blob: 508b2ea91f43d090dca79617ac2060b5e36f635a [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * linux/fs/transaction.c
3 *
4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5 *
6 * Copyright 1998 Red Hat corp --- All Rights Reserved
7 *
8 * This file is part of the Linux kernel and is made available under
9 * the terms of the GNU General Public License, version 2, or at your
10 * option, any later version, incorporated herein by reference.
11 *
12 * Generic filesystem transaction handling code; part of the ext2fs
13 * journaling system.
14 *
15 * This file manages transactions (compound commits managed by the
16 * journaling code) and handles (individual atomic operations by the
17 * filesystem).
18 */
19
20#include <linux/time.h>
21#include <linux/fs.h>
22#include <linux/jbd.h>
23#include <linux/errno.h>
24#include <linux/slab.h>
25#include <linux/timer.h>
26#include <linux/smp_lock.h>
27#include <linux/mm.h>
28#include <linux/highmem.h>
29
30/*
31 * get_transaction: obtain a new transaction_t object.
32 *
33 * Simply allocate and initialise a new transaction. Create it in
34 * RUNNING state and add it to the current journal (which should not
35 * have an existing running transaction: we only make a new transaction
36 * once we have started to commit the old one).
37 *
38 * Preconditions:
39 * The journal MUST be locked. We don't perform atomic mallocs on the
40 * new transaction and we can't block without protecting against other
41 * processes trying to touch the journal while it is in transition.
42 *
43 * Called under j_state_lock
44 */
45
46static transaction_t *
47get_transaction(journal_t *journal, transaction_t *transaction)
48{
49 transaction->t_journal = journal;
50 transaction->t_state = T_RUNNING;
51 transaction->t_tid = journal->j_transaction_sequence++;
52 transaction->t_expires = jiffies + journal->j_commit_interval;
53 spin_lock_init(&transaction->t_handle_lock);
54
55 /* Set up the commit timer for the new transaction. */
Andrew Mortone3df1892006-03-25 03:06:53 -080056 journal->j_commit_timer.expires = transaction->t_expires;
57 add_timer(&journal->j_commit_timer);
Linus Torvalds1da177e2005-04-16 15:20:36 -070058
59 J_ASSERT(journal->j_running_transaction == NULL);
60 journal->j_running_transaction = transaction;
61
62 return transaction;
63}
64
65/*
66 * Handle management.
67 *
68 * A handle_t is an object which represents a single atomic update to a
69 * filesystem, and which tracks all of the modifications which form part
70 * of that one update.
71 */
72
73/*
74 * start_this_handle: Given a handle, deal with any locking or stalling
75 * needed to make sure that there is enough journal space for the handle
76 * to begin. Attach the handle to a transaction and set up the
77 * transaction's buffer credits.
78 */
79
80static int start_this_handle(journal_t *journal, handle_t *handle)
81{
82 transaction_t *transaction;
83 int needed;
84 int nblocks = handle->h_buffer_credits;
85 transaction_t *new_transaction = NULL;
86 int ret = 0;
87
88 if (nblocks > journal->j_max_transaction_buffers) {
89 printk(KERN_ERR "JBD: %s wants too many credits (%d > %d)\n",
90 current->comm, nblocks,
91 journal->j_max_transaction_buffers);
92 ret = -ENOSPC;
93 goto out;
94 }
95
96alloc_transaction:
97 if (!journal->j_running_transaction) {
98 new_transaction = jbd_kmalloc(sizeof(*new_transaction),
99 GFP_NOFS);
100 if (!new_transaction) {
101 ret = -ENOMEM;
102 goto out;
103 }
104 memset(new_transaction, 0, sizeof(*new_transaction));
105 }
106
107 jbd_debug(3, "New handle %p going live.\n", handle);
108
109repeat:
110
111 /*
112 * We need to hold j_state_lock until t_updates has been incremented,
113 * for proper journal barrier handling
114 */
115 spin_lock(&journal->j_state_lock);
116repeat_locked:
117 if (is_journal_aborted(journal) ||
118 (journal->j_errno != 0 && !(journal->j_flags & JFS_ACK_ERR))) {
119 spin_unlock(&journal->j_state_lock);
120 ret = -EROFS;
121 goto out;
122 }
123
124 /* Wait on the journal's transaction barrier if necessary */
125 if (journal->j_barrier_count) {
126 spin_unlock(&journal->j_state_lock);
127 wait_event(journal->j_wait_transaction_locked,
128 journal->j_barrier_count == 0);
129 goto repeat;
130 }
131
132 if (!journal->j_running_transaction) {
133 if (!new_transaction) {
134 spin_unlock(&journal->j_state_lock);
135 goto alloc_transaction;
136 }
137 get_transaction(journal, new_transaction);
138 new_transaction = NULL;
139 }
140
141 transaction = journal->j_running_transaction;
142
143 /*
144 * If the current transaction is locked down for commit, wait for the
145 * lock to be released.
146 */
147 if (transaction->t_state == T_LOCKED) {
148 DEFINE_WAIT(wait);
149
150 prepare_to_wait(&journal->j_wait_transaction_locked,
151 &wait, TASK_UNINTERRUPTIBLE);
152 spin_unlock(&journal->j_state_lock);
153 schedule();
154 finish_wait(&journal->j_wait_transaction_locked, &wait);
155 goto repeat;
156 }
157
158 /*
159 * If there is not enough space left in the log to write all potential
160 * buffers requested by this operation, we need to stall pending a log
161 * checkpoint to free some more log space.
162 */
163 spin_lock(&transaction->t_handle_lock);
164 needed = transaction->t_outstanding_credits + nblocks;
165
166 if (needed > journal->j_max_transaction_buffers) {
167 /*
168 * If the current transaction is already too large, then start
169 * to commit it: we can then go back and attach this handle to
170 * a new transaction.
171 */
172 DEFINE_WAIT(wait);
173
174 jbd_debug(2, "Handle %p starting new commit...\n", handle);
175 spin_unlock(&transaction->t_handle_lock);
176 prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
177 TASK_UNINTERRUPTIBLE);
178 __log_start_commit(journal, transaction->t_tid);
179 spin_unlock(&journal->j_state_lock);
180 schedule();
181 finish_wait(&journal->j_wait_transaction_locked, &wait);
182 goto repeat;
183 }
184
185 /*
186 * The commit code assumes that it can get enough log space
187 * without forcing a checkpoint. This is *critical* for
188 * correctness: a checkpoint of a buffer which is also
189 * associated with a committing transaction creates a deadlock,
190 * so commit simply cannot force through checkpoints.
191 *
192 * We must therefore ensure the necessary space in the journal
193 * *before* starting to dirty potentially checkpointed buffers
194 * in the new transaction.
195 *
196 * The worst part is, any transaction currently committing can
197 * reduce the free space arbitrarily. Be careful to account for
198 * those buffers when checkpointing.
199 */
200
201 /*
202 * @@@ AKPM: This seems rather over-defensive. We're giving commit
203 * a _lot_ of headroom: 1/4 of the journal plus the size of
204 * the committing transaction. Really, we only need to give it
205 * committing_transaction->t_outstanding_credits plus "enough" for
206 * the log control blocks.
207 * Also, this test is inconsitent with the matching one in
208 * journal_extend().
209 */
210 if (__log_space_left(journal) < jbd_space_needed(journal)) {
211 jbd_debug(2, "Handle %p waiting for checkpoint...\n", handle);
212 spin_unlock(&transaction->t_handle_lock);
213 __log_wait_for_space(journal);
214 goto repeat_locked;
215 }
216
217 /* OK, account for the buffers that this operation expects to
218 * use and add the handle to the running transaction. */
219
220 handle->h_transaction = transaction;
221 transaction->t_outstanding_credits += nblocks;
222 transaction->t_updates++;
223 transaction->t_handle_count++;
224 jbd_debug(4, "Handle %p given %d credits (total %d, free %d)\n",
225 handle, nblocks, transaction->t_outstanding_credits,
226 __log_space_left(journal));
227 spin_unlock(&transaction->t_handle_lock);
228 spin_unlock(&journal->j_state_lock);
229out:
Andrew Morton304c4c82006-06-23 02:05:31 -0700230 if (unlikely(new_transaction)) /* It's usually NULL */
231 kfree(new_transaction);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700232 return ret;
233}
234
235/* Allocate a new handle. This should probably be in a slab... */
236static handle_t *new_handle(int nblocks)
237{
238 handle_t *handle = jbd_alloc_handle(GFP_NOFS);
239 if (!handle)
240 return NULL;
241 memset(handle, 0, sizeof(*handle));
242 handle->h_buffer_credits = nblocks;
243 handle->h_ref = 1;
244
245 return handle;
246}
247
248/**
249 * handle_t *journal_start() - Obtain a new handle.
250 * @journal: Journal to start transaction on.
251 * @nblocks: number of block buffer we might modify
252 *
253 * We make sure that the transaction can guarantee at least nblocks of
254 * modified buffers in the log. We block until the log can guarantee
255 * that much space.
256 *
257 * This function is visible to journal users (like ext3fs), so is not
258 * called with the journal already locked.
259 *
260 * Return a pointer to a newly allocated handle, or NULL on failure
261 */
262handle_t *journal_start(journal_t *journal, int nblocks)
263{
264 handle_t *handle = journal_current_handle();
265 int err;
266
267 if (!journal)
268 return ERR_PTR(-EROFS);
269
270 if (handle) {
271 J_ASSERT(handle->h_transaction->t_journal == journal);
272 handle->h_ref++;
273 return handle;
274 }
275
276 handle = new_handle(nblocks);
277 if (!handle)
278 return ERR_PTR(-ENOMEM);
279
280 current->journal_info = handle;
281
282 err = start_this_handle(journal, handle);
283 if (err < 0) {
284 jbd_free_handle(handle);
285 current->journal_info = NULL;
286 handle = ERR_PTR(err);
287 }
288 return handle;
289}
290
291/**
292 * int journal_extend() - extend buffer credits.
293 * @handle: handle to 'extend'
294 * @nblocks: nr blocks to try to extend by.
295 *
296 * Some transactions, such as large extends and truncates, can be done
297 * atomically all at once or in several stages. The operation requests
298 * a credit for a number of buffer modications in advance, but can
299 * extend its credit if it needs more.
300 *
301 * journal_extend tries to give the running handle more buffer credits.
302 * It does not guarantee that allocation - this is a best-effort only.
303 * The calling process MUST be able to deal cleanly with a failure to
304 * extend here.
305 *
306 * Return 0 on success, non-zero on failure.
307 *
308 * return code < 0 implies an error
309 * return code > 0 implies normal transaction-full status.
310 */
311int journal_extend(handle_t *handle, int nblocks)
312{
313 transaction_t *transaction = handle->h_transaction;
314 journal_t *journal = transaction->t_journal;
315 int result;
316 int wanted;
317
318 result = -EIO;
319 if (is_handle_aborted(handle))
320 goto out;
321
322 result = 1;
323
324 spin_lock(&journal->j_state_lock);
325
326 /* Don't extend a locked-down transaction! */
327 if (handle->h_transaction->t_state != T_RUNNING) {
328 jbd_debug(3, "denied handle %p %d blocks: "
329 "transaction not running\n", handle, nblocks);
330 goto error_out;
331 }
332
333 spin_lock(&transaction->t_handle_lock);
334 wanted = transaction->t_outstanding_credits + nblocks;
335
336 if (wanted > journal->j_max_transaction_buffers) {
337 jbd_debug(3, "denied handle %p %d blocks: "
338 "transaction too large\n", handle, nblocks);
339 goto unlock;
340 }
341
342 if (wanted > __log_space_left(journal)) {
343 jbd_debug(3, "denied handle %p %d blocks: "
344 "insufficient log space\n", handle, nblocks);
345 goto unlock;
346 }
347
348 handle->h_buffer_credits += nblocks;
349 transaction->t_outstanding_credits += nblocks;
350 result = 0;
351
352 jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
353unlock:
354 spin_unlock(&transaction->t_handle_lock);
355error_out:
356 spin_unlock(&journal->j_state_lock);
357out:
358 return result;
359}
360
361
362/**
363 * int journal_restart() - restart a handle .
364 * @handle: handle to restart
365 * @nblocks: nr credits requested
366 *
367 * Restart a handle for a multi-transaction filesystem
368 * operation.
369 *
370 * If the journal_extend() call above fails to grant new buffer credits
371 * to a running handle, a call to journal_restart will commit the
372 * handle's transaction so far and reattach the handle to a new
373 * transaction capabable of guaranteeing the requested number of
374 * credits.
375 */
376
377int journal_restart(handle_t *handle, int nblocks)
378{
379 transaction_t *transaction = handle->h_transaction;
380 journal_t *journal = transaction->t_journal;
381 int ret;
382
383 /* If we've had an abort of any type, don't even think about
384 * actually doing the restart! */
385 if (is_handle_aborted(handle))
386 return 0;
387
388 /*
389 * First unlink the handle from its current transaction, and start the
390 * commit on that.
391 */
392 J_ASSERT(transaction->t_updates > 0);
393 J_ASSERT(journal_current_handle() == handle);
394
395 spin_lock(&journal->j_state_lock);
396 spin_lock(&transaction->t_handle_lock);
397 transaction->t_outstanding_credits -= handle->h_buffer_credits;
398 transaction->t_updates--;
399
400 if (!transaction->t_updates)
401 wake_up(&journal->j_wait_updates);
402 spin_unlock(&transaction->t_handle_lock);
403
404 jbd_debug(2, "restarting handle %p\n", handle);
405 __log_start_commit(journal, transaction->t_tid);
406 spin_unlock(&journal->j_state_lock);
407
408 handle->h_buffer_credits = nblocks;
409 ret = start_this_handle(journal, handle);
410 return ret;
411}
412
413
414/**
415 * void journal_lock_updates () - establish a transaction barrier.
416 * @journal: Journal to establish a barrier on.
417 *
418 * This locks out any further updates from being started, and blocks
419 * until all existing updates have completed, returning only once the
420 * journal is in a quiescent state with no updates running.
421 *
422 * The journal lock should not be held on entry.
423 */
424void journal_lock_updates(journal_t *journal)
425{
426 DEFINE_WAIT(wait);
427
428 spin_lock(&journal->j_state_lock);
429 ++journal->j_barrier_count;
430
431 /* Wait until there are no running updates */
432 while (1) {
433 transaction_t *transaction = journal->j_running_transaction;
434
435 if (!transaction)
436 break;
437
438 spin_lock(&transaction->t_handle_lock);
439 if (!transaction->t_updates) {
440 spin_unlock(&transaction->t_handle_lock);
441 break;
442 }
443 prepare_to_wait(&journal->j_wait_updates, &wait,
444 TASK_UNINTERRUPTIBLE);
445 spin_unlock(&transaction->t_handle_lock);
446 spin_unlock(&journal->j_state_lock);
447 schedule();
448 finish_wait(&journal->j_wait_updates, &wait);
449 spin_lock(&journal->j_state_lock);
450 }
451 spin_unlock(&journal->j_state_lock);
452
453 /*
454 * We have now established a barrier against other normal updates, but
455 * we also need to barrier against other journal_lock_updates() calls
456 * to make sure that we serialise special journal-locked operations
457 * too.
458 */
Arjan van de Ven2c68ee72006-03-23 03:00:35 -0800459 mutex_lock(&journal->j_barrier);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700460}
461
462/**
463 * void journal_unlock_updates (journal_t* journal) - release barrier
464 * @journal: Journal to release the barrier on.
465 *
466 * Release a transaction barrier obtained with journal_lock_updates().
467 *
468 * Should be called without the journal lock held.
469 */
470void journal_unlock_updates (journal_t *journal)
471{
472 J_ASSERT(journal->j_barrier_count != 0);
473
Arjan van de Ven2c68ee72006-03-23 03:00:35 -0800474 mutex_unlock(&journal->j_barrier);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700475 spin_lock(&journal->j_state_lock);
476 --journal->j_barrier_count;
477 spin_unlock(&journal->j_state_lock);
478 wake_up(&journal->j_wait_transaction_locked);
479}
480
481/*
482 * Report any unexpected dirty buffers which turn up. Normally those
483 * indicate an error, but they can occur if the user is running (say)
484 * tune2fs to modify the live filesystem, so we need the option of
485 * continuing as gracefully as possible. #
486 *
487 * The caller should already hold the journal lock and
488 * j_list_lock spinlock: most callers will need those anyway
489 * in order to probe the buffer's journaling state safely.
490 */
491static void jbd_unexpected_dirty_buffer(struct journal_head *jh)
492{
Linus Torvalds1da177e2005-04-16 15:20:36 -0700493 int jlist;
494
Jan Kara4407c2b2005-09-06 15:19:17 -0700495 /* If this buffer is one which might reasonably be dirty
496 * --- ie. data, or not part of this journal --- then
497 * we're OK to leave it alone, but otherwise we need to
498 * move the dirty bit to the journal's own internal
499 * JBDDirty bit. */
500 jlist = jh->b_jlist;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700501
Jan Kara4407c2b2005-09-06 15:19:17 -0700502 if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
503 jlist == BJ_Shadow || jlist == BJ_Forget) {
504 struct buffer_head *bh = jh2bh(jh);
505
506 if (test_clear_buffer_dirty(bh))
507 set_buffer_jbddirty(bh);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700508 }
509}
510
511/*
512 * If the buffer is already part of the current transaction, then there
513 * is nothing we need to do. If it is already part of a prior
514 * transaction which we are still committing to disk, then we need to
515 * make sure that we do not overwrite the old copy: we do copy-out to
516 * preserve the copy going to disk. We also account the buffer against
517 * the handle's metadata buffer credits (unless the buffer is already
518 * part of the transaction, that is).
519 *
520 */
521static int
522do_get_write_access(handle_t *handle, struct journal_head *jh,
523 int force_copy)
524{
525 struct buffer_head *bh;
526 transaction_t *transaction;
527 journal_t *journal;
528 int error;
529 char *frozen_buffer = NULL;
530 int need_copy = 0;
531
532 if (is_handle_aborted(handle))
533 return -EROFS;
534
535 transaction = handle->h_transaction;
536 journal = transaction->t_journal;
537
538 jbd_debug(5, "buffer_head %p, force_copy %d\n", jh, force_copy);
539
540 JBUFFER_TRACE(jh, "entry");
541repeat:
542 bh = jh2bh(jh);
543
544 /* @@@ Need to check for errors here at some point. */
545
546 lock_buffer(bh);
547 jbd_lock_bh_state(bh);
548
549 /* We now hold the buffer lock so it is safe to query the buffer
550 * state. Is the buffer dirty?
551 *
552 * If so, there are two possibilities. The buffer may be
553 * non-journaled, and undergoing a quite legitimate writeback.
554 * Otherwise, it is journaled, and we don't expect dirty buffers
555 * in that state (the buffers should be marked JBD_Dirty
556 * instead.) So either the IO is being done under our own
557 * control and this is a bug, or it's a third party IO such as
558 * dump(8) (which may leave the buffer scheduled for read ---
559 * ie. locked but not dirty) or tune2fs (which may actually have
560 * the buffer dirtied, ugh.) */
561
562 if (buffer_dirty(bh)) {
563 /*
564 * First question: is this buffer already part of the current
565 * transaction or the existing committing transaction?
566 */
567 if (jh->b_transaction) {
568 J_ASSERT_JH(jh,
569 jh->b_transaction == transaction ||
570 jh->b_transaction ==
571 journal->j_committing_transaction);
572 if (jh->b_next_transaction)
573 J_ASSERT_JH(jh, jh->b_next_transaction ==
574 transaction);
Jan Kara4407c2b2005-09-06 15:19:17 -0700575 }
576 /*
577 * In any case we need to clean the dirty flag and we must
578 * do it under the buffer lock to be sure we don't race
579 * with running write-out.
580 */
581 JBUFFER_TRACE(jh, "Unexpected dirty buffer");
582 jbd_unexpected_dirty_buffer(jh);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700583 }
584
585 unlock_buffer(bh);
586
587 error = -EROFS;
588 if (is_handle_aborted(handle)) {
589 jbd_unlock_bh_state(bh);
590 goto out;
591 }
592 error = 0;
593
594 /*
595 * The buffer is already part of this transaction if b_transaction or
596 * b_next_transaction points to it
597 */
598 if (jh->b_transaction == transaction ||
599 jh->b_next_transaction == transaction)
600 goto done;
601
602 /*
603 * If there is already a copy-out version of this buffer, then we don't
604 * need to make another one
605 */
606 if (jh->b_frozen_data) {
607 JBUFFER_TRACE(jh, "has frozen data");
608 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
609 jh->b_next_transaction = transaction;
610 goto done;
611 }
612
613 /* Is there data here we need to preserve? */
614
615 if (jh->b_transaction && jh->b_transaction != transaction) {
616 JBUFFER_TRACE(jh, "owned by older transaction");
617 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
618 J_ASSERT_JH(jh, jh->b_transaction ==
619 journal->j_committing_transaction);
620
621 /* There is one case we have to be very careful about.
622 * If the committing transaction is currently writing
623 * this buffer out to disk and has NOT made a copy-out,
624 * then we cannot modify the buffer contents at all
625 * right now. The essence of copy-out is that it is the
626 * extra copy, not the primary copy, which gets
627 * journaled. If the primary copy is already going to
628 * disk then we cannot do copy-out here. */
629
630 if (jh->b_jlist == BJ_Shadow) {
631 DEFINE_WAIT_BIT(wait, &bh->b_state, BH_Unshadow);
632 wait_queue_head_t *wqh;
633
634 wqh = bit_waitqueue(&bh->b_state, BH_Unshadow);
635
636 JBUFFER_TRACE(jh, "on shadow: sleep");
637 jbd_unlock_bh_state(bh);
638 /* commit wakes up all shadow buffers after IO */
639 for ( ; ; ) {
640 prepare_to_wait(wqh, &wait.wait,
641 TASK_UNINTERRUPTIBLE);
642 if (jh->b_jlist != BJ_Shadow)
643 break;
644 schedule();
645 }
646 finish_wait(wqh, &wait.wait);
647 goto repeat;
648 }
649
650 /* Only do the copy if the currently-owning transaction
651 * still needs it. If it is on the Forget list, the
652 * committing transaction is past that stage. The
653 * buffer had better remain locked during the kmalloc,
654 * but that should be true --- we hold the journal lock
655 * still and the buffer is already on the BUF_JOURNAL
656 * list so won't be flushed.
657 *
658 * Subtle point, though: if this is a get_undo_access,
659 * then we will be relying on the frozen_data to contain
660 * the new value of the committed_data record after the
661 * transaction, so we HAVE to force the frozen_data copy
662 * in that case. */
663
664 if (jh->b_jlist != BJ_Forget || force_copy) {
665 JBUFFER_TRACE(jh, "generate frozen data");
666 if (!frozen_buffer) {
667 JBUFFER_TRACE(jh, "allocate memory for buffer");
668 jbd_unlock_bh_state(bh);
669 frozen_buffer = jbd_kmalloc(jh2bh(jh)->b_size,
670 GFP_NOFS);
671 if (!frozen_buffer) {
672 printk(KERN_EMERG
673 "%s: OOM for frozen_buffer\n",
674 __FUNCTION__);
675 JBUFFER_TRACE(jh, "oom!");
676 error = -ENOMEM;
677 jbd_lock_bh_state(bh);
678 goto done;
679 }
680 goto repeat;
681 }
682 jh->b_frozen_data = frozen_buffer;
683 frozen_buffer = NULL;
684 need_copy = 1;
685 }
686 jh->b_next_transaction = transaction;
687 }
688
689
690 /*
691 * Finally, if the buffer is not journaled right now, we need to make
692 * sure it doesn't get written to disk before the caller actually
693 * commits the new data
694 */
695 if (!jh->b_transaction) {
696 JBUFFER_TRACE(jh, "no transaction");
697 J_ASSERT_JH(jh, !jh->b_next_transaction);
698 jh->b_transaction = transaction;
699 JBUFFER_TRACE(jh, "file as BJ_Reserved");
700 spin_lock(&journal->j_list_lock);
701 __journal_file_buffer(jh, transaction, BJ_Reserved);
702 spin_unlock(&journal->j_list_lock);
703 }
704
705done:
706 if (need_copy) {
707 struct page *page;
708 int offset;
709 char *source;
710
711 J_EXPECT_JH(jh, buffer_uptodate(jh2bh(jh)),
712 "Possible IO failure.\n");
713 page = jh2bh(jh)->b_page;
714 offset = ((unsigned long) jh2bh(jh)->b_data) & ~PAGE_MASK;
715 source = kmap_atomic(page, KM_USER0);
716 memcpy(jh->b_frozen_data, source+offset, jh2bh(jh)->b_size);
717 kunmap_atomic(source, KM_USER0);
718 }
719 jbd_unlock_bh_state(bh);
720
721 /*
722 * If we are about to journal a buffer, then any revoke pending on it is
723 * no longer valid
724 */
725 journal_cancel_revoke(handle, jh);
726
727out:
Andrew Morton304c4c82006-06-23 02:05:31 -0700728 if (unlikely(frozen_buffer)) /* It's usually NULL */
729 kfree(frozen_buffer);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700730
731 JBUFFER_TRACE(jh, "exit");
732 return error;
733}
734
735/**
736 * int journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update.
737 * @handle: transaction to add buffer modifications to
738 * @bh: bh to be used for metadata writes
739 * @credits: variable that will receive credits for the buffer
740 *
741 * Returns an error code or 0 on success.
742 *
743 * In full data journalling mode the buffer may be of type BJ_AsyncData,
744 * because we're write()ing a buffer which is also part of a shared mapping.
745 */
746
747int journal_get_write_access(handle_t *handle, struct buffer_head *bh)
748{
749 struct journal_head *jh = journal_add_journal_head(bh);
750 int rc;
751
752 /* We do not want to get caught playing with fields which the
753 * log thread also manipulates. Make sure that the buffer
754 * completes any outstanding IO before proceeding. */
755 rc = do_get_write_access(handle, jh, 0);
756 journal_put_journal_head(jh);
757 return rc;
758}
759
760
761/*
762 * When the user wants to journal a newly created buffer_head
763 * (ie. getblk() returned a new buffer and we are going to populate it
764 * manually rather than reading off disk), then we need to keep the
765 * buffer_head locked until it has been completely filled with new
766 * data. In this case, we should be able to make the assertion that
767 * the bh is not already part of an existing transaction.
768 *
769 * The buffer should already be locked by the caller by this point.
770 * There is no lock ranking violation: it was a newly created,
771 * unlocked buffer beforehand. */
772
773/**
774 * int journal_get_create_access () - notify intent to use newly created bh
775 * @handle: transaction to new buffer to
776 * @bh: new buffer.
777 *
778 * Call this if you create a new bh.
779 */
780int journal_get_create_access(handle_t *handle, struct buffer_head *bh)
781{
782 transaction_t *transaction = handle->h_transaction;
783 journal_t *journal = transaction->t_journal;
784 struct journal_head *jh = journal_add_journal_head(bh);
785 int err;
786
787 jbd_debug(5, "journal_head %p\n", jh);
788 err = -EROFS;
789 if (is_handle_aborted(handle))
790 goto out;
791 err = 0;
792
793 JBUFFER_TRACE(jh, "entry");
794 /*
795 * The buffer may already belong to this transaction due to pre-zeroing
796 * in the filesystem's new_block code. It may also be on the previous,
797 * committing transaction's lists, but it HAS to be in Forget state in
798 * that case: the transaction must have deleted the buffer for it to be
799 * reused here.
800 */
801 jbd_lock_bh_state(bh);
802 spin_lock(&journal->j_list_lock);
803 J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
804 jh->b_transaction == NULL ||
805 (jh->b_transaction == journal->j_committing_transaction &&
806 jh->b_jlist == BJ_Forget)));
807
808 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
809 J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
810
811 if (jh->b_transaction == NULL) {
812 jh->b_transaction = transaction;
813 JBUFFER_TRACE(jh, "file as BJ_Reserved");
814 __journal_file_buffer(jh, transaction, BJ_Reserved);
815 } else if (jh->b_transaction == journal->j_committing_transaction) {
816 JBUFFER_TRACE(jh, "set next transaction");
817 jh->b_next_transaction = transaction;
818 }
819 spin_unlock(&journal->j_list_lock);
820 jbd_unlock_bh_state(bh);
821
822 /*
823 * akpm: I added this. ext3_alloc_branch can pick up new indirect
824 * blocks which contain freed but then revoked metadata. We need
825 * to cancel the revoke in case we end up freeing it yet again
826 * and the reallocating as data - this would cause a second revoke,
827 * which hits an assertion error.
828 */
829 JBUFFER_TRACE(jh, "cancelling revoke");
830 journal_cancel_revoke(handle, jh);
831 journal_put_journal_head(jh);
832out:
833 return err;
834}
835
836/**
837 * int journal_get_undo_access() - Notify intent to modify metadata with
838 * non-rewindable consequences
839 * @handle: transaction
840 * @bh: buffer to undo
841 * @credits: store the number of taken credits here (if not NULL)
842 *
843 * Sometimes there is a need to distinguish between metadata which has
844 * been committed to disk and that which has not. The ext3fs code uses
845 * this for freeing and allocating space, we have to make sure that we
846 * do not reuse freed space until the deallocation has been committed,
847 * since if we overwrote that space we would make the delete
848 * un-rewindable in case of a crash.
849 *
850 * To deal with that, journal_get_undo_access requests write access to a
851 * buffer for parts of non-rewindable operations such as delete
852 * operations on the bitmaps. The journaling code must keep a copy of
853 * the buffer's contents prior to the undo_access call until such time
854 * as we know that the buffer has definitely been committed to disk.
855 *
856 * We never need to know which transaction the committed data is part
857 * of, buffers touched here are guaranteed to be dirtied later and so
858 * will be committed to a new transaction in due course, at which point
859 * we can discard the old committed data pointer.
860 *
861 * Returns error number or 0 on success.
862 */
863int journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
864{
865 int err;
866 struct journal_head *jh = journal_add_journal_head(bh);
867 char *committed_data = NULL;
868
869 JBUFFER_TRACE(jh, "entry");
870
871 /*
872 * Do this first --- it can drop the journal lock, so we want to
873 * make sure that obtaining the committed_data is done
874 * atomically wrt. completion of any outstanding commits.
875 */
876 err = do_get_write_access(handle, jh, 1);
877 if (err)
878 goto out;
879
880repeat:
881 if (!jh->b_committed_data) {
882 committed_data = jbd_kmalloc(jh2bh(jh)->b_size, GFP_NOFS);
883 if (!committed_data) {
884 printk(KERN_EMERG "%s: No memory for committed data\n",
885 __FUNCTION__);
886 err = -ENOMEM;
887 goto out;
888 }
889 }
890
891 jbd_lock_bh_state(bh);
892 if (!jh->b_committed_data) {
893 /* Copy out the current buffer contents into the
894 * preserved, committed copy. */
895 JBUFFER_TRACE(jh, "generate b_committed data");
896 if (!committed_data) {
897 jbd_unlock_bh_state(bh);
898 goto repeat;
899 }
900
901 jh->b_committed_data = committed_data;
902 committed_data = NULL;
903 memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
904 }
905 jbd_unlock_bh_state(bh);
906out:
907 journal_put_journal_head(jh);
Andrew Morton304c4c82006-06-23 02:05:31 -0700908 if (unlikely(committed_data))
909 kfree(committed_data);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700910 return err;
911}
912
913/**
914 * int journal_dirty_data() - mark a buffer as containing dirty data which
915 * needs to be flushed before we can commit the
916 * current transaction.
917 * @handle: transaction
918 * @bh: bufferhead to mark
919 *
920 * The buffer is placed on the transaction's data list and is marked as
921 * belonging to the transaction.
922 *
923 * Returns error number or 0 on success.
924 *
925 * journal_dirty_data() can be called via page_launder->ext3_writepage
926 * by kswapd.
927 */
928int journal_dirty_data(handle_t *handle, struct buffer_head *bh)
929{
930 journal_t *journal = handle->h_transaction->t_journal;
931 int need_brelse = 0;
932 struct journal_head *jh;
933
934 if (is_handle_aborted(handle))
935 return 0;
936
937 jh = journal_add_journal_head(bh);
938 JBUFFER_TRACE(jh, "entry");
939
940 /*
941 * The buffer could *already* be dirty. Writeout can start
942 * at any time.
943 */
944 jbd_debug(4, "jh: %p, tid:%d\n", jh, handle->h_transaction->t_tid);
945
946 /*
947 * What if the buffer is already part of a running transaction?
948 *
949 * There are two cases:
950 * 1) It is part of the current running transaction. Refile it,
951 * just in case we have allocated it as metadata, deallocated
952 * it, then reallocated it as data.
953 * 2) It is part of the previous, still-committing transaction.
954 * If all we want to do is to guarantee that the buffer will be
955 * written to disk before this new transaction commits, then
956 * being sure that the *previous* transaction has this same
957 * property is sufficient for us! Just leave it on its old
958 * transaction.
959 *
960 * In case (2), the buffer must not already exist as metadata
961 * --- that would violate write ordering (a transaction is free
962 * to write its data at any point, even before the previous
963 * committing transaction has committed). The caller must
964 * never, ever allow this to happen: there's nothing we can do
965 * about it in this layer.
966 */
967 jbd_lock_bh_state(bh);
968 spin_lock(&journal->j_list_lock);
969 if (jh->b_transaction) {
970 JBUFFER_TRACE(jh, "has transaction");
971 if (jh->b_transaction != handle->h_transaction) {
972 JBUFFER_TRACE(jh, "belongs to older transaction");
973 J_ASSERT_JH(jh, jh->b_transaction ==
974 journal->j_committing_transaction);
975
976 /* @@@ IS THIS TRUE ? */
977 /*
978 * Not any more. Scenario: someone does a write()
979 * in data=journal mode. The buffer's transaction has
980 * moved into commit. Then someone does another
981 * write() to the file. We do the frozen data copyout
982 * and set b_next_transaction to point to j_running_t.
983 * And while we're in that state, someone does a
984 * writepage() in an attempt to pageout the same area
985 * of the file via a shared mapping. At present that
986 * calls journal_dirty_data(), and we get right here.
987 * It may be too late to journal the data. Simply
988 * falling through to the next test will suffice: the
989 * data will be dirty and wil be checkpointed. The
990 * ordering comments in the next comment block still
991 * apply.
992 */
993 //J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
994
995 /*
996 * If we're journalling data, and this buffer was
997 * subject to a write(), it could be metadata, forget
998 * or shadow against the committing transaction. Now,
999 * someone has dirtied the same darn page via a mapping
1000 * and it is being writepage()'d.
1001 * We *could* just steal the page from commit, with some
1002 * fancy locking there. Instead, we just skip it -
1003 * don't tie the page's buffers to the new transaction
1004 * at all.
1005 * Implication: if we crash before the writepage() data
1006 * is written into the filesystem, recovery will replay
1007 * the write() data.
1008 */
1009 if (jh->b_jlist != BJ_None &&
1010 jh->b_jlist != BJ_SyncData &&
1011 jh->b_jlist != BJ_Locked) {
1012 JBUFFER_TRACE(jh, "Not stealing");
1013 goto no_journal;
1014 }
1015
1016 /*
1017 * This buffer may be undergoing writeout in commit. We
1018 * can't return from here and let the caller dirty it
1019 * again because that can cause the write-out loop in
1020 * commit to never terminate.
1021 */
1022 if (buffer_dirty(bh)) {
1023 get_bh(bh);
1024 spin_unlock(&journal->j_list_lock);
1025 jbd_unlock_bh_state(bh);
1026 need_brelse = 1;
1027 sync_dirty_buffer(bh);
1028 jbd_lock_bh_state(bh);
1029 spin_lock(&journal->j_list_lock);
1030 /* The buffer may become locked again at any
1031 time if it is redirtied */
1032 }
1033
1034 /* journal_clean_data_list() may have got there first */
1035 if (jh->b_transaction != NULL) {
1036 JBUFFER_TRACE(jh, "unfile from commit");
1037 __journal_temp_unlink_buffer(jh);
1038 /* It still points to the committing
1039 * transaction; move it to this one so
1040 * that the refile assert checks are
1041 * happy. */
1042 jh->b_transaction = handle->h_transaction;
1043 }
1044 /* The buffer will be refiled below */
1045
1046 }
1047 /*
1048 * Special case --- the buffer might actually have been
1049 * allocated and then immediately deallocated in the previous,
1050 * committing transaction, so might still be left on that
1051 * transaction's metadata lists.
1052 */
1053 if (jh->b_jlist != BJ_SyncData && jh->b_jlist != BJ_Locked) {
1054 JBUFFER_TRACE(jh, "not on correct data list: unfile");
1055 J_ASSERT_JH(jh, jh->b_jlist != BJ_Shadow);
1056 __journal_temp_unlink_buffer(jh);
1057 jh->b_transaction = handle->h_transaction;
1058 JBUFFER_TRACE(jh, "file as data");
1059 __journal_file_buffer(jh, handle->h_transaction,
1060 BJ_SyncData);
1061 }
1062 } else {
1063 JBUFFER_TRACE(jh, "not on a transaction");
1064 __journal_file_buffer(jh, handle->h_transaction, BJ_SyncData);
1065 }
1066no_journal:
1067 spin_unlock(&journal->j_list_lock);
1068 jbd_unlock_bh_state(bh);
1069 if (need_brelse) {
1070 BUFFER_TRACE(bh, "brelse");
1071 __brelse(bh);
1072 }
1073 JBUFFER_TRACE(jh, "exit");
1074 journal_put_journal_head(jh);
1075 return 0;
1076}
1077
1078/**
1079 * int journal_dirty_metadata() - mark a buffer as containing dirty metadata
1080 * @handle: transaction to add buffer to.
1081 * @bh: buffer to mark
1082 *
1083 * mark dirty metadata which needs to be journaled as part of the current
1084 * transaction.
1085 *
1086 * The buffer is placed on the transaction's metadata list and is marked
1087 * as belonging to the transaction.
1088 *
1089 * Returns error number or 0 on success.
1090 *
1091 * Special care needs to be taken if the buffer already belongs to the
1092 * current committing transaction (in which case we should have frozen
1093 * data present for that commit). In that case, we don't relink the
1094 * buffer: that only gets done when the old transaction finally
1095 * completes its commit.
1096 */
1097int journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1098{
1099 transaction_t *transaction = handle->h_transaction;
1100 journal_t *journal = transaction->t_journal;
1101 struct journal_head *jh = bh2jh(bh);
1102
1103 jbd_debug(5, "journal_head %p\n", jh);
1104 JBUFFER_TRACE(jh, "entry");
1105 if (is_handle_aborted(handle))
1106 goto out;
1107
1108 jbd_lock_bh_state(bh);
1109
1110 if (jh->b_modified == 0) {
1111 /*
1112 * This buffer's got modified and becoming part
1113 * of the transaction. This needs to be done
1114 * once a transaction -bzzz
1115 */
1116 jh->b_modified = 1;
1117 J_ASSERT_JH(jh, handle->h_buffer_credits > 0);
1118 handle->h_buffer_credits--;
1119 }
1120
1121 /*
1122 * fastpath, to avoid expensive locking. If this buffer is already
1123 * on the running transaction's metadata list there is nothing to do.
1124 * Nobody can take it off again because there is a handle open.
1125 * I _think_ we're OK here with SMP barriers - a mistaken decision will
1126 * result in this test being false, so we go in and take the locks.
1127 */
1128 if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1129 JBUFFER_TRACE(jh, "fastpath");
1130 J_ASSERT_JH(jh, jh->b_transaction ==
1131 journal->j_running_transaction);
1132 goto out_unlock_bh;
1133 }
1134
1135 set_buffer_jbddirty(bh);
1136
1137 /*
1138 * Metadata already on the current transaction list doesn't
1139 * need to be filed. Metadata on another transaction's list must
1140 * be committing, and will be refiled once the commit completes:
1141 * leave it alone for now.
1142 */
1143 if (jh->b_transaction != transaction) {
1144 JBUFFER_TRACE(jh, "already on other transaction");
1145 J_ASSERT_JH(jh, jh->b_transaction ==
1146 journal->j_committing_transaction);
1147 J_ASSERT_JH(jh, jh->b_next_transaction == transaction);
1148 /* And this case is illegal: we can't reuse another
1149 * transaction's data buffer, ever. */
1150 goto out_unlock_bh;
1151 }
1152
1153 /* That test should have eliminated the following case: */
1154 J_ASSERT_JH(jh, jh->b_frozen_data == 0);
1155
1156 JBUFFER_TRACE(jh, "file as BJ_Metadata");
1157 spin_lock(&journal->j_list_lock);
1158 __journal_file_buffer(jh, handle->h_transaction, BJ_Metadata);
1159 spin_unlock(&journal->j_list_lock);
1160out_unlock_bh:
1161 jbd_unlock_bh_state(bh);
1162out:
1163 JBUFFER_TRACE(jh, "exit");
1164 return 0;
1165}
1166
1167/*
1168 * journal_release_buffer: undo a get_write_access without any buffer
1169 * updates, if the update decided in the end that it didn't need access.
1170 *
1171 */
1172void
1173journal_release_buffer(handle_t *handle, struct buffer_head *bh)
1174{
1175 BUFFER_TRACE(bh, "entry");
1176}
1177
1178/**
1179 * void journal_forget() - bforget() for potentially-journaled buffers.
1180 * @handle: transaction handle
1181 * @bh: bh to 'forget'
1182 *
1183 * We can only do the bforget if there are no commits pending against the
1184 * buffer. If the buffer is dirty in the current running transaction we
1185 * can safely unlink it.
1186 *
1187 * bh may not be a journalled buffer at all - it may be a non-JBD
1188 * buffer which came off the hashtable. Check for this.
1189 *
1190 * Decrements bh->b_count by one.
1191 *
1192 * Allow this call even if the handle has aborted --- it may be part of
1193 * the caller's cleanup after an abort.
1194 */
1195int journal_forget (handle_t *handle, struct buffer_head *bh)
1196{
1197 transaction_t *transaction = handle->h_transaction;
1198 journal_t *journal = transaction->t_journal;
1199 struct journal_head *jh;
1200 int drop_reserve = 0;
1201 int err = 0;
1202
1203 BUFFER_TRACE(bh, "entry");
1204
1205 jbd_lock_bh_state(bh);
1206 spin_lock(&journal->j_list_lock);
1207
1208 if (!buffer_jbd(bh))
1209 goto not_jbd;
1210 jh = bh2jh(bh);
1211
1212 /* Critical error: attempting to delete a bitmap buffer, maybe?
1213 * Don't do any jbd operations, and return an error. */
1214 if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1215 "inconsistent data on disk")) {
1216 err = -EIO;
1217 goto not_jbd;
1218 }
1219
1220 /*
1221 * The buffer's going from the transaction, we must drop
1222 * all references -bzzz
1223 */
1224 jh->b_modified = 0;
1225
1226 if (jh->b_transaction == handle->h_transaction) {
1227 J_ASSERT_JH(jh, !jh->b_frozen_data);
1228
1229 /* If we are forgetting a buffer which is already part
1230 * of this transaction, then we can just drop it from
1231 * the transaction immediately. */
1232 clear_buffer_dirty(bh);
1233 clear_buffer_jbddirty(bh);
1234
1235 JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1236
1237 drop_reserve = 1;
1238
1239 /*
1240 * We are no longer going to journal this buffer.
1241 * However, the commit of this transaction is still
1242 * important to the buffer: the delete that we are now
1243 * processing might obsolete an old log entry, so by
1244 * committing, we can satisfy the buffer's checkpoint.
1245 *
1246 * So, if we have a checkpoint on the buffer, we should
1247 * now refile the buffer on our BJ_Forget list so that
1248 * we know to remove the checkpoint after we commit.
1249 */
1250
1251 if (jh->b_cp_transaction) {
1252 __journal_temp_unlink_buffer(jh);
1253 __journal_file_buffer(jh, transaction, BJ_Forget);
1254 } else {
1255 __journal_unfile_buffer(jh);
1256 journal_remove_journal_head(bh);
1257 __brelse(bh);
1258 if (!buffer_jbd(bh)) {
1259 spin_unlock(&journal->j_list_lock);
1260 jbd_unlock_bh_state(bh);
1261 __bforget(bh);
1262 goto drop;
1263 }
1264 }
1265 } else if (jh->b_transaction) {
1266 J_ASSERT_JH(jh, (jh->b_transaction ==
1267 journal->j_committing_transaction));
1268 /* However, if the buffer is still owned by a prior
1269 * (committing) transaction, we can't drop it yet... */
1270 JBUFFER_TRACE(jh, "belongs to older transaction");
1271 /* ... but we CAN drop it from the new transaction if we
1272 * have also modified it since the original commit. */
1273
1274 if (jh->b_next_transaction) {
1275 J_ASSERT(jh->b_next_transaction == transaction);
1276 jh->b_next_transaction = NULL;
1277 drop_reserve = 1;
1278 }
1279 }
1280
1281not_jbd:
1282 spin_unlock(&journal->j_list_lock);
1283 jbd_unlock_bh_state(bh);
1284 __brelse(bh);
1285drop:
1286 if (drop_reserve) {
1287 /* no need to reserve log space for this block -bzzz */
1288 handle->h_buffer_credits++;
1289 }
1290 return err;
1291}
1292
1293/**
1294 * int journal_stop() - complete a transaction
1295 * @handle: tranaction to complete.
1296 *
1297 * All done for a particular handle.
1298 *
1299 * There is not much action needed here. We just return any remaining
1300 * buffer credits to the transaction and remove the handle. The only
1301 * complication is that we need to start a commit operation if the
1302 * filesystem is marked for synchronous update.
1303 *
1304 * journal_stop itself will not usually return an error, but it may
1305 * do so in unusual circumstances. In particular, expect it to
1306 * return -EIO if a journal_abort has been executed since the
1307 * transaction began.
1308 */
1309int journal_stop(handle_t *handle)
1310{
1311 transaction_t *transaction = handle->h_transaction;
1312 journal_t *journal = transaction->t_journal;
1313 int old_handle_count, err;
Andrew Mortonfe1dcbc2006-02-04 23:27:54 -08001314 pid_t pid;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001315
1316 J_ASSERT(transaction->t_updates > 0);
1317 J_ASSERT(journal_current_handle() == handle);
1318
1319 if (is_handle_aborted(handle))
1320 err = -EIO;
1321 else
1322 err = 0;
1323
1324 if (--handle->h_ref > 0) {
1325 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1326 handle->h_ref);
1327 return err;
1328 }
1329
1330 jbd_debug(4, "Handle %p going down\n", handle);
1331
1332 /*
1333 * Implement synchronous transaction batching. If the handle
1334 * was synchronous, don't force a commit immediately. Let's
1335 * yield and let another thread piggyback onto this transaction.
1336 * Keep doing that while new threads continue to arrive.
1337 * It doesn't cost much - we're about to run a commit and sleep
1338 * on IO anyway. Speeds up many-threaded, many-dir operations
1339 * by 30x or more...
Andrew Mortonfe1dcbc2006-02-04 23:27:54 -08001340 *
1341 * But don't do this if this process was the most recent one to
1342 * perform a synchronous write. We do this to detect the case where a
1343 * single process is doing a stream of sync writes. No point in waiting
1344 * for joiners in that case.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001345 */
Andrew Mortonfe1dcbc2006-02-04 23:27:54 -08001346 pid = current->pid;
1347 if (handle->h_sync && journal->j_last_sync_writer != pid) {
1348 journal->j_last_sync_writer = pid;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001349 do {
1350 old_handle_count = transaction->t_handle_count;
Nishanth Aravamudan041e0e32005-09-10 00:27:23 -07001351 schedule_timeout_uninterruptible(1);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001352 } while (old_handle_count != transaction->t_handle_count);
1353 }
1354
1355 current->journal_info = NULL;
1356 spin_lock(&journal->j_state_lock);
1357 spin_lock(&transaction->t_handle_lock);
1358 transaction->t_outstanding_credits -= handle->h_buffer_credits;
1359 transaction->t_updates--;
1360 if (!transaction->t_updates) {
1361 wake_up(&journal->j_wait_updates);
1362 if (journal->j_barrier_count)
1363 wake_up(&journal->j_wait_transaction_locked);
1364 }
1365
1366 /*
1367 * If the handle is marked SYNC, we need to set another commit
1368 * going! We also want to force a commit if the current
1369 * transaction is occupying too much of the log, or if the
1370 * transaction is too old now.
1371 */
1372 if (handle->h_sync ||
1373 transaction->t_outstanding_credits >
1374 journal->j_max_transaction_buffers ||
1375 time_after_eq(jiffies, transaction->t_expires)) {
1376 /* Do this even for aborted journals: an abort still
1377 * completes the commit thread, it just doesn't write
1378 * anything to disk. */
1379 tid_t tid = transaction->t_tid;
1380
1381 spin_unlock(&transaction->t_handle_lock);
1382 jbd_debug(2, "transaction too old, requesting commit for "
1383 "handle %p\n", handle);
1384 /* This is non-blocking */
1385 __log_start_commit(journal, transaction->t_tid);
1386 spin_unlock(&journal->j_state_lock);
1387
1388 /*
1389 * Special case: JFS_SYNC synchronous updates require us
1390 * to wait for the commit to complete.
1391 */
1392 if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1393 err = log_wait_commit(journal, tid);
1394 } else {
1395 spin_unlock(&transaction->t_handle_lock);
1396 spin_unlock(&journal->j_state_lock);
1397 }
1398
1399 jbd_free_handle(handle);
1400 return err;
1401}
1402
1403/**int journal_force_commit() - force any uncommitted transactions
1404 * @journal: journal to force
1405 *
1406 * For synchronous operations: force any uncommitted transactions
1407 * to disk. May seem kludgy, but it reuses all the handle batching
1408 * code in a very simple manner.
1409 */
1410int journal_force_commit(journal_t *journal)
1411{
1412 handle_t *handle;
1413 int ret;
1414
1415 handle = journal_start(journal, 1);
1416 if (IS_ERR(handle)) {
1417 ret = PTR_ERR(handle);
1418 } else {
1419 handle->h_sync = 1;
1420 ret = journal_stop(handle);
1421 }
1422 return ret;
1423}
1424
1425/*
1426 *
1427 * List management code snippets: various functions for manipulating the
1428 * transaction buffer lists.
1429 *
1430 */
1431
1432/*
1433 * Append a buffer to a transaction list, given the transaction's list head
1434 * pointer.
1435 *
1436 * j_list_lock is held.
1437 *
1438 * jbd_lock_bh_state(jh2bh(jh)) is held.
1439 */
1440
1441static inline void
1442__blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1443{
1444 if (!*list) {
1445 jh->b_tnext = jh->b_tprev = jh;
1446 *list = jh;
1447 } else {
1448 /* Insert at the tail of the list to preserve order */
1449 struct journal_head *first = *list, *last = first->b_tprev;
1450 jh->b_tprev = last;
1451 jh->b_tnext = first;
1452 last->b_tnext = first->b_tprev = jh;
1453 }
1454}
1455
1456/*
1457 * Remove a buffer from a transaction list, given the transaction's list
1458 * head pointer.
1459 *
1460 * Called with j_list_lock held, and the journal may not be locked.
1461 *
1462 * jbd_lock_bh_state(jh2bh(jh)) is held.
1463 */
1464
1465static inline void
1466__blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1467{
1468 if (*list == jh) {
1469 *list = jh->b_tnext;
1470 if (*list == jh)
1471 *list = NULL;
1472 }
1473 jh->b_tprev->b_tnext = jh->b_tnext;
1474 jh->b_tnext->b_tprev = jh->b_tprev;
1475}
1476
1477/*
1478 * Remove a buffer from the appropriate transaction list.
1479 *
1480 * Note that this function can *change* the value of
1481 * bh->b_transaction->t_sync_datalist, t_buffers, t_forget,
1482 * t_iobuf_list, t_shadow_list, t_log_list or t_reserved_list. If the caller
1483 * is holding onto a copy of one of thee pointers, it could go bad.
1484 * Generally the caller needs to re-read the pointer from the transaction_t.
1485 *
1486 * Called under j_list_lock. The journal may not be locked.
1487 */
1488void __journal_temp_unlink_buffer(struct journal_head *jh)
1489{
1490 struct journal_head **list = NULL;
1491 transaction_t *transaction;
1492 struct buffer_head *bh = jh2bh(jh);
1493
1494 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1495 transaction = jh->b_transaction;
1496 if (transaction)
1497 assert_spin_locked(&transaction->t_journal->j_list_lock);
1498
1499 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1500 if (jh->b_jlist != BJ_None)
1501 J_ASSERT_JH(jh, transaction != 0);
1502
1503 switch (jh->b_jlist) {
1504 case BJ_None:
1505 return;
1506 case BJ_SyncData:
1507 list = &transaction->t_sync_datalist;
1508 break;
1509 case BJ_Metadata:
1510 transaction->t_nr_buffers--;
1511 J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
1512 list = &transaction->t_buffers;
1513 break;
1514 case BJ_Forget:
1515 list = &transaction->t_forget;
1516 break;
1517 case BJ_IO:
1518 list = &transaction->t_iobuf_list;
1519 break;
1520 case BJ_Shadow:
1521 list = &transaction->t_shadow_list;
1522 break;
1523 case BJ_LogCtl:
1524 list = &transaction->t_log_list;
1525 break;
1526 case BJ_Reserved:
1527 list = &transaction->t_reserved_list;
1528 break;
1529 case BJ_Locked:
1530 list = &transaction->t_locked_list;
1531 break;
1532 }
1533
1534 __blist_del_buffer(list, jh);
1535 jh->b_jlist = BJ_None;
1536 if (test_clear_buffer_jbddirty(bh))
1537 mark_buffer_dirty(bh); /* Expose it to the VM */
1538}
1539
1540void __journal_unfile_buffer(struct journal_head *jh)
1541{
1542 __journal_temp_unlink_buffer(jh);
1543 jh->b_transaction = NULL;
1544}
1545
1546void journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
1547{
1548 jbd_lock_bh_state(jh2bh(jh));
1549 spin_lock(&journal->j_list_lock);
1550 __journal_unfile_buffer(jh);
1551 spin_unlock(&journal->j_list_lock);
1552 jbd_unlock_bh_state(jh2bh(jh));
1553}
1554
1555/*
1556 * Called from journal_try_to_free_buffers().
1557 *
1558 * Called under jbd_lock_bh_state(bh)
1559 */
1560static void
1561__journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
1562{
1563 struct journal_head *jh;
1564
1565 jh = bh2jh(bh);
1566
1567 if (buffer_locked(bh) || buffer_dirty(bh))
1568 goto out;
1569
1570 if (jh->b_next_transaction != 0)
1571 goto out;
1572
1573 spin_lock(&journal->j_list_lock);
1574 if (jh->b_transaction != 0 && jh->b_cp_transaction == 0) {
1575 if (jh->b_jlist == BJ_SyncData || jh->b_jlist == BJ_Locked) {
1576 /* A written-back ordered data buffer */
1577 JBUFFER_TRACE(jh, "release data");
1578 __journal_unfile_buffer(jh);
1579 journal_remove_journal_head(bh);
1580 __brelse(bh);
1581 }
1582 } else if (jh->b_cp_transaction != 0 && jh->b_transaction == 0) {
1583 /* written-back checkpointed metadata buffer */
1584 if (jh->b_jlist == BJ_None) {
1585 JBUFFER_TRACE(jh, "remove from checkpoint list");
1586 __journal_remove_checkpoint(jh);
1587 journal_remove_journal_head(bh);
1588 __brelse(bh);
1589 }
1590 }
1591 spin_unlock(&journal->j_list_lock);
1592out:
1593 return;
1594}
1595
1596
1597/**
1598 * int journal_try_to_free_buffers() - try to free page buffers.
1599 * @journal: journal for operation
1600 * @page: to try and free
1601 * @unused_gfp_mask: unused
1602 *
1603 *
1604 * For all the buffers on this page,
1605 * if they are fully written out ordered data, move them onto BUF_CLEAN
1606 * so try_to_free_buffers() can reap them.
1607 *
1608 * This function returns non-zero if we wish try_to_free_buffers()
1609 * to be called. We do this if the page is releasable by try_to_free_buffers().
1610 * We also do it if the page has locked or dirty buffers and the caller wants
1611 * us to perform sync or async writeout.
1612 *
1613 * This complicates JBD locking somewhat. We aren't protected by the
1614 * BKL here. We wish to remove the buffer from its committing or
1615 * running transaction's ->t_datalist via __journal_unfile_buffer.
1616 *
1617 * This may *change* the value of transaction_t->t_datalist, so anyone
1618 * who looks at t_datalist needs to lock against this function.
1619 *
1620 * Even worse, someone may be doing a journal_dirty_data on this
1621 * buffer. So we need to lock against that. journal_dirty_data()
1622 * will come out of the lock with the buffer dirty, which makes it
1623 * ineligible for release here.
1624 *
1625 * Who else is affected by this? hmm... Really the only contender
1626 * is do_get_write_access() - it could be looking at the buffer while
1627 * journal_try_to_free_buffer() is changing its state. But that
1628 * cannot happen because we never reallocate freed data as metadata
1629 * while the data is part of a transaction. Yes?
1630 */
1631int journal_try_to_free_buffers(journal_t *journal,
Al Viro27496a82005-10-21 03:20:48 -04001632 struct page *page, gfp_t unused_gfp_mask)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001633{
1634 struct buffer_head *head;
1635 struct buffer_head *bh;
1636 int ret = 0;
1637
1638 J_ASSERT(PageLocked(page));
1639
1640 head = page_buffers(page);
1641 bh = head;
1642 do {
1643 struct journal_head *jh;
1644
1645 /*
1646 * We take our own ref against the journal_head here to avoid
1647 * having to add tons of locking around each instance of
1648 * journal_remove_journal_head() and journal_put_journal_head().
1649 */
1650 jh = journal_grab_journal_head(bh);
1651 if (!jh)
1652 continue;
1653
1654 jbd_lock_bh_state(bh);
1655 __journal_try_to_free_buffer(journal, bh);
1656 journal_put_journal_head(jh);
1657 jbd_unlock_bh_state(bh);
1658 if (buffer_jbd(bh))
1659 goto busy;
1660 } while ((bh = bh->b_this_page) != head);
1661 ret = try_to_free_buffers(page);
1662busy:
1663 return ret;
1664}
1665
1666/*
1667 * This buffer is no longer needed. If it is on an older transaction's
1668 * checkpoint list we need to record it on this transaction's forget list
1669 * to pin this buffer (and hence its checkpointing transaction) down until
1670 * this transaction commits. If the buffer isn't on a checkpoint list, we
1671 * release it.
1672 * Returns non-zero if JBD no longer has an interest in the buffer.
1673 *
1674 * Called under j_list_lock.
1675 *
1676 * Called under jbd_lock_bh_state(bh).
1677 */
1678static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
1679{
1680 int may_free = 1;
1681 struct buffer_head *bh = jh2bh(jh);
1682
1683 __journal_unfile_buffer(jh);
1684
1685 if (jh->b_cp_transaction) {
1686 JBUFFER_TRACE(jh, "on running+cp transaction");
1687 __journal_file_buffer(jh, transaction, BJ_Forget);
1688 clear_buffer_jbddirty(bh);
1689 may_free = 0;
1690 } else {
1691 JBUFFER_TRACE(jh, "on running transaction");
1692 journal_remove_journal_head(bh);
1693 __brelse(bh);
1694 }
1695 return may_free;
1696}
1697
1698/*
1699 * journal_invalidatepage
1700 *
1701 * This code is tricky. It has a number of cases to deal with.
1702 *
1703 * There are two invariants which this code relies on:
1704 *
1705 * i_size must be updated on disk before we start calling invalidatepage on the
1706 * data.
1707 *
1708 * This is done in ext3 by defining an ext3_setattr method which
1709 * updates i_size before truncate gets going. By maintaining this
1710 * invariant, we can be sure that it is safe to throw away any buffers
1711 * attached to the current transaction: once the transaction commits,
1712 * we know that the data will not be needed.
1713 *
1714 * Note however that we can *not* throw away data belonging to the
1715 * previous, committing transaction!
1716 *
1717 * Any disk blocks which *are* part of the previous, committing
1718 * transaction (and which therefore cannot be discarded immediately) are
1719 * not going to be reused in the new running transaction
1720 *
1721 * The bitmap committed_data images guarantee this: any block which is
1722 * allocated in one transaction and removed in the next will be marked
1723 * as in-use in the committed_data bitmap, so cannot be reused until
1724 * the next transaction to delete the block commits. This means that
1725 * leaving committing buffers dirty is quite safe: the disk blocks
1726 * cannot be reallocated to a different file and so buffer aliasing is
1727 * not possible.
1728 *
1729 *
1730 * The above applies mainly to ordered data mode. In writeback mode we
1731 * don't make guarantees about the order in which data hits disk --- in
1732 * particular we don't guarantee that new dirty data is flushed before
1733 * transaction commit --- so it is always safe just to discard data
1734 * immediately in that mode. --sct
1735 */
1736
1737/*
1738 * The journal_unmap_buffer helper function returns zero if the buffer
1739 * concerned remains pinned as an anonymous buffer belonging to an older
1740 * transaction.
1741 *
1742 * We're outside-transaction here. Either or both of j_running_transaction
1743 * and j_committing_transaction may be NULL.
1744 */
1745static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh)
1746{
1747 transaction_t *transaction;
1748 struct journal_head *jh;
1749 int may_free = 1;
1750 int ret;
1751
1752 BUFFER_TRACE(bh, "entry");
1753
1754 /*
1755 * It is safe to proceed here without the j_list_lock because the
1756 * buffers cannot be stolen by try_to_free_buffers as long as we are
1757 * holding the page lock. --sct
1758 */
1759
1760 if (!buffer_jbd(bh))
1761 goto zap_buffer_unlocked;
1762
1763 spin_lock(&journal->j_state_lock);
1764 jbd_lock_bh_state(bh);
1765 spin_lock(&journal->j_list_lock);
1766
1767 jh = journal_grab_journal_head(bh);
1768 if (!jh)
1769 goto zap_buffer_no_jh;
1770
1771 transaction = jh->b_transaction;
1772 if (transaction == NULL) {
1773 /* First case: not on any transaction. If it
1774 * has no checkpoint link, then we can zap it:
1775 * it's a writeback-mode buffer so we don't care
1776 * if it hits disk safely. */
1777 if (!jh->b_cp_transaction) {
1778 JBUFFER_TRACE(jh, "not on any transaction: zap");
1779 goto zap_buffer;
1780 }
1781
1782 if (!buffer_dirty(bh)) {
1783 /* bdflush has written it. We can drop it now */
1784 goto zap_buffer;
1785 }
1786
1787 /* OK, it must be in the journal but still not
1788 * written fully to disk: it's metadata or
1789 * journaled data... */
1790
1791 if (journal->j_running_transaction) {
1792 /* ... and once the current transaction has
1793 * committed, the buffer won't be needed any
1794 * longer. */
1795 JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
1796 ret = __dispose_buffer(jh,
1797 journal->j_running_transaction);
1798 journal_put_journal_head(jh);
1799 spin_unlock(&journal->j_list_lock);
1800 jbd_unlock_bh_state(bh);
1801 spin_unlock(&journal->j_state_lock);
1802 return ret;
1803 } else {
1804 /* There is no currently-running transaction. So the
1805 * orphan record which we wrote for this file must have
1806 * passed into commit. We must attach this buffer to
1807 * the committing transaction, if it exists. */
1808 if (journal->j_committing_transaction) {
1809 JBUFFER_TRACE(jh, "give to committing trans");
1810 ret = __dispose_buffer(jh,
1811 journal->j_committing_transaction);
1812 journal_put_journal_head(jh);
1813 spin_unlock(&journal->j_list_lock);
1814 jbd_unlock_bh_state(bh);
1815 spin_unlock(&journal->j_state_lock);
1816 return ret;
1817 } else {
1818 /* The orphan record's transaction has
1819 * committed. We can cleanse this buffer */
1820 clear_buffer_jbddirty(bh);
1821 goto zap_buffer;
1822 }
1823 }
1824 } else if (transaction == journal->j_committing_transaction) {
akpm@osdl.orgd13df842005-04-16 15:26:36 -07001825 if (jh->b_jlist == BJ_Locked) {
1826 /*
1827 * The buffer is on the committing transaction's locked
1828 * list. We have the buffer locked, so I/O has
1829 * completed. So we can nail the buffer now.
1830 */
1831 may_free = __dispose_buffer(jh, transaction);
1832 goto zap_buffer;
1833 }
1834 /*
1835 * If it is committing, we simply cannot touch it. We
Linus Torvalds1da177e2005-04-16 15:20:36 -07001836 * can remove it's next_transaction pointer from the
1837 * running transaction if that is set, but nothing
1838 * else. */
1839 JBUFFER_TRACE(jh, "on committing transaction");
1840 set_buffer_freed(bh);
1841 if (jh->b_next_transaction) {
1842 J_ASSERT(jh->b_next_transaction ==
1843 journal->j_running_transaction);
1844 jh->b_next_transaction = NULL;
1845 }
1846 journal_put_journal_head(jh);
1847 spin_unlock(&journal->j_list_lock);
1848 jbd_unlock_bh_state(bh);
1849 spin_unlock(&journal->j_state_lock);
1850 return 0;
1851 } else {
1852 /* Good, the buffer belongs to the running transaction.
1853 * We are writing our own transaction's data, not any
1854 * previous one's, so it is safe to throw it away
1855 * (remember that we expect the filesystem to have set
1856 * i_size already for this truncate so recovery will not
1857 * expose the disk blocks we are discarding here.) */
1858 J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
1859 may_free = __dispose_buffer(jh, transaction);
1860 }
1861
1862zap_buffer:
1863 journal_put_journal_head(jh);
1864zap_buffer_no_jh:
1865 spin_unlock(&journal->j_list_lock);
1866 jbd_unlock_bh_state(bh);
1867 spin_unlock(&journal->j_state_lock);
1868zap_buffer_unlocked:
1869 clear_buffer_dirty(bh);
1870 J_ASSERT_BH(bh, !buffer_jbddirty(bh));
1871 clear_buffer_mapped(bh);
1872 clear_buffer_req(bh);
1873 clear_buffer_new(bh);
1874 bh->b_bdev = NULL;
1875 return may_free;
1876}
1877
1878/**
NeilBrown2ff28e22006-03-26 01:37:18 -08001879 * void journal_invalidatepage()
Linus Torvalds1da177e2005-04-16 15:20:36 -07001880 * @journal: journal to use for flush...
1881 * @page: page to flush
1882 * @offset: length of page to invalidate.
1883 *
1884 * Reap page buffers containing data after offset in page.
1885 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07001886 */
NeilBrown2ff28e22006-03-26 01:37:18 -08001887void journal_invalidatepage(journal_t *journal,
Linus Torvalds1da177e2005-04-16 15:20:36 -07001888 struct page *page,
1889 unsigned long offset)
1890{
1891 struct buffer_head *head, *bh, *next;
1892 unsigned int curr_off = 0;
1893 int may_free = 1;
1894
1895 if (!PageLocked(page))
1896 BUG();
1897 if (!page_has_buffers(page))
NeilBrown2ff28e22006-03-26 01:37:18 -08001898 return;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001899
1900 /* We will potentially be playing with lists other than just the
1901 * data lists (especially for journaled data mode), so be
1902 * cautious in our locking. */
1903
1904 head = bh = page_buffers(page);
1905 do {
1906 unsigned int next_off = curr_off + bh->b_size;
1907 next = bh->b_this_page;
1908
Linus Torvalds1da177e2005-04-16 15:20:36 -07001909 if (offset <= curr_off) {
1910 /* This block is wholly outside the truncation point */
1911 lock_buffer(bh);
1912 may_free &= journal_unmap_buffer(journal, bh);
1913 unlock_buffer(bh);
1914 }
1915 curr_off = next_off;
1916 bh = next;
1917
1918 } while (bh != head);
1919
1920 if (!offset) {
NeilBrown2ff28e22006-03-26 01:37:18 -08001921 if (may_free && try_to_free_buffers(page))
1922 J_ASSERT(!page_has_buffers(page));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001923 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001924}
1925
1926/*
1927 * File a buffer on the given transaction list.
1928 */
1929void __journal_file_buffer(struct journal_head *jh,
1930 transaction_t *transaction, int jlist)
1931{
1932 struct journal_head **list = NULL;
1933 int was_dirty = 0;
1934 struct buffer_head *bh = jh2bh(jh);
1935
1936 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1937 assert_spin_locked(&transaction->t_journal->j_list_lock);
1938
1939 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1940 J_ASSERT_JH(jh, jh->b_transaction == transaction ||
1941 jh->b_transaction == 0);
1942
1943 if (jh->b_transaction && jh->b_jlist == jlist)
1944 return;
1945
1946 /* The following list of buffer states needs to be consistent
1947 * with __jbd_unexpected_dirty_buffer()'s handling of dirty
1948 * state. */
1949
1950 if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
1951 jlist == BJ_Shadow || jlist == BJ_Forget) {
1952 if (test_clear_buffer_dirty(bh) ||
1953 test_clear_buffer_jbddirty(bh))
1954 was_dirty = 1;
1955 }
1956
1957 if (jh->b_transaction)
1958 __journal_temp_unlink_buffer(jh);
1959 jh->b_transaction = transaction;
1960
1961 switch (jlist) {
1962 case BJ_None:
1963 J_ASSERT_JH(jh, !jh->b_committed_data);
1964 J_ASSERT_JH(jh, !jh->b_frozen_data);
1965 return;
1966 case BJ_SyncData:
1967 list = &transaction->t_sync_datalist;
1968 break;
1969 case BJ_Metadata:
1970 transaction->t_nr_buffers++;
1971 list = &transaction->t_buffers;
1972 break;
1973 case BJ_Forget:
1974 list = &transaction->t_forget;
1975 break;
1976 case BJ_IO:
1977 list = &transaction->t_iobuf_list;
1978 break;
1979 case BJ_Shadow:
1980 list = &transaction->t_shadow_list;
1981 break;
1982 case BJ_LogCtl:
1983 list = &transaction->t_log_list;
1984 break;
1985 case BJ_Reserved:
1986 list = &transaction->t_reserved_list;
1987 break;
1988 case BJ_Locked:
1989 list = &transaction->t_locked_list;
1990 break;
1991 }
1992
1993 __blist_add_buffer(list, jh);
1994 jh->b_jlist = jlist;
1995
1996 if (was_dirty)
1997 set_buffer_jbddirty(bh);
1998}
1999
2000void journal_file_buffer(struct journal_head *jh,
2001 transaction_t *transaction, int jlist)
2002{
2003 jbd_lock_bh_state(jh2bh(jh));
2004 spin_lock(&transaction->t_journal->j_list_lock);
2005 __journal_file_buffer(jh, transaction, jlist);
2006 spin_unlock(&transaction->t_journal->j_list_lock);
2007 jbd_unlock_bh_state(jh2bh(jh));
2008}
2009
2010/*
2011 * Remove a buffer from its current buffer list in preparation for
2012 * dropping it from its current transaction entirely. If the buffer has
2013 * already started to be used by a subsequent transaction, refile the
2014 * buffer on that transaction's metadata list.
2015 *
2016 * Called under journal->j_list_lock
2017 *
2018 * Called under jbd_lock_bh_state(jh2bh(jh))
2019 */
2020void __journal_refile_buffer(struct journal_head *jh)
2021{
2022 int was_dirty;
2023 struct buffer_head *bh = jh2bh(jh);
2024
2025 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2026 if (jh->b_transaction)
2027 assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2028
2029 /* If the buffer is now unused, just drop it. */
2030 if (jh->b_next_transaction == NULL) {
2031 __journal_unfile_buffer(jh);
2032 return;
2033 }
2034
2035 /*
2036 * It has been modified by a later transaction: add it to the new
2037 * transaction's metadata list.
2038 */
2039
2040 was_dirty = test_clear_buffer_jbddirty(bh);
2041 __journal_temp_unlink_buffer(jh);
2042 jh->b_transaction = jh->b_next_transaction;
2043 jh->b_next_transaction = NULL;
Jan Kara9ada7342006-06-23 02:05:25 -07002044 __journal_file_buffer(jh, jh->b_transaction,
2045 was_dirty ? BJ_Metadata : BJ_Reserved);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002046 J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2047
2048 if (was_dirty)
2049 set_buffer_jbddirty(bh);
2050}
2051
2052/*
2053 * For the unlocked version of this call, also make sure that any
2054 * hanging journal_head is cleaned up if necessary.
2055 *
2056 * __journal_refile_buffer is usually called as part of a single locked
2057 * operation on a buffer_head, in which the caller is probably going to
2058 * be hooking the journal_head onto other lists. In that case it is up
2059 * to the caller to remove the journal_head if necessary. For the
2060 * unlocked journal_refile_buffer call, the caller isn't going to be
2061 * doing anything else to the buffer so we need to do the cleanup
2062 * ourselves to avoid a jh leak.
2063 *
2064 * *** The journal_head may be freed by this call! ***
2065 */
2066void journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2067{
2068 struct buffer_head *bh = jh2bh(jh);
2069
2070 jbd_lock_bh_state(bh);
2071 spin_lock(&journal->j_list_lock);
2072
2073 __journal_refile_buffer(jh);
2074 jbd_unlock_bh_state(bh);
2075 journal_remove_journal_head(bh);
2076
2077 spin_unlock(&journal->j_list_lock);
2078 __brelse(bh);
2079}