blob: 8561c07665352a52d644cc31006f39181da4d80e [file] [log] [blame]
Inaky Perez-Gonzalezaa5a7ac2008-12-20 16:57:47 -08001/*
2 * Intel Wireless WiMAX Connection 2400m
3 * Generic (non-bus specific) TX handling
4 *
5 *
6 * Copyright (C) 2007-2008 Intel Corporation. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * * Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * * Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in
16 * the documentation and/or other materials provided with the
17 * distribution.
18 * * Neither the name of Intel Corporation nor the names of its
19 * contributors may be used to endorse or promote products derived
20 * from this software without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
25 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
26 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
27 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
28 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
32 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 *
35 * Intel Corporation <linux-wimax@intel.com>
36 * Yanir Lubetkin <yanirx.lubetkin@intel.com>
37 * - Initial implementation
38 *
39 * Intel Corporation <linux-wimax@intel.com>
40 * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
41 * - Rewritten to use a single FIFO to lower the memory allocation
42 * pressure and optimize cache hits when copying to the queue, as
43 * well as splitting out bus-specific code.
44 *
45 *
46 * Implements data transmission to the device; this is done through a
47 * software FIFO, as data/control frames can be coalesced (while the
48 * device is reading the previous tx transaction, others accumulate).
49 *
50 * A FIFO is used because at the end it is resource-cheaper that trying
51 * to implement scatter/gather over USB. As well, most traffic is going
52 * to be download (vs upload).
53 *
54 * The format for sending/receiving data to/from the i2400m is
55 * described in detail in rx.c:PROTOCOL FORMAT. In here we implement
56 * the transmission of that. This is split between a bus-independent
57 * part that just prepares everything and a bus-specific part that
58 * does the actual transmission over the bus to the device (in the
59 * bus-specific driver).
60 *
61 *
62 * The general format of a device-host transaction is MSG-HDR, PLD1,
63 * PLD2...PLDN, PL1, PL2,...PLN, PADDING.
64 *
65 * Because we need the send payload descriptors and then payloads and
66 * because it is kind of expensive to do scatterlists in USB (one URB
67 * per node), it becomes cheaper to append all the data to a FIFO
68 * (copying to a FIFO potentially in cache is cheaper).
69 *
70 * Then the bus-specific code takes the parts of that FIFO that are
71 * written and passes them to the device.
72 *
73 * So the concepts to keep in mind there are:
74 *
75 * We use a FIFO to queue the data in a linear buffer. We first append
76 * a MSG-HDR, space for I2400M_TX_PLD_MAX payload descriptors and then
77 * go appending payloads until we run out of space or of payload
78 * descriptors. Then we append padding to make the whole transaction a
79 * multiple of i2400m->bus_tx_block_size (as defined by the bus layer).
80 *
81 * - A TX message: a combination of a message header, payload
82 * descriptors and payloads.
83 *
84 * Open: it is marked as active (i2400m->tx_msg is valid) and we
85 * can keep adding payloads to it.
86 *
87 * Closed: we are not appending more payloads to this TX message
88 * (exahusted space in the queue, too many payloads or
89 * whichever). We have appended padding so the whole message
90 * length is aligned to i2400m->bus_tx_block_size (as set by the
91 * bus/transport layer).
92 *
93 * - Most of the time we keep a TX message open to which we append
94 * payloads.
95 *
96 * - If we are going to append and there is no more space (we are at
97 * the end of the FIFO), we close the message, mark the rest of the
98 * FIFO space unusable (skip_tail), create a new message at the
99 * beginning of the FIFO (if there is space) and append the message
100 * there.
101 *
102 * This is because we need to give linear TX messages to the bus
103 * engine. So we don't write a message to the remaining FIFO space
104 * until the tail and continue at the head of it.
105 *
106 * - We overload one of the fields in the message header to use it as
107 * 'size' of the TX message, so we can iterate over them. It also
108 * contains a flag that indicates if we have to skip it or not.
109 * When we send the buffer, we update that to its real on-the-wire
110 * value.
111 *
112 * - The MSG-HDR PLD1...PLD2 stuff has to be a size multiple of 16.
113 *
114 * It follows that if MSG-HDR says we have N messages, the whole
115 * header + descriptors is 16 + 4*N; for those to be a multiple of
116 * 16, it follows that N can be 4, 8, 12, ... (32, 48, 64, 80...
117 * bytes).
118 *
119 * So if we have only 1 payload, we have to submit a header that in
120 * all truth has space for 4.
121 *
122 * The implication is that we reserve space for 12 (64 bytes); but
123 * if we fill up only (eg) 2, our header becomes 32 bytes only. So
124 * the TX engine has to shift those 32 bytes of msg header and 2
125 * payloads and padding so that right after it the payloads start
126 * and the TX engine has to know about that.
127 *
128 * It is cheaper to move the header up than the whole payloads down.
129 *
130 * We do this in i2400m_tx_close(). See 'i2400m_msg_hdr->offset'.
131 *
132 * - Each payload has to be size-padded to 16 bytes; before appending
133 * it, we just do it.
134 *
135 * - The whole message has to be padded to i2400m->bus_tx_block_size;
136 * we do this at close time. Thus, when reserving space for the
137 * payload, we always make sure there is also free space for this
138 * padding that sooner or later will happen.
139 *
140 * When we append a message, we tell the bus specific code to kick in
141 * TXs. It will TX (in parallel) until the buffer is exhausted--hence
142 * the lockin we do. The TX code will only send a TX message at the
143 * time (which remember, might contain more than one payload). Of
144 * course, when the bus-specific driver attempts to TX a message that
145 * is still open, it gets closed first.
146 *
147 * Gee, this is messy; well a picture. In the example below we have a
148 * partially full FIFO, with a closed message ready to be delivered
149 * (with a moved message header to make sure it is size-aligned to
150 * 16), TAIL room that was unusable (and thus is marked with a message
151 * header that says 'skip this') and at the head of the buffer, an
152 * imcomplete message with a couple of payloads.
153 *
154 * N ___________________________________________________
155 * | |
156 * | TAIL room |
157 * | |
158 * | msg_hdr to skip (size |= 0x80000) |
159 * |---------------------------------------------------|-------
160 * | | /|\
161 * | | |
162 * | TX message padding | |
163 * | | |
164 * | | |
165 * |- - - - - - - - - - - - - - - - - - - - - - - - - -| |
166 * | | |
167 * | payload 1 | |
168 * | | N * tx_block_size
169 * | | |
170 * |- - - - - - - - - - - - - - - - - - - - - - - - - -| |
171 * | | |
172 * | payload 1 | |
173 * | | |
174 * | | |
175 * |- - - - - - - - - - - - - - - - - - - - - - - - - -|- -|- - - -
176 * | padding 3 /|\ | | /|\
177 * | padding 2 | | | |
178 * | pld 1 32 bytes (2 * 16) | | |
179 * | pld 0 | | | |
180 * | moved msg_hdr \|/ | \|/ |
181 * |- - - - - - - - - - - - - - - - - - - - - - - - - -|- - - |
182 * | | _PLD_SIZE
183 * | unused | |
184 * | | |
185 * |- - - - - - - - - - - - - - - - - - - - - - - - - -| |
186 * | msg_hdr (size X) [this message is closed] | \|/
187 * |===================================================|========== <=== OUT
188 * | |
189 * | |
190 * | |
191 * | Free rooom |
192 * | |
193 * | |
194 * | |
195 * | |
196 * | |
197 * | |
198 * | |
199 * | |
200 * | |
201 * |===================================================|========== <=== IN
202 * | |
203 * | |
204 * | |
205 * | |
206 * | payload 1 |
207 * | |
208 * | |
209 * |- - - - - - - - - - - - - - - - - - - - - - - - - -|
210 * | |
211 * | payload 0 |
212 * | |
213 * | |
214 * |- - - - - - - - - - - - - - - - - - - - - - - - - -|
215 * | pld 11 /|\ |
216 * | ... | |
217 * | pld 1 64 bytes (2 * 16) |
218 * | pld 0 | |
219 * | msg_hdr (size X) \|/ [message is open] |
220 * 0 ---------------------------------------------------
221 *
222 *
223 * ROADMAP
224 *
225 * i2400m_tx_setup() Called by i2400m_setup
226 * i2400m_tx_release() Called by i2400m_release()
227 *
228 * i2400m_tx() Called to send data or control frames
229 * i2400m_tx_fifo_push() Allocates append-space in the FIFO
230 * i2400m_tx_new() Opens a new message in the FIFO
231 * i2400m_tx_fits() Checks if a new payload fits in the message
232 * i2400m_tx_close() Closes an open message in the FIFO
233 * i2400m_tx_skip_tail() Marks unusable FIFO tail space
234 * i2400m->bus_tx_kick()
235 *
236 * Now i2400m->bus_tx_kick() is the the bus-specific driver backend
237 * implementation; that would do:
238 *
239 * i2400m->bus_tx_kick()
240 * i2400m_tx_msg_get() Gets first message ready to go
241 * ...sends it...
242 * i2400m_tx_msg_sent() Ack the message is sent; repeat from
243 * _tx_msg_get() until it returns NULL
244 * (FIFO empty).
245 */
246#include <linux/netdevice.h>
Tejun Heo5a0e3ad2010-03-24 17:04:11 +0900247#include <linux/slab.h>
Inaky Perez-Gonzalezaa5a7ac2008-12-20 16:57:47 -0800248#include "i2400m.h"
249
250
251#define D_SUBMODULE tx
252#include "debug-levels.h"
253
254enum {
255 /**
256 * TX Buffer size
257 *
258 * Doc says maximum transaction is 16KiB. If we had 16KiB en
259 * route and 16KiB being queued, it boils down to needing
260 * 32KiB.
Prasanna S. Panchamukhi570eb0e2010-01-26 19:44:45 -0700261 * 32KiB is insufficient for 1400 MTU, hence increasing
262 * tx buffer size to 64KiB.
Inaky Perez-Gonzalezaa5a7ac2008-12-20 16:57:47 -0800263 */
Prasanna S. Panchamukhi570eb0e2010-01-26 19:44:45 -0700264 I2400M_TX_BUF_SIZE = 65536,
Inaky Perez-Gonzalezaa5a7ac2008-12-20 16:57:47 -0800265 /**
266 * Message header and payload descriptors have to be 16
267 * aligned (16 + 4 * N = 16 * M). If we take that average sent
268 * packets are MTU size (~1400-~1500) it follows that we could
269 * fit at most 10-11 payloads in one transaction. To meet the
270 * alignment requirement, that means we need to leave space
271 * for 12 (64 bytes). To simplify, we leave space for that. If
272 * at the end there are less, we pad up to the nearest
273 * multiple of 16.
274 */
275 I2400M_TX_PLD_MAX = 12,
276 I2400M_TX_PLD_SIZE = sizeof(struct i2400m_msg_hdr)
277 + I2400M_TX_PLD_MAX * sizeof(struct i2400m_pld),
278 I2400M_TX_SKIP = 0x80000000,
Prasanna S. Panchamukhi570eb0e2010-01-26 19:44:45 -0700279 /*
280 * 16 byte aligned MAX_MTU + 4 byte payload prefix.
281 */
282 I2400M_MAX_MTU_ALIGN = 16,
283 I2400M_TX_PDU_SIZE = I2400M_MAX_MTU % I2400M_MAX_MTU_ALIGN
284 + I2400M_MAX_MTU + sizeof(struct i2400m_pl_data_hdr),
285 /*
286 * 256 byte aligned toal size of 12 PDUs including msg header,
287 */
288 I2400M_TX_PDU_ALIGN = 256,
289 I2400M_TX_PDU_TOTAL_SIZE = ((I2400M_TX_PDU_SIZE * I2400M_TX_PLD_MAX
290 + sizeof(struct i2400m_msg_hdr))/I2400M_TX_PDU_ALIGN + 1)
291 * I2400M_TX_PDU_ALIGN * 2,
Inaky Perez-Gonzalezaa5a7ac2008-12-20 16:57:47 -0800292};
293
294#define TAIL_FULL ((void *)~(unsigned long)NULL)
295
296/*
Inaky Perez-Gonzalez2971a5b2009-05-20 17:40:35 -0700297 * Calculate how much tail room is available
298 *
299 * Note the trick here. This path is ONLY caleed for Case A (see
300 * i2400m_tx_fifo_push() below), where we have:
301 *
302 * Case A
303 * N ___________
304 * | tail room |
305 * | |
306 * |<- IN ->|
307 * | |
308 * | data |
309 * | |
310 * |<- OUT ->|
311 * | |
312 * | head room |
313 * 0 -----------
314 *
315 * When calculating the tail_room, tx_in might get to be zero if
316 * i2400m->tx_in is right at the end of the buffer (really full
317 * buffer) if there is no head room. In this case, tail_room would be
318 * I2400M_TX_BUF_SIZE, although it is actually zero. Hence the final
319 * mod (%) operation. However, when doing this kind of optimization,
320 * i2400m->tx_in being zero would fail, so we treat is an a special
321 * case.
322 */
323static inline
324size_t __i2400m_tx_tail_room(struct i2400m *i2400m)
325{
326 size_t tail_room;
327 size_t tx_in;
328
Roel Kluin2d44f202009-07-13 00:59:53 +0200329 if (unlikely(i2400m->tx_in == 0))
Inaky Perez-Gonzalez2971a5b2009-05-20 17:40:35 -0700330 return I2400M_TX_BUF_SIZE;
331 tx_in = i2400m->tx_in % I2400M_TX_BUF_SIZE;
332 tail_room = I2400M_TX_BUF_SIZE - tx_in;
333 tail_room %= I2400M_TX_BUF_SIZE;
334 return tail_room;
335}
336
337
338/*
Inaky Perez-Gonzalezaa5a7ac2008-12-20 16:57:47 -0800339 * Allocate @size bytes in the TX fifo, return a pointer to it
340 *
341 * @i2400m: device descriptor
342 * @size: size of the buffer we need to allocate
343 * @padding: ensure that there is at least this many bytes of free
344 * contiguous space in the fifo. This is needed because later on
345 * we might need to add padding.
346 *
347 * Returns:
348 *
349 * Pointer to the allocated space. NULL if there is no
350 * space. TAIL_FULL if there is no space at the tail but there is at
351 * the head (Case B below).
352 *
353 * These are the two basic cases we need to keep an eye for -- it is
354 * much better explained in linux/kernel/kfifo.c, but this code
355 * basically does the same. No rocket science here.
356 *
357 * Case A Case B
358 * N ___________ ___________
359 * | tail room | | data |
360 * | | | |
361 * |<- IN ->| |<- OUT ->|
362 * | | | |
363 * | data | | room |
364 * | | | |
365 * |<- OUT ->| |<- IN ->|
366 * | | | |
367 * | head room | | data |
368 * 0 ----------- -----------
369 *
370 * We allocate only *contiguous* space.
371 *
372 * We can allocate only from 'room'. In Case B, it is simple; in case
373 * A, we only try from the tail room; if it is not enough, we just
374 * fail and return TAIL_FULL and let the caller figure out if we wants to
375 * skip the tail room and try to allocate from the head.
376 *
377 * Note:
378 *
379 * Assumes i2400m->tx_lock is taken, and we use that as a barrier
380 *
381 * The indexes keep increasing and we reset them to zero when we
382 * pop data off the queue
383 */
384static
385void *i2400m_tx_fifo_push(struct i2400m *i2400m, size_t size, size_t padding)
386{
387 struct device *dev = i2400m_dev(i2400m);
388 size_t room, tail_room, needed_size;
389 void *ptr;
390
391 needed_size = size + padding;
392 room = I2400M_TX_BUF_SIZE - (i2400m->tx_in - i2400m->tx_out);
393 if (room < needed_size) { /* this takes care of Case B */
394 d_printf(2, dev, "fifo push %zu/%zu: no space\n",
395 size, padding);
396 return NULL;
397 }
398 /* Is there space at the tail? */
Inaky Perez-Gonzalez2971a5b2009-05-20 17:40:35 -0700399 tail_room = __i2400m_tx_tail_room(i2400m);
Inaky Perez-Gonzalezaa5a7ac2008-12-20 16:57:47 -0800400 if (tail_room < needed_size) {
401 if (i2400m->tx_out % I2400M_TX_BUF_SIZE
402 < i2400m->tx_in % I2400M_TX_BUF_SIZE) {
403 d_printf(2, dev, "fifo push %zu/%zu: tail full\n",
404 size, padding);
405 return TAIL_FULL; /* There might be head space */
406 } else {
407 d_printf(2, dev, "fifo push %zu/%zu: no head space\n",
408 size, padding);
409 return NULL; /* There is no space */
410 }
411 }
412 ptr = i2400m->tx_buf + i2400m->tx_in % I2400M_TX_BUF_SIZE;
413 d_printf(2, dev, "fifo push %zu/%zu: at @%zu\n", size, padding,
414 i2400m->tx_in % I2400M_TX_BUF_SIZE);
415 i2400m->tx_in += size;
416 return ptr;
417}
418
419
420/*
421 * Mark the tail of the FIFO buffer as 'to-skip'
422 *
423 * We should never hit the BUG_ON() because all the sizes we push to
424 * the FIFO are padded to be a multiple of 16 -- the size of *msg
425 * (I2400M_PL_PAD for the payloads, I2400M_TX_PLD_SIZE for the
426 * header).
427 *
Inaky Perez-Gonzalez2971a5b2009-05-20 17:40:35 -0700428 * Tail room can get to be zero if a message was opened when there was
429 * space only for a header. _tx_close() will mark it as to-skip (as it
430 * will have no payloads) and there will be no more space to flush, so
431 * nothing has to be done here. This is probably cheaper than ensuring
432 * in _tx_new() that there is some space for payloads...as we could
433 * always possibly hit the same problem if the payload wouldn't fit.
434 *
Inaky Perez-Gonzalezaa5a7ac2008-12-20 16:57:47 -0800435 * Note:
436 *
437 * Assumes i2400m->tx_lock is taken, and we use that as a barrier
Inaky Perez-Gonzalez2971a5b2009-05-20 17:40:35 -0700438 *
439 * This path is only taken for Case A FIFO situations [see
440 * i2400m_tx_fifo_push()]
Inaky Perez-Gonzalezaa5a7ac2008-12-20 16:57:47 -0800441 */
442static
443void i2400m_tx_skip_tail(struct i2400m *i2400m)
444{
445 struct device *dev = i2400m_dev(i2400m);
446 size_t tx_in = i2400m->tx_in % I2400M_TX_BUF_SIZE;
Inaky Perez-Gonzalez2971a5b2009-05-20 17:40:35 -0700447 size_t tail_room = __i2400m_tx_tail_room(i2400m);
Inaky Perez-Gonzalezaa5a7ac2008-12-20 16:57:47 -0800448 struct i2400m_msg_hdr *msg = i2400m->tx_buf + tx_in;
Inaky Perez-Gonzalez2971a5b2009-05-20 17:40:35 -0700449 if (unlikely(tail_room == 0))
450 return;
Inaky Perez-Gonzalezaa5a7ac2008-12-20 16:57:47 -0800451 BUG_ON(tail_room < sizeof(*msg));
452 msg->size = tail_room | I2400M_TX_SKIP;
453 d_printf(2, dev, "skip tail: skipping %zu bytes @%zu\n",
454 tail_room, tx_in);
455 i2400m->tx_in += tail_room;
456}
457
458
459/*
460 * Check if a skb will fit in the TX queue's current active TX
461 * message (if there are still descriptors left unused).
462 *
463 * Returns:
464 * 0 if the message won't fit, 1 if it will.
465 *
466 * Note:
467 *
468 * Assumes a TX message is active (i2400m->tx_msg).
469 *
470 * Assumes i2400m->tx_lock is taken, and we use that as a barrier
471 */
472static
473unsigned i2400m_tx_fits(struct i2400m *i2400m)
474{
475 struct i2400m_msg_hdr *msg_hdr = i2400m->tx_msg;
476 return le16_to_cpu(msg_hdr->num_pls) < I2400M_TX_PLD_MAX;
477
478}
479
480
481/*
482 * Start a new TX message header in the queue.
483 *
484 * Reserve memory from the base FIFO engine and then just initialize
485 * the message header.
486 *
487 * We allocate the biggest TX message header we might need (one that'd
488 * fit I2400M_TX_PLD_MAX payloads) -- when it is closed it will be
489 * 'ironed it out' and the unneeded parts removed.
490 *
491 * NOTE:
492 *
493 * Assumes that the previous message is CLOSED (eg: either
494 * there was none or 'i2400m_tx_close()' was called on it).
495 *
496 * Assumes i2400m->tx_lock is taken, and we use that as a barrier
497 */
498static
499void i2400m_tx_new(struct i2400m *i2400m)
500{
501 struct device *dev = i2400m_dev(i2400m);
502 struct i2400m_msg_hdr *tx_msg;
503 BUG_ON(i2400m->tx_msg != NULL);
504try_head:
505 tx_msg = i2400m_tx_fifo_push(i2400m, I2400M_TX_PLD_SIZE, 0);
506 if (tx_msg == NULL)
507 goto out;
508 else if (tx_msg == TAIL_FULL) {
509 i2400m_tx_skip_tail(i2400m);
510 d_printf(2, dev, "new TX message: tail full, trying head\n");
511 goto try_head;
512 }
513 memset(tx_msg, 0, I2400M_TX_PLD_SIZE);
514 tx_msg->size = I2400M_TX_PLD_SIZE;
515out:
516 i2400m->tx_msg = tx_msg;
517 d_printf(2, dev, "new TX message: %p @%zu\n",
518 tx_msg, (void *) tx_msg - i2400m->tx_buf);
519}
520
521
522/*
523 * Finalize the current TX message header
524 *
525 * Sets the message header to be at the proper location depending on
526 * how many descriptors we have (check documentation at the file's
527 * header for more info on that).
528 *
529 * Appends padding bytes to make sure the whole TX message (counting
530 * from the 'relocated' message header) is aligned to
531 * tx_block_size. We assume the _append() code has left enough space
532 * in the FIFO for that. If there are no payloads, just pass, as it
533 * won't be transferred.
534 *
535 * The amount of padding bytes depends on how many payloads are in the
536 * TX message, as the "msg header and payload descriptors" will be
537 * shifted up in the buffer.
538 */
539static
540void i2400m_tx_close(struct i2400m *i2400m)
541{
542 struct device *dev = i2400m_dev(i2400m);
543 struct i2400m_msg_hdr *tx_msg = i2400m->tx_msg;
544 struct i2400m_msg_hdr *tx_msg_moved;
545 size_t aligned_size, padding, hdr_size;
546 void *pad_buf;
Inaky Perez-Gonzalezc56affa2009-05-20 17:16:05 -0700547 unsigned num_pls;
Inaky Perez-Gonzalezaa5a7ac2008-12-20 16:57:47 -0800548
549 if (tx_msg->size & I2400M_TX_SKIP) /* a skipper? nothing to do */
550 goto out;
Inaky Perez-Gonzalezc56affa2009-05-20 17:16:05 -0700551 num_pls = le16_to_cpu(tx_msg->num_pls);
552 /* We can get this situation when a new message was started
553 * and there was no space to add payloads before hitting the
554 tail (and taking padding into consideration). */
555 if (num_pls == 0) {
556 tx_msg->size |= I2400M_TX_SKIP;
557 goto out;
558 }
Inaky Perez-Gonzalezaa5a7ac2008-12-20 16:57:47 -0800559 /* Relocate the message header
560 *
561 * Find the current header size, align it to 16 and if we need
562 * to move it so the tail is next to the payloads, move it and
563 * set the offset.
564 *
565 * If it moved, this header is good only for transmission; the
566 * original one (it is kept if we moved) is still used to
567 * figure out where the next TX message starts (and where the
568 * offset to the moved header is).
569 */
570 hdr_size = sizeof(*tx_msg)
571 + le16_to_cpu(tx_msg->num_pls) * sizeof(tx_msg->pld[0]);
Inaky Perez-Gonzalez8593a192009-05-20 16:53:30 -0700572 hdr_size = ALIGN(hdr_size, I2400M_PL_ALIGN);
Inaky Perez-Gonzalezaa5a7ac2008-12-20 16:57:47 -0800573 tx_msg->offset = I2400M_TX_PLD_SIZE - hdr_size;
574 tx_msg_moved = (void *) tx_msg + tx_msg->offset;
575 memmove(tx_msg_moved, tx_msg, hdr_size);
576 tx_msg_moved->size -= tx_msg->offset;
577 /*
578 * Now figure out how much we have to add to the (moved!)
579 * message so the size is a multiple of i2400m->bus_tx_block_size.
580 */
581 aligned_size = ALIGN(tx_msg_moved->size, i2400m->bus_tx_block_size);
582 padding = aligned_size - tx_msg_moved->size;
583 if (padding > 0) {
584 pad_buf = i2400m_tx_fifo_push(i2400m, padding, 0);
585 if (unlikely(WARN_ON(pad_buf == NULL
586 || pad_buf == TAIL_FULL))) {
587 /* This should not happen -- append should verify
588 * there is always space left at least to append
589 * tx_block_size */
590 dev_err(dev,
591 "SW BUG! Possible data leakage from memory the "
592 "device should not read for padding - "
593 "size %lu aligned_size %zu tx_buf %p in "
594 "%zu out %zu\n",
595 (unsigned long) tx_msg_moved->size,
596 aligned_size, i2400m->tx_buf, i2400m->tx_in,
597 i2400m->tx_out);
598 } else
599 memset(pad_buf, 0xad, padding);
600 }
601 tx_msg_moved->padding = cpu_to_le16(padding);
602 tx_msg_moved->size += padding;
603 if (tx_msg != tx_msg_moved)
604 tx_msg->size += padding;
605out:
606 i2400m->tx_msg = NULL;
607}
608
609
610/**
611 * i2400m_tx - send the data in a buffer to the device
612 *
613 * @buf: pointer to the buffer to transmit
614 *
615 * @buf_len: buffer size
616 *
617 * @pl_type: type of the payload we are sending.
618 *
619 * Returns:
620 * 0 if ok, < 0 errno code on error (-ENOSPC, if there is no more
621 * room for the message in the queue).
622 *
623 * Appends the buffer to the TX FIFO and notifies the bus-specific
624 * part of the driver that there is new data ready to transmit.
625 * Once this function returns, the buffer has been copied, so it can
626 * be reused.
627 *
628 * The steps followed to append are explained in detail in the file
629 * header.
630 *
631 * Whenever we write to a message, we increase msg->size, so it
632 * reflects exactly how big the message is. This is needed so that if
633 * we concatenate two messages before they can be sent, the code that
634 * sends the messages can find the boundaries (and it will replace the
635 * size with the real barker before sending).
636 *
637 * Note:
638 *
639 * Cold and warm reset payloads need to be sent as a single
640 * payload, so we handle that.
641 */
642int i2400m_tx(struct i2400m *i2400m, const void *buf, size_t buf_len,
643 enum i2400m_pt pl_type)
644{
645 int result = -ENOSPC;
646 struct device *dev = i2400m_dev(i2400m);
647 unsigned long flags;
648 size_t padded_len;
649 void *ptr;
650 unsigned is_singleton = pl_type == I2400M_PT_RESET_WARM
651 || pl_type == I2400M_PT_RESET_COLD;
652
653 d_fnstart(3, dev, "(i2400m %p skb %p [%zu bytes] pt %u)\n",
654 i2400m, buf, buf_len, pl_type);
Inaky Perez-Gonzalez8593a192009-05-20 16:53:30 -0700655 padded_len = ALIGN(buf_len, I2400M_PL_ALIGN);
Inaky Perez-Gonzalezaa5a7ac2008-12-20 16:57:47 -0800656 d_printf(5, dev, "padded_len %zd buf_len %zd\n", padded_len, buf_len);
657 /* If there is no current TX message, create one; if the
658 * current one is out of payload slots or we have a singleton,
659 * close it and start a new one */
660 spin_lock_irqsave(&i2400m->tx_lock, flags);
Prasanna S.Panchamukhi4818d142010-01-18 14:28:23 -0800661 /* If tx_buf is NULL, device is shutdown */
662 if (i2400m->tx_buf == NULL) {
663 result = -ESHUTDOWN;
Inaky Perez-Gonzalez46c501472009-10-07 22:46:29 +0900664 goto error_tx_new;
Prasanna S.Panchamukhi4818d142010-01-18 14:28:23 -0800665 }
Inaky Perez-Gonzalezaa5a7ac2008-12-20 16:57:47 -0800666try_new:
667 if (unlikely(i2400m->tx_msg == NULL))
668 i2400m_tx_new(i2400m);
669 else if (unlikely(!i2400m_tx_fits(i2400m)
670 || (is_singleton && i2400m->tx_msg->num_pls != 0))) {
671 d_printf(2, dev, "closing TX message (fits %u singleton "
672 "%u num_pls %u)\n", i2400m_tx_fits(i2400m),
673 is_singleton, i2400m->tx_msg->num_pls);
674 i2400m_tx_close(i2400m);
675 i2400m_tx_new(i2400m);
676 }
Inaky Perez-Gonzalez59063af2009-05-27 01:04:40 -0700677 if (i2400m->tx_msg == NULL)
678 goto error_tx_new;
Inaky Perez-Gonzalezaa5a7ac2008-12-20 16:57:47 -0800679 if (i2400m->tx_msg->size + padded_len > I2400M_TX_BUF_SIZE / 2) {
680 d_printf(2, dev, "TX: message too big, going new\n");
681 i2400m_tx_close(i2400m);
682 i2400m_tx_new(i2400m);
683 }
684 if (i2400m->tx_msg == NULL)
685 goto error_tx_new;
686 /* So we have a current message header; now append space for
687 * the message -- if there is not enough, try the head */
688 ptr = i2400m_tx_fifo_push(i2400m, padded_len,
689 i2400m->bus_tx_block_size);
690 if (ptr == TAIL_FULL) { /* Tail is full, try head */
691 d_printf(2, dev, "pl append: tail full\n");
692 i2400m_tx_close(i2400m);
693 i2400m_tx_skip_tail(i2400m);
694 goto try_new;
695 } else if (ptr == NULL) { /* All full */
696 result = -ENOSPC;
697 d_printf(2, dev, "pl append: all full\n");
698 } else { /* Got space, copy it, set padding */
699 struct i2400m_msg_hdr *tx_msg = i2400m->tx_msg;
700 unsigned num_pls = le16_to_cpu(tx_msg->num_pls);
701 memcpy(ptr, buf, buf_len);
702 memset(ptr + buf_len, 0xad, padded_len - buf_len);
703 i2400m_pld_set(&tx_msg->pld[num_pls], buf_len, pl_type);
704 d_printf(3, dev, "pld 0x%08x (type 0x%1x len 0x%04zx\n",
705 le32_to_cpu(tx_msg->pld[num_pls].val),
706 pl_type, buf_len);
707 tx_msg->num_pls = le16_to_cpu(num_pls+1);
708 tx_msg->size += padded_len;
Frans Pop2381a552010-03-24 07:57:36 +0000709 d_printf(2, dev, "TX: appended %zu b (up to %u b) pl #%u\n",
Inaky Perez-Gonzalezaa5a7ac2008-12-20 16:57:47 -0800710 padded_len, tx_msg->size, num_pls+1);
711 d_printf(2, dev,
712 "TX: appended hdr @%zu %zu b pl #%u @%zu %zu/%zu b\n",
713 (void *)tx_msg - i2400m->tx_buf, (size_t)tx_msg->size,
714 num_pls+1, ptr - i2400m->tx_buf, buf_len, padded_len);
715 result = 0;
716 if (is_singleton)
717 i2400m_tx_close(i2400m);
718 }
719error_tx_new:
720 spin_unlock_irqrestore(&i2400m->tx_lock, flags);
Inaky Perez-Gonzalez46c501472009-10-07 22:46:29 +0900721 /* kick in most cases, except when the TX subsys is down, as
722 * it might free space */
723 if (likely(result != -ESHUTDOWN))
724 i2400m->bus_tx_kick(i2400m);
Inaky Perez-Gonzalezaa5a7ac2008-12-20 16:57:47 -0800725 d_fnend(3, dev, "(i2400m %p skb %p [%zu bytes] pt %u) = %d\n",
726 i2400m, buf, buf_len, pl_type, result);
727 return result;
728}
729EXPORT_SYMBOL_GPL(i2400m_tx);
730
731
732/**
733 * i2400m_tx_msg_get - Get the first TX message in the FIFO to start sending it
734 *
735 * @i2400m: device descriptors
736 * @bus_size: where to place the size of the TX message
737 *
738 * Called by the bus-specific driver to get the first TX message at
739 * the FIF that is ready for transmission.
740 *
741 * It sets the state in @i2400m to indicate the bus-specific driver is
742 * transfering that message (i2400m->tx_msg_size).
743 *
744 * Once the transfer is completed, call i2400m_tx_msg_sent().
745 *
746 * Notes:
747 *
748 * The size of the TX message to be transmitted might be smaller than
749 * that of the TX message in the FIFO (in case the header was
750 * shorter). Hence, we copy it in @bus_size, for the bus layer to
751 * use. We keep the message's size in i2400m->tx_msg_size so that
752 * when the bus later is done transferring we know how much to
753 * advance the fifo.
754 *
755 * We collect statistics here as all the data is available and we
756 * assume it is going to work [see i2400m_tx_msg_sent()].
757 */
758struct i2400m_msg_hdr *i2400m_tx_msg_get(struct i2400m *i2400m,
759 size_t *bus_size)
760{
761 struct device *dev = i2400m_dev(i2400m);
762 struct i2400m_msg_hdr *tx_msg, *tx_msg_moved;
763 unsigned long flags, pls;
764
765 d_fnstart(3, dev, "(i2400m %p bus_size %p)\n", i2400m, bus_size);
766 spin_lock_irqsave(&i2400m->tx_lock, flags);
Inaky Perez-Gonzalez46c501472009-10-07 22:46:29 +0900767 tx_msg_moved = NULL;
768 if (i2400m->tx_buf == NULL)
769 goto out_unlock;
Inaky Perez-Gonzalezaa5a7ac2008-12-20 16:57:47 -0800770skip:
771 tx_msg_moved = NULL;
772 if (i2400m->tx_in == i2400m->tx_out) { /* Empty FIFO? */
773 i2400m->tx_in = 0;
774 i2400m->tx_out = 0;
775 d_printf(2, dev, "TX: FIFO empty: resetting\n");
776 goto out_unlock;
777 }
778 tx_msg = i2400m->tx_buf + i2400m->tx_out % I2400M_TX_BUF_SIZE;
779 if (tx_msg->size & I2400M_TX_SKIP) { /* skip? */
780 d_printf(2, dev, "TX: skip: msg @%zu (%zu b)\n",
781 i2400m->tx_out % I2400M_TX_BUF_SIZE,
782 (size_t) tx_msg->size & ~I2400M_TX_SKIP);
783 i2400m->tx_out += tx_msg->size & ~I2400M_TX_SKIP;
784 goto skip;
785 }
786
787 if (tx_msg->num_pls == 0) { /* No payloads? */
788 if (tx_msg == i2400m->tx_msg) { /* open, we are done */
789 d_printf(2, dev,
790 "TX: FIFO empty: open msg w/o payloads @%zu\n",
791 (void *) tx_msg - i2400m->tx_buf);
792 tx_msg = NULL;
793 goto out_unlock;
794 } else { /* closed, skip it */
795 d_printf(2, dev,
796 "TX: skip msg w/o payloads @%zu (%zu b)\n",
797 (void *) tx_msg - i2400m->tx_buf,
798 (size_t) tx_msg->size);
799 i2400m->tx_out += tx_msg->size & ~I2400M_TX_SKIP;
800 goto skip;
801 }
802 }
803 if (tx_msg == i2400m->tx_msg) /* open msg? */
804 i2400m_tx_close(i2400m);
805
806 /* Now we have a valid TX message (with payloads) to TX */
807 tx_msg_moved = (void *) tx_msg + tx_msg->offset;
808 i2400m->tx_msg_size = tx_msg->size;
809 *bus_size = tx_msg_moved->size;
810 d_printf(2, dev, "TX: pid %d msg hdr at @%zu offset +@%zu "
811 "size %zu bus_size %zu\n",
812 current->pid, (void *) tx_msg - i2400m->tx_buf,
813 (size_t) tx_msg->offset, (size_t) tx_msg->size,
814 (size_t) tx_msg_moved->size);
815 tx_msg_moved->barker = le32_to_cpu(I2400M_H2D_PREVIEW_BARKER);
816 tx_msg_moved->sequence = le32_to_cpu(i2400m->tx_sequence++);
817
818 pls = le32_to_cpu(tx_msg_moved->num_pls);
819 i2400m->tx_pl_num += pls; /* Update stats */
820 if (pls > i2400m->tx_pl_max)
821 i2400m->tx_pl_max = pls;
822 if (pls < i2400m->tx_pl_min)
823 i2400m->tx_pl_min = pls;
824 i2400m->tx_num++;
825 i2400m->tx_size_acc += *bus_size;
826 if (*bus_size < i2400m->tx_size_min)
827 i2400m->tx_size_min = *bus_size;
828 if (*bus_size > i2400m->tx_size_max)
829 i2400m->tx_size_max = *bus_size;
830out_unlock:
831 spin_unlock_irqrestore(&i2400m->tx_lock, flags);
832 d_fnstart(3, dev, "(i2400m %p bus_size %p [%zu]) = %p\n",
833 i2400m, bus_size, *bus_size, tx_msg_moved);
834 return tx_msg_moved;
835}
836EXPORT_SYMBOL_GPL(i2400m_tx_msg_get);
837
838
839/**
840 * i2400m_tx_msg_sent - indicate the transmission of a TX message
841 *
842 * @i2400m: device descriptor
843 *
844 * Called by the bus-specific driver when a message has been sent;
845 * this pops it from the FIFO; and as there is space, start the queue
846 * in case it was stopped.
847 *
848 * Should be called even if the message send failed and we are
849 * dropping this TX message.
850 */
851void i2400m_tx_msg_sent(struct i2400m *i2400m)
852{
853 unsigned n;
854 unsigned long flags;
855 struct device *dev = i2400m_dev(i2400m);
856
857 d_fnstart(3, dev, "(i2400m %p)\n", i2400m);
858 spin_lock_irqsave(&i2400m->tx_lock, flags);
Inaky Perez-Gonzalez46c501472009-10-07 22:46:29 +0900859 if (i2400m->tx_buf == NULL)
860 goto out_unlock;
Inaky Perez-Gonzalezaa5a7ac2008-12-20 16:57:47 -0800861 i2400m->tx_out += i2400m->tx_msg_size;
862 d_printf(2, dev, "TX: sent %zu b\n", (size_t) i2400m->tx_msg_size);
863 i2400m->tx_msg_size = 0;
864 BUG_ON(i2400m->tx_out > i2400m->tx_in);
865 /* level them FIFO markers off */
866 n = i2400m->tx_out / I2400M_TX_BUF_SIZE;
867 i2400m->tx_out %= I2400M_TX_BUF_SIZE;
868 i2400m->tx_in -= n * I2400M_TX_BUF_SIZE;
Inaky Perez-Gonzalez46c501472009-10-07 22:46:29 +0900869out_unlock:
Inaky Perez-Gonzalezaa5a7ac2008-12-20 16:57:47 -0800870 spin_unlock_irqrestore(&i2400m->tx_lock, flags);
871 d_fnend(3, dev, "(i2400m %p) = void\n", i2400m);
872}
873EXPORT_SYMBOL_GPL(i2400m_tx_msg_sent);
874
875
876/**
877 * i2400m_tx_setup - Initialize the TX queue and infrastructure
878 *
879 * Make sure we reset the TX sequence to zero, as when this function
880 * is called, the firmware has been just restarted.
881 */
882int i2400m_tx_setup(struct i2400m *i2400m)
883{
884 int result;
885
886 /* Do this here only once -- can't do on
887 * i2400m_hard_start_xmit() as we'll cause race conditions if
888 * the WS was scheduled on another CPU */
889 INIT_WORK(&i2400m->wake_tx_ws, i2400m_wake_tx_work);
890
891 i2400m->tx_sequence = 0;
Prasanna S. Panchamukhi570eb0e2010-01-26 19:44:45 -0700892 /* Warn if the calculated buffer size exceeds I2400M_TX_BUF_SIZE. */
893 BUILD_BUG_ON(I2400M_TX_PDU_TOTAL_SIZE > I2400M_TX_BUF_SIZE);
Inaky Perez-Gonzalezaa5a7ac2008-12-20 16:57:47 -0800894 i2400m->tx_buf = kmalloc(I2400M_TX_BUF_SIZE, GFP_KERNEL);
895 if (i2400m->tx_buf == NULL)
896 result = -ENOMEM;
897 else
898 result = 0;
899 /* Huh? the bus layer has to define this... */
900 BUG_ON(i2400m->bus_tx_block_size == 0);
901 return result;
902
903}
904
905
906/**
907 * i2400m_tx_release - Tear down the TX queue and infrastructure
908 */
909void i2400m_tx_release(struct i2400m *i2400m)
910{
Inaky Perez-Gonzalez46c501472009-10-07 22:46:29 +0900911 unsigned long flags;
912 spin_lock_irqsave(&i2400m->tx_lock, flags);
Inaky Perez-Gonzalezaa5a7ac2008-12-20 16:57:47 -0800913 kfree(i2400m->tx_buf);
Inaky Perez-Gonzalez46c501472009-10-07 22:46:29 +0900914 i2400m->tx_buf = NULL;
915 spin_unlock_irqrestore(&i2400m->tx_lock, flags);
Inaky Perez-Gonzalezaa5a7ac2008-12-20 16:57:47 -0800916}