dev); |
| 1431 | |
| 1432 | return 0; |
| 1433 | } |
| 1434 | |
| 1435 | /* gadget operations */ |
| 1436 | static const struct usb_gadget_ops udc_ops = { |
| 1437 | .wakeup = udc_wakeup, |
| 1438 | .get_frame = udc_get_frame, |
| 1439 | }; |
| 1440 | |
| 1441 | /* Setups endpoint parameters, adds endpoints to linked list */ |
| 1442 | static void make_ep_lists(struct udc *dev) |
| 1443 | { |
| 1444 | /* make gadget ep lists */ |
| 1445 | INIT_LIST_HEAD(&dev->gadget.ep_list); |
| 1446 | list_add_tail(&dev->ep[UDC_EPIN_STATUS_IX].ep.ep_list, |
| 1447 | &dev->gadget.ep_list); |
| 1448 | list_add_tail(&dev->ep[UDC_EPIN_IX].ep.ep_list, |
| 1449 | &dev->gadget.ep_list); |
| 1450 | list_add_tail(&dev->ep[UDC_EPOUT_IX].ep.ep_list, |
| 1451 | &dev->gadget.ep_list); |
| 1452 | |
| 1453 | /* fifo config */ |
| 1454 | dev->ep[UDC_EPIN_STATUS_IX].fifo_depth = UDC_EPIN_SMALLINT_BUFF_SIZE; |
| 1455 | if (dev->gadget.speed == USB_SPEED_FULL) |
| 1456 | dev->ep[UDC_EPIN_IX].fifo_depth = UDC_FS_EPIN_BUFF_SIZE; |
| 1457 | else if (dev->gadget.speed == USB_SPEED_HIGH) |
| 1458 | dev->ep[UDC_EPIN_IX].fifo_depth = hs_tx_buf; |
| 1459 | dev->ep[UDC_EPOUT_IX].fifo_depth = UDC_RXFIFO_SIZE; |
| 1460 | } |
| 1461 | |
| 1462 | /* init registers at driver load time */ |
| 1463 | static int startup_registers(struct udc *dev) |
| 1464 | { |
| 1465 | u32 tmp; |
| 1466 | |
| 1467 | /* init controller by soft reset */ |
| 1468 | udc_soft_reset(dev); |
| 1469 | |
| 1470 | /* mask not needed interrupts */ |
| 1471 | udc_mask_unused_interrupts(dev); |
| 1472 | |
| 1473 | /* put into initial config */ |
| 1474 | udc_basic_init(dev); |
| 1475 | /* link up all endpoints */ |
| 1476 | udc_setup_endpoints(dev); |
| 1477 | |
| 1478 | /* program speed */ |
| 1479 | tmp = readl(&dev->regs->cfg); |
| 1480 | if (use_fullspeed) { |
| 1481 | tmp = AMD_ADDBITS(tmp, UDC_DEVCFG_SPD_FS, UDC_DEVCFG_SPD); |
| 1482 | } else { |
| 1483 | tmp = AMD_ADDBITS(tmp, UDC_DEVCFG_SPD_HS, UDC_DEVCFG_SPD); |
| 1484 | } |
| 1485 | writel(tmp, &dev->regs->cfg); |
| 1486 | |
| 1487 | return 0; |
| 1488 | } |
| 1489 | |
| 1490 | /* Inits UDC context */ |
| 1491 | static void udc_basic_init(struct udc *dev) |
| 1492 | { |
| 1493 | u32 tmp; |
| 1494 | |
| 1495 | DBG(dev, "udc_basic_init()\n"); |
| 1496 | |
| 1497 | dev->gadget.speed = USB_SPEED_UNKNOWN; |
| 1498 | |
| 1499 | /* stop RDE timer */ |
| 1500 | if (timer_pending(&udc_timer)) { |
| 1501 | set_rde = 0; |
| 1502 | mod_timer(&udc_timer, jiffies - 1); |
| 1503 | } |
| 1504 | /* stop poll stall timer */ |
| 1505 | if (timer_pending(&udc_pollstall_timer)) { |
| 1506 | mod_timer(&udc_pollstall_timer, jiffies - 1); |
| 1507 | } |
| 1508 | /* disable DMA */ |
| 1509 | tmp = readl(&dev->regs->ctl); |
| 1510 | tmp &= AMD_UNMASK_BIT(UDC_DEVCTL_RDE); |
| 1511 | tmp &= AMD_UNMASK_BIT(UDC_DEVCTL_TDE); |
| 1512 | writel(tmp, &dev->regs->ctl); |
| 1513 | |
| 1514 | /* enable dynamic CSR programming */ |
| 1515 | tmp = readl(&dev->regs->cfg); |
| 1516 | tmp |= AMD_BIT(UDC_DEVCFG_CSR_PRG); |
| 1517 | /* set self powered */ |
| 1518 | tmp |= AMD_BIT(UDC_DEVCFG_SP); |
| 1519 | /* set remote wakeupable */ |
| 1520 | tmp |= AMD_BIT(UDC_DEVCFG_RWKP); |
| 1521 | writel(tmp, &dev->regs->cfg); |
| 1522 | |
| 1523 | make_ep_lists(dev); |
| 1524 | |
| 1525 | dev->data_ep_enabled = 0; |
| 1526 | dev->data_ep_queued = 0; |
| 1527 | } |
| 1528 | |
| 1529 | /* Sets initial endpoint parameters */ |
| 1530 | static void udc_setup_endpoints(struct udc *dev) |
| 1531 | { |
| 1532 | struct udc_ep *ep; |
| 1533 | u32 tmp; |
| 1534 | u32 reg; |
| 1535 | |
| 1536 | DBG(dev, "udc_setup_endpoints()\n"); |
| 1537 | |
| 1538 | /* read enum speed */ |
| 1539 | tmp = readl(&dev->regs->sts); |
| 1540 | tmp = AMD_GETBITS(tmp, UDC_DEVSTS_ENUM_SPEED); |
| 1541 | if (tmp == UDC_DEVSTS_ENUM_SPEED_HIGH) { |
| 1542 | dev->gadget.speed = USB_SPEED_HIGH; |
| 1543 | } else if (tmp == UDC_DEVSTS_ENUM_SPEED_FULL) { |
| 1544 | dev->gadget.speed = USB_SPEED_FULL; |
| 1545 | } |
| 1546 | |
| 1547 | /* set basic ep parameters */ |
| 1548 | for (tmp = 0; tmp < UDC_EP_NUM; tmp++) { |
| 1549 | ep = &dev->ep[tmp]; |
| 1550 | ep->dev = dev; |
| 1551 | ep->ep.name = ep_string[tmp]; |
| 1552 | ep->num = tmp; |
| 1553 | /* txfifo size is calculated at enable time */ |
| 1554 | ep->txfifo = dev->txfifo; |
| 1555 | |
| 1556 | /* fifo size */ |
| 1557 | if (tmp < UDC_EPIN_NUM) { |
| 1558 | ep->fifo_depth = UDC_TXFIFO_SIZE; |
| 1559 | ep->in = 1; |
| 1560 | } else { |
| 1561 | ep->fifo_depth = UDC_RXFIFO_SIZE; |
| 1562 | ep->in = 0; |
| 1563 | |
| 1564 | } |
| 1565 | ep->regs = &dev->ep_regs[tmp]; |
| 1566 | /* |
| 1567 | * ep will be reset only if ep was not enabled before to avoid |
| 1568 | * disabling ep interrupts when ENUM interrupt occurs but ep is |
| 1569 | * not enabled by gadget driver |
| 1570 | */ |
| 1571 | if (!ep->desc) { |
| 1572 | ep_init(dev->regs, ep); |
| 1573 | } |
| 1574 | |
| 1575 | if (use_dma) { |
| 1576 | /* |
| 1577 | * ep->dma is not really used, just to indicate that |
| 1578 | * DMA is active: remove this |
| 1579 | * dma regs = dev control regs |
| 1580 | */ |
| 1581 | ep->dma = &dev->regs->ctl; |
| 1582 | |
| 1583 | /* nak OUT endpoints until enable - not for ep0 */ |
| 1584 | if (tmp != UDC_EP0IN_IX && tmp != UDC_EP0OUT_IX |
| 1585 | && tmp > UDC_EPIN_NUM) { |
| 1586 | /* set NAK */ |
| 1587 | reg = readl(&dev->ep[tmp].regs->ctl); |
| 1588 | reg |= AMD_BIT(UDC_EPCTL_SNAK); |
| 1589 | writel(reg, &dev->ep[tmp].regs->ctl); |
| 1590 | dev->ep[tmp].naking = 1; |
| 1591 | |
| 1592 | } |
| 1593 | } |
| 1594 | } |
| 1595 | /* EP0 max packet */ |
| 1596 | if (dev->gadget.speed == USB_SPEED_FULL) { |
| 1597 | dev->ep[UDC_EP0IN_IX].ep.maxpacket = UDC_FS_EP0IN_MAX_PKT_SIZE; |
| 1598 | dev->ep[UDC_EP0OUT_IX].ep.maxpacket = |
| 1599 | UDC_FS_EP0OUT_MAX_PKT_SIZE; |
| 1600 | } else if (dev->gadget.speed == USB_SPEED_HIGH) { |
| 1601 | dev->ep[UDC_EP0IN_IX].ep.maxpacket = UDC_EP0IN_MAX_PKT_SIZE; |
| 1602 | dev->ep[UDC_EP0OUT_IX].ep.maxpacket = UDC_EP0OUT_MAX_PKT_SIZE; |
| 1603 | } |
| 1604 | |
| 1605 | /* |
| 1606 | * with suspend bug workaround, ep0 params for gadget driver |
| 1607 | * are set at gadget driver bind() call |
| 1608 | */ |
| 1609 | dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IX].ep; |
| 1610 | dev->ep[UDC_EP0IN_IX].halted = 0; |
| 1611 | INIT_LIST_HEAD(&dev->gadget.ep0->ep_list); |
| 1612 | |
| 1613 | /* init cfg/alt/int */ |
| 1614 | dev->cur_config = 0; |
| 1615 | dev->cur_intf = 0; |
| 1616 | dev->cur_alt = 0; |
| 1617 | } |
| 1618 | |
| 1619 | /* Bringup after Connect event, initial bringup to be ready for ep0 events */ |
| 1620 | static void usb_connect(struct udc *dev) |
| 1621 | { |
| 1622 | |
| 1623 | dev_info(&dev->pdev->dev, "USB Connect\n"); |
| 1624 | |
| 1625 | dev->connected = 1; |
| 1626 | |
| 1627 | /* put into initial config */ |
| 1628 | udc_basic_init(dev); |
| 1629 | |
| 1630 | /* enable device setup interrupts */ |
| 1631 | udc_enable_dev_setup_interrupts(dev); |
| 1632 | } |
| 1633 | |
| 1634 | /* |
| 1635 | * Calls gadget with disconnect event and resets the UDC and makes |
| 1636 | * initial bringup to be ready for ep0 events |
| 1637 | */ |
| 1638 | static void usb_disconnect(struct udc *dev) |
| 1639 | { |
| 1640 | |
| 1641 | dev_info(&dev->pdev->dev, "USB Disconnect\n"); |
| 1642 | |
| 1643 | dev->connected = 0; |
| 1644 | |
| 1645 | /* mask interrupts */ |
| 1646 | udc_mask_unused_interrupts(dev); |
| 1647 | |
| 1648 | /* REVISIT there doesn't seem to be a point to having this |
| 1649 | * talk to a tasklet ... do it directly, we already hold |
| 1650 | * the spinlock needed to process the disconnect. |
| 1651 | */ |
| 1652 | |
| 1653 | tasklet_schedule(&disconnect_tasklet); |
| 1654 | } |
| 1655 | |
| 1656 | /* Tasklet for disconnect to be outside of interrupt context */ |
| 1657 | static void udc_tasklet_disconnect(unsigned long par) |
| 1658 | { |
| 1659 | struct udc *dev = (struct udc *)(*((struct udc **) par)); |
| 1660 | u32 tmp; |
| 1661 | |
| 1662 | DBG(dev, "Tasklet disconnect\n"); |
| 1663 | spin_lock_irq(&dev->lock); |
| 1664 | |
| 1665 | if (dev->driver) { |
| 1666 | spin_unlock(&dev->lock); |
| 1667 | dev->driver->disconnect(&dev->gadget); |
| 1668 | spin_lock(&dev->lock); |
| 1669 | |
| 1670 | /* empty queues */ |
| 1671 | for (tmp = 0; tmp < UDC_EP_NUM; tmp++) { |
| 1672 | empty_req_queue(&dev->ep[tmp]); |
| 1673 | } |
| 1674 | |
| 1675 | } |
| 1676 | |
| 1677 | /* disable ep0 */ |
| 1678 | ep_init(dev->regs, |
| 1679 | &dev->ep[UDC_EP0IN_IX]); |
| 1680 | |
| 1681 | |
| 1682 | if (!soft_reset_occured) { |
| 1683 | /* init controller by soft reset */ |
| 1684 | udc_soft_reset(dev); |
| 1685 | soft_reset_occured++; |
| 1686 | } |
| 1687 | |
| 1688 | /* re-enable dev interrupts */ |
| 1689 | udc_enable_dev_setup_interrupts(dev); |
| 1690 | /* back to full speed ? */ |
| 1691 | if (use_fullspeed) { |
| 1692 | tmp = readl(&dev->regs->cfg); |
| 1693 | tmp = AMD_ADDBITS(tmp, UDC_DEVCFG_SPD_FS, UDC_DEVCFG_SPD); |
| 1694 | writel(tmp, &dev->regs->cfg); |
| 1695 | } |
| 1696 | |
| 1697 | spin_unlock_irq(&dev->lock); |
| 1698 | } |
| 1699 | |
| 1700 | /* Reset the UDC core */ |
| 1701 | static void udc_soft_reset(struct udc *dev) |
| 1702 | { |
| 1703 | unsigned long flags; |
| 1704 | |
| 1705 | DBG(dev, "Soft reset\n"); |
| 1706 | /* |
| 1707 | * reset possible waiting interrupts, because int. |
| 1708 | * status is lost after soft reset, |
| 1709 | * ep int. status reset |
| 1710 | */ |
| 1711 | writel(UDC_EPINT_MSK_DISABLE_ALL, &dev->regs->ep_irqsts); |
| 1712 | /* device int. status reset */ |
| 1713 | writel(UDC_DEV_MSK_DISABLE, &dev->regs->irqsts); |
| 1714 | |
| 1715 | spin_lock_irqsave(&udc_irq_spinlock, flags); |
| 1716 | writel(AMD_BIT(UDC_DEVCFG_SOFTRESET), &dev->regs->cfg); |
| 1717 | readl(&dev->regs->cfg); |
| 1718 | spin_unlock_irqrestore(&udc_irq_spinlock, flags); |
| 1719 | |
| 1720 | } |
| 1721 | |
| 1722 | /* RDE timer callback to set RDE bit */ |
| 1723 | static void udc_timer_function(unsigned long v) |
| 1724 | { |
| 1725 | u32 tmp; |
| 1726 | |
| 1727 | spin_lock_irq(&udc_irq_spinlock); |
| 1728 | |
| 1729 | if (set_rde > 0) { |
| 1730 | /* |
| 1731 | * open the fifo if fifo was filled on last timer call |
| 1732 | * conditionally |
| 1733 | */ |
| 1734 | if (set_rde > 1) { |
| 1735 | /* set RDE to receive setup data */ |
| 1736 | tmp = readl(&udc->regs->ctl); |
| 1737 | tmp |= AMD_BIT(UDC_DEVCTL_RDE); |
| 1738 | writel(tmp, &udc->regs->ctl); |
| 1739 | set_rde = -1; |
| 1740 | } else if (readl(&udc->regs->sts) |
| 1741 | & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY)) { |
| 1742 | /* |
| 1743 | * if fifo empty setup polling, do not just |
| 1744 | * open the fifo |
| 1745 | */ |
| 1746 | udc_timer.expires = jiffies + HZ/UDC_RDE_TIMER_DIV; |
| 1747 | if (!stop_timer) { |
| 1748 | add_timer(&udc_timer); |
| 1749 | } |
| 1750 | } else { |
| 1751 | /* |
| 1752 | * fifo contains data now, setup timer for opening |
| 1753 | * the fifo when timer expires to be able to receive |
| 1754 | * setup packets, when data packets gets queued by |
| 1755 | * gadget layer then timer will forced to expire with |
| 1756 | * set_rde=0 (RDE is set in udc_queue()) |
| 1757 | */ |
| 1758 | set_rde++; |
| 1759 | /* debug: lhadmot_timer_start = 221070 */ |
| 1760 | udc_timer.expires = jiffies + HZ*UDC_RDE_TIMER_SECONDS; |
| 1761 | if (!stop_timer) { |
| 1762 | add_timer(&udc_timer); |
| 1763 | } |
| 1764 | } |
| 1765 | |
| 1766 | } else |
| 1767 | set_rde = -1; /* RDE was set by udc_queue() */ |
| 1768 | spin_unlock_irq(&udc_irq_spinlock); |
| 1769 | if (stop_timer) |
| 1770 | complete(&on_exit); |
| 1771 | |
| 1772 | } |
| 1773 | |
| 1774 | /* Handle halt state, used in stall poll timer */ |
| 1775 | static void udc_handle_halt_state(struct udc_ep *ep) |
| 1776 | { |
| 1777 | u32 tmp; |
| 1778 | /* set stall as long not halted */ |
| 1779 | if (ep->halted == 1) { |
| 1780 | tmp = readl(&ep->regs->ctl); |
| 1781 | /* STALL cleared ? */ |
| 1782 | if (!(tmp & AMD_BIT(UDC_EPCTL_S))) { |
| 1783 | /* |
| 1784 | * FIXME: MSC spec requires that stall remains |
| 1785 | * even on receivng of CLEAR_FEATURE HALT. So |
| 1786 | * we would set STALL again here to be compliant. |
| 1787 | * But with current mass storage drivers this does |
| 1788 | * not work (would produce endless host retries). |
| 1789 | * So we clear halt on CLEAR_FEATURE. |
| 1790 | * |
| 1791 | DBG(ep->dev, "ep %d: set STALL again\n", ep->num); |
| 1792 | tmp |= AMD_BIT(UDC_EPCTL_S); |
| 1793 | writel(tmp, &ep->regs->ctl);*/ |
| 1794 | |
| 1795 | /* clear NAK by writing CNAK */ |
| 1796 | tmp |= AMD_BIT(UDC_EPCTL_CNAK); |
| 1797 | writel(tmp, &ep->regs->ctl); |
| 1798 | ep->halted = 0; |
| 1799 | UDC_QUEUE_CNAK(ep, ep->num); |
| 1800 | } |
| 1801 | } |
| 1802 | } |
| 1803 | |
| 1804 | /* Stall timer callback to poll S bit and set it again after */ |
| 1805 | static void udc_pollstall_timer_function(unsigned long v) |
| 1806 | { |
| 1807 | struct udc_ep *ep; |
| 1808 | int halted = 0; |
| 1809 | |
| 1810 | spin_lock_irq(&udc_stall_spinlock); |
| 1811 | /* |
| 1812 | * only one IN and OUT endpoints are handled |
| 1813 | * IN poll stall |
| 1814 | */ |
| 1815 | ep = &udc->ep[UDC_EPIN_IX]; |
| 1816 | udc_handle_halt_state(ep); |
| 1817 | if (ep->halted) |
| 1818 | halted = 1; |
| 1819 | /* OUT poll stall */ |
| 1820 | ep = &udc->ep[UDC_EPOUT_IX]; |
| 1821 | udc_handle_halt_state(ep); |
| 1822 | if (ep->halted) |
| 1823 | halted = 1; |
| 1824 | |
| 1825 | /* setup timer again when still halted */ |
| 1826 | if (!stop_pollstall_timer && halted) { |
| 1827 | udc_pollstall_timer.expires = jiffies + |
| 1828 | HZ * UDC_POLLSTALL_TIMER_USECONDS |
| 1829 | / (1000 * 1000); |
| 1830 | add_timer(&udc_pollstall_timer); |
| 1831 | } |
| 1832 | spin_unlock_irq(&udc_stall_spinlock); |
| 1833 | |
| 1834 | if (stop_pollstall_timer) |
| 1835 | complete(&on_pollstall_exit); |
| 1836 | } |
| 1837 | |
| 1838 | /* Inits endpoint 0 so that SETUP packets are processed */ |
| 1839 | static void activate_control_endpoints(struct udc *dev) |
| 1840 | { |
| 1841 | u32 tmp; |
| 1842 | |
| 1843 | DBG(dev, "activate_control_endpoints\n"); |
| 1844 | |
| 1845 | /* flush fifo */ |
| 1846 | tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl); |
| 1847 | tmp |= AMD_BIT(UDC_EPCTL_F); |
| 1848 | writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl); |
| 1849 | |
| 1850 | /* set ep0 directions */ |
| 1851 | dev->ep[UDC_EP0IN_IX].in = 1; |
| 1852 | dev->ep[UDC_EP0OUT_IX].in = 0; |
| 1853 | |
| 1854 | /* set buffer size (tx fifo entries) of EP0_IN */ |
| 1855 | tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->bufin_framenum); |
| 1856 | if (dev->gadget.speed == USB_SPEED_FULL) |
| 1857 | tmp = AMD_ADDBITS(tmp, UDC_FS_EPIN0_BUFF_SIZE, |
| 1858 | UDC_EPIN_BUFF_SIZE); |
| 1859 | else if (dev->gadget.speed == USB_SPEED_HIGH) |
| 1860 | tmp = AMD_ADDBITS(tmp, UDC_EPIN0_BUFF_SIZE, |
| 1861 | UDC_EPIN_BUFF_SIZE); |
| 1862 | writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->bufin_framenum); |
| 1863 | |
| 1864 | /* set max packet size of EP0_IN */ |
| 1865 | tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->bufout_maxpkt); |
| 1866 | if (dev->gadget.speed == USB_SPEED_FULL) |
| 1867 | tmp = AMD_ADDBITS(tmp, UDC_FS_EP0IN_MAX_PKT_SIZE, |
| 1868 | UDC_EP_MAX_PKT_SIZE); |
| 1869 | else if (dev->gadget.speed == USB_SPEED_HIGH) |
| 1870 | tmp = AMD_ADDBITS(tmp, UDC_EP0IN_MAX_PKT_SIZE, |
| 1871 | UDC_EP_MAX_PKT_SIZE); |
| 1872 | writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->bufout_maxpkt); |
| 1873 | |
| 1874 | /* set max packet size of EP0_OUT */ |
| 1875 | tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->bufout_maxpkt); |
| 1876 | if (dev->gadget.speed == USB_SPEED_FULL) |
| 1877 | tmp = AMD_ADDBITS(tmp, UDC_FS_EP0OUT_MAX_PKT_SIZE, |
| 1878 | UDC_EP_MAX_PKT_SIZE); |
| 1879 | else if (dev->gadget.speed == USB_SPEED_HIGH) |
| 1880 | tmp = AMD_ADDBITS(tmp, UDC_EP0OUT_MAX_PKT_SIZE, |
| 1881 | UDC_EP_MAX_PKT_SIZE); |
| 1882 | writel(tmp, &dev->ep[UDC_EP0OUT_IX].regs->bufout_maxpkt); |
| 1883 | |
| 1884 | /* set max packet size of EP0 in UDC CSR */ |
| 1885 | tmp = readl(&dev->csr->ne[0]); |
| 1886 | if (dev->gadget.speed == USB_SPEED_FULL) |
| 1887 | tmp = AMD_ADDBITS(tmp, UDC_FS_EP0OUT_MAX_PKT_SIZE, |
| 1888 | UDC_CSR_NE_MAX_PKT); |
| 1889 | else if (dev->gadget.speed == USB_SPEED_HIGH) |
| 1890 | tmp = AMD_ADDBITS(tmp, UDC_EP0OUT_MAX_PKT_SIZE, |
| 1891 | UDC_CSR_NE_MAX_PKT); |
| 1892 | writel(tmp, &dev->csr->ne[0]); |
| 1893 | |
| 1894 | if (use_dma) { |
| 1895 | dev->ep[UDC_EP0OUT_IX].td->status |= |
| 1896 | AMD_BIT(UDC_DMA_OUT_STS_L); |
| 1897 | /* write dma desc address */ |
| 1898 | writel(dev->ep[UDC_EP0OUT_IX].td_stp_dma, |
| 1899 | &dev->ep[UDC_EP0OUT_IX].regs->subptr); |
| 1900 | writel(dev->ep[UDC_EP0OUT_IX].td_phys, |
| 1901 | &dev->ep[UDC_EP0OUT_IX].regs->desptr); |
| 1902 | /* stop RDE timer */ |
| 1903 | if (timer_pending(&udc_timer)) { |
| 1904 | set_rde = 0; |
| 1905 | mod_timer(&udc_timer, jiffies - 1); |
| 1906 | } |
| 1907 | /* stop pollstall timer */ |
| 1908 | if (timer_pending(&udc_pollstall_timer)) { |
| 1909 | mod_timer(&udc_pollstall_timer, jiffies - 1); |
| 1910 | } |
| 1911 | /* enable DMA */ |
| 1912 | tmp = readl(&dev->regs->ctl); |
| 1913 | tmp |= AMD_BIT(UDC_DEVCTL_MODE) |
| 1914 | | AMD_BIT(UDC_DEVCTL_RDE) |
| 1915 | | AMD_BIT(UDC_DEVCTL_TDE); |
| 1916 | if (use_dma_bufferfill_mode) { |
| 1917 | tmp |= AMD_BIT(UDC_DEVCTL_BF); |
| 1918 | } else if (use_dma_ppb_du) { |
| 1919 | tmp |= AMD_BIT(UDC_DEVCTL_DU); |
| 1920 | } |
| 1921 | writel(tmp, &dev->regs->ctl); |
| 1922 | } |
| 1923 | |
| 1924 | /* clear NAK by writing CNAK for EP0IN */ |
| 1925 | tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl); |
| 1926 | tmp |= AMD_BIT(UDC_EPCTL_CNAK); |
| 1927 | writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl); |
| 1928 | dev->ep[UDC_EP0IN_IX].naking = 0; |
| 1929 | UDC_QUEUE_CNAK(&dev->ep[UDC_EP0IN_IX], UDC_EP0IN_IX); |
| 1930 | |
| 1931 | /* clear NAK by writing CNAK for EP0OUT */ |
| 1932 | tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->ctl); |
| 1933 | tmp |= AMD_BIT(UDC_EPCTL_CNAK); |
| 1934 | writel(tmp, &dev->ep[UDC_EP0OUT_IX].regs->ctl); |
| 1935 | dev->ep[UDC_EP0OUT_IX].naking = 0; |
| 1936 | UDC_QUEUE_CNAK(&dev->ep[UDC_EP0OUT_IX], UDC_EP0OUT_IX); |
| 1937 | } |
| 1938 | |
| 1939 | /* Make endpoint 0 ready for control traffic */ |
| 1940 | static int setup_ep0(struct udc *dev) |
| 1941 | { |
| 1942 | activate_control_endpoints(dev); |
| 1943 | /* enable ep0 interrupts */ |
| 1944 | udc_enable_ep0_interrupts(dev); |
| 1945 | /* enable device setup interrupts */ |
| 1946 | udc_enable_dev_setup_interrupts(dev); |
| 1947 | |
| 1948 | return 0; |
| 1949 | } |
| 1950 | |
| 1951 | /* Called by gadget driver to register itself */ |
| 1952 | int usb_gadget_register_driver(struct usb_gadget_driver *driver) |
| 1953 | { |
| 1954 | struct udc *dev = udc; |
| 1955 | int retval; |
| 1956 | u32 tmp; |
| 1957 | |
| 1958 | if (!driver || !driver->bind || !driver->setup |
| 1959 | || driver->speed != USB_SPEED_HIGH) |
| 1960 | return -EINVAL; |
| 1961 | if (!dev) |
| 1962 | return -ENODEV; |
| 1963 | if (dev->driver) |
| 1964 | return -EBUSY; |
| 1965 | |
| 1966 | driver->driver.bus = NULL; |
| 1967 | dev->driver = driver; |
| 1968 | dev->gadget.dev.driver = &driver->driver; |
| 1969 | |
| 1970 | retval = driver->bind(&dev->gadget); |
| 1971 | |
| 1972 | /* Some gadget drivers use both ep0 directions. |
| 1973 | * NOTE: to gadget driver, ep0 is just one endpoint... |
| 1974 | */ |
| 1975 | dev->ep[UDC_EP0OUT_IX].ep.driver_data = |
| 1976 | dev->ep[UDC_EP0IN_IX].ep.driver_data; |
| 1977 | |
| 1978 | if (retval) { |
| 1979 | DBG(dev, "binding to %s returning %d\n", |
| 1980 | driver->driver.name, retval); |
| 1981 | dev->driver = NULL; |
| 1982 | dev->gadget.dev.driver = NULL; |
| 1983 | return retval; |
| 1984 | } |
| 1985 | |
| 1986 | /* get ready for ep0 traffic */ |
| 1987 | setup_ep0(dev); |
| 1988 | |
| 1989 | /* clear SD */ |
| 1990 | tmp = readl(&dev->regs->ctl); |
| 1991 | tmp = tmp & AMD_CLEAR_BIT(UDC_DEVCTL_SD); |
| 1992 | writel(tmp, &dev->regs->ctl); |
| 1993 | |
| 1994 | usb_connect(dev); |
| 1995 | |
| 1996 | return 0; |
| 1997 | } |
| 1998 | EXPORT_SYMBOL(usb_gadget_register_driver); |
| 1999 | |
| 2000 | /* shutdown requests and disconnect from gadget */ |
| 2001 | static void |
| 2002 | shutdown(struct udc *dev, struct usb_gadget_driver *driver) |
| 2003 | __releases(dev->lock) |
| 2004 | __acquires(dev->lock) |
| 2005 | { |
| 2006 | int tmp; |
| 2007 | |
| 2008 | /* empty queues and init hardware */ |
| 2009 | udc_basic_init(dev); |
| 2010 | for (tmp = 0; tmp < UDC_EP_NUM; tmp++) { |
| 2011 | empty_req_queue(&dev->ep[tmp]); |
| 2012 | } |
| 2013 | |
| 2014 | if (dev->gadget.speed != USB_SPEED_UNKNOWN) { |
| 2015 | spin_unlock(&dev->lock); |
| 2016 | driver->disconnect(&dev->gadget); |
| 2017 | spin_lock(&dev->lock); |
| 2018 | } |
| 2019 | /* init */ |
| 2020 | udc_setup_endpoints(dev); |
| 2021 | } |
| 2022 | |
| 2023 | /* Called by gadget driver to unregister itself */ |
| 2024 | int usb_gadget_unregister_driver(struct usb_gadget_driver *driver) |
| 2025 | { |
| 2026 | struct udc *dev = udc; |
| 2027 | unsigned long flags; |
| 2028 | u32 tmp; |
| 2029 | |
| 2030 | if (!dev) |
| 2031 | return -ENODEV; |
| 2032 | if (!driver || driver != dev->driver || !driver->unbind) |
| 2033 | return -EINVAL; |
| 2034 | |
| 2035 | spin_lock_irqsave(&dev->lock, flags); |
| 2036 | udc_mask_unused_interrupts(dev); |
| 2037 | shutdown(dev, driver); |
| 2038 | spin_unlock_irqrestore(&dev->lock, flags); |
| 2039 | |
| 2040 | driver->unbind(&dev->gadget); |
| 2041 | dev->driver = NULL; |
| 2042 | |
| 2043 | /* set SD */ |
| 2044 | tmp = readl(&dev->regs->ctl); |
| 2045 | tmp |= AMD_BIT(UDC_DEVCTL_SD); |
| 2046 | writel(tmp, &dev->regs->ctl); |
| 2047 | |
| 2048 | |
| 2049 | DBG(dev, "%s: unregistered\n", driver->driver.name); |
| 2050 | |
| 2051 | return 0; |
| 2052 | } |
| 2053 | EXPORT_SYMBOL(usb_gadget_unregister_driver); |
| 2054 | |
| 2055 | |
| 2056 | /* Clear pending NAK bits */ |
| 2057 | static void udc_process_cnak_queue(struct udc *dev) |
| 2058 | { |
| 2059 | u32 tmp; |
| 2060 | u32 reg; |
| 2061 | |
| 2062 | /* check epin's */ |
| 2063 | DBG(dev, "CNAK pending queue processing\n"); |
| 2064 | for (tmp = 0; tmp < UDC_EPIN_NUM_USED; tmp++) { |
| 2065 | if (cnak_pending & (1 << tmp)) { |
| 2066 | DBG(dev, "CNAK pending for ep%d\n", tmp); |
| 2067 | /* clear NAK by writing CNAK */ |
| 2068 | reg = readl(&dev->ep[tmp].regs->ctl); |
| 2069 | reg |= AMD_BIT(UDC_EPCTL_CNAK); |
| 2070 | writel(reg, &dev->ep[tmp].regs->ctl); |
| 2071 | dev->ep[tmp].naking = 0; |
| 2072 | UDC_QUEUE_CNAK(&dev->ep[tmp], dev->ep[tmp].num); |
| 2073 | } |
| 2074 | } |
| 2075 | /* ... and ep0out */ |
| 2076 | if (cnak_pending & (1 << UDC_EP0OUT_IX)) { |
| 2077 | DBG(dev, "CNAK pending for ep%d\n", UDC_EP0OUT_IX); |
| 2078 | /* clear NAK by writing CNAK */ |
| 2079 | reg = readl(&dev->ep[UDC_EP0OUT_IX].regs->ctl); |
| 2080 | reg |= AMD_BIT(UDC_EPCTL_CNAK); |
| 2081 | writel(reg, &dev->ep[UDC_EP0OUT_IX].regs->ctl); |
| 2082 | dev->ep[UDC_EP0OUT_IX].naking = 0; |
| 2083 | UDC_QUEUE_CNAK(&dev->ep[UDC_EP0OUT_IX], |
| 2084 | dev->ep[UDC_EP0OUT_IX].num); |
| 2085 | } |
| 2086 | } |
| 2087 | |
| 2088 | /* Enabling RX DMA after setup packet */ |
| 2089 | static void udc_ep0_set_rde(struct udc *dev) |
| 2090 | { |
| 2091 | if (use_dma) { |
| 2092 | /* |
| 2093 | * only enable RXDMA when no data endpoint enabled |
| 2094 | * or data is queued |
| 2095 | */ |
| 2096 | if (!dev->data_ep_enabled || dev->data_ep_queued) { |
| 2097 | udc_set_rde(dev); |
| 2098 | } else { |
| 2099 | /* |
| 2100 | * setup timer for enabling RDE (to not enable |
| 2101 | * RXFIFO DMA for data endpoints to early) |
| 2102 | */ |
| 2103 | if (set_rde != 0 && !timer_pending(&udc_timer)) { |
| 2104 | udc_timer.expires = |
| 2105 | jiffies + HZ/UDC_RDE_TIMER_DIV; |
| 2106 | set_rde = 1; |
| 2107 | if (!stop_timer) { |
| 2108 | add_timer(&udc_timer); |
| 2109 | } |
| 2110 | } |
| 2111 | } |
| 2112 | } |
| 2113 | } |
| 2114 | |
| 2115 | |
| 2116 | /* Interrupt handler for data OUT traffic */ |
| 2117 | static irqreturn_t udc_data_out_isr(struct udc *dev, int ep_ix) |
| 2118 | { |
| 2119 | irqreturn_t ret_val = IRQ_NONE; |
| 2120 | u32 tmp; |
| 2121 | struct udc_ep *ep; |
| 2122 | struct udc_request *req; |
| 2123 | unsigned int count; |
| 2124 | struct udc_data_dma *td = NULL; |
| 2125 | unsigned dma_done; |
| 2126 | |
| 2127 | VDBG(dev, "ep%d irq\n", ep_ix); |
| 2128 | ep = &dev->ep[ep_ix]; |
| 2129 | |
| 2130 | tmp = readl(&ep->regs->sts); |
| 2131 | if (use_dma) { |
| 2132 | /* BNA event ? */ |
| 2133 | if (tmp & AMD_BIT(UDC_EPSTS_BNA)) { |
| 2134 | DBG(dev, "BNA ep%dout occured - DESPTR = %x \n", |
| 2135 | ep->num, readl(&ep->regs->desptr)); |
| 2136 | /* clear BNA */ |
| 2137 | writel(tmp | AMD_BIT(UDC_EPSTS_BNA), &ep->regs->sts); |
| 2138 | if (!ep->cancel_transfer) |
| 2139 | ep->bna_occurred = 1; |
| 2140 | else |
| 2141 | ep->cancel_transfer = 0; |
| 2142 | ret_val = IRQ_HANDLED; |
| 2143 | goto finished; |
| 2144 | } |
| 2145 | } |
| 2146 | /* HE event ? */ |
| 2147 | if (tmp & AMD_BIT(UDC_EPSTS_HE)) { |
| 2148 | dev_err(&dev->pdev->dev, "HE ep%dout occured\n", ep->num); |
| 2149 | |
| 2150 | /* clear HE */ |
| 2151 | writel(tmp | AMD_BIT(UDC_EPSTS_HE), &ep->regs->sts); |
| 2152 | ret_val = IRQ_HANDLED; |
| 2153 | goto finished; |
| 2154 | } |
| 2155 | |
| 2156 | if (!list_empty(&ep->queue)) { |
| 2157 | |
| 2158 | /* next request */ |
| 2159 | req = list_entry(ep->queue.next, |
| 2160 | struct udc_request, queue); |
| 2161 | } else { |
| 2162 | req = NULL; |
| 2163 | udc_rxfifo_pending = 1; |
| 2164 | } |
| 2165 | VDBG(dev, "req = %p\n", req); |
| 2166 | /* fifo mode */ |
| 2167 | if (!use_dma) { |
| 2168 | |
| 2169 | /* read fifo */ |
| 2170 | if (req && udc_rxfifo_read(ep, req)) { |
| 2171 | ret_val = IRQ_HANDLED; |
| 2172 | |
| 2173 | /* finish */ |
| 2174 | complete_req(ep, req, 0); |
| 2175 | /* next request */ |
| 2176 | if (!list_empty(&ep->queue) && !ep->halted) { |
| 2177 | req = list_entry(ep->queue.next, |
| 2178 | struct udc_request, queue); |
| 2179 | } else |
| 2180 | req = NULL; |
| 2181 | } |
| 2182 | |
| 2183 | /* DMA */ |
| 2184 | } else if (!ep->cancel_transfer && req != NULL) { |
| 2185 | ret_val = IRQ_HANDLED; |
| 2186 | |
| 2187 | /* check for DMA done */ |
| 2188 | if (!use_dma_ppb) { |
| 2189 | dma_done = AMD_GETBITS(req->td_data->status, |
| 2190 | UDC_DMA_OUT_STS_BS); |
| 2191 | /* packet per buffer mode - rx bytes */ |
| 2192 | } else { |
| 2193 | /* |
| 2194 | * if BNA occurred then recover desc. from |
| 2195 | * BNA dummy desc. |
| 2196 | */ |
| 2197 | if (ep->bna_occurred) { |
| 2198 | VDBG(dev, "Recover desc. from BNA dummy\n"); |
| 2199 | memcpy(req->td_data, ep->bna_dummy_req->td_data, |
| 2200 | sizeof(struct udc_data_dma)); |
| 2201 | ep->bna_occurred = 0; |
| 2202 | udc_init_bna_dummy(ep->req); |
| 2203 | } |
| 2204 | td = udc_get_last_dma_desc(req); |
| 2205 | dma_done = AMD_GETBITS(td->status, UDC_DMA_OUT_STS_BS); |
| 2206 | } |
| 2207 | if (dma_done == UDC_DMA_OUT_STS_BS_DMA_DONE) { |
| 2208 | /* buffer fill mode - rx bytes */ |
| 2209 | if (!use_dma_ppb) { |
| 2210 | /* received number bytes */ |
| 2211 | count = AMD_GETBITS(req->td_data->status, |
| 2212 | UDC_DMA_OUT_STS_RXBYTES); |
| 2213 | VDBG(dev, "rx bytes=%u\n", count); |
| 2214 | /* packet per buffer mode - rx bytes */ |
| 2215 | } else { |
| 2216 | VDBG(dev, "req->td_data=%p\n", req->td_data); |
| 2217 | VDBG(dev, "last desc = %p\n", td); |
| 2218 | /* received number bytes */ |
| 2219 | if (use_dma_ppb_du) { |
| 2220 | /* every desc. counts bytes */ |
| 2221 | count = udc_get_ppbdu_rxbytes(req); |
| 2222 | } else { |
| 2223 | /* last desc. counts bytes */ |
| 2224 | count = AMD_GETBITS(td->status, |
| 2225 | UDC_DMA_OUT_STS_RXBYTES); |
| 2226 | if (!count && req->req.length |
| 2227 | == UDC_DMA_MAXPACKET) { |
| 2228 | /* |
| 2229 | * on 64k packets the RXBYTES |
| 2230 | * field is zero |
| 2231 | */ |
| 2232 | count = UDC_DMA_MAXPACKET; |
| 2233 | } |
| 2234 | } |
| 2235 | VDBG(dev, "last desc rx bytes=%u\n", count); |
| 2236 | } |
| 2237 | |
| 2238 | tmp = req->req.length - req->req.actual; |
| 2239 | if (count > tmp) { |
| 2240 | if ((tmp % ep->ep.maxpacket) != 0) { |
| 2241 | DBG(dev, "%s: rx %db, space=%db\n", |
| 2242 | ep->ep.name, count, tmp); |
| 2243 | req->req.status = -EOVERFLOW; |
| 2244 | } |
| 2245 | count = tmp; |
| 2246 | } |
| 2247 | req->req.actual += count; |
| 2248 | req->dma_going = 0; |
| 2249 | /* complete request */ |
| 2250 | complete_req(ep, req, 0); |
| 2251 | |
| 2252 | /* next request */ |
| 2253 | if (!list_empty(&ep->queue) && !ep->halted) { |
| 2254 | req = list_entry(ep->queue.next, |
| 2255 | struct udc_request, |
| 2256 | queue); |
| 2257 | /* |
| 2258 | * DMA may be already started by udc_queue() |
| 2259 | * called by gadget drivers completion |
| 2260 | * routine. This happens when queue |
| 2261 | * holds one request only. |
| 2262 | */ |
| 2263 | if (req->dma_going == 0) { |
| 2264 | /* next dma */ |
| 2265 | if (prep_dma(ep, req, GFP_ATOMIC) != 0) |
| 2266 | goto finished; |
| 2267 | /* write desc pointer */ |
| 2268 | writel(req->td_phys, |
| 2269 | &ep->regs->desptr); |
| 2270 | req->dma_going = 1; |
| 2271 | /* enable DMA */ |
| 2272 | udc_set_rde(dev); |
| 2273 | } |
| 2274 | } else { |
| 2275 | /* |
| 2276 | * implant BNA dummy descriptor to allow |
| 2277 | * RXFIFO opening by RDE |
| 2278 | */ |
| 2279 | if (ep->bna_dummy_req) { |
| 2280 | /* write desc pointer */ |
| 2281 | writel(ep->bna_dummy_req->td_phys, |
| 2282 | &ep->regs->desptr); |
| 2283 | ep->bna_occurred = 0; |
| 2284 | } |
| 2285 | |
| 2286 | /* |
| 2287 | * schedule timer for setting RDE if queue |
| 2288 | * remains empty to allow ep0 packets pass |
| 2289 | * through |
| 2290 | */ |
| 2291 | if (set_rde != 0 |
| 2292 | && !timer_pending(&udc_timer)) { |
| 2293 | udc_timer.expires = |
| 2294 | jiffies |
| 2295 | + HZ*UDC_RDE_TIMER_SECONDS; |
| 2296 | set_rde = 1; |
| 2297 | if (!stop_timer) { |
| 2298 | add_timer(&udc_timer); |
| 2299 | } |
| 2300 | } |
| 2301 | if (ep->num != UDC_EP0OUT_IX) |
| 2302 | dev->data_ep_queued = 0; |
| 2303 | } |
| 2304 | |
| 2305 | } else { |
| 2306 | /* |
| 2307 | * RX DMA must be reenabled for each desc in PPBDU mode |
| 2308 | * and must be enabled for PPBNDU mode in case of BNA |
| 2309 | */ |
| 2310 | udc_set_rde(dev); |
| 2311 | } |
| 2312 | |
| 2313 | } else if (ep->cancel_transfer) { |
| 2314 | ret_val = IRQ_HANDLED; |
| 2315 | ep->cancel_transfer = 0; |
| 2316 | } |
| 2317 | |
| 2318 | /* check pending CNAKS */ |
| 2319 | if (cnak_pending) { |
| 2320 | /* CNAk processing when rxfifo empty only */ |
| 2321 | if (readl(&dev->regs->sts) & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY)) { |
| 2322 | udc_process_cnak_queue(dev); |
| 2323 | } |
| 2324 | } |
| 2325 | |
| 2326 | /* clear OUT bits in ep status */ |
| 2327 | writel(UDC_EPSTS_OUT_CLEAR, &ep->regs->sts); |
| 2328 | finished: |
| 2329 | return ret_val; |
| 2330 | } |
| 2331 | |
| 2332 | /* Interrupt handler for data IN traffic */ |
| 2333 | static irqreturn_t udc_data_in_isr(struct udc *dev, int ep_ix) |
| 2334 | { |
| 2335 | irqreturn_t ret_val = IRQ_NONE; |
| 2336 | u32 tmp; |
| 2337 | u32 epsts; |
| 2338 | struct udc_ep *ep; |
| 2339 | struct udc_request *req; |
| 2340 | struct udc_data_dma *td; |
| 2341 | unsigned dma_done; |
| 2342 | unsigned len; |
| 2343 | |
| 2344 | ep = &dev->ep[ep_ix]; |
| 2345 | |
| 2346 | epsts = readl(&ep->regs->sts); |
| 2347 | if (use_dma) { |
| 2348 | /* BNA ? */ |
| 2349 | if (epsts & AMD_BIT(UDC_EPSTS_BNA)) { |
| 2350 | dev_err(&dev->pdev->dev, |
| 2351 | "BNA ep%din occured - DESPTR = %08lx \n", |
| 2352 | ep->num, |
| 2353 | (unsigned long) readl(&ep->regs->desptr)); |
| 2354 | |
| 2355 | /* clear BNA */ |
| 2356 | writel(epsts, &ep->regs->sts); |
| 2357 | ret_val = IRQ_HANDLED; |
| 2358 | goto finished; |
| 2359 | } |
| 2360 | } |
| 2361 | /* HE event ? */ |
| 2362 | if (epsts & AMD_BIT(UDC_EPSTS_HE)) { |
| 2363 | dev_err(&dev->pdev->dev, |
| 2364 | "HE ep%dn occured - DESPTR = %08lx \n", |
| 2365 | ep->num, (unsigned long) readl(&ep->regs->desptr)); |
| 2366 | |
| 2367 | /* clear HE */ |
| 2368 | writel(epsts | AMD_BIT(UDC_EPSTS_HE), &ep->regs->sts); |
| 2369 | ret_val = IRQ_HANDLED; |
| 2370 | goto finished; |
| 2371 | } |
| 2372 | |
| 2373 | /* DMA completion */ |
| 2374 | if (epsts & AMD_BIT(UDC_EPSTS_TDC)) { |
| 2375 | VDBG(dev, "TDC set- completion\n"); |
| 2376 | ret_val = IRQ_HANDLED; |
| 2377 | if (!ep->cancel_transfer && !list_empty(&ep->queue)) { |
| 2378 | req = list_entry(ep->queue.next, |
| 2379 | struct udc_request, queue); |
| 2380 | if (req) { |
| 2381 | /* |
| 2382 | * length bytes transfered |
| 2383 | * check dma done of last desc. in PPBDU mode |
| 2384 | */ |
| 2385 | if (use_dma_ppb_du) { |
| 2386 | td = udc_get_last_dma_desc(req); |
| 2387 | if (td) { |
| 2388 | dma_done = |
| 2389 | AMD_GETBITS(td->status, |
| 2390 | UDC_DMA_IN_STS_BS); |
| 2391 | /* don't care DMA done */ |
| 2392 | req->req.actual = |
| 2393 | req->req.length; |
| 2394 | } |
| 2395 | } else { |
| 2396 | /* assume all bytes transferred */ |
| 2397 | req->req.actual = req->req.length; |
| 2398 | } |
| 2399 | |
| 2400 | if (req->req.actual == req->req.length) { |
| 2401 | /* complete req */ |
| 2402 | complete_req(ep, req, 0); |
| 2403 | req->dma_going = 0; |
| 2404 | /* further request available ? */ |
| 2405 | if (list_empty(&ep->queue)) { |
| 2406 | /* disable interrupt */ |
| 2407 | tmp = readl( |
| 2408 | &dev->regs->ep_irqmsk); |
| 2409 | tmp |= AMD_BIT(ep->num); |
| 2410 | writel(tmp, |
| 2411 | &dev->regs->ep_irqmsk); |
| 2412 | } |
| 2413 | |
| 2414 | } |
| 2415 | } |
| 2416 | } |
| 2417 | ep->cancel_transfer = 0; |
| 2418 | |
| 2419 | } |
| 2420 | /* |
| 2421 | * status reg has IN bit set and TDC not set (if TDC was handled, |
| 2422 | * IN must not be handled (UDC defect) ? |
| 2423 | */ |
| 2424 | if ((epsts & AMD_BIT(UDC_EPSTS_IN)) |
| 2425 | && !(epsts & AMD_BIT(UDC_EPSTS_TDC))) { |
| 2426 | ret_val = IRQ_HANDLED; |
| 2427 | if (!list_empty(&ep->queue)) { |
| 2428 | /* next request */ |
| 2429 | req = list_entry(ep->queue.next, |
| 2430 | struct udc_request, queue); |
| 2431 | /* FIFO mode */ |
| 2432 | if (!use_dma) { |
| 2433 | /* write fifo */ |
| 2434 | udc_txfifo_write(ep, &req->req); |
| 2435 | len = req->req.length - req->req.actual; |
| 2436 | if (len > ep->ep.maxpacket) |
| 2437 | len = ep->ep.maxpacket; |
| 2438 | req->req.actual += len; |
| 2439 | if (req->req.actual == req->req.length |
| 2440 | || (len != ep->ep.maxpacket)) { |
| 2441 | /* complete req */ |
| 2442 | complete_req(ep, req, 0); |
| 2443 | } |
| 2444 | /* DMA */ |
| 2445 | } else if (req && !req->dma_going) { |
| 2446 | VDBG(dev, "IN DMA : req=%p req->td_data=%p\n", |
| 2447 | req, req->td_data); |
| 2448 | if (req->td_data) { |
| 2449 | |
| 2450 | req->dma_going = 1; |
| 2451 | |
| 2452 | /* |
| 2453 | * unset L bit of first desc. |
| 2454 | * for chain |
| 2455 | */ |
| 2456 | if (use_dma_ppb && req->req.length > |
| 2457 | ep->ep.maxpacket) { |
| 2458 | req->td_data->status &= |
| 2459 | AMD_CLEAR_BIT( |
| 2460 | UDC_DMA_IN_STS_L); |
| 2461 | } |
| 2462 | |
| 2463 | /* write desc pointer */ |
| 2464 | writel(req->td_phys, &ep->regs->desptr); |
| 2465 | |
| 2466 | /* set HOST READY */ |
| 2467 | req->td_data->status = |
| 2468 | AMD_ADDBITS( |
| 2469 | req->td_data->status, |
| 2470 | UDC_DMA_IN_STS_BS_HOST_READY, |
| 2471 | UDC_DMA_IN_STS_BS); |
| 2472 | |
| 2473 | /* set poll demand bit */ |
| 2474 | tmp = readl(&ep->regs->ctl); |
| 2475 | tmp |= AMD_BIT(UDC_EPCTL_P); |
| 2476 | writel(tmp, &ep->regs->ctl); |
| 2477 | } |
| 2478 | } |
| 2479 | |
| 2480 | } |
| 2481 | } |
| 2482 | /* clear status bits */ |
| 2483 | writel(epsts, &ep->regs->sts); |
| 2484 | |
| 2485 | finished: |
| 2486 | return ret_val; |
| 2487 | |
| 2488 | } |
| 2489 | |
| 2490 | /* Interrupt handler for Control OUT traffic */ |
| 2491 | static irqreturn_t udc_control_out_isr(struct udc *dev) |
| 2492 | __releases(dev->lock) |
| 2493 | __acquires(dev->lock) |
| 2494 | { |
| 2495 | irqreturn_t ret_val = IRQ_NONE; |
| 2496 | u32 tmp; |
| 2497 | int setup_supported; |
| 2498 | u32 count; |
| 2499 | int set = 0; |
| 2500 | struct udc_ep *ep; |
| 2501 | struct udc_ep *ep_tmp; |
| 2502 | |
| 2503 | ep = &dev->ep[UDC_EP0OUT_IX]; |
| 2504 | |
| 2505 | /* clear irq */ |
| 2506 | writel(AMD_BIT(UDC_EPINT_OUT_EP0), &dev->regs->ep_irqsts); |
| 2507 | |
| 2508 | tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->sts); |
| 2509 | /* check BNA and clear if set */ |
| 2510 | if (tmp & AMD_BIT(UDC_EPSTS_BNA)) { |
| 2511 | VDBG(dev, "ep0: BNA set\n"); |
| 2512 | writel(AMD_BIT(UDC_EPSTS_BNA), |
| 2513 | &dev->ep[UDC_EP0OUT_IX].regs->sts); |
| 2514 | ep->bna_occurred = 1; |
| 2515 | ret_val = IRQ_HANDLED; |
| 2516 | goto finished; |
| 2517 | } |
| 2518 | |
| 2519 | /* type of data: SETUP or DATA 0 bytes */ |
| 2520 | tmp = AMD_GETBITS(tmp, UDC_EPSTS_OUT); |
| 2521 | VDBG(dev, "data_typ = %x\n", tmp); |
| 2522 | |
| 2523 | /* setup data */ |
| 2524 | if (tmp == UDC_EPSTS_OUT_SETUP) { |
| 2525 | ret_val = IRQ_HANDLED; |
| 2526 | |
| 2527 | ep->dev->stall_ep0in = 0; |
| 2528 | dev->waiting_zlp_ack_ep0in = 0; |
| 2529 | |
| 2530 | /* set NAK for EP0_IN */ |
| 2531 | tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl); |
| 2532 | tmp |= AMD_BIT(UDC_EPCTL_SNAK); |
| 2533 | writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl); |
| 2534 | dev->ep[UDC_EP0IN_IX].naking = 1; |
| 2535 | /* get setup data */ |
| 2536 | if (use_dma) { |
| 2537 | |
| 2538 | /* clear OUT bits in ep status */ |
| 2539 | writel(UDC_EPSTS_OUT_CLEAR, |
| 2540 | &dev->ep[UDC_EP0OUT_IX].regs->sts); |
| 2541 | |
| 2542 | setup_data.data[0] = |
| 2543 | dev->ep[UDC_EP0OUT_IX].td_stp->data12; |
| 2544 | setup_data.data[1] = |
| 2545 | dev->ep[UDC_EP0OUT_IX].td_stp->data34; |
| 2546 | /* set HOST READY */ |
| 2547 | dev->ep[UDC_EP0OUT_IX].td_stp->status = |
| 2548 | UDC_DMA_STP_STS_BS_HOST_READY; |
| 2549 | } else { |
| 2550 | /* read fifo */ |
| 2551 | udc_rxfifo_read_dwords(dev, setup_data.data, 2); |
| 2552 | } |
| 2553 | |
| 2554 | /* determine direction of control data */ |
| 2555 | if ((setup_data.request.bRequestType & USB_DIR_IN) != 0) { |
| 2556 | dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IX].ep; |
| 2557 | /* enable RDE */ |
| 2558 | udc_ep0_set_rde(dev); |
| 2559 | set = 0; |
| 2560 | } else { |
| 2561 | dev->gadget.ep0 = &dev->ep[UDC_EP0OUT_IX].ep; |
| 2562 | /* |
| 2563 | * implant BNA dummy descriptor to allow RXFIFO opening |
| 2564 | * by RDE |
| 2565 | */ |
| 2566 | if (ep->bna_dummy_req) { |
| 2567 | /* write desc pointer */ |
| 2568 | writel(ep->bna_dummy_req->td_phys, |
| 2569 | &dev->ep[UDC_EP0OUT_IX].regs->desptr); |
| 2570 | ep->bna_occurred = 0; |
| 2571 | } |
| 2572 | |
| 2573 | set = 1; |
| 2574 | dev->ep[UDC_EP0OUT_IX].naking = 1; |
| 2575 | /* |
| 2576 | * setup timer for enabling RDE (to not enable |
| 2577 | * RXFIFO DMA for data to early) |
| 2578 | */ |
| 2579 | set_rde = 1; |
| 2580 | if (!timer_pending(&udc_timer)) { |
| 2581 | udc_timer.expires = jiffies + |
| 2582 | HZ/UDC_RDE_TIMER_DIV; |
| 2583 | if (!stop_timer) { |
| 2584 | add_timer(&udc_timer); |
| 2585 | } |
| 2586 | } |
| 2587 | } |
| 2588 | |
| 2589 | /* |
| 2590 | * mass storage reset must be processed here because |
| 2591 | * next packet may be a CLEAR_FEATURE HALT which would not |
| 2592 | * clear the stall bit when no STALL handshake was received |
| 2593 | * before (autostall can cause this) |
| 2594 | */ |
| 2595 | if (setup_data.data[0] == UDC_MSCRES_DWORD0 |
| 2596 | && setup_data.data[1] == UDC_MSCRES_DWORD1) { |
| 2597 | DBG(dev, "MSC Reset\n"); |
| 2598 | /* |
| 2599 | * clear stall bits |
| 2600 | * only one IN and OUT endpoints are handled |
| 2601 | */ |
| 2602 | ep_tmp = &udc->ep[UDC_EPIN_IX]; |
| 2603 | udc_set_halt(&ep_tmp->ep, 0); |
| 2604 | ep_tmp = &udc->ep[UDC_EPOUT_IX]; |
| 2605 | udc_set_halt(&ep_tmp->ep, 0); |
| 2606 | } |
| 2607 | |
| 2608 | /* call gadget with setup data received */ |
| 2609 | spin_unlock(&dev->lock); |
| 2610 | setup_supported = dev->driver->setup(&dev->gadget, |
| 2611 | &setup_data.request); |
| 2612 | spin_lock(&dev->lock); |
| 2613 | |
| 2614 | tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl); |
| 2615 | /* ep0 in returns data (not zlp) on IN phase */ |
| 2616 | if (setup_supported >= 0 && setup_supported < |
| 2617 | UDC_EP0IN_MAXPACKET) { |
| 2618 | /* clear NAK by writing CNAK in EP0_IN */ |
| 2619 | tmp |= AMD_BIT(UDC_EPCTL_CNAK); |
| 2620 | writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl); |
| 2621 | dev->ep[UDC_EP0IN_IX].naking = 0; |
| 2622 | UDC_QUEUE_CNAK(&dev->ep[UDC_EP0IN_IX], UDC_EP0IN_IX); |
| 2623 | |
| 2624 | /* if unsupported request then stall */ |
| 2625 | } else if (setup_supported < 0) { |
| 2626 | tmp |= AMD_BIT(UDC_EPCTL_S); |
| 2627 | writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl); |
| 2628 | } else |
| 2629 | dev->waiting_zlp_ack_ep0in = 1; |
| 2630 | |
| 2631 | |
| 2632 | /* clear NAK by writing CNAK in EP0_OUT */ |
| 2633 | if (!set) { |
| 2634 | tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->ctl); |
| 2635 | tmp |= AMD_BIT(UDC_EPCTL_CNAK); |
| 2636 | writel(tmp, &dev->ep[UDC_EP0OUT_IX].regs->ctl); |
| 2637 | dev->ep[UDC_EP0OUT_IX].naking = 0; |
| 2638 | UDC_QUEUE_CNAK(&dev->ep[UDC_EP0OUT_IX], UDC_EP0OUT_IX); |
| 2639 | } |
| 2640 | |
| 2641 | if (!use_dma) { |
| 2642 | /* clear OUT bits in ep status */ |
| 2643 | writel(UDC_EPSTS_OUT_CLEAR, |
| 2644 | &dev->ep[UDC_EP0OUT_IX].regs->sts); |
| 2645 | } |
| 2646 | |
| 2647 | /* data packet 0 bytes */ |
| 2648 | } else if (tmp == UDC_EPSTS_OUT_DATA) { |
| 2649 | /* clear OUT bits in ep status */ |
| 2650 | writel(UDC_EPSTS_OUT_CLEAR, &dev->ep[UDC_EP0OUT_IX].regs->sts); |
| 2651 | |
| 2652 | /* get setup data: only 0 packet */ |
| 2653 | if (use_dma) { |
| 2654 | /* no req if 0 packet, just reactivate */ |
| 2655 | if (list_empty(&dev->ep[UDC_EP0OUT_IX].queue)) { |
| 2656 | VDBG(dev, "ZLP\n"); |
| 2657 | |
| 2658 | /* set HOST READY */ |
| 2659 | dev->ep[UDC_EP0OUT_IX].td->status = |
| 2660 | AMD_ADDBITS( |
| 2661 | dev->ep[UDC_EP0OUT_IX].td->status, |
| 2662 | UDC_DMA_OUT_STS_BS_HOST_READY, |
| 2663 | UDC_DMA_OUT_STS_BS); |
| 2664 | /* enable RDE */ |
| 2665 | udc_ep0_set_rde(dev); |
| 2666 | ret_val = IRQ_HANDLED; |
| 2667 | |
| 2668 | } else { |
| 2669 | /* control write */ |
| 2670 | ret_val |= udc_data_out_isr(dev, UDC_EP0OUT_IX); |
| 2671 | /* re-program desc. pointer for possible ZLPs */ |
| 2672 | writel(dev->ep[UDC_EP0OUT_IX].td_phys, |
| 2673 | &dev->ep[UDC_EP0OUT_IX].regs->desptr); |
| 2674 | /* enable RDE */ |
| 2675 | udc_ep0_set_rde(dev); |
| 2676 | } |
| 2677 | } else { |
| 2678 | |
| 2679 | /* received number bytes */ |
| 2680 | count = readl(&dev->ep[UDC_EP0OUT_IX].regs->sts); |
| 2681 | count = AMD_GETBITS(count, UDC_EPSTS_RX_PKT_SIZE); |
| 2682 | /* out data for fifo mode not working */ |
| 2683 | count = 0; |
| 2684 | |
| 2685 | /* 0 packet or real data ? */ |
| 2686 | if (count != 0) { |
| 2687 | ret_val |= udc_data_out_isr(dev, UDC_EP0OUT_IX); |
| 2688 | } else { |
| 2689 | /* dummy read confirm */ |
| 2690 | readl(&dev->ep[UDC_EP0OUT_IX].regs->confirm); |
| 2691 | ret_val = IRQ_HANDLED; |
| 2692 | } |
| 2693 | } |
| 2694 | } |
| 2695 | |
| 2696 | /* check pending CNAKS */ |
| 2697 | if (cnak_pending) { |
| 2698 | /* CNAk processing when rxfifo empty only */ |
| 2699 | if (readl(&dev->regs->sts) & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY)) { |
| 2700 | udc_process_cnak_queue(dev); |
| 2701 | } |
| 2702 | } |
| 2703 | |
| 2704 | finished: |
| 2705 | return ret_val; |
| 2706 | } |
| 2707 | |
| 2708 | /* Interrupt handler for Control IN traffic */ |
| 2709 | static irqreturn_t udc_control_in_isr(struct udc *dev) |
| 2710 | { |
| 2711 | irqreturn_t ret_val = IRQ_NONE; |
| 2712 | u32 tmp; |
| 2713 | struct udc_ep *ep; |
| 2714 | struct udc_request *req; |
| 2715 | unsigned len; |
| 2716 | |
| 2717 | ep = &dev->ep[UDC_EP0IN_IX]; |
| 2718 | |
| 2719 | /* clear irq */ |
| 2720 | writel(AMD_BIT(UDC_EPINT_IN_EP0), &dev->regs->ep_irqsts); |
| 2721 | |
| 2722 | tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->sts); |
| 2723 | /* DMA completion */ |
| 2724 | if (tmp & AMD_BIT(UDC_EPSTS_TDC)) { |
| 2725 | VDBG(dev, "isr: TDC clear \n"); |
| 2726 | ret_val = IRQ_HANDLED; |
| 2727 | |
| 2728 | /* clear TDC bit */ |
| 2729 | writel(AMD_BIT(UDC_EPSTS_TDC), |
| 2730 | &dev->ep[UDC_EP0IN_IX].regs->sts); |
| 2731 | |
| 2732 | /* status reg has IN bit set ? */ |
| 2733 | } else if (tmp & AMD_BIT(UDC_EPSTS_IN)) { |
| 2734 | ret_val = IRQ_HANDLED; |
| 2735 | |
| 2736 | if (ep->dma) { |
| 2737 | /* clear IN bit */ |
| 2738 | writel(AMD_BIT(UDC_EPSTS_IN), |
| 2739 | &dev->ep[UDC_EP0IN_IX].regs->sts); |
| 2740 | } |
| 2741 | if (dev->stall_ep0in) { |
| 2742 | DBG(dev, "stall ep0in\n"); |
| 2743 | /* halt ep0in */ |
| 2744 | tmp = readl(&ep->regs->ctl); |
| 2745 | tmp |= AMD_BIT(UDC_EPCTL_S); |
| 2746 | writel(tmp, &ep->regs->ctl); |
| 2747 | } else { |
| 2748 | if (!list_empty(&ep->queue)) { |
| 2749 | /* next request */ |
| 2750 | req = list_entry(ep->queue.next, |
| 2751 | struct udc_request, queue); |
| 2752 | |
| 2753 | if (ep->dma) { |
| 2754 | /* write desc pointer */ |
| 2755 | writel(req->td_phys, &ep->regs->desptr); |
| 2756 | /* set HOST READY */ |
| 2757 | req->td_data->status = |
| 2758 | AMD_ADDBITS( |
| 2759 | req->td_data->status, |
| 2760 | UDC_DMA_STP_STS_BS_HOST_READY, |
| 2761 | UDC_DMA_STP_STS_BS); |
| 2762 | |
| 2763 | /* set poll demand bit */ |
| 2764 | tmp = |
| 2765 | readl(&dev->ep[UDC_EP0IN_IX].regs->ctl); |
| 2766 | tmp |= AMD_BIT(UDC_EPCTL_P); |
| 2767 | writel(tmp, |
| 2768 | &dev->ep[UDC_EP0IN_IX].regs->ctl); |
| 2769 | |
| 2770 | /* all bytes will be transferred */ |
| 2771 | req->req.actual = req->req.length; |
| 2772 | |
| 2773 | /* complete req */ |
| 2774 | complete_req(ep, req, 0); |
| 2775 | |
| 2776 | } else { |
| 2777 | /* write fifo */ |
| 2778 | udc_txfifo_write(ep, &req->req); |
| 2779 | |
| 2780 | /* lengh bytes transfered */ |
| 2781 | len = req->req.length - req->req.actual; |
| 2782 | if (len > ep->ep.maxpacket) |
| 2783 | len = ep->ep.maxpacket; |
| 2784 | |
| 2785 | req->req.actual += len; |
| 2786 | if (req->req.actual == req->req.length |
| 2787 | || (len != ep->ep.maxpacket)) { |
| 2788 | /* complete req */ |
| 2789 | complete_req(ep, req, 0); |
| 2790 | } |
| 2791 | } |
| 2792 | |
| 2793 | } |
| 2794 | } |
| 2795 | ep->halted = 0; |
| 2796 | dev->stall_ep0in = 0; |
| 2797 | if (!ep->dma) { |
| 2798 | /* clear IN bit */ |
| 2799 | writel(AMD_BIT(UDC_EPSTS_IN), |
| 2800 | &dev->ep[UDC_EP0IN_IX].regs->sts); |
| 2801 | } |
| 2802 | } |
| 2803 | |
| 2804 | return ret_val; |
| 2805 | } |
| 2806 | |
| 2807 | |
| 2808 | /* Interrupt handler for global device events */ |
| 2809 | static irqreturn_t udc_dev_isr(struct udc *dev, u32 dev_irq) |
| 2810 | __releases(dev->lock) |
| 2811 | __acquires(dev->lock) |
| 2812 | { |
| 2813 | irqreturn_t ret_val = IRQ_NONE; |
| 2814 | u32 tmp; |
| 2815 | u32 cfg; |
| 2816 | struct udc_ep *ep; |
| 2817 | u16 i; |
| 2818 | u8 udc_csr_epix; |
| 2819 | |
| 2820 | /* SET_CONFIG irq ? */ |
| 2821 | if (dev_irq & AMD_BIT(UDC_DEVINT_SC)) { |
| 2822 | ret_val = IRQ_HANDLED; |
| 2823 | |
| 2824 | /* read config value */ |
| 2825 | tmp = readl(&dev->regs->sts); |
| 2826 | cfg = AMD_GETBITS(tmp, UDC_DEVSTS_CFG); |
| 2827 | DBG(dev, "SET_CONFIG interrupt: config=%d\n", cfg); |
| 2828 | dev->cur_config = cfg; |
| 2829 | dev->set_cfg_not_acked = 1; |
| 2830 | |
| 2831 | /* make usb request for gadget driver */ |
| 2832 | memset(&setup_data, 0 , sizeof(union udc_setup_data)); |
| 2833 | setup_data.request.bRequest = USB_REQ_SET_CONFIGURATION; |
| 2834 | setup_data.request.wValue = dev->cur_config; |
| 2835 | |
| 2836 | /* programm the NE registers */ |
| 2837 | for (i = 0; i < UDC_EP_NUM; i++) { |
| 2838 | ep = &dev->ep[i]; |
| 2839 | if (ep->in) { |
| 2840 | |
| 2841 | /* ep ix in UDC CSR register space */ |
| 2842 | udc_csr_epix = ep->num; |
| 2843 | |
| 2844 | |
| 2845 | /* OUT ep */ |
| 2846 | } else { |
| 2847 | /* ep ix in UDC CSR register space */ |
| 2848 | udc_csr_epix = ep->num - UDC_CSR_EP_OUT_IX_OFS; |
| 2849 | } |
| 2850 | |
| 2851 | tmp = readl(&dev->csr->ne[udc_csr_epix]); |
| 2852 | /* ep cfg */ |
| 2853 | tmp = AMD_ADDBITS(tmp, ep->dev->cur_config, |
| 2854 | UDC_CSR_NE_CFG); |
| 2855 | /* write reg */ |
| 2856 | writel(tmp, &dev->csr->ne[udc_csr_epix]); |
| 2857 | |
| 2858 | /* clear stall bits */ |
| 2859 | ep->halted = 0; |
| 2860 | tmp = readl(&ep->regs->ctl); |
| 2861 | tmp = tmp & AMD_CLEAR_BIT(UDC_EPCTL_S); |
| 2862 | writel(tmp, &ep->regs->ctl); |
| 2863 | } |
| 2864 | /* call gadget zero with setup data received */ |
| 2865 | spin_unlock(&dev->lock); |
| 2866 | tmp = dev->driver->setup(&dev->gadget, &setup_data.request); |
| 2867 | spin_lock(&dev->lock); |
| 2868 | |
| 2869 | } /* SET_INTERFACE ? */ |
| 2870 | if (dev_irq & AMD_BIT(UDC_DEVINT_SI)) { |
| 2871 | ret_val = IRQ_HANDLED; |
| 2872 | |
| 2873 | dev->set_cfg_not_acked = 1; |
| 2874 | /* read interface and alt setting values */ |
| 2875 | tmp = readl(&dev->regs->sts); |
| 2876 | dev->cur_alt = AMD_GETBITS(tmp, UDC_DEVSTS_ALT); |
| 2877 | dev->cur_intf = AMD_GETBITS(tmp, UDC_DEVSTS_INTF); |
| 2878 | |
| 2879 | /* make usb request for gadget driver */ |
| 2880 | memset(&setup_data, 0 , sizeof(union udc_setup_data)); |
| 2881 | setup_data.request.bRequest = USB_REQ_SET_INTERFACE; |
| 2882 | setup_data.request.bRequestType = USB_RECIP_INTERFACE; |
| 2883 | setup_data.request.wValue = dev->cur_alt; |
| 2884 | setup_data.request.wIndex = dev->cur_intf; |
| 2885 | |
| 2886 | DBG(dev, "SET_INTERFACE interrupt: alt=%d intf=%d\n", |
| 2887 | dev->cur_alt, dev->cur_intf); |
| 2888 | |
| 2889 | /* programm the NE registers */ |
| 2890 | for (i = 0; i < UDC_EP_NUM; i++) { |
| 2891 | ep = &dev->ep[i]; |
| 2892 | if (ep->in) { |
| 2893 | |
| 2894 | /* ep ix in UDC CSR register space */ |
| 2895 | udc_csr_epix = ep->num; |
| 2896 | |
| 2897 | |
| 2898 | /* OUT ep */ |
| 2899 | } else { |
| 2900 | /* ep ix in UDC CSR register space */ |
| 2901 | udc_csr_epix = ep->num - UDC_CSR_EP_OUT_IX_OFS; |
| 2902 | } |
| 2903 | |
| 2904 | /* UDC CSR reg */ |
| 2905 | /* set ep values */ |
| 2906 | tmp = readl(&dev->csr->ne[udc_csr_epix]); |
| 2907 | /* ep interface */ |
| 2908 | tmp = AMD_ADDBITS(tmp, ep->dev->cur_intf, |
| 2909 | UDC_CSR_NE_INTF); |
| 2910 | /* tmp = AMD_ADDBITS(tmp, 2, UDC_CSR_NE_INTF); */ |
| 2911 | /* ep alt */ |
| 2912 | tmp = AMD_ADDBITS(tmp, ep->dev->cur_alt, |
| 2913 | UDC_CSR_NE_ALT); |
| 2914 | /* write reg */ |
| 2915 | writel(tmp, &dev->csr->ne[udc_csr_epix]); |
| 2916 | |
| 2917 | /* clear stall bits */ |
| 2918 | ep->halted = 0; |
| 2919 | tmp = readl(&ep->regs->ctl); |
| 2920 | tmp = tmp & AMD_CLEAR_BIT(UDC_EPCTL_S); |
| 2921 | writel(tmp, &ep->regs->ctl); |
| 2922 | } |
| 2923 | |
| 2924 | /* call gadget zero with setup data received */ |
| 2925 | spin_unlock(&dev->lock); |
| 2926 | tmp = dev->driver->setup(&dev->gadget, &setup_data.request); |
| 2927 | spin_lock(&dev->lock); |
| 2928 | |
| 2929 | } /* USB reset */ |
| 2930 | if (dev_irq & AMD_BIT(UDC_DEVINT_UR)) { |
| 2931 | DBG(dev, "USB Reset interrupt\n"); |
| 2932 | ret_val = IRQ_HANDLED; |
| 2933 | |
| 2934 | /* allow soft reset when suspend occurs */ |
| 2935 | soft_reset_occured = 0; |
| 2936 | |
| 2937 | dev->waiting_zlp_ack_ep0in = 0; |
| 2938 | dev->set_cfg_not_acked = 0; |
| 2939 | |
| 2940 | /* mask not needed interrupts */ |
| 2941 | udc_mask_unused_interrupts(dev); |
| 2942 | |
| 2943 | /* call gadget to resume and reset configs etc. */ |
| 2944 | spin_unlock(&dev->lock); |
| 2945 | if (dev->sys_suspended && dev->driver->resume) { |
| 2946 | dev->driver->resume(&dev->gadget); |
| 2947 | dev->sys_suspended = 0; |
| 2948 | } |
| 2949 | dev->driver->disconnect(&dev->gadget); |
| 2950 | spin_lock(&dev->lock); |
| 2951 | |
| 2952 | /* disable ep0 to empty req queue */ |
| 2953 | empty_req_queue(&dev->ep[UDC_EP0IN_IX]); |
| 2954 | ep_init(dev->regs, &dev->ep[UDC_EP0IN_IX]); |
| 2955 | |
| 2956 | /* soft reset when rxfifo not empty */ |
| 2957 | tmp = readl(&dev->regs->sts); |
| 2958 | if (!(tmp & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY)) |
| 2959 | && !soft_reset_after_usbreset_occured) { |
| 2960 | udc_soft_reset(dev); |
| 2961 | soft_reset_after_usbreset_occured++; |
| 2962 | } |
| 2963 | |
| 2964 | /* |
| 2965 | * DMA reset to kill potential old DMA hw hang, |
| 2966 | * POLL bit is already reset by ep_init() through |
| 2967 | * disconnect() |
| 2968 | */ |
| 2969 | DBG(dev, "DMA machine reset\n"); |
| 2970 | tmp = readl(&dev->regs->cfg); |
| 2971 | writel(tmp | AMD_BIT(UDC_DEVCFG_DMARST), &dev->regs->cfg); |
| 2972 | writel(tmp, &dev->regs->cfg); |
| 2973 | |
| 2974 | /* put into initial config */ |
| 2975 | udc_basic_init(dev); |
| 2976 | |
| 2977 | /* enable device setup interrupts */ |
| 2978 | udc_enable_dev_setup_interrupts(dev); |
| 2979 | |
| 2980 | /* enable suspend interrupt */ |
| 2981 | tmp = readl(&dev->regs->irqmsk); |
| 2982 | tmp &= AMD_UNMASK_BIT(UDC_DEVINT_US); |
| 2983 | writel(tmp, &dev->regs->irqmsk); |
| 2984 | |
| 2985 | } /* USB suspend */ |
| 2986 | if (dev_irq & AMD_BIT(UDC_DEVINT_US)) { |
| 2987 | DBG(dev, "USB Suspend interrupt\n"); |
| 2988 | ret_val = IRQ_HANDLED; |
| 2989 | if (dev->driver->suspend) { |
| 2990 | spin_unlock(&dev->lock); |
| 2991 | dev->sys_suspended = 1; |
| 2992 | dev->driver->suspend(&dev->gadget); |
| 2993 | spin_lock(&dev->lock); |
| 2994 | } |
| 2995 | } /* new speed ? */ |
| 2996 | if (dev_irq & AMD_BIT(UDC_DEVINT_ENUM)) { |
| 2997 | DBG(dev, "ENUM interrupt\n"); |
| 2998 | ret_val = IRQ_HANDLED; |
| 2999 | soft_reset_after_usbreset_occured = 0; |
| 3000 | |
| 3001 | /* disable ep0 to empty req queue */ |
| 3002 | empty_req_queue(&dev->ep[UDC_EP0IN_IX]); |
| 3003 | ep_init(dev->regs, &dev->ep[UDC_EP0IN_IX]); |
| 3004 | |
| 3005 | /* link up all endpoints */ |
| 3006 | udc_setup_endpoints(dev); |
| 3007 | if (dev->gadget.speed == USB_SPEED_HIGH) { |
| 3008 | dev_info(&dev->pdev->dev, "Connect: speed = %s\n", |
| 3009 | "high"); |
| 3010 | } else if (dev->gadget.speed == USB_SPEED_FULL) { |
| 3011 | dev_info(&dev->pdev->dev, "Connect: speed = %s\n", |
| 3012 | "full"); |
| 3013 | } |
| 3014 | |
| 3015 | /* init ep 0 */ |
| 3016 | activate_control_endpoints(dev); |
| 3017 | |
| 3018 | /* enable ep0 interrupts */ |
| 3019 | udc_enable_ep0_interrupts(dev); |
| 3020 | } |
| 3021 | /* session valid change interrupt */ |
| 3022 | if (dev_irq & AMD_BIT(UDC_DEVINT_SVC)) { |
| 3023 | DBG(dev, "USB SVC interrupt\n"); |
| 3024 | ret_val = IRQ_HANDLED; |
| 3025 | |
| 3026 | /* check that session is not valid to detect disconnect */ |
| 3027 | tmp = readl(&dev->regs->sts); |
| 3028 | if (!(tmp & AMD_BIT(UDC_DEVSTS_SESSVLD))) { |
| 3029 | /* disable suspend interrupt */ |
| 3030 | tmp = readl(&dev->regs->irqmsk); |
| 3031 | tmp |= AMD_BIT(UDC_DEVINT_US); |
| 3032 | writel(tmp, &dev->regs->irqmsk); |
| 3033 | DBG(dev, "USB Disconnect (session valid low)\n"); |
| 3034 | /* cleanup on disconnect */ |
| 3035 | usb_disconnect(udc); |
| 3036 | } |
| 3037 | |
| 3038 | } |
| 3039 | |
| 3040 | return ret_val; |
| 3041 | } |
| 3042 | |
| 3043 | /* Interrupt Service Routine, see Linux Kernel Doc for parameters */ |
| 3044 | static irqreturn_t udc_irq(int irq, void *pdev) |
| 3045 | { |
| 3046 | struct udc *dev = pdev; |
| 3047 | u32 reg; |
| 3048 | u16 i; |
| 3049 | u32 ep_irq; |
| 3050 | irqreturn_t ret_val = IRQ_NONE; |
| 3051 | |
| 3052 | spin_lock(&dev->lock); |
| 3053 | |
| 3054 | /* check for ep irq */ |
| 3055 | reg = readl(&dev->regs->ep_irqsts); |
| 3056 | if (reg) { |
| 3057 | if (reg & AMD_BIT(UDC_EPINT_OUT_EP0)) |
| 3058 | ret_val |= udc_control_out_isr(dev); |
| 3059 | if (reg & AMD_BIT(UDC_EPINT_IN_EP0)) |
| 3060 | ret_val |= udc_control_in_isr(dev); |
| 3061 | |
| 3062 | /* |
| 3063 | * data endpoint |
| 3064 | * iterate ep's |
| 3065 | */ |
| 3066 | for (i = 1; i < UDC_EP_NUM; i++) { |
| 3067 | ep_irq = 1 << i; |
| 3068 | if (!(reg & ep_irq) || i == UDC_EPINT_OUT_EP0) |
| 3069 | continue; |
| 3070 | |
| 3071 | /* clear irq status */ |
| 3072 | writel(ep_irq, &dev->regs->ep_irqsts); |
| 3073 | |
| 3074 | /* irq for out ep ? */ |
| 3075 | if (i > UDC_EPIN_NUM) |
| 3076 | ret_val |= udc_data_out_isr(dev, i); |
| 3077 | else |
| 3078 | ret_val |= udc_data_in_isr(dev, i); |
| 3079 | } |
| 3080 | |
| 3081 | } |
| 3082 | |
| 3083 | |
| 3084 | /* check for dev irq */ |
| 3085 | reg = readl(&dev->regs->irqsts); |
| 3086 | if (reg) { |
| 3087 | /* clear irq */ |
| 3088 | writel(reg, &dev->regs->irqsts); |
| 3089 | ret_val |= udc_dev_isr(dev, reg); |
| 3090 | } |
| 3091 | |
| 3092 | |
| 3093 | spin_unlock(&dev->lock); |
| 3094 | return ret_val; |
| 3095 | } |
| 3096 | |
| 3097 | /* Tears down device */ |
| 3098 | static void gadget_release(struct device *pdev) |
| 3099 | { |
| 3100 | struct amd5536udc *dev = dev_get_drvdata(pdev); |
| 3101 | kfree(dev); |
| 3102 | } |
| 3103 | |
| 3104 | /* Cleanup on device remove */ |
| 3105 | static void udc_remove(struct udc *dev) |
| 3106 | { |
| 3107 | /* remove timer */ |
| 3108 | stop_timer++; |
| 3109 | if (timer_pending(&udc_timer)) |
| 3110 | wait_for_completion(&on_exit); |
| 3111 | if (udc_timer.data) |
| 3112 | del_timer_sync(&udc_timer); |
| 3113 | /* remove pollstall timer */ |
| 3114 | stop_pollstall_timer++; |
| 3115 | if (timer_pending(&udc_pollstall_timer)) |
| 3116 | wait_for_completion(&on_pollstall_exit); |
| 3117 | if (udc_pollstall_timer.data) |
| 3118 | del_timer_sync(&udc_pollstall_timer); |
| 3119 | udc = NULL; |
| 3120 | } |
| 3121 | |
| 3122 | /* Reset all pci context */ |
| 3123 | static void udc_pci_remove(struct pci_dev *pdev) |
| 3124 | { |
| 3125 | struct udc *dev; |
| 3126 | |
| 3127 | dev = pci_get_drvdata(pdev); |
| 3128 | |
| 3129 | /* gadget driver must not be registered */ |
| 3130 | BUG_ON(dev->driver != NULL); |
| 3131 | |
| 3132 | /* dma pool cleanup */ |
| 3133 | if (dev->data_requests) |
| 3134 | pci_pool_destroy(dev->data_requests); |
| 3135 | |
| 3136 | if (dev->stp_requests) { |
| 3137 | /* cleanup DMA desc's for ep0in */ |
| 3138 | pci_pool_free(dev->stp_requests, |
| 3139 | dev->ep[UDC_EP0OUT_IX].td_stp, |
| 3140 | dev->ep[UDC_EP0OUT_IX].td_stp_dma); |
| 3141 | pci_pool_free(dev->stp_requests, |
| 3142 | dev->ep[UDC_EP0OUT_IX].td, |
| 3143 | dev->ep[UDC_EP0OUT_IX].td_phys); |
| 3144 | |
| 3145 | pci_pool_destroy(dev->stp_requests); |
| 3146 | } |
| 3147 | |
| 3148 | /* reset controller */ |
| 3149 | writel(AMD_BIT(UDC_DEVCFG_SOFTRESET), &dev->regs->cfg); |
| 3150 | if (dev->irq_registered) |
| 3151 | free_irq(pdev->irq, dev); |
| 3152 | if (dev->regs) |
| 3153 | iounmap(dev->regs); |
| 3154 | if (dev->mem_region) |
| 3155 | release_mem_region(pci_resource_start(pdev, 0), |
| 3156 | pci_resource_len(pdev, 0)); |
| 3157 | if (dev->active) |
| 3158 | pci_disable_device(pdev); |
| 3159 | |
| 3160 | device_unregister(&dev->gadget.dev); |
| 3161 | pci_set_drvdata(pdev, NULL); |
| 3162 | |
| 3163 | udc_remove(dev); |
| 3164 | } |
| 3165 | |
| 3166 | /* create dma pools on init */ |
| 3167 | static int init_dma_pools(struct udc *dev) |
| 3168 | { |
| 3169 | struct udc_stp_dma *td_stp; |
| 3170 | struct udc_data_dma *td_data; |
| 3171 | int retval; |
| 3172 | |
| 3173 | /* consistent DMA mode setting ? */ |
| 3174 | if (use_dma_ppb) { |
| 3175 | use_dma_bufferfill_mode = 0; |
| 3176 | } else { |
| 3177 | use_dma_ppb_du = 0; |
| 3178 | use_dma_bufferfill_mode = 1; |
| 3179 | } |
| 3180 | |
| 3181 | /* DMA setup */ |
| 3182 | dev->data_requests = dma_pool_create("data_requests", NULL, |
| 3183 | sizeof(struct udc_data_dma), 0, 0); |
| 3184 | if (!dev->data_requests) { |
| 3185 | DBG(dev, "can't get request data pool\n"); |
| 3186 | retval = -ENOMEM; |
| 3187 | goto finished; |
| 3188 | } |
| 3189 | |
| 3190 | /* EP0 in dma regs = dev control regs */ |
| 3191 | dev->ep[UDC_EP0IN_IX].dma = &dev->regs->ctl; |
| 3192 | |
| 3193 | /* dma desc for setup data */ |
| 3194 | dev->stp_requests = dma_pool_create("setup requests", NULL, |
| 3195 | sizeof(struct udc_stp_dma), 0, 0); |
| 3196 | if (!dev->stp_requests) { |
| 3197 | DBG(dev, "can't get stp request pool\n"); |
| 3198 | retval = -ENOMEM; |
| 3199 | goto finished; |
| 3200 | } |
| 3201 | /* setup */ |
| 3202 | td_stp = dma_pool_alloc(dev->stp_requests, GFP_KERNEL, |
| 3203 | &dev->ep[UDC_EP0OUT_IX].td_stp_dma); |
| 3204 | if (td_stp == NULL) { |
| 3205 | retval = -ENOMEM; |
| 3206 | goto finished; |
| 3207 | } |
| 3208 | dev->ep[UDC_EP0OUT_IX].td_stp = td_stp; |
| 3209 | |
| 3210 | /* data: 0 packets !? */ |
| 3211 | td_data = dma_pool_alloc(dev->stp_requests, GFP_KERNEL, |
| 3212 | &dev->ep[UDC_EP0OUT_IX].td_phys); |
| 3213 | if (td_data == NULL) { |
| 3214 | retval = -ENOMEM; |
| 3215 | goto finished; |
| 3216 | } |
| 3217 | dev->ep[UDC_EP0OUT_IX].td = td_data; |
| 3218 | return 0; |
| 3219 | |
| 3220 | finished: |
| 3221 | return retval; |
| 3222 | } |
| 3223 | |
| 3224 | /* Called by pci bus driver to init pci context */ |
| 3225 | static int udc_pci_probe( |
| 3226 | struct pci_dev *pdev, |
| 3227 | const struct pci_device_id *id |
| 3228 | ) |
| 3229 | { |
| 3230 | struct udc *dev; |
| 3231 | unsigned long resource; |
| 3232 | unsigned long len; |
| 3233 | int retval = 0; |
| 3234 | |
| 3235 | /* one udc only */ |
| 3236 | if (udc) { |
| 3237 | dev_dbg(&pdev->dev, "already probed\n"); |
| 3238 | return -EBUSY; |
| 3239 | } |
| 3240 | |
| 3241 | /* init */ |
| 3242 | dev = kzalloc(sizeof(struct udc), GFP_KERNEL); |
| 3243 | if (!dev) { |
| 3244 | retval = -ENOMEM; |
| 3245 | goto finished; |
| 3246 | } |
Thomas Dahlmann | 55d402d | 2007-07-16 21:40:54 -0700 | [diff] [blame] | 3247 | |
| 3248 | /* pci setup */ |
| 3249 | if (pci_enable_device(pdev) < 0) { |
| 3250 | retval = -ENODEV; |
| 3251 | goto finished; |
| 3252 | } |
| 3253 | dev->active = 1; |
| 3254 | |
| 3255 | /* PCI resource allocation */ |
| 3256 | resource = pci_resource_start(pdev, 0); |
| 3257 | len = pci_resource_len(pdev, 0); |
| 3258 | |
| 3259 | if (!request_mem_region(resource, len, name)) { |
| 3260 | dev_dbg(&pdev->dev, "pci device used already\n"); |
| 3261 | retval = -EBUSY; |
| 3262 | goto finished; |
| 3263 | } |
| 3264 | dev->mem_region = 1; |
| 3265 | |
| 3266 | dev->virt_addr = ioremap_nocache(resource, len); |
| 3267 | if (dev->virt_addr == NULL) { |
| 3268 | dev_dbg(&pdev->dev, "start address cannot be mapped\n"); |
| 3269 | retval = -EFAULT; |
| 3270 | goto finished; |
| 3271 | } |
| 3272 | |
| 3273 | if (!pdev->irq) { |
| 3274 | dev_err(&dev->pdev->dev, "irq not set\n"); |
| 3275 | retval = -ENODEV; |
| 3276 | goto finished; |
| 3277 | } |
| 3278 | |
| 3279 | if (request_irq(pdev->irq, udc_irq, IRQF_SHARED, name, dev) != 0) { |
| 3280 | dev_dbg(&dev->pdev->dev, "request_irq(%d) fail\n", pdev->irq); |
| 3281 | retval = -EBUSY; |
| 3282 | goto finished; |
| 3283 | } |
| 3284 | dev->irq_registered = 1; |
| 3285 | |
| 3286 | pci_set_drvdata(pdev, dev); |
| 3287 | |
Auke Kok | 1d3ee41 | 2007-08-27 16:16:13 -0700 | [diff] [blame] | 3288 | /* chip revision for Hs AMD5536 */ |
| 3289 | dev->chiprev = pdev->revision; |
Thomas Dahlmann | 55d402d | 2007-07-16 21:40:54 -0700 | [diff] [blame] | 3290 | |
| 3291 | pci_set_master(pdev); |
David Brownell | 5174528 | 2007-10-24 18:44:08 -0700 | [diff] [blame^] | 3292 | pci_try_set_mwi(pdev); |
Thomas Dahlmann | 55d402d | 2007-07-16 21:40:54 -0700 | [diff] [blame] | 3293 | |
Thomas Dahlmann | 55d402d | 2007-07-16 21:40:54 -0700 | [diff] [blame] | 3294 | /* init dma pools */ |
| 3295 | if (use_dma) { |
| 3296 | retval = init_dma_pools(dev); |
| 3297 | if (retval != 0) |
| 3298 | goto finished; |
| 3299 | } |
| 3300 | |
| 3301 | dev->phys_addr = resource; |
| 3302 | dev->irq = pdev->irq; |
| 3303 | dev->pdev = pdev; |
| 3304 | dev->gadget.dev.parent = &pdev->dev; |
| 3305 | dev->gadget.dev.dma_mask = pdev->dev.dma_mask; |
| 3306 | |
| 3307 | /* general probing */ |
| 3308 | if (udc_probe(dev) == 0) |
| 3309 | return 0; |
| 3310 | |
| 3311 | finished: |
| 3312 | if (dev) |
| 3313 | udc_pci_remove(pdev); |
| 3314 | return retval; |
| 3315 | } |
| 3316 | |
| 3317 | /* general probe */ |
| 3318 | static int udc_probe(struct udc *dev) |
| 3319 | { |
| 3320 | char tmp[128]; |
| 3321 | u32 reg; |
| 3322 | int retval; |
| 3323 | |
| 3324 | /* mark timer as not initialized */ |
| 3325 | udc_timer.data = 0; |
| 3326 | udc_pollstall_timer.data = 0; |
| 3327 | |
| 3328 | /* device struct setup */ |
| 3329 | spin_lock_init(&dev->lock); |
| 3330 | dev->gadget.ops = &udc_ops; |
| 3331 | |
| 3332 | strcpy(dev->gadget.dev.bus_id, "gadget"); |
| 3333 | dev->gadget.dev.release = gadget_release; |
| 3334 | dev->gadget.name = name; |
| 3335 | dev->gadget.name = name; |
| 3336 | dev->gadget.is_dualspeed = 1; |
| 3337 | |
| 3338 | /* udc csr registers base */ |
| 3339 | dev->csr = dev->virt_addr + UDC_CSR_ADDR; |
| 3340 | /* dev registers base */ |
| 3341 | dev->regs = dev->virt_addr + UDC_DEVCFG_ADDR; |
| 3342 | /* ep registers base */ |
| 3343 | dev->ep_regs = dev->virt_addr + UDC_EPREGS_ADDR; |
| 3344 | /* fifo's base */ |
| 3345 | dev->rxfifo = (u32 __iomem *)(dev->virt_addr + UDC_RXFIFO_ADDR); |
| 3346 | dev->txfifo = (u32 __iomem *)(dev->virt_addr + UDC_TXFIFO_ADDR); |
| 3347 | |
| 3348 | /* init registers, interrupts, ... */ |
| 3349 | startup_registers(dev); |
| 3350 | |
| 3351 | dev_info(&dev->pdev->dev, "%s\n", mod_desc); |
| 3352 | |
| 3353 | snprintf(tmp, sizeof tmp, "%d", dev->irq); |
| 3354 | dev_info(&dev->pdev->dev, |
| 3355 | "irq %s, pci mem %08lx, chip rev %02x(Geode5536 %s)\n", |
| 3356 | tmp, dev->phys_addr, dev->chiprev, |
| 3357 | (dev->chiprev == UDC_HSA0_REV) ? "A0" : "B1"); |
| 3358 | strcpy(tmp, UDC_DRIVER_VERSION_STRING); |
| 3359 | if (dev->chiprev == UDC_HSA0_REV) { |
| 3360 | dev_err(&dev->pdev->dev, "chip revision is A0; too old\n"); |
| 3361 | retval = -ENODEV; |
| 3362 | goto finished; |
| 3363 | } |
| 3364 | dev_info(&dev->pdev->dev, |
| 3365 | "driver version: %s(for Geode5536 B1)\n", tmp); |
| 3366 | udc = dev; |
| 3367 | |
| 3368 | retval = device_register(&dev->gadget.dev); |
| 3369 | if (retval) |
| 3370 | goto finished; |
| 3371 | |
| 3372 | /* timer init */ |
| 3373 | init_timer(&udc_timer); |
| 3374 | udc_timer.function = udc_timer_function; |
| 3375 | udc_timer.data = 1; |
| 3376 | /* timer pollstall init */ |
| 3377 | init_timer(&udc_pollstall_timer); |
| 3378 | udc_pollstall_timer.function = udc_pollstall_timer_function; |
| 3379 | udc_pollstall_timer.data = 1; |
| 3380 | |
| 3381 | /* set SD */ |
| 3382 | reg = readl(&dev->regs->ctl); |
| 3383 | reg |= AMD_BIT(UDC_DEVCTL_SD); |
| 3384 | writel(reg, &dev->regs->ctl); |
| 3385 | |
| 3386 | /* print dev register info */ |
| 3387 | print_regs(dev); |
| 3388 | |
| 3389 | return 0; |
| 3390 | |
| 3391 | finished: |
| 3392 | return retval; |
| 3393 | } |
| 3394 | |
| 3395 | /* Initiates a remote wakeup */ |
| 3396 | static int udc_remote_wakeup(struct udc *dev) |
| 3397 | { |
| 3398 | unsigned long flags; |
| 3399 | u32 tmp; |
| 3400 | |
| 3401 | DBG(dev, "UDC initiates remote wakeup\n"); |
| 3402 | |
| 3403 | spin_lock_irqsave(&dev->lock, flags); |
| 3404 | |
| 3405 | tmp = readl(&dev->regs->ctl); |
| 3406 | tmp |= AMD_BIT(UDC_DEVCTL_RES); |
| 3407 | writel(tmp, &dev->regs->ctl); |
| 3408 | tmp &= AMD_CLEAR_BIT(UDC_DEVCTL_RES); |
| 3409 | writel(tmp, &dev->regs->ctl); |
| 3410 | |
| 3411 | spin_unlock_irqrestore(&dev->lock, flags); |
| 3412 | return 0; |
| 3413 | } |
| 3414 | |
| 3415 | /* PCI device parameters */ |
| 3416 | static const struct pci_device_id pci_id[] = { |
| 3417 | { |
| 3418 | PCI_DEVICE(PCI_VENDOR_ID_AMD, 0x2096), |
| 3419 | .class = (PCI_CLASS_SERIAL_USB << 8) | 0xfe, |
| 3420 | .class_mask = 0xffffffff, |
| 3421 | }, |
| 3422 | {}, |
| 3423 | }; |
| 3424 | MODULE_DEVICE_TABLE(pci, pci_id); |
| 3425 | |
| 3426 | /* PCI functions */ |
| 3427 | static struct pci_driver udc_pci_driver = { |
| 3428 | .name = (char *) name, |
| 3429 | .id_table = pci_id, |
| 3430 | .probe = udc_pci_probe, |
| 3431 | .remove = udc_pci_remove, |
| 3432 | }; |
| 3433 | |
| 3434 | /* Inits driver */ |
| 3435 | static int __init init(void) |
| 3436 | { |
| 3437 | return pci_register_driver(&udc_pci_driver); |
| 3438 | } |
| 3439 | module_init(init); |
| 3440 | |
| 3441 | /* Cleans driver */ |
| 3442 | static void __exit cleanup(void) |
| 3443 | { |
| 3444 | pci_unregister_driver(&udc_pci_driver); |
| 3445 | } |
| 3446 | module_exit(cleanup); |
| 3447 | |
| 3448 | MODULE_DESCRIPTION(UDC_MOD_DESCRIPTION); |
| 3449 | MODULE_AUTHOR("Thomas Dahlmann"); |
| 3450 | MODULE_LICENSE("GPL"); |
| 3451 | |