Herbert Xu | 61da88e | 2007-12-17 21:51:27 +0800 | [diff] [blame] | 1 | /* |
| 2 | * Symmetric key ciphers. |
| 3 | * |
Herbert Xu | 7a7ffe6 | 2015-08-20 15:21:45 +0800 | [diff] [blame] | 4 | * Copyright (c) 2007-2015 Herbert Xu <herbert@gondor.apana.org.au> |
Herbert Xu | 61da88e | 2007-12-17 21:51:27 +0800 | [diff] [blame] | 5 | * |
| 6 | * This program is free software; you can redistribute it and/or modify it |
| 7 | * under the terms of the GNU General Public License as published by the Free |
| 8 | * Software Foundation; either version 2 of the License, or (at your option) |
| 9 | * any later version. |
| 10 | * |
| 11 | */ |
| 12 | |
| 13 | #ifndef _CRYPTO_SKCIPHER_H |
| 14 | #define _CRYPTO_SKCIPHER_H |
| 15 | |
| 16 | #include <linux/crypto.h> |
Herbert Xu | 03bf712 | 2007-12-01 18:35:38 +1100 | [diff] [blame] | 17 | #include <linux/kernel.h> |
| 18 | #include <linux/slab.h> |
Herbert Xu | 61da88e | 2007-12-17 21:51:27 +0800 | [diff] [blame] | 19 | |
| 20 | /** |
Herbert Xu | 7a7ffe6 | 2015-08-20 15:21:45 +0800 | [diff] [blame] | 21 | * struct skcipher_request - Symmetric key cipher request |
| 22 | * @cryptlen: Number of bytes to encrypt or decrypt |
| 23 | * @iv: Initialisation Vector |
| 24 | * @src: Source SG list |
| 25 | * @dst: Destination SG list |
| 26 | * @base: Underlying async request request |
| 27 | * @__ctx: Start of private context data |
| 28 | */ |
| 29 | struct skcipher_request { |
| 30 | unsigned int cryptlen; |
| 31 | |
| 32 | u8 *iv; |
| 33 | |
| 34 | struct scatterlist *src; |
| 35 | struct scatterlist *dst; |
| 36 | |
| 37 | struct crypto_async_request base; |
| 38 | |
| 39 | void *__ctx[] CRYPTO_MINALIGN_ATTR; |
| 40 | }; |
| 41 | |
| 42 | /** |
Herbert Xu | 61da88e | 2007-12-17 21:51:27 +0800 | [diff] [blame] | 43 | * struct skcipher_givcrypt_request - Crypto request with IV generation |
| 44 | * @seq: Sequence number for IV generation |
| 45 | * @giv: Space for generated IV |
| 46 | * @creq: The crypto request itself |
| 47 | */ |
| 48 | struct skcipher_givcrypt_request { |
| 49 | u64 seq; |
| 50 | u8 *giv; |
| 51 | |
| 52 | struct ablkcipher_request creq; |
| 53 | }; |
| 54 | |
Herbert Xu | 7a7ffe6 | 2015-08-20 15:21:45 +0800 | [diff] [blame] | 55 | struct crypto_skcipher { |
| 56 | int (*setkey)(struct crypto_skcipher *tfm, const u8 *key, |
| 57 | unsigned int keylen); |
| 58 | int (*encrypt)(struct skcipher_request *req); |
| 59 | int (*decrypt)(struct skcipher_request *req); |
| 60 | |
| 61 | unsigned int ivsize; |
| 62 | unsigned int reqsize; |
| 63 | |
| 64 | struct crypto_tfm base; |
| 65 | }; |
| 66 | |
| 67 | #define SKCIPHER_REQUEST_ON_STACK(name, tfm) \ |
| 68 | char __##name##_desc[sizeof(struct skcipher_request) + \ |
| 69 | crypto_skcipher_reqsize(tfm)] CRYPTO_MINALIGN_ATTR; \ |
| 70 | struct skcipher_request *name = (void *)__##name##_desc |
| 71 | |
Herbert Xu | 61da88e | 2007-12-17 21:51:27 +0800 | [diff] [blame] | 72 | static inline struct crypto_ablkcipher *skcipher_givcrypt_reqtfm( |
| 73 | struct skcipher_givcrypt_request *req) |
| 74 | { |
| 75 | return crypto_ablkcipher_reqtfm(&req->creq); |
| 76 | } |
| 77 | |
Herbert Xu | 03bf712 | 2007-12-01 18:35:38 +1100 | [diff] [blame] | 78 | static inline int crypto_skcipher_givencrypt( |
| 79 | struct skcipher_givcrypt_request *req) |
| 80 | { |
| 81 | struct ablkcipher_tfm *crt = |
| 82 | crypto_ablkcipher_crt(skcipher_givcrypt_reqtfm(req)); |
| 83 | return crt->givencrypt(req); |
| 84 | }; |
| 85 | |
| 86 | static inline int crypto_skcipher_givdecrypt( |
| 87 | struct skcipher_givcrypt_request *req) |
| 88 | { |
| 89 | struct ablkcipher_tfm *crt = |
| 90 | crypto_ablkcipher_crt(skcipher_givcrypt_reqtfm(req)); |
| 91 | return crt->givdecrypt(req); |
| 92 | }; |
| 93 | |
| 94 | static inline void skcipher_givcrypt_set_tfm( |
| 95 | struct skcipher_givcrypt_request *req, struct crypto_ablkcipher *tfm) |
| 96 | { |
| 97 | req->creq.base.tfm = crypto_ablkcipher_tfm(tfm); |
| 98 | } |
| 99 | |
| 100 | static inline struct skcipher_givcrypt_request *skcipher_givcrypt_cast( |
| 101 | struct crypto_async_request *req) |
| 102 | { |
| 103 | return container_of(ablkcipher_request_cast(req), |
| 104 | struct skcipher_givcrypt_request, creq); |
| 105 | } |
| 106 | |
| 107 | static inline struct skcipher_givcrypt_request *skcipher_givcrypt_alloc( |
| 108 | struct crypto_ablkcipher *tfm, gfp_t gfp) |
| 109 | { |
| 110 | struct skcipher_givcrypt_request *req; |
| 111 | |
| 112 | req = kmalloc(sizeof(struct skcipher_givcrypt_request) + |
| 113 | crypto_ablkcipher_reqsize(tfm), gfp); |
| 114 | |
| 115 | if (likely(req)) |
| 116 | skcipher_givcrypt_set_tfm(req, tfm); |
| 117 | |
| 118 | return req; |
| 119 | } |
| 120 | |
| 121 | static inline void skcipher_givcrypt_free(struct skcipher_givcrypt_request *req) |
| 122 | { |
| 123 | kfree(req); |
| 124 | } |
| 125 | |
| 126 | static inline void skcipher_givcrypt_set_callback( |
| 127 | struct skcipher_givcrypt_request *req, u32 flags, |
Mark Rustad | 3e3dc25 | 2014-07-25 02:53:38 -0700 | [diff] [blame] | 128 | crypto_completion_t compl, void *data) |
Herbert Xu | 03bf712 | 2007-12-01 18:35:38 +1100 | [diff] [blame] | 129 | { |
Mark Rustad | 3e3dc25 | 2014-07-25 02:53:38 -0700 | [diff] [blame] | 130 | ablkcipher_request_set_callback(&req->creq, flags, compl, data); |
Herbert Xu | 03bf712 | 2007-12-01 18:35:38 +1100 | [diff] [blame] | 131 | } |
| 132 | |
| 133 | static inline void skcipher_givcrypt_set_crypt( |
| 134 | struct skcipher_givcrypt_request *req, |
| 135 | struct scatterlist *src, struct scatterlist *dst, |
| 136 | unsigned int nbytes, void *iv) |
| 137 | { |
| 138 | ablkcipher_request_set_crypt(&req->creq, src, dst, nbytes, iv); |
| 139 | } |
| 140 | |
| 141 | static inline void skcipher_givcrypt_set_giv( |
| 142 | struct skcipher_givcrypt_request *req, u8 *giv, u64 seq) |
| 143 | { |
| 144 | req->giv = giv; |
| 145 | req->seq = seq; |
| 146 | } |
| 147 | |
Herbert Xu | 7a7ffe6 | 2015-08-20 15:21:45 +0800 | [diff] [blame] | 148 | /** |
| 149 | * DOC: Symmetric Key Cipher API |
| 150 | * |
| 151 | * Symmetric key cipher API is used with the ciphers of type |
| 152 | * CRYPTO_ALG_TYPE_SKCIPHER (listed as type "skcipher" in /proc/crypto). |
| 153 | * |
| 154 | * Asynchronous cipher operations imply that the function invocation for a |
| 155 | * cipher request returns immediately before the completion of the operation. |
| 156 | * The cipher request is scheduled as a separate kernel thread and therefore |
| 157 | * load-balanced on the different CPUs via the process scheduler. To allow |
| 158 | * the kernel crypto API to inform the caller about the completion of a cipher |
| 159 | * request, the caller must provide a callback function. That function is |
| 160 | * invoked with the cipher handle when the request completes. |
| 161 | * |
| 162 | * To support the asynchronous operation, additional information than just the |
| 163 | * cipher handle must be supplied to the kernel crypto API. That additional |
| 164 | * information is given by filling in the skcipher_request data structure. |
| 165 | * |
| 166 | * For the symmetric key cipher API, the state is maintained with the tfm |
| 167 | * cipher handle. A single tfm can be used across multiple calls and in |
| 168 | * parallel. For asynchronous block cipher calls, context data supplied and |
| 169 | * only used by the caller can be referenced the request data structure in |
| 170 | * addition to the IV used for the cipher request. The maintenance of such |
| 171 | * state information would be important for a crypto driver implementer to |
| 172 | * have, because when calling the callback function upon completion of the |
| 173 | * cipher operation, that callback function may need some information about |
| 174 | * which operation just finished if it invoked multiple in parallel. This |
| 175 | * state information is unused by the kernel crypto API. |
| 176 | */ |
| 177 | |
| 178 | static inline struct crypto_skcipher *__crypto_skcipher_cast( |
| 179 | struct crypto_tfm *tfm) |
| 180 | { |
| 181 | return container_of(tfm, struct crypto_skcipher, base); |
| 182 | } |
| 183 | |
| 184 | /** |
| 185 | * crypto_alloc_skcipher() - allocate symmetric key cipher handle |
| 186 | * @alg_name: is the cra_name / name or cra_driver_name / driver name of the |
| 187 | * skcipher cipher |
| 188 | * @type: specifies the type of the cipher |
| 189 | * @mask: specifies the mask for the cipher |
| 190 | * |
| 191 | * Allocate a cipher handle for an skcipher. The returned struct |
| 192 | * crypto_skcipher is the cipher handle that is required for any subsequent |
| 193 | * API invocation for that skcipher. |
| 194 | * |
| 195 | * Return: allocated cipher handle in case of success; IS_ERR() is true in case |
| 196 | * of an error, PTR_ERR() returns the error code. |
| 197 | */ |
| 198 | struct crypto_skcipher *crypto_alloc_skcipher(const char *alg_name, |
| 199 | u32 type, u32 mask); |
| 200 | |
| 201 | static inline struct crypto_tfm *crypto_skcipher_tfm( |
| 202 | struct crypto_skcipher *tfm) |
| 203 | { |
| 204 | return &tfm->base; |
| 205 | } |
| 206 | |
| 207 | /** |
| 208 | * crypto_free_skcipher() - zeroize and free cipher handle |
| 209 | * @tfm: cipher handle to be freed |
| 210 | */ |
| 211 | static inline void crypto_free_skcipher(struct crypto_skcipher *tfm) |
| 212 | { |
| 213 | crypto_destroy_tfm(tfm, crypto_skcipher_tfm(tfm)); |
| 214 | } |
| 215 | |
| 216 | /** |
| 217 | * crypto_has_skcipher() - Search for the availability of an skcipher. |
| 218 | * @alg_name: is the cra_name / name or cra_driver_name / driver name of the |
| 219 | * skcipher |
| 220 | * @type: specifies the type of the cipher |
| 221 | * @mask: specifies the mask for the cipher |
| 222 | * |
| 223 | * Return: true when the skcipher is known to the kernel crypto API; false |
| 224 | * otherwise |
| 225 | */ |
| 226 | static inline int crypto_has_skcipher(const char *alg_name, u32 type, |
| 227 | u32 mask) |
| 228 | { |
| 229 | return crypto_has_alg(alg_name, crypto_skcipher_type(type), |
| 230 | crypto_skcipher_mask(mask)); |
| 231 | } |
| 232 | |
| 233 | /** |
| 234 | * crypto_skcipher_ivsize() - obtain IV size |
| 235 | * @tfm: cipher handle |
| 236 | * |
| 237 | * The size of the IV for the skcipher referenced by the cipher handle is |
| 238 | * returned. This IV size may be zero if the cipher does not need an IV. |
| 239 | * |
| 240 | * Return: IV size in bytes |
| 241 | */ |
| 242 | static inline unsigned int crypto_skcipher_ivsize(struct crypto_skcipher *tfm) |
| 243 | { |
| 244 | return tfm->ivsize; |
| 245 | } |
| 246 | |
| 247 | /** |
| 248 | * crypto_skcipher_blocksize() - obtain block size of cipher |
| 249 | * @tfm: cipher handle |
| 250 | * |
| 251 | * The block size for the skcipher referenced with the cipher handle is |
| 252 | * returned. The caller may use that information to allocate appropriate |
| 253 | * memory for the data returned by the encryption or decryption operation |
| 254 | * |
| 255 | * Return: block size of cipher |
| 256 | */ |
| 257 | static inline unsigned int crypto_skcipher_blocksize( |
| 258 | struct crypto_skcipher *tfm) |
| 259 | { |
| 260 | return crypto_tfm_alg_blocksize(crypto_skcipher_tfm(tfm)); |
| 261 | } |
| 262 | |
| 263 | static inline unsigned int crypto_skcipher_alignmask( |
| 264 | struct crypto_skcipher *tfm) |
| 265 | { |
| 266 | return crypto_tfm_alg_alignmask(crypto_skcipher_tfm(tfm)); |
| 267 | } |
| 268 | |
| 269 | static inline u32 crypto_skcipher_get_flags(struct crypto_skcipher *tfm) |
| 270 | { |
| 271 | return crypto_tfm_get_flags(crypto_skcipher_tfm(tfm)); |
| 272 | } |
| 273 | |
| 274 | static inline void crypto_skcipher_set_flags(struct crypto_skcipher *tfm, |
| 275 | u32 flags) |
| 276 | { |
| 277 | crypto_tfm_set_flags(crypto_skcipher_tfm(tfm), flags); |
| 278 | } |
| 279 | |
| 280 | static inline void crypto_skcipher_clear_flags(struct crypto_skcipher *tfm, |
| 281 | u32 flags) |
| 282 | { |
| 283 | crypto_tfm_clear_flags(crypto_skcipher_tfm(tfm), flags); |
| 284 | } |
| 285 | |
| 286 | /** |
| 287 | * crypto_skcipher_setkey() - set key for cipher |
| 288 | * @tfm: cipher handle |
| 289 | * @key: buffer holding the key |
| 290 | * @keylen: length of the key in bytes |
| 291 | * |
| 292 | * The caller provided key is set for the skcipher referenced by the cipher |
| 293 | * handle. |
| 294 | * |
| 295 | * Note, the key length determines the cipher type. Many block ciphers implement |
| 296 | * different cipher modes depending on the key size, such as AES-128 vs AES-192 |
| 297 | * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128 |
| 298 | * is performed. |
| 299 | * |
| 300 | * Return: 0 if the setting of the key was successful; < 0 if an error occurred |
| 301 | */ |
| 302 | static inline int crypto_skcipher_setkey(struct crypto_skcipher *tfm, |
| 303 | const u8 *key, unsigned int keylen) |
| 304 | { |
| 305 | return tfm->setkey(tfm, key, keylen); |
| 306 | } |
| 307 | |
| 308 | /** |
| 309 | * crypto_skcipher_reqtfm() - obtain cipher handle from request |
| 310 | * @req: skcipher_request out of which the cipher handle is to be obtained |
| 311 | * |
| 312 | * Return the crypto_skcipher handle when furnishing an skcipher_request |
| 313 | * data structure. |
| 314 | * |
| 315 | * Return: crypto_skcipher handle |
| 316 | */ |
| 317 | static inline struct crypto_skcipher *crypto_skcipher_reqtfm( |
| 318 | struct skcipher_request *req) |
| 319 | { |
| 320 | return __crypto_skcipher_cast(req->base.tfm); |
| 321 | } |
| 322 | |
| 323 | /** |
| 324 | * crypto_skcipher_encrypt() - encrypt plaintext |
| 325 | * @req: reference to the skcipher_request handle that holds all information |
| 326 | * needed to perform the cipher operation |
| 327 | * |
| 328 | * Encrypt plaintext data using the skcipher_request handle. That data |
| 329 | * structure and how it is filled with data is discussed with the |
| 330 | * skcipher_request_* functions. |
| 331 | * |
| 332 | * Return: 0 if the cipher operation was successful; < 0 if an error occurred |
| 333 | */ |
| 334 | static inline int crypto_skcipher_encrypt(struct skcipher_request *req) |
| 335 | { |
| 336 | struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); |
| 337 | |
| 338 | return tfm->encrypt(req); |
| 339 | } |
| 340 | |
| 341 | /** |
| 342 | * crypto_skcipher_decrypt() - decrypt ciphertext |
| 343 | * @req: reference to the skcipher_request handle that holds all information |
| 344 | * needed to perform the cipher operation |
| 345 | * |
| 346 | * Decrypt ciphertext data using the skcipher_request handle. That data |
| 347 | * structure and how it is filled with data is discussed with the |
| 348 | * skcipher_request_* functions. |
| 349 | * |
| 350 | * Return: 0 if the cipher operation was successful; < 0 if an error occurred |
| 351 | */ |
| 352 | static inline int crypto_skcipher_decrypt(struct skcipher_request *req) |
| 353 | { |
| 354 | struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); |
| 355 | |
| 356 | return tfm->decrypt(req); |
| 357 | } |
| 358 | |
| 359 | /** |
| 360 | * DOC: Symmetric Key Cipher Request Handle |
| 361 | * |
| 362 | * The skcipher_request data structure contains all pointers to data |
| 363 | * required for the symmetric key cipher operation. This includes the cipher |
| 364 | * handle (which can be used by multiple skcipher_request instances), pointer |
| 365 | * to plaintext and ciphertext, asynchronous callback function, etc. It acts |
| 366 | * as a handle to the skcipher_request_* API calls in a similar way as |
| 367 | * skcipher handle to the crypto_skcipher_* API calls. |
| 368 | */ |
| 369 | |
| 370 | /** |
| 371 | * crypto_skcipher_reqsize() - obtain size of the request data structure |
| 372 | * @tfm: cipher handle |
| 373 | * |
| 374 | * Return: number of bytes |
| 375 | */ |
| 376 | static inline unsigned int crypto_skcipher_reqsize(struct crypto_skcipher *tfm) |
| 377 | { |
| 378 | return tfm->reqsize; |
| 379 | } |
| 380 | |
| 381 | /** |
| 382 | * skcipher_request_set_tfm() - update cipher handle reference in request |
| 383 | * @req: request handle to be modified |
| 384 | * @tfm: cipher handle that shall be added to the request handle |
| 385 | * |
| 386 | * Allow the caller to replace the existing skcipher handle in the request |
| 387 | * data structure with a different one. |
| 388 | */ |
| 389 | static inline void skcipher_request_set_tfm(struct skcipher_request *req, |
| 390 | struct crypto_skcipher *tfm) |
| 391 | { |
| 392 | req->base.tfm = crypto_skcipher_tfm(tfm); |
| 393 | } |
| 394 | |
| 395 | static inline struct skcipher_request *skcipher_request_cast( |
| 396 | struct crypto_async_request *req) |
| 397 | { |
| 398 | return container_of(req, struct skcipher_request, base); |
| 399 | } |
| 400 | |
| 401 | /** |
| 402 | * skcipher_request_alloc() - allocate request data structure |
| 403 | * @tfm: cipher handle to be registered with the request |
| 404 | * @gfp: memory allocation flag that is handed to kmalloc by the API call. |
| 405 | * |
| 406 | * Allocate the request data structure that must be used with the skcipher |
| 407 | * encrypt and decrypt API calls. During the allocation, the provided skcipher |
| 408 | * handle is registered in the request data structure. |
| 409 | * |
| 410 | * Return: allocated request handle in case of success; IS_ERR() is true in case |
| 411 | * of an error, PTR_ERR() returns the error code. |
| 412 | */ |
| 413 | static inline struct skcipher_request *skcipher_request_alloc( |
| 414 | struct crypto_skcipher *tfm, gfp_t gfp) |
| 415 | { |
| 416 | struct skcipher_request *req; |
| 417 | |
| 418 | req = kmalloc(sizeof(struct skcipher_request) + |
| 419 | crypto_skcipher_reqsize(tfm), gfp); |
| 420 | |
| 421 | if (likely(req)) |
| 422 | skcipher_request_set_tfm(req, tfm); |
| 423 | |
| 424 | return req; |
| 425 | } |
| 426 | |
| 427 | /** |
| 428 | * skcipher_request_free() - zeroize and free request data structure |
| 429 | * @req: request data structure cipher handle to be freed |
| 430 | */ |
| 431 | static inline void skcipher_request_free(struct skcipher_request *req) |
| 432 | { |
| 433 | kzfree(req); |
| 434 | } |
| 435 | |
| 436 | /** |
| 437 | * skcipher_request_set_callback() - set asynchronous callback function |
| 438 | * @req: request handle |
| 439 | * @flags: specify zero or an ORing of the flags |
| 440 | * CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and |
| 441 | * increase the wait queue beyond the initial maximum size; |
| 442 | * CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep |
| 443 | * @compl: callback function pointer to be registered with the request handle |
| 444 | * @data: The data pointer refers to memory that is not used by the kernel |
| 445 | * crypto API, but provided to the callback function for it to use. Here, |
| 446 | * the caller can provide a reference to memory the callback function can |
| 447 | * operate on. As the callback function is invoked asynchronously to the |
| 448 | * related functionality, it may need to access data structures of the |
| 449 | * related functionality which can be referenced using this pointer. The |
| 450 | * callback function can access the memory via the "data" field in the |
| 451 | * crypto_async_request data structure provided to the callback function. |
| 452 | * |
| 453 | * This function allows setting the callback function that is triggered once the |
| 454 | * cipher operation completes. |
| 455 | * |
| 456 | * The callback function is registered with the skcipher_request handle and |
| 457 | * must comply with the following template |
| 458 | * |
| 459 | * void callback_function(struct crypto_async_request *req, int error) |
| 460 | */ |
| 461 | static inline void skcipher_request_set_callback(struct skcipher_request *req, |
| 462 | u32 flags, |
| 463 | crypto_completion_t compl, |
| 464 | void *data) |
| 465 | { |
| 466 | req->base.complete = compl; |
| 467 | req->base.data = data; |
| 468 | req->base.flags = flags; |
| 469 | } |
| 470 | |
| 471 | /** |
| 472 | * skcipher_request_set_crypt() - set data buffers |
| 473 | * @req: request handle |
| 474 | * @src: source scatter / gather list |
| 475 | * @dst: destination scatter / gather list |
| 476 | * @cryptlen: number of bytes to process from @src |
| 477 | * @iv: IV for the cipher operation which must comply with the IV size defined |
| 478 | * by crypto_skcipher_ivsize |
| 479 | * |
| 480 | * This function allows setting of the source data and destination data |
| 481 | * scatter / gather lists. |
| 482 | * |
| 483 | * For encryption, the source is treated as the plaintext and the |
| 484 | * destination is the ciphertext. For a decryption operation, the use is |
| 485 | * reversed - the source is the ciphertext and the destination is the plaintext. |
| 486 | */ |
| 487 | static inline void skcipher_request_set_crypt( |
| 488 | struct skcipher_request *req, |
| 489 | struct scatterlist *src, struct scatterlist *dst, |
| 490 | unsigned int cryptlen, void *iv) |
| 491 | { |
| 492 | req->src = src; |
| 493 | req->dst = dst; |
| 494 | req->cryptlen = cryptlen; |
| 495 | req->iv = iv; |
| 496 | } |
| 497 | |
Herbert Xu | 61da88e | 2007-12-17 21:51:27 +0800 | [diff] [blame] | 498 | #endif /* _CRYPTO_SKCIPHER_H */ |
| 499 | |