Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* |
| 2 | * Setup routines for AGP 3.5 compliant bridges. |
| 3 | */ |
| 4 | |
| 5 | #include <linux/list.h> |
| 6 | #include <linux/pci.h> |
| 7 | #include <linux/agp_backend.h> |
| 8 | #include <linux/module.h> |
Tim Schmielau | 4e57b68 | 2005-10-30 15:03:48 -0800 | [diff] [blame] | 9 | #include <linux/slab.h> |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 10 | |
| 11 | #include "agp.h" |
| 12 | |
| 13 | /* Generic AGP 3.5 enabling routines */ |
| 14 | |
| 15 | struct agp_3_5_dev { |
| 16 | struct list_head list; |
| 17 | u8 capndx; |
| 18 | u32 maxbw; |
| 19 | struct pci_dev *dev; |
| 20 | }; |
| 21 | |
| 22 | static void agp_3_5_dev_list_insert(struct list_head *head, struct list_head *new) |
| 23 | { |
| 24 | struct agp_3_5_dev *cur, *n = list_entry(new, struct agp_3_5_dev, list); |
| 25 | struct list_head *pos; |
| 26 | |
| 27 | list_for_each(pos, head) { |
| 28 | cur = list_entry(pos, struct agp_3_5_dev, list); |
Dave Jones | 6a92a4e | 2006-02-28 00:54:25 -0500 | [diff] [blame] | 29 | if (cur->maxbw > n->maxbw) |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 30 | break; |
| 31 | } |
| 32 | list_add_tail(new, pos); |
| 33 | } |
| 34 | |
| 35 | static void agp_3_5_dev_list_sort(struct agp_3_5_dev *list, unsigned int ndevs) |
| 36 | { |
| 37 | struct agp_3_5_dev *cur; |
| 38 | struct pci_dev *dev; |
| 39 | struct list_head *pos, *tmp, *head = &list->list, *start = head->next; |
| 40 | u32 nistat; |
| 41 | |
| 42 | INIT_LIST_HEAD(head); |
| 43 | |
| 44 | for (pos=start; pos!=head; ) { |
| 45 | cur = list_entry(pos, struct agp_3_5_dev, list); |
| 46 | dev = cur->dev; |
| 47 | |
| 48 | pci_read_config_dword(dev, cur->capndx+AGPNISTAT, &nistat); |
| 49 | cur->maxbw = (nistat >> 16) & 0xff; |
| 50 | |
| 51 | tmp = pos; |
| 52 | pos = pos->next; |
| 53 | agp_3_5_dev_list_insert(head, tmp); |
| 54 | } |
| 55 | } |
| 56 | |
Dave Jones | 6a92a4e | 2006-02-28 00:54:25 -0500 | [diff] [blame] | 57 | /* |
| 58 | * Initialize all isochronous transfer parameters for an AGP 3.0 |
| 59 | * node (i.e. a host bridge in combination with the adapters |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 60 | * lying behind it...) |
| 61 | */ |
| 62 | |
| 63 | static int agp_3_5_isochronous_node_enable(struct agp_bridge_data *bridge, |
| 64 | struct agp_3_5_dev *dev_list, unsigned int ndevs) |
| 65 | { |
| 66 | /* |
| 67 | * Convenience structure to make the calculations clearer |
| 68 | * here. The field names come straight from the AGP 3.0 spec. |
| 69 | */ |
| 70 | struct isoch_data { |
| 71 | u32 maxbw; |
| 72 | u32 n; |
| 73 | u32 y; |
| 74 | u32 l; |
| 75 | u32 rq; |
| 76 | struct agp_3_5_dev *dev; |
| 77 | }; |
| 78 | |
| 79 | struct pci_dev *td = bridge->dev, *dev; |
| 80 | struct list_head *head = &dev_list->list, *pos; |
| 81 | struct agp_3_5_dev *cur; |
| 82 | struct isoch_data *master, target; |
| 83 | unsigned int cdev = 0; |
| 84 | u32 mnistat, tnistat, tstatus, mcmd; |
| 85 | u16 tnicmd, mnicmd; |
| 86 | u8 mcapndx; |
| 87 | u32 tot_bw = 0, tot_n = 0, tot_rq = 0, y_max, rq_isoch, rq_async; |
| 88 | u32 step, rem, rem_isoch, rem_async; |
| 89 | int ret = 0; |
| 90 | |
| 91 | /* |
| 92 | * We'll work with an array of isoch_data's (one for each |
| 93 | * device in dev_list) throughout this function. |
| 94 | */ |
| 95 | if ((master = kmalloc(ndevs * sizeof(*master), GFP_KERNEL)) == NULL) { |
| 96 | ret = -ENOMEM; |
| 97 | goto get_out; |
| 98 | } |
| 99 | |
| 100 | /* |
| 101 | * Sort the device list by maxbw. We need to do this because the |
| 102 | * spec suggests that the devices with the smallest requirements |
| 103 | * have their resources allocated first, with all remaining resources |
| 104 | * falling to the device with the largest requirement. |
| 105 | * |
| 106 | * We don't exactly do this, we divide target resources by ndevs |
| 107 | * and split them amongst the AGP 3.0 devices. The remainder of such |
| 108 | * division operations are dropped on the last device, sort of like |
| 109 | * the spec mentions it should be done. |
| 110 | * |
| 111 | * We can't do this sort when we initially construct the dev_list |
| 112 | * because we don't know until this function whether isochronous |
| 113 | * transfers are enabled and consequently whether maxbw will mean |
| 114 | * anything. |
| 115 | */ |
| 116 | agp_3_5_dev_list_sort(dev_list, ndevs); |
| 117 | |
| 118 | pci_read_config_dword(td, bridge->capndx+AGPNISTAT, &tnistat); |
| 119 | pci_read_config_dword(td, bridge->capndx+AGPSTAT, &tstatus); |
| 120 | |
| 121 | /* Extract power-on defaults from the target */ |
| 122 | target.maxbw = (tnistat >> 16) & 0xff; |
| 123 | target.n = (tnistat >> 8) & 0xff; |
| 124 | target.y = (tnistat >> 6) & 0x3; |
| 125 | target.l = (tnistat >> 3) & 0x7; |
| 126 | target.rq = (tstatus >> 24) & 0xff; |
| 127 | |
| 128 | y_max = target.y; |
| 129 | |
| 130 | /* |
| 131 | * Extract power-on defaults for each device in dev_list. Along |
| 132 | * the way, calculate the total isochronous bandwidth required |
| 133 | * by these devices and the largest requested payload size. |
| 134 | */ |
| 135 | list_for_each(pos, head) { |
| 136 | cur = list_entry(pos, struct agp_3_5_dev, list); |
| 137 | dev = cur->dev; |
| 138 | |
| 139 | mcapndx = cur->capndx; |
| 140 | |
| 141 | pci_read_config_dword(dev, cur->capndx+AGPNISTAT, &mnistat); |
| 142 | |
| 143 | master[cdev].maxbw = (mnistat >> 16) & 0xff; |
| 144 | master[cdev].n = (mnistat >> 8) & 0xff; |
| 145 | master[cdev].y = (mnistat >> 6) & 0x3; |
| 146 | master[cdev].dev = cur; |
| 147 | |
| 148 | tot_bw += master[cdev].maxbw; |
| 149 | y_max = max(y_max, master[cdev].y); |
| 150 | |
| 151 | cdev++; |
| 152 | } |
| 153 | |
| 154 | /* Check if this configuration has any chance of working */ |
| 155 | if (tot_bw > target.maxbw) { |
| 156 | printk(KERN_ERR PFX "isochronous bandwidth required " |
| 157 | "by AGP 3.0 devices exceeds that which is supported by " |
| 158 | "the AGP 3.0 bridge!\n"); |
| 159 | ret = -ENODEV; |
| 160 | goto free_and_exit; |
| 161 | } |
| 162 | |
| 163 | target.y = y_max; |
| 164 | |
| 165 | /* |
| 166 | * Write the calculated payload size into the target's NICMD |
| 167 | * register. Doing this directly effects the ISOCH_N value |
| 168 | * in the target's NISTAT register, so we need to do this now |
| 169 | * to get an accurate value for ISOCH_N later. |
| 170 | */ |
| 171 | pci_read_config_word(td, bridge->capndx+AGPNICMD, &tnicmd); |
| 172 | tnicmd &= ~(0x3 << 6); |
| 173 | tnicmd |= target.y << 6; |
| 174 | pci_write_config_word(td, bridge->capndx+AGPNICMD, tnicmd); |
| 175 | |
| 176 | /* Reread the target's ISOCH_N */ |
| 177 | pci_read_config_dword(td, bridge->capndx+AGPNISTAT, &tnistat); |
| 178 | target.n = (tnistat >> 8) & 0xff; |
| 179 | |
| 180 | /* Calculate the minimum ISOCH_N needed by each master */ |
| 181 | for (cdev=0; cdev<ndevs; cdev++) { |
| 182 | master[cdev].y = target.y; |
| 183 | master[cdev].n = master[cdev].maxbw / (master[cdev].y + 1); |
| 184 | |
| 185 | tot_n += master[cdev].n; |
| 186 | } |
| 187 | |
| 188 | /* Exit if the minimal ISOCH_N allocation among the masters is more |
| 189 | * than the target can handle. */ |
| 190 | if (tot_n > target.n) { |
| 191 | printk(KERN_ERR PFX "number of isochronous " |
| 192 | "transactions per period required by AGP 3.0 devices " |
| 193 | "exceeds that which is supported by the AGP 3.0 " |
| 194 | "bridge!\n"); |
| 195 | ret = -ENODEV; |
| 196 | goto free_and_exit; |
| 197 | } |
| 198 | |
| 199 | /* Calculate left over ISOCH_N capability in the target. We'll give |
| 200 | * this to the hungriest device (as per the spec) */ |
| 201 | rem = target.n - tot_n; |
| 202 | |
Dave Jones | 6a92a4e | 2006-02-28 00:54:25 -0500 | [diff] [blame] | 203 | /* |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 204 | * Calculate the minimum isochronous RQ depth needed by each master. |
| 205 | * Along the way, distribute the extra ISOCH_N capability calculated |
| 206 | * above. |
| 207 | */ |
| 208 | for (cdev=0; cdev<ndevs; cdev++) { |
| 209 | /* |
| 210 | * This is a little subtle. If ISOCH_Y > 64B, then ISOCH_Y |
| 211 | * byte isochronous writes will be broken into 64B pieces. |
| 212 | * This means we need to budget more RQ depth to account for |
| 213 | * these kind of writes (each isochronous write is actually |
| 214 | * many writes on the AGP bus). |
| 215 | */ |
| 216 | master[cdev].rq = master[cdev].n; |
Dave Jones | 6a92a4e | 2006-02-28 00:54:25 -0500 | [diff] [blame] | 217 | if (master[cdev].y > 0x1) |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 218 | master[cdev].rq *= (1 << (master[cdev].y - 1)); |
| 219 | |
| 220 | tot_rq += master[cdev].rq; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 221 | } |
Daniel =?ISO-8859-1?Q?Marjam=E4ki | 496ebd3 | 2005-12-23 16:18:54 +0000 | [diff] [blame] | 222 | master[ndevs-1].n += rem; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 223 | |
| 224 | /* Figure the number of isochronous and asynchronous RQ slots the |
| 225 | * target is providing. */ |
| 226 | rq_isoch = (target.y > 0x1) ? target.n * (1 << (target.y - 1)) : target.n; |
| 227 | rq_async = target.rq - rq_isoch; |
| 228 | |
| 229 | /* Exit if the minimal RQ needs of the masters exceeds what the target |
| 230 | * can provide. */ |
| 231 | if (tot_rq > rq_isoch) { |
| 232 | printk(KERN_ERR PFX "number of request queue slots " |
| 233 | "required by the isochronous bandwidth requested by " |
| 234 | "AGP 3.0 devices exceeds the number provided by the " |
| 235 | "AGP 3.0 bridge!\n"); |
| 236 | ret = -ENODEV; |
| 237 | goto free_and_exit; |
| 238 | } |
| 239 | |
| 240 | /* Calculate asynchronous RQ capability in the target (per master) as |
| 241 | * well as the total number of leftover isochronous RQ slots. */ |
| 242 | step = rq_async / ndevs; |
| 243 | rem_async = step + (rq_async % ndevs); |
| 244 | rem_isoch = rq_isoch - tot_rq; |
| 245 | |
| 246 | /* Distribute the extra RQ slots calculated above and write our |
| 247 | * isochronous settings out to the actual devices. */ |
| 248 | for (cdev=0; cdev<ndevs; cdev++) { |
| 249 | cur = master[cdev].dev; |
| 250 | dev = cur->dev; |
| 251 | |
| 252 | mcapndx = cur->capndx; |
| 253 | |
| 254 | master[cdev].rq += (cdev == ndevs - 1) |
| 255 | ? (rem_async + rem_isoch) : step; |
| 256 | |
| 257 | pci_read_config_word(dev, cur->capndx+AGPNICMD, &mnicmd); |
| 258 | pci_read_config_dword(dev, cur->capndx+AGPCMD, &mcmd); |
| 259 | |
| 260 | mnicmd &= ~(0xff << 8); |
| 261 | mnicmd &= ~(0x3 << 6); |
| 262 | mcmd &= ~(0xff << 24); |
| 263 | |
| 264 | mnicmd |= master[cdev].n << 8; |
| 265 | mnicmd |= master[cdev].y << 6; |
| 266 | mcmd |= master[cdev].rq << 24; |
| 267 | |
| 268 | pci_write_config_dword(dev, cur->capndx+AGPCMD, mcmd); |
| 269 | pci_write_config_word(dev, cur->capndx+AGPNICMD, mnicmd); |
| 270 | } |
| 271 | |
| 272 | free_and_exit: |
| 273 | kfree(master); |
| 274 | |
| 275 | get_out: |
| 276 | return ret; |
| 277 | } |
| 278 | |
| 279 | /* |
| 280 | * This function basically allocates request queue slots among the |
| 281 | * AGP 3.0 systems in nonisochronous nodes. The algorithm is |
| 282 | * pretty stupid, divide the total number of RQ slots provided by the |
| 283 | * target by ndevs. Distribute this many slots to each AGP 3.0 device, |
| 284 | * giving any left over slots to the last device in dev_list. |
| 285 | */ |
| 286 | static void agp_3_5_nonisochronous_node_enable(struct agp_bridge_data *bridge, |
| 287 | struct agp_3_5_dev *dev_list, unsigned int ndevs) |
| 288 | { |
| 289 | struct agp_3_5_dev *cur; |
| 290 | struct list_head *head = &dev_list->list, *pos; |
| 291 | u32 tstatus, mcmd; |
| 292 | u32 trq, mrq, rem; |
| 293 | unsigned int cdev = 0; |
| 294 | |
| 295 | pci_read_config_dword(bridge->dev, bridge->capndx+AGPSTAT, &tstatus); |
| 296 | |
| 297 | trq = (tstatus >> 24) & 0xff; |
| 298 | mrq = trq / ndevs; |
| 299 | |
| 300 | rem = mrq + (trq % ndevs); |
| 301 | |
| 302 | for (pos=head->next; cdev<ndevs; cdev++, pos=pos->next) { |
| 303 | cur = list_entry(pos, struct agp_3_5_dev, list); |
| 304 | |
| 305 | pci_read_config_dword(cur->dev, cur->capndx+AGPCMD, &mcmd); |
| 306 | mcmd &= ~(0xff << 24); |
| 307 | mcmd |= ((cdev == ndevs - 1) ? rem : mrq) << 24; |
| 308 | pci_write_config_dword(cur->dev, cur->capndx+AGPCMD, mcmd); |
| 309 | } |
| 310 | } |
| 311 | |
| 312 | /* |
| 313 | * Fully configure and enable an AGP 3.0 host bridge and all the devices |
| 314 | * lying behind it. |
| 315 | */ |
| 316 | int agp_3_5_enable(struct agp_bridge_data *bridge) |
| 317 | { |
| 318 | struct pci_dev *td = bridge->dev, *dev = NULL; |
| 319 | u8 mcapndx; |
| 320 | u32 isoch, arqsz; |
| 321 | u32 tstatus, mstatus, ncapid; |
| 322 | u32 mmajor; |
| 323 | u16 mpstat; |
| 324 | struct agp_3_5_dev *dev_list, *cur; |
| 325 | struct list_head *head, *pos; |
| 326 | unsigned int ndevs = 0; |
| 327 | int ret = 0; |
| 328 | |
| 329 | /* Extract some power-on defaults from the target */ |
| 330 | pci_read_config_dword(td, bridge->capndx+AGPSTAT, &tstatus); |
| 331 | isoch = (tstatus >> 17) & 0x1; |
| 332 | if (isoch == 0) /* isoch xfers not available, bail out. */ |
| 333 | return -ENODEV; |
| 334 | |
| 335 | arqsz = (tstatus >> 13) & 0x7; |
| 336 | |
Dave Jones | 6a92a4e | 2006-02-28 00:54:25 -0500 | [diff] [blame] | 337 | /* |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 338 | * Allocate a head for our AGP 3.5 device list |
Dave Jones | 6a92a4e | 2006-02-28 00:54:25 -0500 | [diff] [blame] | 339 | * (multiple AGP v3 devices are allowed behind a single bridge). |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 340 | */ |
| 341 | if ((dev_list = kmalloc(sizeof(*dev_list), GFP_KERNEL)) == NULL) { |
| 342 | ret = -ENOMEM; |
| 343 | goto get_out; |
| 344 | } |
| 345 | head = &dev_list->list; |
| 346 | INIT_LIST_HEAD(head); |
| 347 | |
| 348 | /* Find all AGP devices, and add them to dev_list. */ |
| 349 | for_each_pci_dev(dev) { |
| 350 | mcapndx = pci_find_capability(dev, PCI_CAP_ID_AGP); |
| 351 | if (mcapndx == 0) |
| 352 | continue; |
| 353 | |
| 354 | switch ((dev->class >>8) & 0xff00) { |
| 355 | case 0x0600: /* Bridge */ |
| 356 | /* Skip bridges. We should call this function for each one. */ |
| 357 | continue; |
| 358 | |
| 359 | case 0x0001: /* Unclassified device */ |
| 360 | /* Don't know what this is, but log it for investigation. */ |
| 361 | if (mcapndx != 0) { |
| 362 | printk (KERN_INFO PFX "Wacky, found unclassified AGP device. %x:%x\n", |
| 363 | dev->vendor, dev->device); |
| 364 | } |
| 365 | continue; |
| 366 | |
| 367 | case 0x0300: /* Display controller */ |
| 368 | case 0x0400: /* Multimedia controller */ |
Dave Jones | 6a92a4e | 2006-02-28 00:54:25 -0500 | [diff] [blame] | 369 | if ((cur = kmalloc(sizeof(*cur), GFP_KERNEL)) == NULL) { |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 370 | ret = -ENOMEM; |
| 371 | goto free_and_exit; |
| 372 | } |
| 373 | cur->dev = dev; |
| 374 | |
| 375 | pos = &cur->list; |
| 376 | list_add(pos, head); |
| 377 | ndevs++; |
| 378 | continue; |
| 379 | |
| 380 | default: |
| 381 | continue; |
| 382 | } |
| 383 | } |
| 384 | |
| 385 | /* |
| 386 | * Take an initial pass through the devices lying behind our host |
| 387 | * bridge. Make sure each one is actually an AGP 3.0 device, otherwise |
| 388 | * exit with an error message. Along the way store the AGP 3.0 |
| 389 | * cap_ptr for each device |
| 390 | */ |
| 391 | list_for_each(pos, head) { |
| 392 | cur = list_entry(pos, struct agp_3_5_dev, list); |
| 393 | dev = cur->dev; |
Dave Jones | 6a92a4e | 2006-02-28 00:54:25 -0500 | [diff] [blame] | 394 | |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 395 | pci_read_config_word(dev, PCI_STATUS, &mpstat); |
| 396 | if ((mpstat & PCI_STATUS_CAP_LIST) == 0) |
| 397 | continue; |
| 398 | |
| 399 | pci_read_config_byte(dev, PCI_CAPABILITY_LIST, &mcapndx); |
| 400 | if (mcapndx != 0) { |
| 401 | do { |
| 402 | pci_read_config_dword(dev, mcapndx, &ncapid); |
| 403 | if ((ncapid & 0xff) != 2) |
| 404 | mcapndx = (ncapid >> 8) & 0xff; |
| 405 | } |
| 406 | while (((ncapid & 0xff) != 2) && (mcapndx != 0)); |
| 407 | } |
| 408 | |
| 409 | if (mcapndx == 0) { |
| 410 | printk(KERN_ERR PFX "woah! Non-AGP device " |
| 411 | "found on the secondary bus of an AGP 3.5 bridge!\n"); |
| 412 | ret = -ENODEV; |
| 413 | goto free_and_exit; |
| 414 | } |
| 415 | |
| 416 | mmajor = (ncapid >> AGP_MAJOR_VERSION_SHIFT) & 0xf; |
| 417 | if (mmajor < 3) { |
| 418 | printk(KERN_ERR PFX "woah! AGP 2.0 device " |
| 419 | "found on the secondary bus of an AGP 3.5 " |
| 420 | "bridge operating with AGP 3.0 electricals!\n"); |
| 421 | ret = -ENODEV; |
| 422 | goto free_and_exit; |
| 423 | } |
| 424 | |
| 425 | cur->capndx = mcapndx; |
| 426 | |
| 427 | pci_read_config_dword(dev, cur->capndx+AGPSTAT, &mstatus); |
| 428 | |
| 429 | if (((mstatus >> 3) & 0x1) == 0) { |
| 430 | printk(KERN_ERR PFX "woah! AGP 3.x device " |
| 431 | "not operating in AGP 3.x mode found on the " |
| 432 | "secondary bus of an AGP 3.5 bridge operating " |
| 433 | "with AGP 3.0 electricals!\n"); |
| 434 | ret = -ENODEV; |
| 435 | goto free_and_exit; |
| 436 | } |
| 437 | } |
| 438 | |
| 439 | /* |
| 440 | * Call functions to divide target resources amongst the AGP 3.0 |
| 441 | * masters. This process is dramatically different depending on |
| 442 | * whether isochronous transfers are supported. |
| 443 | */ |
| 444 | if (isoch) { |
| 445 | ret = agp_3_5_isochronous_node_enable(bridge, dev_list, ndevs); |
| 446 | if (ret) { |
| 447 | printk(KERN_INFO PFX "Something bad happened setting " |
| 448 | "up isochronous xfers. Falling back to " |
| 449 | "non-isochronous xfer mode.\n"); |
| 450 | } else { |
| 451 | goto free_and_exit; |
| 452 | } |
| 453 | } |
| 454 | agp_3_5_nonisochronous_node_enable(bridge, dev_list, ndevs); |
| 455 | |
| 456 | free_and_exit: |
| 457 | /* Be sure to free the dev_list */ |
| 458 | for (pos=head->next; pos!=head; ) { |
| 459 | cur = list_entry(pos, struct agp_3_5_dev, list); |
| 460 | |
| 461 | pos = pos->next; |
| 462 | kfree(cur); |
| 463 | } |
| 464 | kfree(dev_list); |
| 465 | |
| 466 | get_out: |
| 467 | return ret; |
| 468 | } |
| 469 | |