blob: 39b98ed2c1b9f40e4368c50b57e3d409da988e30 [file] [log] [blame]
Joachim Fritschib9f535f2006-06-20 20:59:16 +10001/***************************************************************************
2* Copyright (C) 2006 by Joachim Fritschi, <jfritschi@freenet.de> *
3* *
4* This program is free software; you can redistribute it and/or modify *
5* it under the terms of the GNU General Public License as published by *
6* the Free Software Foundation; either version 2 of the License, or *
7* (at your option) any later version. *
8* *
9* This program is distributed in the hope that it will be useful, *
10* but WITHOUT ANY WARRANTY; without even the implied warranty of *
11* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
12* GNU General Public License for more details. *
13* *
14* You should have received a copy of the GNU General Public License *
15* along with this program; if not, write to the *
16* Free Software Foundation, Inc., *
17* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
18***************************************************************************/
19
20.file "twofish-i586-asm.S"
21.text
22
23#include <asm/asm-offsets.h>
24
25/* return adress at 0 */
26
27#define in_blk 12 /* input byte array address parameter*/
28#define out_blk 8 /* output byte array address parameter*/
29#define tfm 4 /* Twofish context structure */
30
31#define a_offset 0
32#define b_offset 4
33#define c_offset 8
34#define d_offset 12
35
36/* Structure of the crypto context struct*/
37
38#define s0 0 /* S0 Array 256 Words each */
39#define s1 1024 /* S1 Array */
40#define s2 2048 /* S2 Array */
41#define s3 3072 /* S3 Array */
42#define w 4096 /* 8 whitening keys (word) */
43#define k 4128 /* key 1-32 ( word ) */
44
45/* define a few register aliases to allow macro substitution */
46
47#define R0D %eax
48#define R0B %al
49#define R0H %ah
50
51#define R1D %ebx
52#define R1B %bl
53#define R1H %bh
54
55#define R2D %ecx
56#define R2B %cl
57#define R2H %ch
58
59#define R3D %edx
60#define R3B %dl
61#define R3H %dh
62
63
64/* performs input whitening */
65#define input_whitening(src,context,offset)\
66 xor w+offset(context), src;
67
68/* performs input whitening */
69#define output_whitening(src,context,offset)\
70 xor w+16+offset(context), src;
71
72/*
73 * a input register containing a (rotated 16)
74 * b input register containing b
75 * c input register containing c
76 * d input register containing d (already rol $1)
77 * operations on a and b are interleaved to increase performance
78 */
79#define encrypt_round(a,b,c,d,round)\
80 push d ## D;\
81 movzx b ## B, %edi;\
82 mov s1(%ebp,%edi,4),d ## D;\
83 movzx a ## B, %edi;\
84 mov s2(%ebp,%edi,4),%esi;\
85 movzx b ## H, %edi;\
86 ror $16, b ## D;\
87 xor s2(%ebp,%edi,4),d ## D;\
88 movzx a ## H, %edi;\
89 ror $16, a ## D;\
90 xor s3(%ebp,%edi,4),%esi;\
91 movzx b ## B, %edi;\
92 xor s3(%ebp,%edi,4),d ## D;\
93 movzx a ## B, %edi;\
94 xor (%ebp,%edi,4), %esi;\
95 movzx b ## H, %edi;\
96 ror $15, b ## D;\
97 xor (%ebp,%edi,4), d ## D;\
98 movzx a ## H, %edi;\
99 xor s1(%ebp,%edi,4),%esi;\
100 pop %edi;\
101 add d ## D, %esi;\
102 add %esi, d ## D;\
103 add k+round(%ebp), %esi;\
104 xor %esi, c ## D;\
105 rol $15, c ## D;\
106 add k+4+round(%ebp),d ## D;\
107 xor %edi, d ## D;
108
109/*
110 * a input register containing a (rotated 16)
111 * b input register containing b
112 * c input register containing c
113 * d input register containing d (already rol $1)
114 * operations on a and b are interleaved to increase performance
115 * last round has different rotations for the output preparation
116 */
117#define encrypt_last_round(a,b,c,d,round)\
118 push d ## D;\
119 movzx b ## B, %edi;\
120 mov s1(%ebp,%edi,4),d ## D;\
121 movzx a ## B, %edi;\
122 mov s2(%ebp,%edi,4),%esi;\
123 movzx b ## H, %edi;\
124 ror $16, b ## D;\
125 xor s2(%ebp,%edi,4),d ## D;\
126 movzx a ## H, %edi;\
127 ror $16, a ## D;\
128 xor s3(%ebp,%edi,4),%esi;\
129 movzx b ## B, %edi;\
130 xor s3(%ebp,%edi,4),d ## D;\
131 movzx a ## B, %edi;\
132 xor (%ebp,%edi,4), %esi;\
133 movzx b ## H, %edi;\
134 ror $16, b ## D;\
135 xor (%ebp,%edi,4), d ## D;\
136 movzx a ## H, %edi;\
137 xor s1(%ebp,%edi,4),%esi;\
138 pop %edi;\
139 add d ## D, %esi;\
140 add %esi, d ## D;\
141 add k+round(%ebp), %esi;\
142 xor %esi, c ## D;\
143 ror $1, c ## D;\
144 add k+4+round(%ebp),d ## D;\
145 xor %edi, d ## D;
146
147/*
148 * a input register containing a
149 * b input register containing b (rotated 16)
150 * c input register containing c
151 * d input register containing d (already rol $1)
152 * operations on a and b are interleaved to increase performance
153 */
154#define decrypt_round(a,b,c,d,round)\
155 push c ## D;\
156 movzx a ## B, %edi;\
157 mov (%ebp,%edi,4), c ## D;\
158 movzx b ## B, %edi;\
159 mov s3(%ebp,%edi,4),%esi;\
160 movzx a ## H, %edi;\
161 ror $16, a ## D;\
162 xor s1(%ebp,%edi,4),c ## D;\
163 movzx b ## H, %edi;\
164 ror $16, b ## D;\
165 xor (%ebp,%edi,4), %esi;\
166 movzx a ## B, %edi;\
167 xor s2(%ebp,%edi,4),c ## D;\
168 movzx b ## B, %edi;\
169 xor s1(%ebp,%edi,4),%esi;\
170 movzx a ## H, %edi;\
171 ror $15, a ## D;\
172 xor s3(%ebp,%edi,4),c ## D;\
173 movzx b ## H, %edi;\
174 xor s2(%ebp,%edi,4),%esi;\
175 pop %edi;\
176 add %esi, c ## D;\
177 add c ## D, %esi;\
178 add k+round(%ebp), c ## D;\
179 xor %edi, c ## D;\
180 add k+4+round(%ebp),%esi;\
181 xor %esi, d ## D;\
182 rol $15, d ## D;
183
184/*
185 * a input register containing a
186 * b input register containing b (rotated 16)
187 * c input register containing c
188 * d input register containing d (already rol $1)
189 * operations on a and b are interleaved to increase performance
190 * last round has different rotations for the output preparation
191 */
192#define decrypt_last_round(a,b,c,d,round)\
193 push c ## D;\
194 movzx a ## B, %edi;\
195 mov (%ebp,%edi,4), c ## D;\
196 movzx b ## B, %edi;\
197 mov s3(%ebp,%edi,4),%esi;\
198 movzx a ## H, %edi;\
199 ror $16, a ## D;\
200 xor s1(%ebp,%edi,4),c ## D;\
201 movzx b ## H, %edi;\
202 ror $16, b ## D;\
203 xor (%ebp,%edi,4), %esi;\
204 movzx a ## B, %edi;\
205 xor s2(%ebp,%edi,4),c ## D;\
206 movzx b ## B, %edi;\
207 xor s1(%ebp,%edi,4),%esi;\
208 movzx a ## H, %edi;\
209 ror $16, a ## D;\
210 xor s3(%ebp,%edi,4),c ## D;\
211 movzx b ## H, %edi;\
212 xor s2(%ebp,%edi,4),%esi;\
213 pop %edi;\
214 add %esi, c ## D;\
215 add c ## D, %esi;\
216 add k+round(%ebp), c ## D;\
217 xor %edi, c ## D;\
218 add k+4+round(%ebp),%esi;\
219 xor %esi, d ## D;\
220 ror $1, d ## D;
221
222.align 4
223.global twofish_enc_blk
224.global twofish_dec_blk
225
226twofish_enc_blk:
227 push %ebp /* save registers according to calling convention*/
228 push %ebx
229 push %esi
230 push %edi
231
232 mov tfm + 16(%esp), %ebp /* abuse the base pointer: set new base bointer to the crypto tfm */
233 add $crypto_tfm_ctx_offset, %ebp /* ctx adress */
234 mov in_blk+16(%esp),%edi /* input adress in edi */
235
236 mov (%edi), %eax
237 mov b_offset(%edi), %ebx
238 mov c_offset(%edi), %ecx
239 mov d_offset(%edi), %edx
240 input_whitening(%eax,%ebp,a_offset)
241 ror $16, %eax
242 input_whitening(%ebx,%ebp,b_offset)
243 input_whitening(%ecx,%ebp,c_offset)
244 input_whitening(%edx,%ebp,d_offset)
245 rol $1, %edx
246
247 encrypt_round(R0,R1,R2,R3,0);
248 encrypt_round(R2,R3,R0,R1,8);
249 encrypt_round(R0,R1,R2,R3,2*8);
250 encrypt_round(R2,R3,R0,R1,3*8);
251 encrypt_round(R0,R1,R2,R3,4*8);
252 encrypt_round(R2,R3,R0,R1,5*8);
253 encrypt_round(R0,R1,R2,R3,6*8);
254 encrypt_round(R2,R3,R0,R1,7*8);
255 encrypt_round(R0,R1,R2,R3,8*8);
256 encrypt_round(R2,R3,R0,R1,9*8);
257 encrypt_round(R0,R1,R2,R3,10*8);
258 encrypt_round(R2,R3,R0,R1,11*8);
259 encrypt_round(R0,R1,R2,R3,12*8);
260 encrypt_round(R2,R3,R0,R1,13*8);
261 encrypt_round(R0,R1,R2,R3,14*8);
262 encrypt_last_round(R2,R3,R0,R1,15*8);
263
264 output_whitening(%eax,%ebp,c_offset)
265 output_whitening(%ebx,%ebp,d_offset)
266 output_whitening(%ecx,%ebp,a_offset)
267 output_whitening(%edx,%ebp,b_offset)
268 mov out_blk+16(%esp),%edi;
269 mov %eax, c_offset(%edi)
270 mov %ebx, d_offset(%edi)
271 mov %ecx, (%edi)
272 mov %edx, b_offset(%edi)
273
274 pop %edi
275 pop %esi
276 pop %ebx
277 pop %ebp
278 mov $1, %eax
279 ret
280
281twofish_dec_blk:
282 push %ebp /* save registers according to calling convention*/
283 push %ebx
284 push %esi
285 push %edi
286
287
288 mov tfm + 16(%esp), %ebp /* abuse the base pointer: set new base bointer to the crypto tfm */
289 add $crypto_tfm_ctx_offset, %ebp /* ctx adress */
290 mov in_blk+16(%esp),%edi /* input adress in edi */
291
292 mov (%edi), %eax
293 mov b_offset(%edi), %ebx
294 mov c_offset(%edi), %ecx
295 mov d_offset(%edi), %edx
296 output_whitening(%eax,%ebp,a_offset)
297 output_whitening(%ebx,%ebp,b_offset)
298 ror $16, %ebx
299 output_whitening(%ecx,%ebp,c_offset)
300 output_whitening(%edx,%ebp,d_offset)
301 rol $1, %ecx
302
303 decrypt_round(R0,R1,R2,R3,15*8);
304 decrypt_round(R2,R3,R0,R1,14*8);
305 decrypt_round(R0,R1,R2,R3,13*8);
306 decrypt_round(R2,R3,R0,R1,12*8);
307 decrypt_round(R0,R1,R2,R3,11*8);
308 decrypt_round(R2,R3,R0,R1,10*8);
309 decrypt_round(R0,R1,R2,R3,9*8);
310 decrypt_round(R2,R3,R0,R1,8*8);
311 decrypt_round(R0,R1,R2,R3,7*8);
312 decrypt_round(R2,R3,R0,R1,6*8);
313 decrypt_round(R0,R1,R2,R3,5*8);
314 decrypt_round(R2,R3,R0,R1,4*8);
315 decrypt_round(R0,R1,R2,R3,3*8);
316 decrypt_round(R2,R3,R0,R1,2*8);
317 decrypt_round(R0,R1,R2,R3,1*8);
318 decrypt_last_round(R2,R3,R0,R1,0);
319
320 input_whitening(%eax,%ebp,c_offset)
321 input_whitening(%ebx,%ebp,d_offset)
322 input_whitening(%ecx,%ebp,a_offset)
323 input_whitening(%edx,%ebp,b_offset)
324 mov out_blk+16(%esp),%edi;
325 mov %eax, c_offset(%edi)
326 mov %ebx, d_offset(%edi)
327 mov %ecx, (%edi)
328 mov %edx, b_offset(%edi)
329
330 pop %edi
331 pop %esi
332 pop %ebx
333 pop %ebp
334 mov $1, %eax
335 ret