Richard Weinberger | dbb7d2a | 2012-09-26 17:51:49 +0200 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (c) 2012 Linutronix GmbH |
| 3 | * Author: Richard Weinberger <richard@nod.at> |
| 4 | * |
| 5 | * This program is free software; you can redistribute it and/or modify |
| 6 | * it under the terms of the GNU General Public License as published by |
| 7 | * the Free Software Foundation; version 2. |
| 8 | * |
| 9 | * This program is distributed in the hope that it will be useful, |
| 10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 11 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See |
| 12 | * the GNU General Public License for more details. |
| 13 | * |
| 14 | */ |
| 15 | |
| 16 | #include <linux/crc32.h> |
| 17 | #include "ubi.h" |
| 18 | |
| 19 | /** |
| 20 | * ubi_calc_fm_size - calculates the fastmap size in bytes for an UBI device. |
| 21 | * @ubi: UBI device description object |
| 22 | */ |
| 23 | size_t ubi_calc_fm_size(struct ubi_device *ubi) |
| 24 | { |
| 25 | size_t size; |
| 26 | |
| 27 | size = sizeof(struct ubi_fm_hdr) + \ |
| 28 | sizeof(struct ubi_fm_scan_pool) + \ |
| 29 | sizeof(struct ubi_fm_scan_pool) + \ |
| 30 | (ubi->peb_count * sizeof(struct ubi_fm_ec)) + \ |
| 31 | (sizeof(struct ubi_fm_eba) + \ |
| 32 | (ubi->peb_count * sizeof(__be32))) + \ |
| 33 | sizeof(struct ubi_fm_volhdr) * UBI_MAX_VOLUMES; |
| 34 | return roundup(size, ubi->leb_size); |
| 35 | } |
| 36 | |
| 37 | |
| 38 | /** |
| 39 | * new_fm_vhdr - allocate a new volume header for fastmap usage. |
| 40 | * @ubi: UBI device description object |
| 41 | * @vol_id: the VID of the new header |
| 42 | * |
| 43 | * Returns a new struct ubi_vid_hdr on success. |
| 44 | * NULL indicates out of memory. |
| 45 | */ |
| 46 | static struct ubi_vid_hdr *new_fm_vhdr(struct ubi_device *ubi, int vol_id) |
| 47 | { |
| 48 | struct ubi_vid_hdr *new; |
| 49 | |
| 50 | new = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL); |
| 51 | if (!new) |
| 52 | goto out; |
| 53 | |
| 54 | new->vol_type = UBI_VID_DYNAMIC; |
| 55 | new->vol_id = cpu_to_be32(vol_id); |
| 56 | |
| 57 | /* UBI implementations without fastmap support have to delete the |
| 58 | * fastmap. |
| 59 | */ |
| 60 | new->compat = UBI_COMPAT_DELETE; |
| 61 | |
| 62 | out: |
| 63 | return new; |
| 64 | } |
| 65 | |
| 66 | /** |
| 67 | * add_aeb - create and add a attach erase block to a given list. |
| 68 | * @ai: UBI attach info object |
| 69 | * @list: the target list |
| 70 | * @pnum: PEB number of the new attach erase block |
| 71 | * @ec: erease counter of the new LEB |
| 72 | * @scrub: scrub this PEB after attaching |
| 73 | * |
| 74 | * Returns 0 on success, < 0 indicates an internal error. |
| 75 | */ |
| 76 | static int add_aeb(struct ubi_attach_info *ai, struct list_head *list, |
| 77 | int pnum, int ec, int scrub) |
| 78 | { |
| 79 | struct ubi_ainf_peb *aeb; |
| 80 | |
| 81 | aeb = kmem_cache_alloc(ai->aeb_slab_cache, GFP_KERNEL); |
| 82 | if (!aeb) |
| 83 | return -ENOMEM; |
| 84 | |
| 85 | aeb->pnum = pnum; |
| 86 | aeb->ec = ec; |
| 87 | aeb->lnum = -1; |
| 88 | aeb->scrub = scrub; |
| 89 | aeb->copy_flag = aeb->sqnum = 0; |
| 90 | |
| 91 | ai->ec_sum += aeb->ec; |
| 92 | ai->ec_count++; |
| 93 | |
| 94 | if (ai->max_ec < aeb->ec) |
| 95 | ai->max_ec = aeb->ec; |
| 96 | |
| 97 | if (ai->min_ec > aeb->ec) |
| 98 | ai->min_ec = aeb->ec; |
| 99 | |
| 100 | list_add_tail(&aeb->u.list, list); |
| 101 | |
| 102 | return 0; |
| 103 | } |
| 104 | |
| 105 | /** |
| 106 | * add_vol - create and add a new volume to ubi_attach_info. |
| 107 | * @ai: ubi_attach_info object |
| 108 | * @vol_id: VID of the new volume |
| 109 | * @used_ebs: number of used EBS |
| 110 | * @data_pad: data padding value of the new volume |
| 111 | * @vol_type: volume type |
| 112 | * @last_eb_bytes: number of bytes in the last LEB |
| 113 | * |
| 114 | * Returns the new struct ubi_ainf_volume on success. |
| 115 | * NULL indicates an error. |
| 116 | */ |
| 117 | static struct ubi_ainf_volume *add_vol(struct ubi_attach_info *ai, int vol_id, |
| 118 | int used_ebs, int data_pad, u8 vol_type, |
| 119 | int last_eb_bytes) |
| 120 | { |
| 121 | struct ubi_ainf_volume *av; |
| 122 | struct rb_node **p = &ai->volumes.rb_node, *parent = NULL; |
| 123 | |
| 124 | while (*p) { |
| 125 | parent = *p; |
| 126 | av = rb_entry(parent, struct ubi_ainf_volume, rb); |
| 127 | |
| 128 | if (vol_id > av->vol_id) |
| 129 | p = &(*p)->rb_left; |
| 130 | else if (vol_id > av->vol_id) |
| 131 | p = &(*p)->rb_right; |
| 132 | } |
| 133 | |
| 134 | av = kmalloc(sizeof(struct ubi_ainf_volume), GFP_KERNEL); |
| 135 | if (!av) |
| 136 | goto out; |
| 137 | |
| 138 | av->highest_lnum = av->leb_count = 0; |
| 139 | av->vol_id = vol_id; |
| 140 | av->used_ebs = used_ebs; |
| 141 | av->data_pad = data_pad; |
| 142 | av->last_data_size = last_eb_bytes; |
| 143 | av->compat = 0; |
| 144 | av->vol_type = vol_type; |
| 145 | av->root = RB_ROOT; |
| 146 | |
| 147 | dbg_bld("found volume (ID %i)", vol_id); |
| 148 | |
| 149 | rb_link_node(&av->rb, parent, p); |
| 150 | rb_insert_color(&av->rb, &ai->volumes); |
| 151 | |
| 152 | out: |
| 153 | return av; |
| 154 | } |
| 155 | |
| 156 | /** |
| 157 | * assign_aeb_to_av - assigns a SEB to a given ainf_volume and removes it |
| 158 | * from it's original list. |
| 159 | * @ai: ubi_attach_info object |
| 160 | * @aeb: the to be assigned SEB |
| 161 | * @av: target scan volume |
| 162 | */ |
| 163 | static void assign_aeb_to_av(struct ubi_attach_info *ai, |
| 164 | struct ubi_ainf_peb *aeb, |
| 165 | struct ubi_ainf_volume *av) |
| 166 | { |
| 167 | struct ubi_ainf_peb *tmp_aeb; |
| 168 | struct rb_node **p = &ai->volumes.rb_node, *parent = NULL; |
| 169 | |
| 170 | p = &av->root.rb_node; |
| 171 | while (*p) { |
| 172 | parent = *p; |
| 173 | |
| 174 | tmp_aeb = rb_entry(parent, struct ubi_ainf_peb, u.rb); |
| 175 | if (aeb->lnum != tmp_aeb->lnum) { |
| 176 | if (aeb->lnum < tmp_aeb->lnum) |
| 177 | p = &(*p)->rb_left; |
| 178 | else |
| 179 | p = &(*p)->rb_right; |
| 180 | |
| 181 | continue; |
| 182 | } else |
| 183 | break; |
| 184 | } |
| 185 | |
| 186 | list_del(&aeb->u.list); |
| 187 | av->leb_count++; |
| 188 | |
| 189 | rb_link_node(&aeb->u.rb, parent, p); |
| 190 | rb_insert_color(&aeb->u.rb, &av->root); |
| 191 | } |
| 192 | |
| 193 | /** |
| 194 | * update_vol - inserts or updates a LEB which was found a pool. |
| 195 | * @ubi: the UBI device object |
| 196 | * @ai: attach info object |
| 197 | * @av: the volume this LEB belongs to |
| 198 | * @new_vh: the volume header derived from new_aeb |
| 199 | * @new_aeb: the AEB to be examined |
| 200 | * |
| 201 | * Returns 0 on success, < 0 indicates an internal error. |
| 202 | */ |
| 203 | static int update_vol(struct ubi_device *ubi, struct ubi_attach_info *ai, |
| 204 | struct ubi_ainf_volume *av, struct ubi_vid_hdr *new_vh, |
| 205 | struct ubi_ainf_peb *new_aeb) |
| 206 | { |
| 207 | struct rb_node **p = &av->root.rb_node, *parent = NULL; |
| 208 | struct ubi_ainf_peb *aeb, *victim; |
| 209 | int cmp_res; |
| 210 | |
| 211 | while (*p) { |
| 212 | parent = *p; |
| 213 | aeb = rb_entry(parent, struct ubi_ainf_peb, u.rb); |
| 214 | |
| 215 | if (be32_to_cpu(new_vh->lnum) != aeb->lnum) { |
| 216 | if (be32_to_cpu(new_vh->lnum) < aeb->lnum) |
| 217 | p = &(*p)->rb_left; |
| 218 | else |
| 219 | p = &(*p)->rb_right; |
| 220 | |
| 221 | continue; |
| 222 | } |
| 223 | |
| 224 | /* This case can happen if the fastmap gets written |
| 225 | * because of a volume change (creation, deletion, ..). |
| 226 | * Then a PEB can be within the persistent EBA and the pool. |
| 227 | */ |
| 228 | if (aeb->pnum == new_aeb->pnum) { |
| 229 | ubi_assert(aeb->lnum == new_aeb->lnum); |
| 230 | kmem_cache_free(ai->aeb_slab_cache, new_aeb); |
| 231 | |
| 232 | return 0; |
| 233 | } |
| 234 | |
| 235 | cmp_res = ubi_compare_lebs(ubi, aeb, new_aeb->pnum, new_vh); |
| 236 | if (cmp_res < 0) |
| 237 | return cmp_res; |
| 238 | |
| 239 | /* new_aeb is newer */ |
| 240 | if (cmp_res & 1) { |
| 241 | victim = kmem_cache_alloc(ai->aeb_slab_cache, |
| 242 | GFP_KERNEL); |
| 243 | if (!victim) |
| 244 | return -ENOMEM; |
| 245 | |
| 246 | victim->ec = aeb->ec; |
| 247 | victim->pnum = aeb->pnum; |
| 248 | list_add_tail(&victim->u.list, &ai->erase); |
| 249 | |
| 250 | if (av->highest_lnum == be32_to_cpu(new_vh->lnum)) |
| 251 | av->last_data_size = \ |
| 252 | be32_to_cpu(new_vh->data_size); |
| 253 | |
| 254 | dbg_bld("vol %i: AEB %i's PEB %i is the newer", |
| 255 | av->vol_id, aeb->lnum, new_aeb->pnum); |
| 256 | |
| 257 | aeb->ec = new_aeb->ec; |
| 258 | aeb->pnum = new_aeb->pnum; |
| 259 | aeb->copy_flag = new_vh->copy_flag; |
| 260 | aeb->scrub = new_aeb->scrub; |
| 261 | kmem_cache_free(ai->aeb_slab_cache, new_aeb); |
| 262 | |
| 263 | /* new_aeb is older */ |
| 264 | } else { |
| 265 | dbg_bld("vol %i: AEB %i's PEB %i is old, dropping it", |
| 266 | av->vol_id, aeb->lnum, new_aeb->pnum); |
| 267 | list_add_tail(&new_aeb->u.list, &ai->erase); |
| 268 | } |
| 269 | |
| 270 | return 0; |
| 271 | } |
| 272 | /* This LEB is new, let's add it to the volume */ |
| 273 | |
| 274 | if (av->highest_lnum <= be32_to_cpu(new_vh->lnum)) { |
| 275 | av->highest_lnum = be32_to_cpu(new_vh->lnum); |
| 276 | av->last_data_size = be32_to_cpu(new_vh->data_size); |
| 277 | } |
| 278 | |
| 279 | if (av->vol_type == UBI_STATIC_VOLUME) |
| 280 | av->used_ebs = be32_to_cpu(new_vh->used_ebs); |
| 281 | |
| 282 | av->leb_count++; |
| 283 | |
| 284 | rb_link_node(&new_aeb->u.rb, parent, p); |
| 285 | rb_insert_color(&new_aeb->u.rb, &av->root); |
| 286 | |
| 287 | return 0; |
| 288 | } |
| 289 | |
| 290 | /** |
| 291 | * process_pool_aeb - we found a non-empty PEB in a pool. |
| 292 | * @ubi: UBI device object |
| 293 | * @ai: attach info object |
| 294 | * @new_vh: the volume header derived from new_aeb |
| 295 | * @new_aeb: the AEB to be examined |
| 296 | * |
| 297 | * Returns 0 on success, < 0 indicates an internal error. |
| 298 | */ |
| 299 | static int process_pool_aeb(struct ubi_device *ubi, struct ubi_attach_info *ai, |
| 300 | struct ubi_vid_hdr *new_vh, |
| 301 | struct ubi_ainf_peb *new_aeb) |
| 302 | { |
| 303 | struct ubi_ainf_volume *av, *tmp_av = NULL; |
| 304 | struct rb_node **p = &ai->volumes.rb_node, *parent = NULL; |
| 305 | int found = 0; |
| 306 | |
| 307 | if (be32_to_cpu(new_vh->vol_id) == UBI_FM_SB_VOLUME_ID || |
| 308 | be32_to_cpu(new_vh->vol_id) == UBI_FM_DATA_VOLUME_ID) { |
| 309 | kmem_cache_free(ai->aeb_slab_cache, new_aeb); |
| 310 | |
| 311 | return 0; |
| 312 | } |
| 313 | |
| 314 | /* Find the volume this SEB belongs to */ |
| 315 | while (*p) { |
| 316 | parent = *p; |
| 317 | tmp_av = rb_entry(parent, struct ubi_ainf_volume, rb); |
| 318 | |
| 319 | if (be32_to_cpu(new_vh->vol_id) > tmp_av->vol_id) |
| 320 | p = &(*p)->rb_left; |
| 321 | else if (be32_to_cpu(new_vh->vol_id) < tmp_av->vol_id) |
| 322 | p = &(*p)->rb_right; |
| 323 | else { |
| 324 | found = 1; |
| 325 | break; |
| 326 | } |
| 327 | } |
| 328 | |
| 329 | if (found) |
| 330 | av = tmp_av; |
| 331 | else { |
| 332 | ubi_err("orphaned volume in fastmap pool!"); |
| 333 | return UBI_BAD_FASTMAP; |
| 334 | } |
| 335 | |
| 336 | ubi_assert(be32_to_cpu(new_vh->vol_id) == av->vol_id); |
| 337 | |
| 338 | return update_vol(ubi, ai, av, new_vh, new_aeb); |
| 339 | } |
| 340 | |
| 341 | /** |
| 342 | * unmap_peb - unmap a PEB. |
| 343 | * If fastmap detects a free PEB in the pool it has to check whether |
| 344 | * this PEB has been unmapped after writing the fastmap. |
| 345 | * |
| 346 | * @ai: UBI attach info object |
| 347 | * @pnum: The PEB to be unmapped |
| 348 | */ |
| 349 | static void unmap_peb(struct ubi_attach_info *ai, int pnum) |
| 350 | { |
| 351 | struct ubi_ainf_volume *av; |
| 352 | struct rb_node *node, *node2; |
| 353 | struct ubi_ainf_peb *aeb; |
| 354 | |
| 355 | for (node = rb_first(&ai->volumes); node; node = rb_next(node)) { |
| 356 | av = rb_entry(node, struct ubi_ainf_volume, rb); |
| 357 | |
| 358 | for (node2 = rb_first(&av->root); node2; |
| 359 | node2 = rb_next(node2)) { |
| 360 | aeb = rb_entry(node2, struct ubi_ainf_peb, u.rb); |
| 361 | if (aeb->pnum == pnum) { |
| 362 | rb_erase(&aeb->u.rb, &av->root); |
| 363 | kmem_cache_free(ai->aeb_slab_cache, aeb); |
| 364 | return; |
| 365 | } |
| 366 | } |
| 367 | } |
| 368 | } |
| 369 | |
| 370 | /** |
| 371 | * scan_pool - scans a pool for changed (no longer empty PEBs). |
| 372 | * @ubi: UBI device object |
| 373 | * @ai: attach info object |
| 374 | * @pebs: an array of all PEB numbers in the to be scanned pool |
| 375 | * @pool_size: size of the pool (number of entries in @pebs) |
| 376 | * @max_sqnum: pointer to the maximal sequence number |
| 377 | * @eba_orphans: list of PEBs which need to be scanned |
| 378 | * @free: list of PEBs which are most likely free (and go into @ai->free) |
| 379 | * |
| 380 | * Returns 0 on success, if the pool is unusable UBI_BAD_FASTMAP is returned. |
| 381 | * < 0 indicates an internal error. |
| 382 | */ |
| 383 | static int scan_pool(struct ubi_device *ubi, struct ubi_attach_info *ai, |
| 384 | int *pebs, int pool_size, unsigned long long *max_sqnum, |
| 385 | struct list_head *eba_orphans, struct list_head *free) |
| 386 | { |
| 387 | struct ubi_vid_hdr *vh; |
| 388 | struct ubi_ec_hdr *ech; |
| 389 | struct ubi_ainf_peb *new_aeb, *tmp_aeb; |
| 390 | int i, pnum, err, found_orphan, ret = 0; |
| 391 | |
| 392 | ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL); |
| 393 | if (!ech) |
| 394 | return -ENOMEM; |
| 395 | |
| 396 | vh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL); |
| 397 | if (!vh) { |
| 398 | kfree(ech); |
| 399 | return -ENOMEM; |
| 400 | } |
| 401 | |
| 402 | dbg_bld("scanning fastmap pool: size = %i", pool_size); |
| 403 | |
| 404 | /* |
| 405 | * Now scan all PEBs in the pool to find changes which have been made |
| 406 | * after the creation of the fastmap |
| 407 | */ |
| 408 | for (i = 0; i < pool_size; i++) { |
| 409 | int scrub = 0; |
| 410 | |
| 411 | pnum = be32_to_cpu(pebs[i]); |
| 412 | |
| 413 | if (ubi_io_is_bad(ubi, pnum)) { |
| 414 | ubi_err("bad PEB in fastmap pool!"); |
| 415 | ret = UBI_BAD_FASTMAP; |
| 416 | goto out; |
| 417 | } |
| 418 | |
| 419 | err = ubi_io_read_ec_hdr(ubi, pnum, ech, 0); |
| 420 | if (err && err != UBI_IO_BITFLIPS) { |
| 421 | ubi_err("unable to read EC header! PEB:%i err:%i", |
| 422 | pnum, err); |
| 423 | ret = err > 0 ? UBI_BAD_FASTMAP : err; |
| 424 | goto out; |
| 425 | } else if (ret == UBI_IO_BITFLIPS) |
| 426 | scrub = 1; |
| 427 | |
| 428 | if (be32_to_cpu(ech->image_seq) != ubi->image_seq) { |
| 429 | ubi_err("bad image seq: 0x%x, expected: 0x%x", |
| 430 | be32_to_cpu(ech->image_seq), ubi->image_seq); |
| 431 | err = UBI_BAD_FASTMAP; |
| 432 | goto out; |
| 433 | } |
| 434 | |
| 435 | err = ubi_io_read_vid_hdr(ubi, pnum, vh, 0); |
| 436 | if (err == UBI_IO_FF || err == UBI_IO_FF_BITFLIPS) { |
| 437 | unsigned long long ec = be64_to_cpu(ech->ec); |
| 438 | unmap_peb(ai, pnum); |
| 439 | dbg_bld("Adding PEB to free: %i", pnum); |
| 440 | if (err == UBI_IO_FF_BITFLIPS) |
| 441 | add_aeb(ai, free, pnum, ec, 1); |
| 442 | else |
| 443 | add_aeb(ai, free, pnum, ec, 0); |
| 444 | continue; |
| 445 | } else if (err == 0 || err == UBI_IO_BITFLIPS) { |
| 446 | dbg_bld("Found non empty PEB:%i in pool", pnum); |
| 447 | |
| 448 | if (err == UBI_IO_BITFLIPS) |
| 449 | scrub = 1; |
| 450 | |
| 451 | found_orphan = 0; |
| 452 | list_for_each_entry(tmp_aeb, eba_orphans, u.list) { |
| 453 | if (tmp_aeb->pnum == pnum) { |
| 454 | found_orphan = 1; |
| 455 | break; |
| 456 | } |
| 457 | } |
| 458 | if (found_orphan) { |
| 459 | kmem_cache_free(ai->aeb_slab_cache, tmp_aeb); |
| 460 | list_del(&tmp_aeb->u.list); |
| 461 | } |
| 462 | |
| 463 | new_aeb = kmem_cache_alloc(ai->aeb_slab_cache, |
| 464 | GFP_KERNEL); |
| 465 | if (!new_aeb) { |
| 466 | ret = -ENOMEM; |
| 467 | goto out; |
| 468 | } |
| 469 | |
| 470 | new_aeb->ec = be64_to_cpu(ech->ec); |
| 471 | new_aeb->pnum = pnum; |
| 472 | new_aeb->lnum = be32_to_cpu(vh->lnum); |
| 473 | new_aeb->sqnum = be64_to_cpu(vh->sqnum); |
| 474 | new_aeb->copy_flag = vh->copy_flag; |
| 475 | new_aeb->scrub = scrub; |
| 476 | |
| 477 | if (*max_sqnum < new_aeb->sqnum) |
| 478 | *max_sqnum = new_aeb->sqnum; |
| 479 | |
| 480 | err = process_pool_aeb(ubi, ai, vh, new_aeb); |
| 481 | if (err) { |
| 482 | ret = err > 0 ? UBI_BAD_FASTMAP : err; |
| 483 | goto out; |
| 484 | } |
| 485 | } else { |
| 486 | /* We are paranoid and fall back to scanning mode */ |
| 487 | ubi_err("fastmap pool PEBs contains damaged PEBs!"); |
| 488 | ret = err > 0 ? UBI_BAD_FASTMAP : err; |
| 489 | goto out; |
| 490 | } |
| 491 | |
| 492 | } |
| 493 | |
| 494 | out: |
| 495 | ubi_free_vid_hdr(ubi, vh); |
| 496 | kfree(ech); |
| 497 | return ret; |
| 498 | } |
| 499 | |
| 500 | /** |
| 501 | * count_fastmap_pebs - Counts the PEBs found by fastmap. |
| 502 | * @ai: The UBI attach info object |
| 503 | */ |
| 504 | static int count_fastmap_pebs(struct ubi_attach_info *ai) |
| 505 | { |
| 506 | struct ubi_ainf_peb *aeb; |
| 507 | struct ubi_ainf_volume *av; |
| 508 | struct rb_node *rb1, *rb2; |
| 509 | int n = 0; |
| 510 | |
| 511 | list_for_each_entry(aeb, &ai->erase, u.list) |
| 512 | n++; |
| 513 | |
| 514 | list_for_each_entry(aeb, &ai->free, u.list) |
| 515 | n++; |
| 516 | |
| 517 | ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) |
| 518 | ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) |
| 519 | n++; |
| 520 | |
| 521 | return n; |
| 522 | } |
| 523 | |
| 524 | /** |
| 525 | * ubi_attach_fastmap - creates ubi_attach_info from a fastmap. |
| 526 | * @ubi: UBI device object |
| 527 | * @ai: UBI attach info object |
| 528 | * @fm: the fastmap to be attached |
| 529 | * |
| 530 | * Returns 0 on success, UBI_BAD_FASTMAP if the found fastmap was unusable. |
| 531 | * < 0 indicates an internal error. |
| 532 | */ |
| 533 | static int ubi_attach_fastmap(struct ubi_device *ubi, |
| 534 | struct ubi_attach_info *ai, |
| 535 | struct ubi_fastmap_layout *fm) |
| 536 | { |
| 537 | struct list_head used, eba_orphans, free; |
| 538 | struct ubi_ainf_volume *av; |
| 539 | struct ubi_ainf_peb *aeb, *tmp_aeb, *_tmp_aeb; |
| 540 | struct ubi_ec_hdr *ech; |
| 541 | struct ubi_fm_sb *fmsb; |
| 542 | struct ubi_fm_hdr *fmhdr; |
| 543 | struct ubi_fm_scan_pool *fmpl1, *fmpl2; |
| 544 | struct ubi_fm_ec *fmec; |
| 545 | struct ubi_fm_volhdr *fmvhdr; |
| 546 | struct ubi_fm_eba *fm_eba; |
| 547 | int ret, i, j, pool_size, wl_pool_size; |
| 548 | size_t fm_pos = 0, fm_size = ubi->fm_size; |
| 549 | unsigned long long max_sqnum = 0; |
| 550 | void *fm_raw = ubi->fm_buf; |
| 551 | |
| 552 | INIT_LIST_HEAD(&used); |
| 553 | INIT_LIST_HEAD(&free); |
| 554 | INIT_LIST_HEAD(&eba_orphans); |
| 555 | INIT_LIST_HEAD(&ai->corr); |
| 556 | INIT_LIST_HEAD(&ai->free); |
| 557 | INIT_LIST_HEAD(&ai->erase); |
| 558 | INIT_LIST_HEAD(&ai->alien); |
| 559 | ai->volumes = RB_ROOT; |
| 560 | ai->min_ec = UBI_MAX_ERASECOUNTER; |
| 561 | |
| 562 | ai->aeb_slab_cache = kmem_cache_create("ubi_ainf_peb_slab", |
| 563 | sizeof(struct ubi_ainf_peb), |
| 564 | 0, 0, NULL); |
| 565 | if (!ai->aeb_slab_cache) { |
| 566 | ret = -ENOMEM; |
| 567 | goto fail; |
| 568 | } |
| 569 | |
| 570 | fmsb = (struct ubi_fm_sb *)(fm_raw); |
| 571 | ai->max_sqnum = fmsb->sqnum; |
| 572 | fm_pos += sizeof(struct ubi_fm_sb); |
| 573 | if (fm_pos >= fm_size) |
| 574 | goto fail_bad; |
| 575 | |
| 576 | fmhdr = (struct ubi_fm_hdr *)(fm_raw + fm_pos); |
| 577 | fm_pos += sizeof(*fmhdr); |
| 578 | if (fm_pos >= fm_size) |
| 579 | goto fail_bad; |
| 580 | |
| 581 | if (be32_to_cpu(fmhdr->magic) != UBI_FM_HDR_MAGIC) { |
| 582 | ubi_err("bad fastmap header magic: 0x%x, expected: 0x%x", |
| 583 | be32_to_cpu(fmhdr->magic), UBI_FM_HDR_MAGIC); |
| 584 | goto fail_bad; |
| 585 | } |
| 586 | |
| 587 | fmpl1 = (struct ubi_fm_scan_pool *)(fm_raw + fm_pos); |
| 588 | fm_pos += sizeof(*fmpl1); |
| 589 | if (fm_pos >= fm_size) |
| 590 | goto fail_bad; |
| 591 | if (be32_to_cpu(fmpl1->magic) != UBI_FM_POOL_MAGIC) { |
| 592 | ubi_err("bad fastmap pool magic: 0x%x, expected: 0x%x", |
| 593 | be32_to_cpu(fmpl1->magic), UBI_FM_POOL_MAGIC); |
| 594 | goto fail_bad; |
| 595 | } |
| 596 | |
| 597 | fmpl2 = (struct ubi_fm_scan_pool *)(fm_raw + fm_pos); |
| 598 | fm_pos += sizeof(*fmpl2); |
| 599 | if (fm_pos >= fm_size) |
| 600 | goto fail_bad; |
| 601 | if (be32_to_cpu(fmpl2->magic) != UBI_FM_POOL_MAGIC) { |
| 602 | ubi_err("bad fastmap pool magic: 0x%x, expected: 0x%x", |
| 603 | be32_to_cpu(fmpl2->magic), UBI_FM_POOL_MAGIC); |
| 604 | goto fail_bad; |
| 605 | } |
| 606 | |
| 607 | pool_size = be16_to_cpu(fmpl1->size); |
| 608 | wl_pool_size = be16_to_cpu(fmpl2->size); |
| 609 | fm->max_pool_size = be16_to_cpu(fmpl1->max_size); |
| 610 | fm->max_wl_pool_size = be16_to_cpu(fmpl2->max_size); |
| 611 | |
| 612 | if (pool_size > UBI_FM_MAX_POOL_SIZE || pool_size < 0) { |
| 613 | ubi_err("bad pool size: %i", pool_size); |
| 614 | goto fail_bad; |
| 615 | } |
| 616 | |
| 617 | if (wl_pool_size > UBI_FM_MAX_POOL_SIZE || wl_pool_size < 0) { |
| 618 | ubi_err("bad WL pool size: %i", wl_pool_size); |
| 619 | goto fail_bad; |
| 620 | } |
| 621 | |
| 622 | |
| 623 | if (fm->max_pool_size > UBI_FM_MAX_POOL_SIZE || |
| 624 | fm->max_pool_size < 0) { |
| 625 | ubi_err("bad maximal pool size: %i", fm->max_pool_size); |
| 626 | goto fail_bad; |
| 627 | } |
| 628 | |
| 629 | if (fm->max_wl_pool_size > UBI_FM_MAX_POOL_SIZE || |
| 630 | fm->max_wl_pool_size < 0) { |
| 631 | ubi_err("bad maximal WL pool size: %i", fm->max_wl_pool_size); |
| 632 | goto fail_bad; |
| 633 | } |
| 634 | |
| 635 | /* read EC values from free list */ |
| 636 | for (i = 0; i < be32_to_cpu(fmhdr->free_peb_count); i++) { |
| 637 | fmec = (struct ubi_fm_ec *)(fm_raw + fm_pos); |
| 638 | fm_pos += sizeof(*fmec); |
| 639 | if (fm_pos >= fm_size) |
| 640 | goto fail_bad; |
| 641 | |
| 642 | add_aeb(ai, &ai->free, be32_to_cpu(fmec->pnum), |
| 643 | be32_to_cpu(fmec->ec), 0); |
| 644 | } |
| 645 | |
| 646 | /* read EC values from used list */ |
| 647 | for (i = 0; i < be32_to_cpu(fmhdr->used_peb_count); i++) { |
| 648 | fmec = (struct ubi_fm_ec *)(fm_raw + fm_pos); |
| 649 | fm_pos += sizeof(*fmec); |
| 650 | if (fm_pos >= fm_size) |
| 651 | goto fail_bad; |
| 652 | |
| 653 | add_aeb(ai, &used, be32_to_cpu(fmec->pnum), |
| 654 | be32_to_cpu(fmec->ec), 0); |
| 655 | } |
| 656 | |
| 657 | /* read EC values from scrub list */ |
| 658 | for (i = 0; i < be32_to_cpu(fmhdr->scrub_peb_count); i++) { |
| 659 | fmec = (struct ubi_fm_ec *)(fm_raw + fm_pos); |
| 660 | fm_pos += sizeof(*fmec); |
| 661 | if (fm_pos >= fm_size) |
| 662 | goto fail_bad; |
| 663 | |
| 664 | add_aeb(ai, &used, be32_to_cpu(fmec->pnum), |
| 665 | be32_to_cpu(fmec->ec), 1); |
| 666 | } |
| 667 | |
| 668 | /* read EC values from erase list */ |
| 669 | for (i = 0; i < be32_to_cpu(fmhdr->erase_peb_count); i++) { |
| 670 | fmec = (struct ubi_fm_ec *)(fm_raw + fm_pos); |
| 671 | fm_pos += sizeof(*fmec); |
| 672 | if (fm_pos >= fm_size) |
| 673 | goto fail_bad; |
| 674 | |
| 675 | add_aeb(ai, &ai->erase, be32_to_cpu(fmec->pnum), |
| 676 | be32_to_cpu(fmec->ec), 1); |
| 677 | } |
| 678 | |
| 679 | ai->mean_ec = div_u64(ai->ec_sum, ai->ec_count); |
| 680 | ai->bad_peb_count = be32_to_cpu(fmhdr->bad_peb_count); |
| 681 | |
| 682 | /* Iterate over all volumes and read their EBA table */ |
| 683 | for (i = 0; i < be32_to_cpu(fmhdr->vol_count); i++) { |
| 684 | fmvhdr = (struct ubi_fm_volhdr *)(fm_raw + fm_pos); |
| 685 | fm_pos += sizeof(*fmvhdr); |
| 686 | if (fm_pos >= fm_size) |
| 687 | goto fail_bad; |
| 688 | |
| 689 | if (be32_to_cpu(fmvhdr->magic) != UBI_FM_VHDR_MAGIC) { |
| 690 | ubi_err("bad fastmap vol header magic: 0x%x, " \ |
| 691 | "expected: 0x%x", |
| 692 | be32_to_cpu(fmvhdr->magic), UBI_FM_VHDR_MAGIC); |
| 693 | goto fail_bad; |
| 694 | } |
| 695 | |
| 696 | av = add_vol(ai, be32_to_cpu(fmvhdr->vol_id), |
| 697 | be32_to_cpu(fmvhdr->used_ebs), |
| 698 | be32_to_cpu(fmvhdr->data_pad), |
| 699 | fmvhdr->vol_type, |
| 700 | be32_to_cpu(fmvhdr->last_eb_bytes)); |
| 701 | |
| 702 | if (!av) |
| 703 | goto fail_bad; |
| 704 | |
| 705 | ai->vols_found++; |
| 706 | if (ai->highest_vol_id < be32_to_cpu(fmvhdr->vol_id)) |
| 707 | ai->highest_vol_id = be32_to_cpu(fmvhdr->vol_id); |
| 708 | |
| 709 | fm_eba = (struct ubi_fm_eba *)(fm_raw + fm_pos); |
| 710 | fm_pos += sizeof(*fm_eba); |
| 711 | fm_pos += (sizeof(__be32) * be32_to_cpu(fm_eba->reserved_pebs)); |
| 712 | if (fm_pos >= fm_size) |
| 713 | goto fail_bad; |
| 714 | |
| 715 | if (be32_to_cpu(fm_eba->magic) != UBI_FM_EBA_MAGIC) { |
| 716 | ubi_err("bad fastmap EBA header magic: 0x%x, " \ |
| 717 | "expected: 0x%x", |
| 718 | be32_to_cpu(fm_eba->magic), UBI_FM_EBA_MAGIC); |
| 719 | goto fail_bad; |
| 720 | } |
| 721 | |
| 722 | for (j = 0; j < be32_to_cpu(fm_eba->reserved_pebs); j++) { |
| 723 | int pnum = be32_to_cpu(fm_eba->pnum[j]); |
| 724 | |
| 725 | if ((int)be32_to_cpu(fm_eba->pnum[j]) < 0) |
| 726 | continue; |
| 727 | |
| 728 | aeb = NULL; |
| 729 | list_for_each_entry(tmp_aeb, &used, u.list) { |
Brian Pomerantz | 584d462 | 2013-05-01 17:10:44 -0700 | [diff] [blame^] | 730 | if (tmp_aeb->pnum == pnum) { |
Richard Weinberger | dbb7d2a | 2012-09-26 17:51:49 +0200 | [diff] [blame] | 731 | aeb = tmp_aeb; |
Brian Pomerantz | 584d462 | 2013-05-01 17:10:44 -0700 | [diff] [blame^] | 732 | break; |
| 733 | } |
Richard Weinberger | dbb7d2a | 2012-09-26 17:51:49 +0200 | [diff] [blame] | 734 | } |
| 735 | |
| 736 | /* This can happen if a PEB is already in an EBA known |
| 737 | * by this fastmap but the PEB itself is not in the used |
| 738 | * list. |
| 739 | * In this case the PEB can be within the fastmap pool |
| 740 | * or while writing the fastmap it was in the protection |
| 741 | * queue. |
| 742 | */ |
| 743 | if (!aeb) { |
| 744 | aeb = kmem_cache_alloc(ai->aeb_slab_cache, |
| 745 | GFP_KERNEL); |
| 746 | if (!aeb) { |
| 747 | ret = -ENOMEM; |
| 748 | |
| 749 | goto fail; |
| 750 | } |
| 751 | |
| 752 | aeb->lnum = j; |
| 753 | aeb->pnum = be32_to_cpu(fm_eba->pnum[j]); |
| 754 | aeb->ec = -1; |
| 755 | aeb->scrub = aeb->copy_flag = aeb->sqnum = 0; |
| 756 | list_add_tail(&aeb->u.list, &eba_orphans); |
| 757 | continue; |
| 758 | } |
| 759 | |
| 760 | aeb->lnum = j; |
| 761 | |
| 762 | if (av->highest_lnum <= aeb->lnum) |
| 763 | av->highest_lnum = aeb->lnum; |
| 764 | |
| 765 | assign_aeb_to_av(ai, aeb, av); |
| 766 | |
| 767 | dbg_bld("inserting PEB:%i (LEB %i) to vol %i", |
| 768 | aeb->pnum, aeb->lnum, av->vol_id); |
| 769 | } |
| 770 | |
| 771 | ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL); |
| 772 | if (!ech) { |
| 773 | ret = -ENOMEM; |
| 774 | goto fail; |
| 775 | } |
| 776 | |
| 777 | list_for_each_entry_safe(tmp_aeb, _tmp_aeb, &eba_orphans, |
| 778 | u.list) { |
| 779 | int err; |
| 780 | |
| 781 | if (ubi_io_is_bad(ubi, tmp_aeb->pnum)) { |
| 782 | ubi_err("bad PEB in fastmap EBA orphan list"); |
| 783 | ret = UBI_BAD_FASTMAP; |
| 784 | kfree(ech); |
| 785 | goto fail; |
| 786 | } |
| 787 | |
| 788 | err = ubi_io_read_ec_hdr(ubi, tmp_aeb->pnum, ech, 0); |
| 789 | if (err && err != UBI_IO_BITFLIPS) { |
| 790 | ubi_err("unable to read EC header! PEB:%i " \ |
| 791 | "err:%i", tmp_aeb->pnum, err); |
| 792 | ret = err > 0 ? UBI_BAD_FASTMAP : err; |
| 793 | kfree(ech); |
| 794 | |
| 795 | goto fail; |
| 796 | } else if (err == UBI_IO_BITFLIPS) |
| 797 | tmp_aeb->scrub = 1; |
| 798 | |
| 799 | tmp_aeb->ec = be64_to_cpu(ech->ec); |
| 800 | assign_aeb_to_av(ai, tmp_aeb, av); |
| 801 | } |
| 802 | |
| 803 | kfree(ech); |
| 804 | } |
| 805 | |
| 806 | ret = scan_pool(ubi, ai, fmpl1->pebs, pool_size, &max_sqnum, |
| 807 | &eba_orphans, &free); |
| 808 | if (ret) |
| 809 | goto fail; |
| 810 | |
| 811 | ret = scan_pool(ubi, ai, fmpl2->pebs, wl_pool_size, &max_sqnum, |
| 812 | &eba_orphans, &free); |
| 813 | if (ret) |
| 814 | goto fail; |
| 815 | |
| 816 | if (max_sqnum > ai->max_sqnum) |
| 817 | ai->max_sqnum = max_sqnum; |
| 818 | |
Wei Yongjun | 6a059ab | 2012-10-09 14:14:21 +0800 | [diff] [blame] | 819 | list_for_each_entry_safe(tmp_aeb, _tmp_aeb, &free, u.list) |
| 820 | list_move_tail(&tmp_aeb->u.list, &ai->free); |
Richard Weinberger | dbb7d2a | 2012-09-26 17:51:49 +0200 | [diff] [blame] | 821 | |
| 822 | /* |
| 823 | * If fastmap is leaking PEBs (must not happen), raise a |
| 824 | * fat warning and fall back to scanning mode. |
| 825 | * We do this here because in ubi_wl_init() it's too late |
| 826 | * and we cannot fall back to scanning. |
| 827 | */ |
| 828 | if (WARN_ON(count_fastmap_pebs(ai) != ubi->peb_count - |
| 829 | ai->bad_peb_count - fm->used_blocks)) |
| 830 | goto fail_bad; |
| 831 | |
| 832 | return 0; |
| 833 | |
| 834 | fail_bad: |
| 835 | ret = UBI_BAD_FASTMAP; |
| 836 | fail: |
| 837 | return ret; |
| 838 | } |
| 839 | |
| 840 | /** |
| 841 | * ubi_scan_fastmap - scan the fastmap. |
| 842 | * @ubi: UBI device object |
| 843 | * @ai: UBI attach info to be filled |
| 844 | * @fm_anchor: The fastmap starts at this PEB |
| 845 | * |
| 846 | * Returns 0 on success, UBI_NO_FASTMAP if no fastmap was found, |
| 847 | * UBI_BAD_FASTMAP if one was found but is not usable. |
| 848 | * < 0 indicates an internal error. |
| 849 | */ |
| 850 | int ubi_scan_fastmap(struct ubi_device *ubi, struct ubi_attach_info *ai, |
| 851 | int fm_anchor) |
| 852 | { |
| 853 | struct ubi_fm_sb *fmsb, *fmsb2; |
| 854 | struct ubi_vid_hdr *vh; |
| 855 | struct ubi_ec_hdr *ech; |
| 856 | struct ubi_fastmap_layout *fm; |
| 857 | int i, used_blocks, pnum, ret = 0; |
| 858 | size_t fm_size; |
| 859 | __be32 crc, tmp_crc; |
| 860 | unsigned long long sqnum = 0; |
| 861 | |
| 862 | mutex_lock(&ubi->fm_mutex); |
| 863 | memset(ubi->fm_buf, 0, ubi->fm_size); |
| 864 | |
| 865 | fmsb = kmalloc(sizeof(*fmsb), GFP_KERNEL); |
| 866 | if (!fmsb) { |
| 867 | ret = -ENOMEM; |
| 868 | goto out; |
| 869 | } |
| 870 | |
| 871 | fm = kzalloc(sizeof(*fm), GFP_KERNEL); |
| 872 | if (!fm) { |
| 873 | ret = -ENOMEM; |
| 874 | kfree(fmsb); |
| 875 | goto out; |
| 876 | } |
| 877 | |
| 878 | ret = ubi_io_read(ubi, fmsb, fm_anchor, ubi->leb_start, sizeof(*fmsb)); |
| 879 | if (ret && ret != UBI_IO_BITFLIPS) |
| 880 | goto free_fm_sb; |
| 881 | else if (ret == UBI_IO_BITFLIPS) |
| 882 | fm->to_be_tortured[0] = 1; |
| 883 | |
| 884 | if (be32_to_cpu(fmsb->magic) != UBI_FM_SB_MAGIC) { |
| 885 | ubi_err("bad super block magic: 0x%x, expected: 0x%x", |
| 886 | be32_to_cpu(fmsb->magic), UBI_FM_SB_MAGIC); |
| 887 | ret = UBI_BAD_FASTMAP; |
| 888 | goto free_fm_sb; |
| 889 | } |
| 890 | |
| 891 | if (fmsb->version != UBI_FM_FMT_VERSION) { |
| 892 | ubi_err("bad fastmap version: %i, expected: %i", |
| 893 | fmsb->version, UBI_FM_FMT_VERSION); |
| 894 | ret = UBI_BAD_FASTMAP; |
| 895 | goto free_fm_sb; |
| 896 | } |
| 897 | |
| 898 | used_blocks = be32_to_cpu(fmsb->used_blocks); |
| 899 | if (used_blocks > UBI_FM_MAX_BLOCKS || used_blocks < 1) { |
| 900 | ubi_err("number of fastmap blocks is invalid: %i", used_blocks); |
| 901 | ret = UBI_BAD_FASTMAP; |
| 902 | goto free_fm_sb; |
| 903 | } |
| 904 | |
| 905 | fm_size = ubi->leb_size * used_blocks; |
| 906 | if (fm_size != ubi->fm_size) { |
| 907 | ubi_err("bad fastmap size: %zi, expected: %zi", fm_size, |
| 908 | ubi->fm_size); |
| 909 | ret = UBI_BAD_FASTMAP; |
| 910 | goto free_fm_sb; |
| 911 | } |
| 912 | |
| 913 | ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL); |
| 914 | if (!ech) { |
| 915 | ret = -ENOMEM; |
| 916 | goto free_fm_sb; |
| 917 | } |
| 918 | |
| 919 | vh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL); |
| 920 | if (!vh) { |
| 921 | ret = -ENOMEM; |
| 922 | goto free_hdr; |
| 923 | } |
| 924 | |
| 925 | for (i = 0; i < used_blocks; i++) { |
| 926 | pnum = be32_to_cpu(fmsb->block_loc[i]); |
| 927 | |
| 928 | if (ubi_io_is_bad(ubi, pnum)) { |
| 929 | ret = UBI_BAD_FASTMAP; |
| 930 | goto free_hdr; |
| 931 | } |
| 932 | |
| 933 | ret = ubi_io_read_ec_hdr(ubi, pnum, ech, 0); |
| 934 | if (ret && ret != UBI_IO_BITFLIPS) { |
| 935 | ubi_err("unable to read fastmap block# %i EC (PEB: %i)", |
| 936 | i, pnum); |
| 937 | if (ret > 0) |
| 938 | ret = UBI_BAD_FASTMAP; |
| 939 | goto free_hdr; |
| 940 | } else if (ret == UBI_IO_BITFLIPS) |
| 941 | fm->to_be_tortured[i] = 1; |
| 942 | |
| 943 | if (!ubi->image_seq) |
| 944 | ubi->image_seq = be32_to_cpu(ech->image_seq); |
| 945 | |
| 946 | if (be32_to_cpu(ech->image_seq) != ubi->image_seq) { |
| 947 | ret = UBI_BAD_FASTMAP; |
| 948 | goto free_hdr; |
| 949 | } |
| 950 | |
| 951 | ret = ubi_io_read_vid_hdr(ubi, pnum, vh, 0); |
| 952 | if (ret && ret != UBI_IO_BITFLIPS) { |
| 953 | ubi_err("unable to read fastmap block# %i (PEB: %i)", |
| 954 | i, pnum); |
| 955 | goto free_hdr; |
| 956 | } |
| 957 | |
| 958 | if (i == 0) { |
| 959 | if (be32_to_cpu(vh->vol_id) != UBI_FM_SB_VOLUME_ID) { |
| 960 | ubi_err("bad fastmap anchor vol_id: 0x%x," \ |
| 961 | " expected: 0x%x", |
| 962 | be32_to_cpu(vh->vol_id), |
| 963 | UBI_FM_SB_VOLUME_ID); |
| 964 | ret = UBI_BAD_FASTMAP; |
| 965 | goto free_hdr; |
| 966 | } |
| 967 | } else { |
| 968 | if (be32_to_cpu(vh->vol_id) != UBI_FM_DATA_VOLUME_ID) { |
| 969 | ubi_err("bad fastmap data vol_id: 0x%x," \ |
| 970 | " expected: 0x%x", |
| 971 | be32_to_cpu(vh->vol_id), |
| 972 | UBI_FM_DATA_VOLUME_ID); |
| 973 | ret = UBI_BAD_FASTMAP; |
| 974 | goto free_hdr; |
| 975 | } |
| 976 | } |
| 977 | |
| 978 | if (sqnum < be64_to_cpu(vh->sqnum)) |
| 979 | sqnum = be64_to_cpu(vh->sqnum); |
| 980 | |
| 981 | ret = ubi_io_read(ubi, ubi->fm_buf + (ubi->leb_size * i), pnum, |
| 982 | ubi->leb_start, ubi->leb_size); |
| 983 | if (ret && ret != UBI_IO_BITFLIPS) { |
| 984 | ubi_err("unable to read fastmap block# %i (PEB: %i, " \ |
| 985 | "err: %i)", i, pnum, ret); |
| 986 | goto free_hdr; |
| 987 | } |
| 988 | } |
| 989 | |
| 990 | kfree(fmsb); |
| 991 | fmsb = NULL; |
| 992 | |
| 993 | fmsb2 = (struct ubi_fm_sb *)(ubi->fm_buf); |
| 994 | tmp_crc = be32_to_cpu(fmsb2->data_crc); |
| 995 | fmsb2->data_crc = 0; |
| 996 | crc = crc32(UBI_CRC32_INIT, ubi->fm_buf, fm_size); |
| 997 | if (crc != tmp_crc) { |
| 998 | ubi_err("fastmap data CRC is invalid"); |
| 999 | ubi_err("CRC should be: 0x%x, calc: 0x%x", tmp_crc, crc); |
| 1000 | ret = UBI_BAD_FASTMAP; |
| 1001 | goto free_hdr; |
| 1002 | } |
| 1003 | |
| 1004 | fmsb2->sqnum = sqnum; |
| 1005 | |
| 1006 | fm->used_blocks = used_blocks; |
| 1007 | |
| 1008 | ret = ubi_attach_fastmap(ubi, ai, fm); |
| 1009 | if (ret) { |
| 1010 | if (ret > 0) |
| 1011 | ret = UBI_BAD_FASTMAP; |
| 1012 | goto free_hdr; |
| 1013 | } |
| 1014 | |
| 1015 | for (i = 0; i < used_blocks; i++) { |
| 1016 | struct ubi_wl_entry *e; |
| 1017 | |
| 1018 | e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); |
| 1019 | if (!e) { |
| 1020 | while (i--) |
| 1021 | kfree(fm->e[i]); |
| 1022 | |
| 1023 | ret = -ENOMEM; |
| 1024 | goto free_hdr; |
| 1025 | } |
| 1026 | |
| 1027 | e->pnum = be32_to_cpu(fmsb2->block_loc[i]); |
| 1028 | e->ec = be32_to_cpu(fmsb2->block_ec[i]); |
| 1029 | fm->e[i] = e; |
| 1030 | } |
| 1031 | |
| 1032 | ubi->fm = fm; |
| 1033 | ubi->fm_pool.max_size = ubi->fm->max_pool_size; |
| 1034 | ubi->fm_wl_pool.max_size = ubi->fm->max_wl_pool_size; |
| 1035 | ubi_msg("attached by fastmap"); |
| 1036 | ubi_msg("fastmap pool size: %d", ubi->fm_pool.max_size); |
| 1037 | ubi_msg("fastmap WL pool size: %d", ubi->fm_wl_pool.max_size); |
| 1038 | ubi->fm_disabled = 0; |
| 1039 | |
| 1040 | ubi_free_vid_hdr(ubi, vh); |
| 1041 | kfree(ech); |
| 1042 | out: |
| 1043 | mutex_unlock(&ubi->fm_mutex); |
| 1044 | if (ret == UBI_BAD_FASTMAP) |
| 1045 | ubi_err("Attach by fastmap failed, doing a full scan!"); |
| 1046 | return ret; |
| 1047 | |
| 1048 | free_hdr: |
| 1049 | ubi_free_vid_hdr(ubi, vh); |
| 1050 | kfree(ech); |
| 1051 | free_fm_sb: |
| 1052 | kfree(fmsb); |
| 1053 | kfree(fm); |
| 1054 | goto out; |
| 1055 | } |
| 1056 | |
| 1057 | /** |
| 1058 | * ubi_write_fastmap - writes a fastmap. |
| 1059 | * @ubi: UBI device object |
| 1060 | * @new_fm: the to be written fastmap |
| 1061 | * |
| 1062 | * Returns 0 on success, < 0 indicates an internal error. |
| 1063 | */ |
| 1064 | static int ubi_write_fastmap(struct ubi_device *ubi, |
| 1065 | struct ubi_fastmap_layout *new_fm) |
| 1066 | { |
| 1067 | size_t fm_pos = 0; |
| 1068 | void *fm_raw; |
| 1069 | struct ubi_fm_sb *fmsb; |
| 1070 | struct ubi_fm_hdr *fmh; |
| 1071 | struct ubi_fm_scan_pool *fmpl1, *fmpl2; |
| 1072 | struct ubi_fm_ec *fec; |
| 1073 | struct ubi_fm_volhdr *fvh; |
| 1074 | struct ubi_fm_eba *feba; |
| 1075 | struct rb_node *node; |
| 1076 | struct ubi_wl_entry *wl_e; |
| 1077 | struct ubi_volume *vol; |
| 1078 | struct ubi_vid_hdr *avhdr, *dvhdr; |
| 1079 | struct ubi_work *ubi_wrk; |
| 1080 | int ret, i, j, free_peb_count, used_peb_count, vol_count; |
| 1081 | int scrub_peb_count, erase_peb_count; |
| 1082 | |
| 1083 | fm_raw = ubi->fm_buf; |
| 1084 | memset(ubi->fm_buf, 0, ubi->fm_size); |
| 1085 | |
| 1086 | avhdr = new_fm_vhdr(ubi, UBI_FM_SB_VOLUME_ID); |
| 1087 | if (!avhdr) { |
| 1088 | ret = -ENOMEM; |
| 1089 | goto out; |
| 1090 | } |
| 1091 | |
| 1092 | dvhdr = new_fm_vhdr(ubi, UBI_FM_DATA_VOLUME_ID); |
| 1093 | if (!dvhdr) { |
| 1094 | ret = -ENOMEM; |
| 1095 | goto out_kfree; |
| 1096 | } |
| 1097 | |
| 1098 | spin_lock(&ubi->volumes_lock); |
| 1099 | spin_lock(&ubi->wl_lock); |
| 1100 | |
| 1101 | fmsb = (struct ubi_fm_sb *)fm_raw; |
| 1102 | fm_pos += sizeof(*fmsb); |
| 1103 | ubi_assert(fm_pos <= ubi->fm_size); |
| 1104 | |
| 1105 | fmh = (struct ubi_fm_hdr *)(fm_raw + fm_pos); |
| 1106 | fm_pos += sizeof(*fmh); |
| 1107 | ubi_assert(fm_pos <= ubi->fm_size); |
| 1108 | |
| 1109 | fmsb->magic = cpu_to_be32(UBI_FM_SB_MAGIC); |
| 1110 | fmsb->version = UBI_FM_FMT_VERSION; |
| 1111 | fmsb->used_blocks = cpu_to_be32(new_fm->used_blocks); |
| 1112 | /* the max sqnum will be filled in while *reading* the fastmap */ |
| 1113 | fmsb->sqnum = 0; |
| 1114 | |
| 1115 | fmh->magic = cpu_to_be32(UBI_FM_HDR_MAGIC); |
| 1116 | free_peb_count = 0; |
| 1117 | used_peb_count = 0; |
| 1118 | scrub_peb_count = 0; |
| 1119 | erase_peb_count = 0; |
| 1120 | vol_count = 0; |
| 1121 | |
| 1122 | fmpl1 = (struct ubi_fm_scan_pool *)(fm_raw + fm_pos); |
| 1123 | fm_pos += sizeof(*fmpl1); |
| 1124 | fmpl1->magic = cpu_to_be32(UBI_FM_POOL_MAGIC); |
| 1125 | fmpl1->size = cpu_to_be16(ubi->fm_pool.size); |
| 1126 | fmpl1->max_size = cpu_to_be16(ubi->fm_pool.max_size); |
| 1127 | |
| 1128 | for (i = 0; i < ubi->fm_pool.size; i++) |
| 1129 | fmpl1->pebs[i] = cpu_to_be32(ubi->fm_pool.pebs[i]); |
| 1130 | |
| 1131 | fmpl2 = (struct ubi_fm_scan_pool *)(fm_raw + fm_pos); |
| 1132 | fm_pos += sizeof(*fmpl2); |
| 1133 | fmpl2->magic = cpu_to_be32(UBI_FM_POOL_MAGIC); |
| 1134 | fmpl2->size = cpu_to_be16(ubi->fm_wl_pool.size); |
| 1135 | fmpl2->max_size = cpu_to_be16(ubi->fm_wl_pool.max_size); |
| 1136 | |
| 1137 | for (i = 0; i < ubi->fm_wl_pool.size; i++) |
| 1138 | fmpl2->pebs[i] = cpu_to_be32(ubi->fm_wl_pool.pebs[i]); |
| 1139 | |
| 1140 | for (node = rb_first(&ubi->free); node; node = rb_next(node)) { |
| 1141 | wl_e = rb_entry(node, struct ubi_wl_entry, u.rb); |
| 1142 | fec = (struct ubi_fm_ec *)(fm_raw + fm_pos); |
| 1143 | |
| 1144 | fec->pnum = cpu_to_be32(wl_e->pnum); |
| 1145 | fec->ec = cpu_to_be32(wl_e->ec); |
| 1146 | |
| 1147 | free_peb_count++; |
| 1148 | fm_pos += sizeof(*fec); |
| 1149 | ubi_assert(fm_pos <= ubi->fm_size); |
| 1150 | } |
| 1151 | fmh->free_peb_count = cpu_to_be32(free_peb_count); |
| 1152 | |
| 1153 | for (node = rb_first(&ubi->used); node; node = rb_next(node)) { |
| 1154 | wl_e = rb_entry(node, struct ubi_wl_entry, u.rb); |
| 1155 | fec = (struct ubi_fm_ec *)(fm_raw + fm_pos); |
| 1156 | |
| 1157 | fec->pnum = cpu_to_be32(wl_e->pnum); |
| 1158 | fec->ec = cpu_to_be32(wl_e->ec); |
| 1159 | |
| 1160 | used_peb_count++; |
| 1161 | fm_pos += sizeof(*fec); |
| 1162 | ubi_assert(fm_pos <= ubi->fm_size); |
| 1163 | } |
| 1164 | fmh->used_peb_count = cpu_to_be32(used_peb_count); |
| 1165 | |
| 1166 | for (node = rb_first(&ubi->scrub); node; node = rb_next(node)) { |
| 1167 | wl_e = rb_entry(node, struct ubi_wl_entry, u.rb); |
| 1168 | fec = (struct ubi_fm_ec *)(fm_raw + fm_pos); |
| 1169 | |
| 1170 | fec->pnum = cpu_to_be32(wl_e->pnum); |
| 1171 | fec->ec = cpu_to_be32(wl_e->ec); |
| 1172 | |
| 1173 | scrub_peb_count++; |
| 1174 | fm_pos += sizeof(*fec); |
| 1175 | ubi_assert(fm_pos <= ubi->fm_size); |
| 1176 | } |
| 1177 | fmh->scrub_peb_count = cpu_to_be32(scrub_peb_count); |
| 1178 | |
| 1179 | |
| 1180 | list_for_each_entry(ubi_wrk, &ubi->works, list) { |
| 1181 | if (ubi_is_erase_work(ubi_wrk)) { |
| 1182 | wl_e = ubi_wrk->e; |
| 1183 | ubi_assert(wl_e); |
| 1184 | |
| 1185 | fec = (struct ubi_fm_ec *)(fm_raw + fm_pos); |
| 1186 | |
| 1187 | fec->pnum = cpu_to_be32(wl_e->pnum); |
| 1188 | fec->ec = cpu_to_be32(wl_e->ec); |
| 1189 | |
| 1190 | erase_peb_count++; |
| 1191 | fm_pos += sizeof(*fec); |
| 1192 | ubi_assert(fm_pos <= ubi->fm_size); |
| 1193 | } |
| 1194 | } |
| 1195 | fmh->erase_peb_count = cpu_to_be32(erase_peb_count); |
| 1196 | |
| 1197 | for (i = 0; i < UBI_MAX_VOLUMES + UBI_INT_VOL_COUNT; i++) { |
| 1198 | vol = ubi->volumes[i]; |
| 1199 | |
| 1200 | if (!vol) |
| 1201 | continue; |
| 1202 | |
| 1203 | vol_count++; |
| 1204 | |
| 1205 | fvh = (struct ubi_fm_volhdr *)(fm_raw + fm_pos); |
| 1206 | fm_pos += sizeof(*fvh); |
| 1207 | ubi_assert(fm_pos <= ubi->fm_size); |
| 1208 | |
| 1209 | fvh->magic = cpu_to_be32(UBI_FM_VHDR_MAGIC); |
| 1210 | fvh->vol_id = cpu_to_be32(vol->vol_id); |
| 1211 | fvh->vol_type = vol->vol_type; |
| 1212 | fvh->used_ebs = cpu_to_be32(vol->used_ebs); |
| 1213 | fvh->data_pad = cpu_to_be32(vol->data_pad); |
| 1214 | fvh->last_eb_bytes = cpu_to_be32(vol->last_eb_bytes); |
| 1215 | |
| 1216 | ubi_assert(vol->vol_type == UBI_DYNAMIC_VOLUME || |
| 1217 | vol->vol_type == UBI_STATIC_VOLUME); |
| 1218 | |
| 1219 | feba = (struct ubi_fm_eba *)(fm_raw + fm_pos); |
| 1220 | fm_pos += sizeof(*feba) + (sizeof(__be32) * vol->reserved_pebs); |
| 1221 | ubi_assert(fm_pos <= ubi->fm_size); |
| 1222 | |
| 1223 | for (j = 0; j < vol->reserved_pebs; j++) |
| 1224 | feba->pnum[j] = cpu_to_be32(vol->eba_tbl[j]); |
| 1225 | |
| 1226 | feba->reserved_pebs = cpu_to_be32(j); |
| 1227 | feba->magic = cpu_to_be32(UBI_FM_EBA_MAGIC); |
| 1228 | } |
| 1229 | fmh->vol_count = cpu_to_be32(vol_count); |
| 1230 | fmh->bad_peb_count = cpu_to_be32(ubi->bad_peb_count); |
| 1231 | |
| 1232 | avhdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); |
| 1233 | avhdr->lnum = 0; |
| 1234 | |
| 1235 | spin_unlock(&ubi->wl_lock); |
| 1236 | spin_unlock(&ubi->volumes_lock); |
| 1237 | |
| 1238 | dbg_bld("writing fastmap SB to PEB %i", new_fm->e[0]->pnum); |
| 1239 | ret = ubi_io_write_vid_hdr(ubi, new_fm->e[0]->pnum, avhdr); |
| 1240 | if (ret) { |
| 1241 | ubi_err("unable to write vid_hdr to fastmap SB!"); |
| 1242 | goto out_kfree; |
| 1243 | } |
| 1244 | |
| 1245 | for (i = 0; i < new_fm->used_blocks; i++) { |
| 1246 | fmsb->block_loc[i] = cpu_to_be32(new_fm->e[i]->pnum); |
| 1247 | fmsb->block_ec[i] = cpu_to_be32(new_fm->e[i]->ec); |
| 1248 | } |
| 1249 | |
| 1250 | fmsb->data_crc = 0; |
| 1251 | fmsb->data_crc = cpu_to_be32(crc32(UBI_CRC32_INIT, fm_raw, |
| 1252 | ubi->fm_size)); |
| 1253 | |
| 1254 | for (i = 1; i < new_fm->used_blocks; i++) { |
| 1255 | dvhdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); |
| 1256 | dvhdr->lnum = cpu_to_be32(i); |
| 1257 | dbg_bld("writing fastmap data to PEB %i sqnum %llu", |
| 1258 | new_fm->e[i]->pnum, be64_to_cpu(dvhdr->sqnum)); |
| 1259 | ret = ubi_io_write_vid_hdr(ubi, new_fm->e[i]->pnum, dvhdr); |
| 1260 | if (ret) { |
| 1261 | ubi_err("unable to write vid_hdr to PEB %i!", |
| 1262 | new_fm->e[i]->pnum); |
| 1263 | goto out_kfree; |
| 1264 | } |
| 1265 | } |
| 1266 | |
| 1267 | for (i = 0; i < new_fm->used_blocks; i++) { |
| 1268 | ret = ubi_io_write(ubi, fm_raw + (i * ubi->leb_size), |
| 1269 | new_fm->e[i]->pnum, ubi->leb_start, ubi->leb_size); |
| 1270 | if (ret) { |
| 1271 | ubi_err("unable to write fastmap to PEB %i!", |
| 1272 | new_fm->e[i]->pnum); |
| 1273 | goto out_kfree; |
| 1274 | } |
| 1275 | } |
| 1276 | |
| 1277 | ubi_assert(new_fm); |
| 1278 | ubi->fm = new_fm; |
| 1279 | |
| 1280 | dbg_bld("fastmap written!"); |
| 1281 | |
| 1282 | out_kfree: |
| 1283 | ubi_free_vid_hdr(ubi, avhdr); |
| 1284 | ubi_free_vid_hdr(ubi, dvhdr); |
| 1285 | out: |
| 1286 | return ret; |
| 1287 | } |
| 1288 | |
| 1289 | /** |
| 1290 | * erase_block - Manually erase a PEB. |
| 1291 | * @ubi: UBI device object |
| 1292 | * @pnum: PEB to be erased |
| 1293 | * |
| 1294 | * Returns the new EC value on success, < 0 indicates an internal error. |
| 1295 | */ |
| 1296 | static int erase_block(struct ubi_device *ubi, int pnum) |
| 1297 | { |
| 1298 | int ret; |
| 1299 | struct ubi_ec_hdr *ec_hdr; |
| 1300 | long long ec; |
| 1301 | |
| 1302 | ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL); |
| 1303 | if (!ec_hdr) |
| 1304 | return -ENOMEM; |
| 1305 | |
| 1306 | ret = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0); |
| 1307 | if (ret < 0) |
| 1308 | goto out; |
| 1309 | else if (ret && ret != UBI_IO_BITFLIPS) { |
| 1310 | ret = -EINVAL; |
| 1311 | goto out; |
| 1312 | } |
| 1313 | |
| 1314 | ret = ubi_io_sync_erase(ubi, pnum, 0); |
| 1315 | if (ret < 0) |
| 1316 | goto out; |
| 1317 | |
| 1318 | ec = be64_to_cpu(ec_hdr->ec); |
| 1319 | ec += ret; |
| 1320 | if (ec > UBI_MAX_ERASECOUNTER) { |
| 1321 | ret = -EINVAL; |
| 1322 | goto out; |
| 1323 | } |
| 1324 | |
| 1325 | ec_hdr->ec = cpu_to_be64(ec); |
| 1326 | ret = ubi_io_write_ec_hdr(ubi, pnum, ec_hdr); |
| 1327 | if (ret < 0) |
| 1328 | goto out; |
| 1329 | |
| 1330 | ret = ec; |
| 1331 | out: |
| 1332 | kfree(ec_hdr); |
| 1333 | return ret; |
| 1334 | } |
| 1335 | |
| 1336 | /** |
| 1337 | * invalidate_fastmap - destroys a fastmap. |
| 1338 | * @ubi: UBI device object |
| 1339 | * @fm: the fastmap to be destroyed |
| 1340 | * |
| 1341 | * Returns 0 on success, < 0 indicates an internal error. |
| 1342 | */ |
| 1343 | static int invalidate_fastmap(struct ubi_device *ubi, |
| 1344 | struct ubi_fastmap_layout *fm) |
| 1345 | { |
| 1346 | int ret, i; |
| 1347 | struct ubi_vid_hdr *vh; |
| 1348 | |
| 1349 | ret = erase_block(ubi, fm->e[0]->pnum); |
| 1350 | if (ret < 0) |
| 1351 | return ret; |
| 1352 | |
| 1353 | vh = new_fm_vhdr(ubi, UBI_FM_SB_VOLUME_ID); |
| 1354 | if (!vh) |
| 1355 | return -ENOMEM; |
| 1356 | |
| 1357 | /* deleting the current fastmap SB is not enough, an old SB may exist, |
| 1358 | * so create a (corrupted) SB such that fastmap will find it and fall |
| 1359 | * back to scanning mode in any case */ |
| 1360 | vh->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); |
| 1361 | ret = ubi_io_write_vid_hdr(ubi, fm->e[0]->pnum, vh); |
| 1362 | |
| 1363 | for (i = 0; i < fm->used_blocks; i++) |
| 1364 | ubi_wl_put_fm_peb(ubi, fm->e[i], i, fm->to_be_tortured[i]); |
| 1365 | |
| 1366 | return ret; |
| 1367 | } |
| 1368 | |
| 1369 | /** |
| 1370 | * ubi_update_fastmap - will be called by UBI if a volume changes or |
| 1371 | * a fastmap pool becomes full. |
| 1372 | * @ubi: UBI device object |
| 1373 | * |
| 1374 | * Returns 0 on success, < 0 indicates an internal error. |
| 1375 | */ |
| 1376 | int ubi_update_fastmap(struct ubi_device *ubi) |
| 1377 | { |
| 1378 | int ret, i; |
| 1379 | struct ubi_fastmap_layout *new_fm, *old_fm; |
| 1380 | struct ubi_wl_entry *tmp_e; |
| 1381 | |
| 1382 | mutex_lock(&ubi->fm_mutex); |
| 1383 | |
| 1384 | ubi_refill_pools(ubi); |
| 1385 | |
| 1386 | if (ubi->ro_mode || ubi->fm_disabled) { |
| 1387 | mutex_unlock(&ubi->fm_mutex); |
| 1388 | return 0; |
| 1389 | } |
| 1390 | |
| 1391 | ret = ubi_ensure_anchor_pebs(ubi); |
| 1392 | if (ret) { |
| 1393 | mutex_unlock(&ubi->fm_mutex); |
| 1394 | return ret; |
| 1395 | } |
| 1396 | |
| 1397 | new_fm = kzalloc(sizeof(*new_fm), GFP_KERNEL); |
| 1398 | if (!new_fm) { |
| 1399 | mutex_unlock(&ubi->fm_mutex); |
| 1400 | return -ENOMEM; |
| 1401 | } |
| 1402 | |
| 1403 | new_fm->used_blocks = ubi->fm_size / ubi->leb_size; |
| 1404 | |
| 1405 | for (i = 0; i < new_fm->used_blocks; i++) { |
| 1406 | new_fm->e[i] = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); |
| 1407 | if (!new_fm->e[i]) { |
| 1408 | while (i--) |
| 1409 | kfree(new_fm->e[i]); |
| 1410 | |
| 1411 | kfree(new_fm); |
| 1412 | mutex_unlock(&ubi->fm_mutex); |
| 1413 | return -ENOMEM; |
| 1414 | } |
| 1415 | } |
| 1416 | |
| 1417 | old_fm = ubi->fm; |
| 1418 | ubi->fm = NULL; |
| 1419 | |
| 1420 | if (new_fm->used_blocks > UBI_FM_MAX_BLOCKS) { |
| 1421 | ubi_err("fastmap too large"); |
| 1422 | ret = -ENOSPC; |
| 1423 | goto err; |
| 1424 | } |
| 1425 | |
| 1426 | for (i = 1; i < new_fm->used_blocks; i++) { |
| 1427 | spin_lock(&ubi->wl_lock); |
| 1428 | tmp_e = ubi_wl_get_fm_peb(ubi, 0); |
| 1429 | spin_unlock(&ubi->wl_lock); |
| 1430 | |
| 1431 | if (!tmp_e && !old_fm) { |
| 1432 | int j; |
| 1433 | ubi_err("could not get any free erase block"); |
| 1434 | |
| 1435 | for (j = 1; j < i; j++) |
| 1436 | ubi_wl_put_fm_peb(ubi, new_fm->e[j], j, 0); |
| 1437 | |
| 1438 | ret = -ENOSPC; |
| 1439 | goto err; |
| 1440 | } else if (!tmp_e && old_fm) { |
| 1441 | ret = erase_block(ubi, old_fm->e[i]->pnum); |
| 1442 | if (ret < 0) { |
| 1443 | int j; |
| 1444 | |
| 1445 | for (j = 1; j < i; j++) |
| 1446 | ubi_wl_put_fm_peb(ubi, new_fm->e[j], |
| 1447 | j, 0); |
| 1448 | |
| 1449 | ubi_err("could not erase old fastmap PEB"); |
| 1450 | goto err; |
| 1451 | } |
| 1452 | |
| 1453 | new_fm->e[i]->pnum = old_fm->e[i]->pnum; |
| 1454 | new_fm->e[i]->ec = old_fm->e[i]->ec; |
| 1455 | } else { |
| 1456 | new_fm->e[i]->pnum = tmp_e->pnum; |
| 1457 | new_fm->e[i]->ec = tmp_e->ec; |
| 1458 | |
| 1459 | if (old_fm) |
| 1460 | ubi_wl_put_fm_peb(ubi, old_fm->e[i], i, |
| 1461 | old_fm->to_be_tortured[i]); |
| 1462 | } |
| 1463 | } |
| 1464 | |
| 1465 | spin_lock(&ubi->wl_lock); |
| 1466 | tmp_e = ubi_wl_get_fm_peb(ubi, 1); |
| 1467 | spin_unlock(&ubi->wl_lock); |
| 1468 | |
| 1469 | if (old_fm) { |
| 1470 | /* no fresh anchor PEB was found, reuse the old one */ |
| 1471 | if (!tmp_e) { |
| 1472 | ret = erase_block(ubi, old_fm->e[0]->pnum); |
| 1473 | if (ret < 0) { |
| 1474 | int i; |
| 1475 | ubi_err("could not erase old anchor PEB"); |
| 1476 | |
| 1477 | for (i = 1; i < new_fm->used_blocks; i++) |
| 1478 | ubi_wl_put_fm_peb(ubi, new_fm->e[i], |
| 1479 | i, 0); |
| 1480 | goto err; |
| 1481 | } |
| 1482 | |
| 1483 | new_fm->e[0]->pnum = old_fm->e[0]->pnum; |
| 1484 | new_fm->e[0]->ec = ret; |
| 1485 | } else { |
| 1486 | /* we've got a new anchor PEB, return the old one */ |
| 1487 | ubi_wl_put_fm_peb(ubi, old_fm->e[0], 0, |
| 1488 | old_fm->to_be_tortured[0]); |
| 1489 | |
| 1490 | new_fm->e[0]->pnum = tmp_e->pnum; |
| 1491 | new_fm->e[0]->ec = tmp_e->ec; |
| 1492 | } |
| 1493 | } else { |
| 1494 | if (!tmp_e) { |
| 1495 | int i; |
| 1496 | ubi_err("could not find any anchor PEB"); |
| 1497 | |
| 1498 | for (i = 1; i < new_fm->used_blocks; i++) |
| 1499 | ubi_wl_put_fm_peb(ubi, new_fm->e[i], i, 0); |
| 1500 | |
| 1501 | ret = -ENOSPC; |
| 1502 | goto err; |
| 1503 | } |
| 1504 | |
| 1505 | new_fm->e[0]->pnum = tmp_e->pnum; |
| 1506 | new_fm->e[0]->ec = tmp_e->ec; |
| 1507 | } |
| 1508 | |
| 1509 | down_write(&ubi->work_sem); |
| 1510 | down_write(&ubi->fm_sem); |
| 1511 | ret = ubi_write_fastmap(ubi, new_fm); |
| 1512 | up_write(&ubi->fm_sem); |
| 1513 | up_write(&ubi->work_sem); |
| 1514 | |
| 1515 | if (ret) |
| 1516 | goto err; |
| 1517 | |
| 1518 | out_unlock: |
| 1519 | mutex_unlock(&ubi->fm_mutex); |
| 1520 | kfree(old_fm); |
| 1521 | return ret; |
| 1522 | |
| 1523 | err: |
| 1524 | kfree(new_fm); |
| 1525 | |
| 1526 | ubi_warn("Unable to write new fastmap, err=%i", ret); |
| 1527 | |
| 1528 | ret = 0; |
| 1529 | if (old_fm) { |
| 1530 | ret = invalidate_fastmap(ubi, old_fm); |
| 1531 | if (ret < 0) |
| 1532 | ubi_err("Unable to invalidiate current fastmap!"); |
| 1533 | else if (ret) |
| 1534 | ret = 0; |
| 1535 | } |
| 1536 | goto out_unlock; |
| 1537 | } |