Bradley Grove | 26780d9 | 2013-08-23 10:35:45 -0400 | [diff] [blame] | 1 | |
| 2 | /* |
| 3 | * linux/drivers/scsi/esas2r/esas2r_flash.c |
| 4 | * For use with ATTO ExpressSAS R6xx SAS/SATA RAID controllers |
| 5 | * |
| 6 | * Copyright (c) 2001-2013 ATTO Technology, Inc. |
| 7 | * (mailto:linuxdrivers@attotech.com) |
| 8 | * |
| 9 | * This program is free software; you can redistribute it and/or |
| 10 | * modify it under the terms of the GNU General Public License |
| 11 | * as published by the Free Software Foundation; either version 2 |
| 12 | * of the License, or (at your option) any later version. |
| 13 | * |
| 14 | * This program is distributed in the hope that it will be useful, |
| 15 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 16 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 17 | * GNU General Public License for more details. |
| 18 | * |
| 19 | * NO WARRANTY |
| 20 | * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR |
| 21 | * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT |
| 22 | * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT, |
| 23 | * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is |
| 24 | * solely responsible for determining the appropriateness of using and |
| 25 | * distributing the Program and assumes all risks associated with its |
| 26 | * exercise of rights under this Agreement, including but not limited to |
| 27 | * the risks and costs of program errors, damage to or loss of data, |
| 28 | * programs or equipment, and unavailability or interruption of operations. |
| 29 | * |
| 30 | * DISCLAIMER OF LIABILITY |
| 31 | * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY |
| 32 | * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| 33 | * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND |
| 34 | * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR |
| 35 | * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE |
| 36 | * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED |
| 37 | * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES |
| 38 | * |
| 39 | * You should have received a copy of the GNU General Public License |
| 40 | * along with this program; if not, write to the Free Software |
| 41 | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, |
| 42 | * USA. |
| 43 | */ |
| 44 | |
| 45 | #include "esas2r.h" |
| 46 | |
| 47 | /* local macro defs */ |
| 48 | #define esas2r_nvramcalc_cksum(n) \ |
| 49 | (esas2r_calc_byte_cksum((u8 *)(n), sizeof(struct esas2r_sas_nvram), \ |
| 50 | SASNVR_CKSUM_SEED)) |
| 51 | #define esas2r_nvramcalc_xor_cksum(n) \ |
| 52 | (esas2r_calc_byte_xor_cksum((u8 *)(n), \ |
| 53 | sizeof(struct esas2r_sas_nvram), 0)) |
| 54 | |
| 55 | #define ESAS2R_FS_DRVR_VER 2 |
| 56 | |
| 57 | static struct esas2r_sas_nvram default_sas_nvram = { |
| 58 | { 'E', 'S', 'A', 'S' }, /* signature */ |
| 59 | SASNVR_VERSION, /* version */ |
| 60 | 0, /* checksum */ |
| 61 | 31, /* max_lun_for_target */ |
| 62 | SASNVR_PCILAT_MAX, /* pci_latency */ |
| 63 | SASNVR1_BOOT_DRVR, /* options1 */ |
| 64 | SASNVR2_HEARTBEAT | SASNVR2_SINGLE_BUS /* options2 */ |
| 65 | | SASNVR2_SW_MUX_CTRL, |
| 66 | SASNVR_COAL_DIS, /* int_coalescing */ |
| 67 | SASNVR_CMDTHR_NONE, /* cmd_throttle */ |
| 68 | 3, /* dev_wait_time */ |
| 69 | 1, /* dev_wait_count */ |
| 70 | 0, /* spin_up_delay */ |
| 71 | 0, /* ssp_align_rate */ |
| 72 | { 0x50, 0x01, 0x08, 0x60, /* sas_addr */ |
| 73 | 0x00, 0x00, 0x00, 0x00 }, |
| 74 | { SASNVR_SPEED_AUTO }, /* phy_speed */ |
| 75 | { SASNVR_MUX_DISABLED }, /* SAS multiplexing */ |
| 76 | { 0 }, /* phy_flags */ |
| 77 | SASNVR_SORT_SAS_ADDR, /* sort_type */ |
| 78 | 3, /* dpm_reqcmd_lmt */ |
| 79 | 3, /* dpm_stndby_time */ |
| 80 | 0, /* dpm_active_time */ |
| 81 | { 0 }, /* phy_target_id */ |
| 82 | SASNVR_VSMH_DISABLED, /* virt_ses_mode */ |
| 83 | SASNVR_RWM_DEFAULT, /* read_write_mode */ |
| 84 | 0, /* link down timeout */ |
| 85 | { 0 } /* reserved */ |
| 86 | }; |
| 87 | |
| 88 | static u8 cmd_to_fls_func[] = { |
| 89 | 0xFF, |
| 90 | VDA_FLASH_READ, |
| 91 | VDA_FLASH_BEGINW, |
| 92 | VDA_FLASH_WRITE, |
| 93 | VDA_FLASH_COMMIT, |
| 94 | VDA_FLASH_CANCEL |
| 95 | }; |
| 96 | |
| 97 | static u8 esas2r_calc_byte_xor_cksum(u8 *addr, u32 len, u8 seed) |
| 98 | { |
| 99 | u32 cksum = seed; |
| 100 | u8 *p = (u8 *)&cksum; |
| 101 | |
| 102 | while (len) { |
| 103 | if (((uintptr_t)addr & 3) == 0) |
| 104 | break; |
| 105 | |
| 106 | cksum = cksum ^ *addr; |
| 107 | addr++; |
| 108 | len--; |
| 109 | } |
| 110 | while (len >= sizeof(u32)) { |
| 111 | cksum = cksum ^ *(u32 *)addr; |
| 112 | addr += 4; |
| 113 | len -= 4; |
| 114 | } |
| 115 | while (len--) { |
| 116 | cksum = cksum ^ *addr; |
| 117 | addr++; |
| 118 | } |
| 119 | return p[0] ^ p[1] ^ p[2] ^ p[3]; |
| 120 | } |
| 121 | |
| 122 | static u8 esas2r_calc_byte_cksum(void *addr, u32 len, u8 seed) |
| 123 | { |
| 124 | u8 *p = (u8 *)addr; |
| 125 | u8 cksum = seed; |
| 126 | |
| 127 | while (len--) |
| 128 | cksum = cksum + p[len]; |
| 129 | return cksum; |
| 130 | } |
| 131 | |
| 132 | /* Interrupt callback to process FM API write requests. */ |
| 133 | static void esas2r_fmapi_callback(struct esas2r_adapter *a, |
| 134 | struct esas2r_request *rq) |
| 135 | { |
| 136 | struct atto_vda_flash_req *vrq = &rq->vrq->flash; |
| 137 | struct esas2r_flash_context *fc = |
| 138 | (struct esas2r_flash_context *)rq->interrupt_cx; |
| 139 | |
| 140 | if (rq->req_stat == RS_SUCCESS) { |
| 141 | /* Last request was successful. See what to do now. */ |
| 142 | switch (vrq->sub_func) { |
| 143 | case VDA_FLASH_BEGINW: |
| 144 | if (fc->sgc.cur_offset == NULL) |
| 145 | goto commit; |
| 146 | |
| 147 | vrq->sub_func = VDA_FLASH_WRITE; |
| 148 | rq->req_stat = RS_PENDING; |
| 149 | break; |
| 150 | |
| 151 | case VDA_FLASH_WRITE: |
| 152 | commit: |
| 153 | vrq->sub_func = VDA_FLASH_COMMIT; |
| 154 | rq->req_stat = RS_PENDING; |
| 155 | rq->interrupt_cb = fc->interrupt_cb; |
| 156 | break; |
| 157 | |
| 158 | default: |
| 159 | break; |
| 160 | } |
| 161 | } |
| 162 | |
| 163 | if (rq->req_stat != RS_PENDING) |
| 164 | /* |
| 165 | * All done. call the real callback to complete the FM API |
| 166 | * request. We should only get here if a BEGINW or WRITE |
| 167 | * operation failed. |
| 168 | */ |
| 169 | (*fc->interrupt_cb)(a, rq); |
| 170 | } |
| 171 | |
| 172 | /* |
| 173 | * Build a flash request based on the flash context. The request status |
| 174 | * is filled in on an error. |
| 175 | */ |
| 176 | static void build_flash_msg(struct esas2r_adapter *a, |
| 177 | struct esas2r_request *rq) |
| 178 | { |
| 179 | struct esas2r_flash_context *fc = |
| 180 | (struct esas2r_flash_context *)rq->interrupt_cx; |
| 181 | struct esas2r_sg_context *sgc = &fc->sgc; |
| 182 | u8 cksum = 0; |
| 183 | |
| 184 | /* calculate the checksum */ |
| 185 | if (fc->func == VDA_FLASH_BEGINW) { |
| 186 | if (sgc->cur_offset) |
| 187 | cksum = esas2r_calc_byte_xor_cksum(sgc->cur_offset, |
| 188 | sgc->length, |
| 189 | 0); |
| 190 | rq->interrupt_cb = esas2r_fmapi_callback; |
| 191 | } else { |
| 192 | rq->interrupt_cb = fc->interrupt_cb; |
| 193 | } |
| 194 | esas2r_build_flash_req(a, |
| 195 | rq, |
| 196 | fc->func, |
| 197 | cksum, |
| 198 | fc->flsh_addr, |
| 199 | sgc->length); |
| 200 | |
| 201 | esas2r_rq_free_sg_lists(rq, a); |
| 202 | |
| 203 | /* |
| 204 | * remember the length we asked for. we have to keep track of |
| 205 | * the current amount done so we know how much to compare when |
| 206 | * doing the verification phase. |
| 207 | */ |
| 208 | fc->curr_len = fc->sgc.length; |
| 209 | |
| 210 | if (sgc->cur_offset) { |
| 211 | /* setup the S/G context to build the S/G table */ |
| 212 | esas2r_sgc_init(sgc, a, rq, &rq->vrq->flash.data.sge[0]); |
| 213 | |
| 214 | if (!esas2r_build_sg_list(a, rq, sgc)) { |
| 215 | rq->req_stat = RS_BUSY; |
| 216 | return; |
| 217 | } |
| 218 | } else { |
| 219 | fc->sgc.length = 0; |
| 220 | } |
| 221 | |
| 222 | /* update the flsh_addr to the next one to write to */ |
| 223 | fc->flsh_addr += fc->curr_len; |
| 224 | } |
| 225 | |
| 226 | /* determine the method to process the flash request */ |
| 227 | static bool load_image(struct esas2r_adapter *a, struct esas2r_request *rq) |
| 228 | { |
| 229 | /* |
| 230 | * assume we have more to do. if we return with the status set to |
| 231 | * RS_PENDING, FM API tasks will continue. |
| 232 | */ |
| 233 | rq->req_stat = RS_PENDING; |
| 234 | if (a->flags & AF_DEGRADED_MODE) |
| 235 | /* not suppported for now */; |
| 236 | else |
| 237 | build_flash_msg(a, rq); |
| 238 | |
| 239 | return rq->req_stat == RS_PENDING; |
| 240 | } |
| 241 | |
| 242 | /* boot image fixer uppers called before downloading the image. */ |
| 243 | static void fix_bios(struct esas2r_adapter *a, struct esas2r_flash_img *fi) |
| 244 | { |
| 245 | struct esas2r_component_header *ch = &fi->cmp_hdr[CH_IT_BIOS]; |
| 246 | struct esas2r_pc_image *pi; |
| 247 | struct esas2r_boot_header *bh; |
| 248 | |
| 249 | pi = (struct esas2r_pc_image *)((u8 *)fi + ch->image_offset); |
| 250 | bh = |
| 251 | (struct esas2r_boot_header *)((u8 *)pi + |
| 252 | le16_to_cpu(pi->header_offset)); |
| 253 | bh->device_id = cpu_to_le16(a->pcid->device); |
| 254 | |
| 255 | /* Recalculate the checksum in the PNP header if there */ |
| 256 | if (pi->pnp_offset) { |
| 257 | u8 *pnp_header_bytes = |
| 258 | ((u8 *)pi + le16_to_cpu(pi->pnp_offset)); |
| 259 | |
| 260 | /* Identifier - dword that starts at byte 10 */ |
| 261 | *((u32 *)&pnp_header_bytes[10]) = |
| 262 | cpu_to_le32(MAKEDWORD(a->pcid->subsystem_vendor, |
| 263 | a->pcid->subsystem_device)); |
| 264 | |
| 265 | /* Checksum - byte 9 */ |
| 266 | pnp_header_bytes[9] -= esas2r_calc_byte_cksum(pnp_header_bytes, |
| 267 | 32, 0); |
| 268 | } |
| 269 | |
| 270 | /* Recalculate the checksum needed by the PC */ |
| 271 | pi->checksum = pi->checksum - |
| 272 | esas2r_calc_byte_cksum((u8 *)pi, ch->length, 0); |
| 273 | } |
| 274 | |
| 275 | static void fix_efi(struct esas2r_adapter *a, struct esas2r_flash_img *fi) |
| 276 | { |
| 277 | struct esas2r_component_header *ch = &fi->cmp_hdr[CH_IT_EFI]; |
| 278 | u32 len = ch->length; |
| 279 | u32 offset = ch->image_offset; |
| 280 | struct esas2r_efi_image *ei; |
| 281 | struct esas2r_boot_header *bh; |
| 282 | |
| 283 | while (len) { |
| 284 | u32 thislen; |
| 285 | |
| 286 | ei = (struct esas2r_efi_image *)((u8 *)fi + offset); |
| 287 | bh = (struct esas2r_boot_header *)((u8 *)ei + |
| 288 | le16_to_cpu( |
| 289 | ei->header_offset)); |
| 290 | bh->device_id = cpu_to_le16(a->pcid->device); |
| 291 | thislen = (u32)le16_to_cpu(bh->image_length) * 512; |
| 292 | |
| 293 | if (thislen > len) |
| 294 | break; |
| 295 | |
| 296 | len -= thislen; |
| 297 | offset += thislen; |
| 298 | } |
| 299 | } |
| 300 | |
| 301 | /* Complete a FM API request with the specified status. */ |
| 302 | static bool complete_fmapi_req(struct esas2r_adapter *a, |
| 303 | struct esas2r_request *rq, u8 fi_stat) |
| 304 | { |
| 305 | struct esas2r_flash_context *fc = |
| 306 | (struct esas2r_flash_context *)rq->interrupt_cx; |
| 307 | struct esas2r_flash_img *fi = fc->fi; |
| 308 | |
| 309 | fi->status = fi_stat; |
| 310 | fi->driver_error = rq->req_stat; |
| 311 | rq->interrupt_cb = NULL; |
| 312 | rq->req_stat = RS_SUCCESS; |
| 313 | |
| 314 | if (fi_stat != FI_STAT_IMG_VER) |
| 315 | memset(fc->scratch, 0, FM_BUF_SZ); |
| 316 | |
| 317 | esas2r_enable_heartbeat(a); |
| 318 | esas2r_lock_clear_flags(&a->flags, AF_FLASH_LOCK); |
| 319 | return false; |
| 320 | } |
| 321 | |
| 322 | /* Process each phase of the flash download process. */ |
| 323 | static void fw_download_proc(struct esas2r_adapter *a, |
| 324 | struct esas2r_request *rq) |
| 325 | { |
| 326 | struct esas2r_flash_context *fc = |
| 327 | (struct esas2r_flash_context *)rq->interrupt_cx; |
| 328 | struct esas2r_flash_img *fi = fc->fi; |
| 329 | struct esas2r_component_header *ch; |
| 330 | u32 len; |
| 331 | u8 *p, *q; |
| 332 | |
| 333 | /* If the previous operation failed, just return. */ |
| 334 | if (rq->req_stat != RS_SUCCESS) |
| 335 | goto error; |
| 336 | |
| 337 | /* |
| 338 | * If an upload just completed and the compare length is non-zero, |
| 339 | * then we just read back part of the image we just wrote. verify the |
| 340 | * section and continue reading until the entire image is verified. |
| 341 | */ |
| 342 | if (fc->func == VDA_FLASH_READ |
| 343 | && fc->cmp_len) { |
| 344 | ch = &fi->cmp_hdr[fc->comp_typ]; |
| 345 | |
| 346 | p = fc->scratch; |
| 347 | q = (u8 *)fi /* start of the whole gob */ |
| 348 | + ch->image_offset /* start of the current image */ |
| 349 | + ch->length /* end of the current image */ |
| 350 | - fc->cmp_len; /* where we are now */ |
| 351 | |
| 352 | /* |
| 353 | * NOTE - curr_len is the exact count of bytes for the read |
| 354 | * even when the end is read and its not a full buffer |
| 355 | */ |
| 356 | for (len = fc->curr_len; len; len--) |
| 357 | if (*p++ != *q++) |
| 358 | goto error; |
| 359 | |
| 360 | fc->cmp_len -= fc->curr_len; /* # left to compare */ |
| 361 | |
| 362 | /* Update fc and determine the length for the next upload */ |
| 363 | if (fc->cmp_len > FM_BUF_SZ) |
| 364 | fc->sgc.length = FM_BUF_SZ; |
| 365 | else |
| 366 | fc->sgc.length = fc->cmp_len; |
| 367 | |
| 368 | fc->sgc.cur_offset = fc->sgc_offset + |
| 369 | ((u8 *)fc->scratch - (u8 *)fi); |
| 370 | } |
| 371 | |
| 372 | /* |
| 373 | * This code uses a 'while' statement since the next component may |
| 374 | * have a length = zero. This can happen since some components are |
| 375 | * not required. At the end of this 'while' we set up the length |
| 376 | * for the next request and therefore sgc.length can be = 0. |
| 377 | */ |
| 378 | while (fc->sgc.length == 0) { |
| 379 | ch = &fi->cmp_hdr[fc->comp_typ]; |
| 380 | |
| 381 | switch (fc->task) { |
| 382 | case FMTSK_ERASE_BOOT: |
| 383 | /* the BIOS image is written next */ |
| 384 | ch = &fi->cmp_hdr[CH_IT_BIOS]; |
| 385 | if (ch->length == 0) |
| 386 | goto no_bios; |
| 387 | |
| 388 | fc->task = FMTSK_WRTBIOS; |
| 389 | fc->func = VDA_FLASH_BEGINW; |
| 390 | fc->comp_typ = CH_IT_BIOS; |
| 391 | fc->flsh_addr = FLS_OFFSET_BOOT; |
| 392 | fc->sgc.length = ch->length; |
| 393 | fc->sgc.cur_offset = fc->sgc_offset + |
| 394 | ch->image_offset; |
| 395 | break; |
| 396 | |
| 397 | case FMTSK_WRTBIOS: |
| 398 | /* |
| 399 | * The BIOS image has been written - read it and |
| 400 | * verify it |
| 401 | */ |
| 402 | fc->task = FMTSK_READBIOS; |
| 403 | fc->func = VDA_FLASH_READ; |
| 404 | fc->flsh_addr = FLS_OFFSET_BOOT; |
| 405 | fc->cmp_len = ch->length; |
| 406 | fc->sgc.length = FM_BUF_SZ; |
| 407 | fc->sgc.cur_offset = fc->sgc_offset |
| 408 | + ((u8 *)fc->scratch - |
| 409 | (u8 *)fi); |
| 410 | break; |
| 411 | |
| 412 | case FMTSK_READBIOS: |
| 413 | no_bios: |
| 414 | /* |
| 415 | * Mark the component header status for the image |
| 416 | * completed |
| 417 | */ |
| 418 | ch->status = CH_STAT_SUCCESS; |
| 419 | |
| 420 | /* The MAC image is written next */ |
| 421 | ch = &fi->cmp_hdr[CH_IT_MAC]; |
| 422 | if (ch->length == 0) |
| 423 | goto no_mac; |
| 424 | |
| 425 | fc->task = FMTSK_WRTMAC; |
| 426 | fc->func = VDA_FLASH_BEGINW; |
| 427 | fc->comp_typ = CH_IT_MAC; |
| 428 | fc->flsh_addr = FLS_OFFSET_BOOT |
| 429 | + fi->cmp_hdr[CH_IT_BIOS].length; |
| 430 | fc->sgc.length = ch->length; |
| 431 | fc->sgc.cur_offset = fc->sgc_offset + |
| 432 | ch->image_offset; |
| 433 | break; |
| 434 | |
| 435 | case FMTSK_WRTMAC: |
| 436 | /* The MAC image has been written - read and verify */ |
| 437 | fc->task = FMTSK_READMAC; |
| 438 | fc->func = VDA_FLASH_READ; |
| 439 | fc->flsh_addr -= ch->length; |
| 440 | fc->cmp_len = ch->length; |
| 441 | fc->sgc.length = FM_BUF_SZ; |
| 442 | fc->sgc.cur_offset = fc->sgc_offset |
| 443 | + ((u8 *)fc->scratch - |
| 444 | (u8 *)fi); |
| 445 | break; |
| 446 | |
| 447 | case FMTSK_READMAC: |
| 448 | no_mac: |
| 449 | /* |
| 450 | * Mark the component header status for the image |
| 451 | * completed |
| 452 | */ |
| 453 | ch->status = CH_STAT_SUCCESS; |
| 454 | |
| 455 | /* The EFI image is written next */ |
| 456 | ch = &fi->cmp_hdr[CH_IT_EFI]; |
| 457 | if (ch->length == 0) |
| 458 | goto no_efi; |
| 459 | |
| 460 | fc->task = FMTSK_WRTEFI; |
| 461 | fc->func = VDA_FLASH_BEGINW; |
| 462 | fc->comp_typ = CH_IT_EFI; |
| 463 | fc->flsh_addr = FLS_OFFSET_BOOT |
| 464 | + fi->cmp_hdr[CH_IT_BIOS].length |
| 465 | + fi->cmp_hdr[CH_IT_MAC].length; |
| 466 | fc->sgc.length = ch->length; |
| 467 | fc->sgc.cur_offset = fc->sgc_offset + |
| 468 | ch->image_offset; |
| 469 | break; |
| 470 | |
| 471 | case FMTSK_WRTEFI: |
| 472 | /* The EFI image has been written - read and verify */ |
| 473 | fc->task = FMTSK_READEFI; |
| 474 | fc->func = VDA_FLASH_READ; |
| 475 | fc->flsh_addr -= ch->length; |
| 476 | fc->cmp_len = ch->length; |
| 477 | fc->sgc.length = FM_BUF_SZ; |
| 478 | fc->sgc.cur_offset = fc->sgc_offset |
| 479 | + ((u8 *)fc->scratch - |
| 480 | (u8 *)fi); |
| 481 | break; |
| 482 | |
| 483 | case FMTSK_READEFI: |
| 484 | no_efi: |
| 485 | /* |
| 486 | * Mark the component header status for the image |
| 487 | * completed |
| 488 | */ |
| 489 | ch->status = CH_STAT_SUCCESS; |
| 490 | |
| 491 | /* The CFG image is written next */ |
| 492 | ch = &fi->cmp_hdr[CH_IT_CFG]; |
| 493 | |
| 494 | if (ch->length == 0) |
| 495 | goto no_cfg; |
| 496 | fc->task = FMTSK_WRTCFG; |
| 497 | fc->func = VDA_FLASH_BEGINW; |
| 498 | fc->comp_typ = CH_IT_CFG; |
| 499 | fc->flsh_addr = FLS_OFFSET_CPYR - ch->length; |
| 500 | fc->sgc.length = ch->length; |
| 501 | fc->sgc.cur_offset = fc->sgc_offset + |
| 502 | ch->image_offset; |
| 503 | break; |
| 504 | |
| 505 | case FMTSK_WRTCFG: |
| 506 | /* The CFG image has been written - read and verify */ |
| 507 | fc->task = FMTSK_READCFG; |
| 508 | fc->func = VDA_FLASH_READ; |
| 509 | fc->flsh_addr = FLS_OFFSET_CPYR - ch->length; |
| 510 | fc->cmp_len = ch->length; |
| 511 | fc->sgc.length = FM_BUF_SZ; |
| 512 | fc->sgc.cur_offset = fc->sgc_offset |
| 513 | + ((u8 *)fc->scratch - |
| 514 | (u8 *)fi); |
| 515 | break; |
| 516 | |
| 517 | case FMTSK_READCFG: |
| 518 | no_cfg: |
| 519 | /* |
| 520 | * Mark the component header status for the image |
| 521 | * completed |
| 522 | */ |
| 523 | ch->status = CH_STAT_SUCCESS; |
| 524 | |
| 525 | /* |
| 526 | * The download is complete. If in degraded mode, |
| 527 | * attempt a chip reset. |
| 528 | */ |
| 529 | if (a->flags & AF_DEGRADED_MODE) |
| 530 | esas2r_local_reset_adapter(a); |
| 531 | |
| 532 | a->flash_ver = fi->cmp_hdr[CH_IT_BIOS].version; |
| 533 | esas2r_print_flash_rev(a); |
| 534 | |
| 535 | /* Update the type of boot image on the card */ |
| 536 | memcpy(a->image_type, fi->rel_version, |
| 537 | sizeof(fi->rel_version)); |
| 538 | complete_fmapi_req(a, rq, FI_STAT_SUCCESS); |
| 539 | return; |
| 540 | } |
| 541 | |
| 542 | /* If verifying, don't try reading more than what's there */ |
| 543 | if (fc->func == VDA_FLASH_READ |
| 544 | && fc->sgc.length > fc->cmp_len) |
| 545 | fc->sgc.length = fc->cmp_len; |
| 546 | } |
| 547 | |
| 548 | /* Build the request to perform the next action */ |
| 549 | if (!load_image(a, rq)) { |
| 550 | error: |
| 551 | if (fc->comp_typ < fi->num_comps) { |
| 552 | ch = &fi->cmp_hdr[fc->comp_typ]; |
| 553 | ch->status = CH_STAT_FAILED; |
| 554 | } |
| 555 | |
| 556 | complete_fmapi_req(a, rq, FI_STAT_FAILED); |
| 557 | } |
| 558 | } |
| 559 | |
| 560 | /* Determine the flash image adaptyp for this adapter */ |
| 561 | static u8 get_fi_adap_type(struct esas2r_adapter *a) |
| 562 | { |
| 563 | u8 type; |
| 564 | |
| 565 | /* use the device ID to get the correct adap_typ for this HBA */ |
| 566 | switch (a->pcid->device) { |
| 567 | case ATTO_DID_INTEL_IOP348: |
| 568 | type = FI_AT_SUN_LAKE; |
| 569 | break; |
| 570 | |
| 571 | case ATTO_DID_MV_88RC9580: |
| 572 | case ATTO_DID_MV_88RC9580TS: |
| 573 | case ATTO_DID_MV_88RC9580TSE: |
| 574 | case ATTO_DID_MV_88RC9580TL: |
| 575 | type = FI_AT_MV_9580; |
| 576 | break; |
| 577 | |
| 578 | default: |
| 579 | type = FI_AT_UNKNWN; |
| 580 | break; |
| 581 | } |
| 582 | |
| 583 | return type; |
| 584 | } |
| 585 | |
| 586 | /* Size of config + copyright + flash_ver images, 0 for failure. */ |
| 587 | static u32 chk_cfg(u8 *cfg, u32 length, u32 *flash_ver) |
| 588 | { |
| 589 | u16 *pw = (u16 *)cfg - 1; |
| 590 | u32 sz = 0; |
| 591 | u32 len = length; |
| 592 | |
| 593 | if (len == 0) |
| 594 | len = FM_BUF_SZ; |
| 595 | |
| 596 | if (flash_ver) |
| 597 | *flash_ver = 0; |
| 598 | |
| 599 | while (true) { |
| 600 | u16 type; |
| 601 | u16 size; |
| 602 | |
| 603 | type = le16_to_cpu(*pw--); |
| 604 | size = le16_to_cpu(*pw--); |
| 605 | |
| 606 | if (type != FBT_CPYR |
| 607 | && type != FBT_SETUP |
| 608 | && type != FBT_FLASH_VER) |
| 609 | break; |
| 610 | |
| 611 | if (type == FBT_FLASH_VER |
| 612 | && flash_ver) |
| 613 | *flash_ver = le32_to_cpu(*(u32 *)(pw - 1)); |
| 614 | |
| 615 | sz += size + (2 * sizeof(u16)); |
| 616 | pw -= size / sizeof(u16); |
| 617 | |
| 618 | if (sz > len - (2 * sizeof(u16))) |
| 619 | break; |
| 620 | } |
| 621 | |
| 622 | /* See if we are comparing the size to the specified length */ |
| 623 | if (length && sz != length) |
| 624 | return 0; |
| 625 | |
| 626 | return sz; |
| 627 | } |
| 628 | |
| 629 | /* Verify that the boot image is valid */ |
| 630 | static u8 chk_boot(u8 *boot_img, u32 length) |
| 631 | { |
| 632 | struct esas2r_boot_image *bi = (struct esas2r_boot_image *)boot_img; |
| 633 | u16 hdroffset = le16_to_cpu(bi->header_offset); |
| 634 | struct esas2r_boot_header *bh; |
| 635 | |
| 636 | if (bi->signature != le16_to_cpu(0xaa55) |
| 637 | || (long)hdroffset > |
| 638 | (long)(65536L - sizeof(struct esas2r_boot_header)) |
| 639 | || (hdroffset & 3) |
| 640 | || (hdroffset < sizeof(struct esas2r_boot_image)) |
| 641 | || ((u32)hdroffset + sizeof(struct esas2r_boot_header) > length)) |
| 642 | return 0xff; |
| 643 | |
| 644 | bh = (struct esas2r_boot_header *)((char *)bi + hdroffset); |
| 645 | |
| 646 | if (bh->signature[0] != 'P' |
| 647 | || bh->signature[1] != 'C' |
| 648 | || bh->signature[2] != 'I' |
| 649 | || bh->signature[3] != 'R' |
| 650 | || le16_to_cpu(bh->struct_length) < |
| 651 | (u16)sizeof(struct esas2r_boot_header) |
| 652 | || bh->class_code[2] != 0x01 |
| 653 | || bh->class_code[1] != 0x04 |
| 654 | || bh->class_code[0] != 0x00 |
| 655 | || (bh->code_type != CODE_TYPE_PC |
| 656 | && bh->code_type != CODE_TYPE_OPEN |
| 657 | && bh->code_type != CODE_TYPE_EFI)) |
| 658 | return 0xff; |
| 659 | |
| 660 | return bh->code_type; |
| 661 | } |
| 662 | |
| 663 | /* The sum of all the WORDS of the image */ |
| 664 | static u16 calc_fi_checksum(struct esas2r_flash_context *fc) |
| 665 | { |
| 666 | struct esas2r_flash_img *fi = fc->fi; |
| 667 | u16 cksum; |
| 668 | u32 len; |
| 669 | u16 *pw; |
| 670 | |
| 671 | for (len = (fi->length - fc->fi_hdr_len) / 2, |
| 672 | pw = (u16 *)((u8 *)fi + fc->fi_hdr_len), |
| 673 | cksum = 0; |
| 674 | len; |
| 675 | len--, pw++) |
| 676 | cksum = cksum + le16_to_cpu(*pw); |
| 677 | |
| 678 | return cksum; |
| 679 | } |
| 680 | |
| 681 | /* |
| 682 | * Verify the flash image structure. The following verifications will |
| 683 | * be performed: |
| 684 | * 1) verify the fi_version is correct |
| 685 | * 2) verify the checksum of the entire image. |
| 686 | * 3) validate the adap_typ, action and length fields. |
| 687 | * 4) valdiate each component header. check the img_type and |
| 688 | * length fields |
| 689 | * 5) valdiate each component image. validate signatures and |
| 690 | * local checksums |
| 691 | */ |
| 692 | static bool verify_fi(struct esas2r_adapter *a, |
| 693 | struct esas2r_flash_context *fc) |
| 694 | { |
| 695 | struct esas2r_flash_img *fi = fc->fi; |
| 696 | u8 type; |
| 697 | bool imgerr; |
| 698 | u16 i; |
| 699 | u32 len; |
| 700 | struct esas2r_component_header *ch; |
| 701 | |
| 702 | /* Verify the length - length must even since we do a word checksum */ |
| 703 | len = fi->length; |
| 704 | |
| 705 | if ((len & 1) |
| 706 | || len < fc->fi_hdr_len) { |
| 707 | fi->status = FI_STAT_LENGTH; |
| 708 | return false; |
| 709 | } |
| 710 | |
| 711 | /* Get adapter type and verify type in flash image */ |
| 712 | type = get_fi_adap_type(a); |
| 713 | if ((type == FI_AT_UNKNWN) || (fi->adap_typ != type)) { |
| 714 | fi->status = FI_STAT_ADAPTYP; |
| 715 | return false; |
| 716 | } |
| 717 | |
| 718 | /* |
| 719 | * Loop through each component and verify the img_type and length |
| 720 | * fields. Keep a running count of the sizes sooze we can verify total |
| 721 | * size to additive size. |
| 722 | */ |
| 723 | imgerr = false; |
| 724 | |
| 725 | for (i = 0, len = 0, ch = fi->cmp_hdr; |
| 726 | i < fi->num_comps; |
| 727 | i++, ch++) { |
| 728 | bool cmperr = false; |
| 729 | |
| 730 | /* |
| 731 | * Verify that the component header has the same index as the |
| 732 | * image type. The headers must be ordered correctly |
| 733 | */ |
| 734 | if (i != ch->img_type) { |
| 735 | imgerr = true; |
| 736 | ch->status = CH_STAT_INVALID; |
| 737 | continue; |
| 738 | } |
| 739 | |
| 740 | switch (ch->img_type) { |
| 741 | case CH_IT_BIOS: |
| 742 | type = CODE_TYPE_PC; |
| 743 | break; |
| 744 | |
| 745 | case CH_IT_MAC: |
| 746 | type = CODE_TYPE_OPEN; |
| 747 | break; |
| 748 | |
| 749 | case CH_IT_EFI: |
| 750 | type = CODE_TYPE_EFI; |
| 751 | break; |
| 752 | } |
| 753 | |
| 754 | switch (ch->img_type) { |
| 755 | case CH_IT_FW: |
| 756 | case CH_IT_NVR: |
| 757 | break; |
| 758 | |
| 759 | case CH_IT_BIOS: |
| 760 | case CH_IT_MAC: |
| 761 | case CH_IT_EFI: |
| 762 | if (ch->length & 0x1ff) |
| 763 | cmperr = true; |
| 764 | |
| 765 | /* Test if component image is present */ |
| 766 | if (ch->length == 0) |
| 767 | break; |
| 768 | |
| 769 | /* Image is present - verify the image */ |
| 770 | if (chk_boot((u8 *)fi + ch->image_offset, ch->length) |
| 771 | != type) |
| 772 | cmperr = true; |
| 773 | |
| 774 | break; |
| 775 | |
| 776 | case CH_IT_CFG: |
| 777 | |
| 778 | /* Test if component image is present */ |
| 779 | if (ch->length == 0) { |
| 780 | cmperr = true; |
| 781 | break; |
| 782 | } |
| 783 | |
| 784 | /* Image is present - verify the image */ |
| 785 | if (!chk_cfg((u8 *)fi + ch->image_offset + ch->length, |
| 786 | ch->length, NULL)) |
| 787 | cmperr = true; |
| 788 | |
| 789 | break; |
| 790 | |
| 791 | default: |
| 792 | |
| 793 | fi->status = FI_STAT_UNKNOWN; |
| 794 | return false; |
| 795 | } |
| 796 | |
| 797 | if (cmperr) { |
| 798 | imgerr = true; |
| 799 | ch->status = CH_STAT_INVALID; |
| 800 | } else { |
| 801 | ch->status = CH_STAT_PENDING; |
| 802 | len += ch->length; |
| 803 | } |
| 804 | } |
| 805 | |
| 806 | if (imgerr) { |
| 807 | fi->status = FI_STAT_MISSING; |
| 808 | return false; |
| 809 | } |
| 810 | |
| 811 | /* Compare fi->length to the sum of ch->length fields */ |
| 812 | if (len != fi->length - fc->fi_hdr_len) { |
| 813 | fi->status = FI_STAT_LENGTH; |
| 814 | return false; |
| 815 | } |
| 816 | |
| 817 | /* Compute the checksum - it should come out zero */ |
| 818 | if (fi->checksum != calc_fi_checksum(fc)) { |
| 819 | fi->status = FI_STAT_CHKSUM; |
| 820 | return false; |
| 821 | } |
| 822 | |
| 823 | return true; |
| 824 | } |
| 825 | |
| 826 | /* Fill in the FS IOCTL response data from a completed request. */ |
| 827 | static void esas2r_complete_fs_ioctl(struct esas2r_adapter *a, |
| 828 | struct esas2r_request *rq) |
| 829 | { |
| 830 | struct esas2r_ioctl_fs *fs = |
| 831 | (struct esas2r_ioctl_fs *)rq->interrupt_cx; |
| 832 | |
| 833 | if (rq->vrq->flash.sub_func == VDA_FLASH_COMMIT) |
| 834 | esas2r_enable_heartbeat(a); |
| 835 | |
| 836 | fs->driver_error = rq->req_stat; |
| 837 | |
| 838 | if (fs->driver_error == RS_SUCCESS) |
| 839 | fs->status = ATTO_STS_SUCCESS; |
| 840 | else |
| 841 | fs->status = ATTO_STS_FAILED; |
| 842 | } |
| 843 | |
| 844 | /* Prepare an FS IOCTL request to be sent to the firmware. */ |
| 845 | bool esas2r_process_fs_ioctl(struct esas2r_adapter *a, |
| 846 | struct esas2r_ioctl_fs *fs, |
| 847 | struct esas2r_request *rq, |
| 848 | struct esas2r_sg_context *sgc) |
| 849 | { |
| 850 | u8 cmdcnt = (u8)ARRAY_SIZE(cmd_to_fls_func); |
| 851 | struct esas2r_ioctlfs_command *fsc = &fs->command; |
| 852 | u8 func = 0; |
| 853 | u32 datalen; |
| 854 | |
| 855 | fs->status = ATTO_STS_FAILED; |
| 856 | fs->driver_error = RS_PENDING; |
| 857 | |
| 858 | if (fs->version > ESAS2R_FS_VER) { |
| 859 | fs->status = ATTO_STS_INV_VERSION; |
| 860 | return false; |
| 861 | } |
| 862 | |
Bradley Grove | 64d29bd | 2013-08-29 15:55:40 -0400 | [diff] [blame^] | 863 | if (fsc->command >= cmdcnt) { |
| 864 | fs->status = ATTO_STS_INV_FUNC; |
| 865 | return false; |
| 866 | } |
| 867 | |
Bradley Grove | 26780d9 | 2013-08-23 10:35:45 -0400 | [diff] [blame] | 868 | func = cmd_to_fls_func[fsc->command]; |
Bradley Grove | 64d29bd | 2013-08-29 15:55:40 -0400 | [diff] [blame^] | 869 | if (func == 0xFF) { |
Bradley Grove | 26780d9 | 2013-08-23 10:35:45 -0400 | [diff] [blame] | 870 | fs->status = ATTO_STS_INV_FUNC; |
| 871 | return false; |
| 872 | } |
| 873 | |
| 874 | if (fsc->command != ESAS2R_FS_CMD_CANCEL) { |
| 875 | if ((a->pcid->device != ATTO_DID_MV_88RC9580 |
| 876 | || fs->adap_type != ESAS2R_FS_AT_ESASRAID2) |
| 877 | && (a->pcid->device != ATTO_DID_MV_88RC9580TS |
| 878 | || fs->adap_type != ESAS2R_FS_AT_TSSASRAID2) |
| 879 | && (a->pcid->device != ATTO_DID_MV_88RC9580TSE |
| 880 | || fs->adap_type != ESAS2R_FS_AT_TSSASRAID2E) |
| 881 | && (a->pcid->device != ATTO_DID_MV_88RC9580TL |
| 882 | || fs->adap_type != ESAS2R_FS_AT_TLSASHBA)) { |
| 883 | fs->status = ATTO_STS_INV_ADAPTER; |
| 884 | return false; |
| 885 | } |
| 886 | |
| 887 | if (fs->driver_ver > ESAS2R_FS_DRVR_VER) { |
| 888 | fs->status = ATTO_STS_INV_DRVR_VER; |
| 889 | return false; |
| 890 | } |
| 891 | } |
| 892 | |
| 893 | if (a->flags & AF_DEGRADED_MODE) { |
| 894 | fs->status = ATTO_STS_DEGRADED; |
| 895 | return false; |
| 896 | } |
| 897 | |
| 898 | rq->interrupt_cb = esas2r_complete_fs_ioctl; |
| 899 | rq->interrupt_cx = fs; |
| 900 | datalen = le32_to_cpu(fsc->length); |
| 901 | esas2r_build_flash_req(a, |
| 902 | rq, |
| 903 | func, |
| 904 | fsc->checksum, |
| 905 | le32_to_cpu(fsc->flash_addr), |
| 906 | datalen); |
| 907 | |
| 908 | if (func == VDA_FLASH_WRITE |
| 909 | || func == VDA_FLASH_READ) { |
| 910 | if (datalen == 0) { |
| 911 | fs->status = ATTO_STS_INV_FUNC; |
| 912 | return false; |
| 913 | } |
| 914 | |
| 915 | esas2r_sgc_init(sgc, a, rq, rq->vrq->flash.data.sge); |
| 916 | sgc->length = datalen; |
| 917 | |
| 918 | if (!esas2r_build_sg_list(a, rq, sgc)) { |
| 919 | fs->status = ATTO_STS_OUT_OF_RSRC; |
| 920 | return false; |
| 921 | } |
| 922 | } |
| 923 | |
| 924 | if (func == VDA_FLASH_COMMIT) |
| 925 | esas2r_disable_heartbeat(a); |
| 926 | |
| 927 | esas2r_start_request(a, rq); |
| 928 | |
| 929 | return true; |
| 930 | } |
| 931 | |
| 932 | static bool esas2r_flash_access(struct esas2r_adapter *a, u32 function) |
| 933 | { |
| 934 | u32 starttime; |
| 935 | u32 timeout; |
| 936 | u32 intstat; |
| 937 | u32 doorbell; |
| 938 | |
| 939 | /* Disable chip interrupts awhile */ |
| 940 | if (function == DRBL_FLASH_REQ) |
| 941 | esas2r_disable_chip_interrupts(a); |
| 942 | |
| 943 | /* Issue the request to the firmware */ |
| 944 | esas2r_write_register_dword(a, MU_DOORBELL_IN, function); |
| 945 | |
| 946 | /* Now wait for the firmware to process it */ |
| 947 | starttime = jiffies_to_msecs(jiffies); |
| 948 | timeout = a->flags & |
| 949 | (AF_CHPRST_PENDING | AF_DISC_PENDING) ? 40000 : 5000; |
| 950 | |
| 951 | while (true) { |
| 952 | intstat = esas2r_read_register_dword(a, MU_INT_STATUS_OUT); |
| 953 | |
| 954 | if (intstat & MU_INTSTAT_DRBL) { |
| 955 | /* Got a doorbell interrupt. Check for the function */ |
| 956 | doorbell = |
| 957 | esas2r_read_register_dword(a, MU_DOORBELL_OUT); |
| 958 | esas2r_write_register_dword(a, MU_DOORBELL_OUT, |
| 959 | doorbell); |
| 960 | if (doorbell & function) |
| 961 | break; |
| 962 | } |
| 963 | |
| 964 | schedule_timeout_interruptible(msecs_to_jiffies(100)); |
| 965 | |
| 966 | if ((jiffies_to_msecs(jiffies) - starttime) > timeout) { |
| 967 | /* |
| 968 | * Iimeout. If we were requesting flash access, |
| 969 | * indicate we are done so the firmware knows we gave |
| 970 | * up. If this was a REQ, we also need to re-enable |
| 971 | * chip interrupts. |
| 972 | */ |
| 973 | if (function == DRBL_FLASH_REQ) { |
| 974 | esas2r_hdebug("flash access timeout"); |
| 975 | esas2r_write_register_dword(a, MU_DOORBELL_IN, |
| 976 | DRBL_FLASH_DONE); |
| 977 | esas2r_enable_chip_interrupts(a); |
| 978 | } else { |
| 979 | esas2r_hdebug("flash release timeout"); |
| 980 | } |
| 981 | |
| 982 | return false; |
| 983 | } |
| 984 | } |
| 985 | |
| 986 | /* if we're done, re-enable chip interrupts */ |
| 987 | if (function == DRBL_FLASH_DONE) |
| 988 | esas2r_enable_chip_interrupts(a); |
| 989 | |
| 990 | return true; |
| 991 | } |
| 992 | |
| 993 | #define WINDOW_SIZE ((signed int)MW_DATA_WINDOW_SIZE) |
| 994 | |
| 995 | bool esas2r_read_flash_block(struct esas2r_adapter *a, |
| 996 | void *to, |
| 997 | u32 from, |
| 998 | u32 size) |
| 999 | { |
| 1000 | u8 *end = (u8 *)to; |
| 1001 | |
| 1002 | /* Try to acquire access to the flash */ |
| 1003 | if (!esas2r_flash_access(a, DRBL_FLASH_REQ)) |
| 1004 | return false; |
| 1005 | |
| 1006 | while (size) { |
| 1007 | u32 len; |
| 1008 | u32 offset; |
| 1009 | u32 iatvr; |
| 1010 | |
| 1011 | if (a->flags2 & AF2_SERIAL_FLASH) |
| 1012 | iatvr = MW_DATA_ADDR_SER_FLASH + (from & -WINDOW_SIZE); |
| 1013 | else |
| 1014 | iatvr = MW_DATA_ADDR_PAR_FLASH + (from & -WINDOW_SIZE); |
| 1015 | |
| 1016 | esas2r_map_data_window(a, iatvr); |
| 1017 | offset = from & (WINDOW_SIZE - 1); |
| 1018 | len = size; |
| 1019 | |
| 1020 | if (len > WINDOW_SIZE - offset) |
| 1021 | len = WINDOW_SIZE - offset; |
| 1022 | |
| 1023 | from += len; |
| 1024 | size -= len; |
| 1025 | |
| 1026 | while (len--) { |
| 1027 | *end++ = esas2r_read_data_byte(a, offset); |
| 1028 | offset++; |
| 1029 | } |
| 1030 | } |
| 1031 | |
| 1032 | /* Release flash access */ |
| 1033 | esas2r_flash_access(a, DRBL_FLASH_DONE); |
| 1034 | return true; |
| 1035 | } |
| 1036 | |
| 1037 | bool esas2r_read_flash_rev(struct esas2r_adapter *a) |
| 1038 | { |
| 1039 | u8 bytes[256]; |
| 1040 | u16 *pw; |
| 1041 | u16 *pwstart; |
| 1042 | u16 type; |
| 1043 | u16 size; |
| 1044 | u32 sz; |
| 1045 | |
| 1046 | sz = sizeof(bytes); |
| 1047 | pw = (u16 *)(bytes + sz); |
| 1048 | pwstart = (u16 *)bytes + 2; |
| 1049 | |
| 1050 | if (!esas2r_read_flash_block(a, bytes, FLS_OFFSET_CPYR - sz, sz)) |
| 1051 | goto invalid_rev; |
| 1052 | |
| 1053 | while (pw >= pwstart) { |
| 1054 | pw--; |
| 1055 | type = le16_to_cpu(*pw); |
| 1056 | pw--; |
| 1057 | size = le16_to_cpu(*pw); |
| 1058 | pw -= size / 2; |
| 1059 | |
| 1060 | if (type == FBT_CPYR |
| 1061 | || type == FBT_SETUP |
| 1062 | || pw < pwstart) |
| 1063 | continue; |
| 1064 | |
| 1065 | if (type == FBT_FLASH_VER) |
| 1066 | a->flash_ver = le32_to_cpu(*(u32 *)pw); |
| 1067 | |
| 1068 | break; |
| 1069 | } |
| 1070 | |
| 1071 | invalid_rev: |
| 1072 | return esas2r_print_flash_rev(a); |
| 1073 | } |
| 1074 | |
| 1075 | bool esas2r_print_flash_rev(struct esas2r_adapter *a) |
| 1076 | { |
| 1077 | u16 year = LOWORD(a->flash_ver); |
| 1078 | u8 day = LOBYTE(HIWORD(a->flash_ver)); |
| 1079 | u8 month = HIBYTE(HIWORD(a->flash_ver)); |
| 1080 | |
| 1081 | if (day == 0 |
| 1082 | || month == 0 |
| 1083 | || day > 31 |
| 1084 | || month > 12 |
| 1085 | || year < 2006 |
| 1086 | || year > 9999) { |
| 1087 | strcpy(a->flash_rev, "not found"); |
| 1088 | a->flash_ver = 0; |
| 1089 | return false; |
| 1090 | } |
| 1091 | |
| 1092 | sprintf(a->flash_rev, "%02d/%02d/%04d", month, day, year); |
| 1093 | esas2r_hdebug("flash version: %s", a->flash_rev); |
| 1094 | return true; |
| 1095 | } |
| 1096 | |
| 1097 | /* |
| 1098 | * Find the type of boot image type that is currently in the flash. |
| 1099 | * The chip only has a 64 KB PCI-e expansion ROM |
| 1100 | * size so only one image can be flashed at a time. |
| 1101 | */ |
| 1102 | bool esas2r_read_image_type(struct esas2r_adapter *a) |
| 1103 | { |
| 1104 | u8 bytes[256]; |
| 1105 | struct esas2r_boot_image *bi; |
| 1106 | struct esas2r_boot_header *bh; |
| 1107 | u32 sz; |
| 1108 | u32 len; |
| 1109 | u32 offset; |
| 1110 | |
| 1111 | /* Start at the base of the boot images and look for a valid image */ |
| 1112 | sz = sizeof(bytes); |
| 1113 | len = FLS_LENGTH_BOOT; |
| 1114 | offset = 0; |
| 1115 | |
| 1116 | while (true) { |
| 1117 | if (!esas2r_read_flash_block(a, bytes, FLS_OFFSET_BOOT + |
| 1118 | offset, |
| 1119 | sz)) |
| 1120 | goto invalid_rev; |
| 1121 | |
| 1122 | bi = (struct esas2r_boot_image *)bytes; |
| 1123 | bh = (struct esas2r_boot_header *)((u8 *)bi + |
| 1124 | le16_to_cpu( |
| 1125 | bi->header_offset)); |
| 1126 | if (bi->signature != cpu_to_le16(0xAA55)) |
| 1127 | goto invalid_rev; |
| 1128 | |
| 1129 | if (bh->code_type == CODE_TYPE_PC) { |
| 1130 | strcpy(a->image_type, "BIOS"); |
| 1131 | |
| 1132 | return true; |
| 1133 | } else if (bh->code_type == CODE_TYPE_EFI) { |
| 1134 | struct esas2r_efi_image *ei; |
| 1135 | |
| 1136 | /* |
| 1137 | * So we have an EFI image. There are several types |
| 1138 | * so see which architecture we have. |
| 1139 | */ |
| 1140 | ei = (struct esas2r_efi_image *)bytes; |
| 1141 | |
| 1142 | switch (le16_to_cpu(ei->machine_type)) { |
| 1143 | case EFI_MACHINE_IA32: |
| 1144 | strcpy(a->image_type, "EFI 32-bit"); |
| 1145 | return true; |
| 1146 | |
| 1147 | case EFI_MACHINE_IA64: |
| 1148 | strcpy(a->image_type, "EFI itanium"); |
| 1149 | return true; |
| 1150 | |
| 1151 | case EFI_MACHINE_X64: |
| 1152 | strcpy(a->image_type, "EFI 64-bit"); |
| 1153 | return true; |
| 1154 | |
| 1155 | case EFI_MACHINE_EBC: |
| 1156 | strcpy(a->image_type, "EFI EBC"); |
| 1157 | return true; |
| 1158 | |
| 1159 | default: |
| 1160 | goto invalid_rev; |
| 1161 | } |
| 1162 | } else { |
| 1163 | u32 thislen; |
| 1164 | |
| 1165 | /* jump to the next image */ |
| 1166 | thislen = (u32)le16_to_cpu(bh->image_length) * 512; |
| 1167 | if (thislen == 0 |
| 1168 | || thislen + offset > len |
| 1169 | || bh->indicator == INDICATOR_LAST) |
| 1170 | break; |
| 1171 | |
| 1172 | offset += thislen; |
| 1173 | } |
| 1174 | } |
| 1175 | |
| 1176 | invalid_rev: |
| 1177 | strcpy(a->image_type, "no boot images"); |
| 1178 | return false; |
| 1179 | } |
| 1180 | |
| 1181 | /* |
| 1182 | * Read and validate current NVRAM parameters by accessing |
| 1183 | * physical NVRAM directly. if currently stored parameters are |
| 1184 | * invalid, use the defaults. |
| 1185 | */ |
| 1186 | bool esas2r_nvram_read_direct(struct esas2r_adapter *a) |
| 1187 | { |
| 1188 | bool result; |
| 1189 | |
| 1190 | if (down_interruptible(&a->nvram_semaphore)) |
| 1191 | return false; |
| 1192 | |
| 1193 | if (!esas2r_read_flash_block(a, a->nvram, FLS_OFFSET_NVR, |
| 1194 | sizeof(struct esas2r_sas_nvram))) { |
| 1195 | esas2r_hdebug("NVRAM read failed, using defaults"); |
| 1196 | return false; |
| 1197 | } |
| 1198 | |
| 1199 | result = esas2r_nvram_validate(a); |
| 1200 | |
| 1201 | up(&a->nvram_semaphore); |
| 1202 | |
| 1203 | return result; |
| 1204 | } |
| 1205 | |
| 1206 | /* Interrupt callback to process NVRAM completions. */ |
| 1207 | static void esas2r_nvram_callback(struct esas2r_adapter *a, |
| 1208 | struct esas2r_request *rq) |
| 1209 | { |
| 1210 | struct atto_vda_flash_req *vrq = &rq->vrq->flash; |
| 1211 | |
| 1212 | if (rq->req_stat == RS_SUCCESS) { |
| 1213 | /* last request was successful. see what to do now. */ |
| 1214 | |
| 1215 | switch (vrq->sub_func) { |
| 1216 | case VDA_FLASH_BEGINW: |
| 1217 | vrq->sub_func = VDA_FLASH_WRITE; |
| 1218 | rq->req_stat = RS_PENDING; |
| 1219 | break; |
| 1220 | |
| 1221 | case VDA_FLASH_WRITE: |
| 1222 | vrq->sub_func = VDA_FLASH_COMMIT; |
| 1223 | rq->req_stat = RS_PENDING; |
| 1224 | break; |
| 1225 | |
| 1226 | case VDA_FLASH_READ: |
| 1227 | esas2r_nvram_validate(a); |
| 1228 | break; |
| 1229 | |
| 1230 | case VDA_FLASH_COMMIT: |
| 1231 | default: |
| 1232 | break; |
| 1233 | } |
| 1234 | } |
| 1235 | |
| 1236 | if (rq->req_stat != RS_PENDING) { |
| 1237 | /* update the NVRAM state */ |
| 1238 | if (rq->req_stat == RS_SUCCESS) |
| 1239 | esas2r_lock_set_flags(&a->flags, AF_NVR_VALID); |
| 1240 | else |
| 1241 | esas2r_lock_clear_flags(&a->flags, AF_NVR_VALID); |
| 1242 | |
| 1243 | esas2r_enable_heartbeat(a); |
| 1244 | |
| 1245 | up(&a->nvram_semaphore); |
| 1246 | } |
| 1247 | } |
| 1248 | |
| 1249 | /* |
| 1250 | * Write the contents of nvram to the adapter's physical NVRAM. |
| 1251 | * The cached copy of the NVRAM is also updated. |
| 1252 | */ |
| 1253 | bool esas2r_nvram_write(struct esas2r_adapter *a, struct esas2r_request *rq, |
| 1254 | struct esas2r_sas_nvram *nvram) |
| 1255 | { |
| 1256 | struct esas2r_sas_nvram *n = nvram; |
| 1257 | u8 sas_address_bytes[8]; |
| 1258 | u32 *sas_address_dwords = (u32 *)&sas_address_bytes[0]; |
| 1259 | struct atto_vda_flash_req *vrq = &rq->vrq->flash; |
| 1260 | |
| 1261 | if (a->flags & AF_DEGRADED_MODE) |
| 1262 | return false; |
| 1263 | |
| 1264 | if (down_interruptible(&a->nvram_semaphore)) |
| 1265 | return false; |
| 1266 | |
| 1267 | if (n == NULL) |
| 1268 | n = a->nvram; |
| 1269 | |
| 1270 | /* check the validity of the settings */ |
| 1271 | if (n->version > SASNVR_VERSION) { |
| 1272 | up(&a->nvram_semaphore); |
| 1273 | return false; |
| 1274 | } |
| 1275 | |
| 1276 | memcpy(&sas_address_bytes[0], n->sas_addr, 8); |
| 1277 | |
| 1278 | if (sas_address_bytes[0] != 0x50 |
| 1279 | || sas_address_bytes[1] != 0x01 |
| 1280 | || sas_address_bytes[2] != 0x08 |
| 1281 | || (sas_address_bytes[3] & 0xF0) != 0x60 |
| 1282 | || ((sas_address_bytes[3] & 0x0F) | sas_address_dwords[1]) == 0) { |
| 1283 | up(&a->nvram_semaphore); |
| 1284 | return false; |
| 1285 | } |
| 1286 | |
| 1287 | if (n->spin_up_delay > SASNVR_SPINUP_MAX) |
| 1288 | n->spin_up_delay = SASNVR_SPINUP_MAX; |
| 1289 | |
| 1290 | n->version = SASNVR_VERSION; |
| 1291 | n->checksum = n->checksum - esas2r_nvramcalc_cksum(n); |
| 1292 | memcpy(a->nvram, n, sizeof(struct esas2r_sas_nvram)); |
| 1293 | |
| 1294 | /* write the NVRAM */ |
| 1295 | n = a->nvram; |
| 1296 | esas2r_disable_heartbeat(a); |
| 1297 | |
| 1298 | esas2r_build_flash_req(a, |
| 1299 | rq, |
| 1300 | VDA_FLASH_BEGINW, |
| 1301 | esas2r_nvramcalc_xor_cksum(n), |
| 1302 | FLS_OFFSET_NVR, |
| 1303 | sizeof(struct esas2r_sas_nvram)); |
| 1304 | |
| 1305 | if (a->flags & AF_LEGACY_SGE_MODE) { |
| 1306 | |
| 1307 | vrq->data.sge[0].length = |
| 1308 | cpu_to_le32(SGE_LAST | |
| 1309 | sizeof(struct esas2r_sas_nvram)); |
| 1310 | vrq->data.sge[0].address = cpu_to_le64( |
| 1311 | a->uncached_phys + (u64)((u8 *)n - a->uncached)); |
| 1312 | } else { |
| 1313 | vrq->data.prde[0].ctl_len = |
| 1314 | cpu_to_le32(sizeof(struct esas2r_sas_nvram)); |
| 1315 | vrq->data.prde[0].address = cpu_to_le64( |
| 1316 | a->uncached_phys |
| 1317 | + (u64)((u8 *)n - a->uncached)); |
| 1318 | } |
| 1319 | rq->interrupt_cb = esas2r_nvram_callback; |
| 1320 | esas2r_start_request(a, rq); |
| 1321 | return true; |
| 1322 | } |
| 1323 | |
| 1324 | /* Validate the cached NVRAM. if the NVRAM is invalid, load the defaults. */ |
| 1325 | bool esas2r_nvram_validate(struct esas2r_adapter *a) |
| 1326 | { |
| 1327 | struct esas2r_sas_nvram *n = a->nvram; |
| 1328 | bool rslt = false; |
| 1329 | |
| 1330 | if (n->signature[0] != 'E' |
| 1331 | || n->signature[1] != 'S' |
| 1332 | || n->signature[2] != 'A' |
| 1333 | || n->signature[3] != 'S') { |
| 1334 | esas2r_hdebug("invalid NVRAM signature"); |
| 1335 | } else if (esas2r_nvramcalc_cksum(n)) { |
| 1336 | esas2r_hdebug("invalid NVRAM checksum"); |
| 1337 | } else if (n->version > SASNVR_VERSION) { |
| 1338 | esas2r_hdebug("invalid NVRAM version"); |
| 1339 | } else { |
| 1340 | esas2r_lock_set_flags(&a->flags, AF_NVR_VALID); |
| 1341 | rslt = true; |
| 1342 | } |
| 1343 | |
| 1344 | if (rslt == false) { |
| 1345 | esas2r_hdebug("using defaults"); |
| 1346 | esas2r_nvram_set_defaults(a); |
| 1347 | } |
| 1348 | |
| 1349 | return rslt; |
| 1350 | } |
| 1351 | |
| 1352 | /* |
| 1353 | * Set the cached NVRAM to defaults. note that this function sets the default |
| 1354 | * NVRAM when it has been determined that the physical NVRAM is invalid. |
| 1355 | * In this case, the SAS address is fabricated. |
| 1356 | */ |
| 1357 | void esas2r_nvram_set_defaults(struct esas2r_adapter *a) |
| 1358 | { |
| 1359 | struct esas2r_sas_nvram *n = a->nvram; |
| 1360 | u32 time = jiffies_to_msecs(jiffies); |
| 1361 | |
| 1362 | esas2r_lock_clear_flags(&a->flags, AF_NVR_VALID); |
| 1363 | memcpy(n, &default_sas_nvram, sizeof(struct esas2r_sas_nvram)); |
| 1364 | n->sas_addr[3] |= 0x0F; |
| 1365 | n->sas_addr[4] = HIBYTE(LOWORD(time)); |
| 1366 | n->sas_addr[5] = LOBYTE(LOWORD(time)); |
| 1367 | n->sas_addr[6] = a->pcid->bus->number; |
| 1368 | n->sas_addr[7] = a->pcid->devfn; |
| 1369 | } |
| 1370 | |
| 1371 | void esas2r_nvram_get_defaults(struct esas2r_adapter *a, |
| 1372 | struct esas2r_sas_nvram *nvram) |
| 1373 | { |
| 1374 | u8 sas_addr[8]; |
| 1375 | |
| 1376 | /* |
| 1377 | * in case we are copying the defaults into the adapter, copy the SAS |
| 1378 | * address out first. |
| 1379 | */ |
| 1380 | memcpy(&sas_addr[0], a->nvram->sas_addr, 8); |
| 1381 | memcpy(nvram, &default_sas_nvram, sizeof(struct esas2r_sas_nvram)); |
| 1382 | memcpy(&nvram->sas_addr[0], &sas_addr[0], 8); |
| 1383 | } |
| 1384 | |
| 1385 | bool esas2r_fm_api(struct esas2r_adapter *a, struct esas2r_flash_img *fi, |
| 1386 | struct esas2r_request *rq, struct esas2r_sg_context *sgc) |
| 1387 | { |
| 1388 | struct esas2r_flash_context *fc = &a->flash_context; |
| 1389 | u8 j; |
| 1390 | struct esas2r_component_header *ch; |
| 1391 | |
| 1392 | if (esas2r_lock_set_flags(&a->flags, AF_FLASH_LOCK) & AF_FLASH_LOCK) { |
| 1393 | /* flag was already set */ |
| 1394 | fi->status = FI_STAT_BUSY; |
| 1395 | return false; |
| 1396 | } |
| 1397 | |
| 1398 | memcpy(&fc->sgc, sgc, sizeof(struct esas2r_sg_context)); |
| 1399 | sgc = &fc->sgc; |
| 1400 | fc->fi = fi; |
| 1401 | fc->sgc_offset = sgc->cur_offset; |
| 1402 | rq->req_stat = RS_SUCCESS; |
| 1403 | rq->interrupt_cx = fc; |
| 1404 | |
| 1405 | switch (fi->fi_version) { |
| 1406 | case FI_VERSION_1: |
| 1407 | fc->scratch = ((struct esas2r_flash_img *)fi)->scratch_buf; |
| 1408 | fc->num_comps = FI_NUM_COMPS_V1; |
| 1409 | fc->fi_hdr_len = sizeof(struct esas2r_flash_img); |
| 1410 | break; |
| 1411 | |
| 1412 | default: |
| 1413 | return complete_fmapi_req(a, rq, FI_STAT_IMG_VER); |
| 1414 | } |
| 1415 | |
| 1416 | if (a->flags & AF_DEGRADED_MODE) |
| 1417 | return complete_fmapi_req(a, rq, FI_STAT_DEGRADED); |
| 1418 | |
| 1419 | switch (fi->action) { |
| 1420 | case FI_ACT_DOWN: /* Download the components */ |
| 1421 | /* Verify the format of the flash image */ |
| 1422 | if (!verify_fi(a, fc)) |
| 1423 | return complete_fmapi_req(a, rq, fi->status); |
| 1424 | |
| 1425 | /* Adjust the BIOS fields that are dependent on the HBA */ |
| 1426 | ch = &fi->cmp_hdr[CH_IT_BIOS]; |
| 1427 | |
| 1428 | if (ch->length) |
| 1429 | fix_bios(a, fi); |
| 1430 | |
| 1431 | /* Adjust the EFI fields that are dependent on the HBA */ |
| 1432 | ch = &fi->cmp_hdr[CH_IT_EFI]; |
| 1433 | |
| 1434 | if (ch->length) |
| 1435 | fix_efi(a, fi); |
| 1436 | |
| 1437 | /* |
| 1438 | * Since the image was just modified, compute the checksum on |
| 1439 | * the modified image. First update the CRC for the composite |
| 1440 | * expansion ROM image. |
| 1441 | */ |
| 1442 | fi->checksum = calc_fi_checksum(fc); |
| 1443 | |
| 1444 | /* Disable the heartbeat */ |
| 1445 | esas2r_disable_heartbeat(a); |
| 1446 | |
| 1447 | /* Now start up the download sequence */ |
| 1448 | fc->task = FMTSK_ERASE_BOOT; |
| 1449 | fc->func = VDA_FLASH_BEGINW; |
| 1450 | fc->comp_typ = CH_IT_CFG; |
| 1451 | fc->flsh_addr = FLS_OFFSET_BOOT; |
| 1452 | fc->sgc.length = FLS_LENGTH_BOOT; |
| 1453 | fc->sgc.cur_offset = NULL; |
| 1454 | |
| 1455 | /* Setup the callback address */ |
| 1456 | fc->interrupt_cb = fw_download_proc; |
| 1457 | break; |
| 1458 | |
| 1459 | case FI_ACT_UPSZ: /* Get upload sizes */ |
| 1460 | fi->adap_typ = get_fi_adap_type(a); |
| 1461 | fi->flags = 0; |
| 1462 | fi->num_comps = fc->num_comps; |
| 1463 | fi->length = fc->fi_hdr_len; |
| 1464 | |
| 1465 | /* Report the type of boot image in the rel_version string */ |
| 1466 | memcpy(fi->rel_version, a->image_type, |
| 1467 | sizeof(fi->rel_version)); |
| 1468 | |
| 1469 | /* Build the component headers */ |
| 1470 | for (j = 0, ch = fi->cmp_hdr; |
| 1471 | j < fi->num_comps; |
| 1472 | j++, ch++) { |
| 1473 | ch->img_type = j; |
| 1474 | ch->status = CH_STAT_PENDING; |
| 1475 | ch->length = 0; |
| 1476 | ch->version = 0xffffffff; |
| 1477 | ch->image_offset = 0; |
| 1478 | ch->pad[0] = 0; |
| 1479 | ch->pad[1] = 0; |
| 1480 | } |
| 1481 | |
| 1482 | if (a->flash_ver != 0) { |
| 1483 | fi->cmp_hdr[CH_IT_BIOS].version = |
| 1484 | fi->cmp_hdr[CH_IT_MAC].version = |
| 1485 | fi->cmp_hdr[CH_IT_EFI].version = |
| 1486 | fi->cmp_hdr[CH_IT_CFG].version |
| 1487 | = a->flash_ver; |
| 1488 | |
| 1489 | fi->cmp_hdr[CH_IT_BIOS].status = |
| 1490 | fi->cmp_hdr[CH_IT_MAC].status = |
| 1491 | fi->cmp_hdr[CH_IT_EFI].status = |
| 1492 | fi->cmp_hdr[CH_IT_CFG].status = |
| 1493 | CH_STAT_SUCCESS; |
| 1494 | |
| 1495 | return complete_fmapi_req(a, rq, FI_STAT_SUCCESS); |
| 1496 | } |
| 1497 | |
| 1498 | /* fall through */ |
| 1499 | |
| 1500 | case FI_ACT_UP: /* Upload the components */ |
| 1501 | default: |
| 1502 | return complete_fmapi_req(a, rq, FI_STAT_INVALID); |
| 1503 | } |
| 1504 | |
| 1505 | /* |
| 1506 | * If we make it here, fc has been setup to do the first task. Call |
| 1507 | * load_image to format the request, start it, and get out. The |
| 1508 | * interrupt code will call the callback when the first message is |
| 1509 | * complete. |
| 1510 | */ |
| 1511 | if (!load_image(a, rq)) |
| 1512 | return complete_fmapi_req(a, rq, FI_STAT_FAILED); |
| 1513 | |
| 1514 | esas2r_start_request(a, rq); |
| 1515 | |
| 1516 | return true; |
| 1517 | } |