Joachim Fritschi | b9f535f | 2006-06-20 20:59:16 +1000 | [diff] [blame] | 1 | /*************************************************************************** |
| 2 | * Copyright (C) 2006 by Joachim Fritschi, <jfritschi@freenet.de> * |
| 3 | * * |
| 4 | * This program is free software; you can redistribute it and/or modify * |
| 5 | * it under the terms of the GNU General Public License as published by * |
| 6 | * the Free Software Foundation; either version 2 of the License, or * |
| 7 | * (at your option) any later version. * |
| 8 | * * |
| 9 | * This program is distributed in the hope that it will be useful, * |
| 10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of * |
| 11 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * |
| 12 | * GNU General Public License for more details. * |
| 13 | * * |
| 14 | * You should have received a copy of the GNU General Public License * |
| 15 | * along with this program; if not, write to the * |
| 16 | * Free Software Foundation, Inc., * |
| 17 | * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * |
| 18 | ***************************************************************************/ |
| 19 | |
| 20 | .file "twofish-i586-asm.S" |
| 21 | .text |
| 22 | |
| 23 | #include <asm/asm-offsets.h> |
| 24 | |
| 25 | /* return adress at 0 */ |
| 26 | |
| 27 | #define in_blk 12 /* input byte array address parameter*/ |
| 28 | #define out_blk 8 /* output byte array address parameter*/ |
| 29 | #define tfm 4 /* Twofish context structure */ |
| 30 | |
| 31 | #define a_offset 0 |
| 32 | #define b_offset 4 |
| 33 | #define c_offset 8 |
| 34 | #define d_offset 12 |
| 35 | |
| 36 | /* Structure of the crypto context struct*/ |
| 37 | |
| 38 | #define s0 0 /* S0 Array 256 Words each */ |
| 39 | #define s1 1024 /* S1 Array */ |
| 40 | #define s2 2048 /* S2 Array */ |
| 41 | #define s3 3072 /* S3 Array */ |
| 42 | #define w 4096 /* 8 whitening keys (word) */ |
| 43 | #define k 4128 /* key 1-32 ( word ) */ |
| 44 | |
| 45 | /* define a few register aliases to allow macro substitution */ |
| 46 | |
| 47 | #define R0D %eax |
| 48 | #define R0B %al |
| 49 | #define R0H %ah |
| 50 | |
| 51 | #define R1D %ebx |
| 52 | #define R1B %bl |
| 53 | #define R1H %bh |
| 54 | |
| 55 | #define R2D %ecx |
| 56 | #define R2B %cl |
| 57 | #define R2H %ch |
| 58 | |
| 59 | #define R3D %edx |
| 60 | #define R3B %dl |
| 61 | #define R3H %dh |
| 62 | |
| 63 | |
| 64 | /* performs input whitening */ |
| 65 | #define input_whitening(src,context,offset)\ |
| 66 | xor w+offset(context), src; |
| 67 | |
| 68 | /* performs input whitening */ |
| 69 | #define output_whitening(src,context,offset)\ |
| 70 | xor w+16+offset(context), src; |
| 71 | |
| 72 | /* |
| 73 | * a input register containing a (rotated 16) |
| 74 | * b input register containing b |
| 75 | * c input register containing c |
| 76 | * d input register containing d (already rol $1) |
| 77 | * operations on a and b are interleaved to increase performance |
| 78 | */ |
| 79 | #define encrypt_round(a,b,c,d,round)\ |
| 80 | push d ## D;\ |
| 81 | movzx b ## B, %edi;\ |
| 82 | mov s1(%ebp,%edi,4),d ## D;\ |
| 83 | movzx a ## B, %edi;\ |
| 84 | mov s2(%ebp,%edi,4),%esi;\ |
| 85 | movzx b ## H, %edi;\ |
| 86 | ror $16, b ## D;\ |
| 87 | xor s2(%ebp,%edi,4),d ## D;\ |
| 88 | movzx a ## H, %edi;\ |
| 89 | ror $16, a ## D;\ |
| 90 | xor s3(%ebp,%edi,4),%esi;\ |
| 91 | movzx b ## B, %edi;\ |
| 92 | xor s3(%ebp,%edi,4),d ## D;\ |
| 93 | movzx a ## B, %edi;\ |
| 94 | xor (%ebp,%edi,4), %esi;\ |
| 95 | movzx b ## H, %edi;\ |
| 96 | ror $15, b ## D;\ |
| 97 | xor (%ebp,%edi,4), d ## D;\ |
| 98 | movzx a ## H, %edi;\ |
| 99 | xor s1(%ebp,%edi,4),%esi;\ |
| 100 | pop %edi;\ |
| 101 | add d ## D, %esi;\ |
| 102 | add %esi, d ## D;\ |
| 103 | add k+round(%ebp), %esi;\ |
| 104 | xor %esi, c ## D;\ |
| 105 | rol $15, c ## D;\ |
| 106 | add k+4+round(%ebp),d ## D;\ |
| 107 | xor %edi, d ## D; |
| 108 | |
| 109 | /* |
| 110 | * a input register containing a (rotated 16) |
| 111 | * b input register containing b |
| 112 | * c input register containing c |
| 113 | * d input register containing d (already rol $1) |
| 114 | * operations on a and b are interleaved to increase performance |
| 115 | * last round has different rotations for the output preparation |
| 116 | */ |
| 117 | #define encrypt_last_round(a,b,c,d,round)\ |
| 118 | push d ## D;\ |
| 119 | movzx b ## B, %edi;\ |
| 120 | mov s1(%ebp,%edi,4),d ## D;\ |
| 121 | movzx a ## B, %edi;\ |
| 122 | mov s2(%ebp,%edi,4),%esi;\ |
| 123 | movzx b ## H, %edi;\ |
| 124 | ror $16, b ## D;\ |
| 125 | xor s2(%ebp,%edi,4),d ## D;\ |
| 126 | movzx a ## H, %edi;\ |
| 127 | ror $16, a ## D;\ |
| 128 | xor s3(%ebp,%edi,4),%esi;\ |
| 129 | movzx b ## B, %edi;\ |
| 130 | xor s3(%ebp,%edi,4),d ## D;\ |
| 131 | movzx a ## B, %edi;\ |
| 132 | xor (%ebp,%edi,4), %esi;\ |
| 133 | movzx b ## H, %edi;\ |
| 134 | ror $16, b ## D;\ |
| 135 | xor (%ebp,%edi,4), d ## D;\ |
| 136 | movzx a ## H, %edi;\ |
| 137 | xor s1(%ebp,%edi,4),%esi;\ |
| 138 | pop %edi;\ |
| 139 | add d ## D, %esi;\ |
| 140 | add %esi, d ## D;\ |
| 141 | add k+round(%ebp), %esi;\ |
| 142 | xor %esi, c ## D;\ |
| 143 | ror $1, c ## D;\ |
| 144 | add k+4+round(%ebp),d ## D;\ |
| 145 | xor %edi, d ## D; |
| 146 | |
| 147 | /* |
| 148 | * a input register containing a |
| 149 | * b input register containing b (rotated 16) |
| 150 | * c input register containing c |
| 151 | * d input register containing d (already rol $1) |
| 152 | * operations on a and b are interleaved to increase performance |
| 153 | */ |
| 154 | #define decrypt_round(a,b,c,d,round)\ |
| 155 | push c ## D;\ |
| 156 | movzx a ## B, %edi;\ |
| 157 | mov (%ebp,%edi,4), c ## D;\ |
| 158 | movzx b ## B, %edi;\ |
| 159 | mov s3(%ebp,%edi,4),%esi;\ |
| 160 | movzx a ## H, %edi;\ |
| 161 | ror $16, a ## D;\ |
| 162 | xor s1(%ebp,%edi,4),c ## D;\ |
| 163 | movzx b ## H, %edi;\ |
| 164 | ror $16, b ## D;\ |
| 165 | xor (%ebp,%edi,4), %esi;\ |
| 166 | movzx a ## B, %edi;\ |
| 167 | xor s2(%ebp,%edi,4),c ## D;\ |
| 168 | movzx b ## B, %edi;\ |
| 169 | xor s1(%ebp,%edi,4),%esi;\ |
| 170 | movzx a ## H, %edi;\ |
| 171 | ror $15, a ## D;\ |
| 172 | xor s3(%ebp,%edi,4),c ## D;\ |
| 173 | movzx b ## H, %edi;\ |
| 174 | xor s2(%ebp,%edi,4),%esi;\ |
| 175 | pop %edi;\ |
| 176 | add %esi, c ## D;\ |
| 177 | add c ## D, %esi;\ |
| 178 | add k+round(%ebp), c ## D;\ |
| 179 | xor %edi, c ## D;\ |
| 180 | add k+4+round(%ebp),%esi;\ |
| 181 | xor %esi, d ## D;\ |
| 182 | rol $15, d ## D; |
| 183 | |
| 184 | /* |
| 185 | * a input register containing a |
| 186 | * b input register containing b (rotated 16) |
| 187 | * c input register containing c |
| 188 | * d input register containing d (already rol $1) |
| 189 | * operations on a and b are interleaved to increase performance |
| 190 | * last round has different rotations for the output preparation |
| 191 | */ |
| 192 | #define decrypt_last_round(a,b,c,d,round)\ |
| 193 | push c ## D;\ |
| 194 | movzx a ## B, %edi;\ |
| 195 | mov (%ebp,%edi,4), c ## D;\ |
| 196 | movzx b ## B, %edi;\ |
| 197 | mov s3(%ebp,%edi,4),%esi;\ |
| 198 | movzx a ## H, %edi;\ |
| 199 | ror $16, a ## D;\ |
| 200 | xor s1(%ebp,%edi,4),c ## D;\ |
| 201 | movzx b ## H, %edi;\ |
| 202 | ror $16, b ## D;\ |
| 203 | xor (%ebp,%edi,4), %esi;\ |
| 204 | movzx a ## B, %edi;\ |
| 205 | xor s2(%ebp,%edi,4),c ## D;\ |
| 206 | movzx b ## B, %edi;\ |
| 207 | xor s1(%ebp,%edi,4),%esi;\ |
| 208 | movzx a ## H, %edi;\ |
| 209 | ror $16, a ## D;\ |
| 210 | xor s3(%ebp,%edi,4),c ## D;\ |
| 211 | movzx b ## H, %edi;\ |
| 212 | xor s2(%ebp,%edi,4),%esi;\ |
| 213 | pop %edi;\ |
| 214 | add %esi, c ## D;\ |
| 215 | add c ## D, %esi;\ |
| 216 | add k+round(%ebp), c ## D;\ |
| 217 | xor %edi, c ## D;\ |
| 218 | add k+4+round(%ebp),%esi;\ |
| 219 | xor %esi, d ## D;\ |
| 220 | ror $1, d ## D; |
| 221 | |
| 222 | .align 4 |
| 223 | .global twofish_enc_blk |
| 224 | .global twofish_dec_blk |
| 225 | |
| 226 | twofish_enc_blk: |
| 227 | push %ebp /* save registers according to calling convention*/ |
| 228 | push %ebx |
| 229 | push %esi |
| 230 | push %edi |
| 231 | |
| 232 | mov tfm + 16(%esp), %ebp /* abuse the base pointer: set new base bointer to the crypto tfm */ |
| 233 | add $crypto_tfm_ctx_offset, %ebp /* ctx adress */ |
| 234 | mov in_blk+16(%esp),%edi /* input adress in edi */ |
| 235 | |
| 236 | mov (%edi), %eax |
| 237 | mov b_offset(%edi), %ebx |
| 238 | mov c_offset(%edi), %ecx |
| 239 | mov d_offset(%edi), %edx |
| 240 | input_whitening(%eax,%ebp,a_offset) |
| 241 | ror $16, %eax |
| 242 | input_whitening(%ebx,%ebp,b_offset) |
| 243 | input_whitening(%ecx,%ebp,c_offset) |
| 244 | input_whitening(%edx,%ebp,d_offset) |
| 245 | rol $1, %edx |
| 246 | |
| 247 | encrypt_round(R0,R1,R2,R3,0); |
| 248 | encrypt_round(R2,R3,R0,R1,8); |
| 249 | encrypt_round(R0,R1,R2,R3,2*8); |
| 250 | encrypt_round(R2,R3,R0,R1,3*8); |
| 251 | encrypt_round(R0,R1,R2,R3,4*8); |
| 252 | encrypt_round(R2,R3,R0,R1,5*8); |
| 253 | encrypt_round(R0,R1,R2,R3,6*8); |
| 254 | encrypt_round(R2,R3,R0,R1,7*8); |
| 255 | encrypt_round(R0,R1,R2,R3,8*8); |
| 256 | encrypt_round(R2,R3,R0,R1,9*8); |
| 257 | encrypt_round(R0,R1,R2,R3,10*8); |
| 258 | encrypt_round(R2,R3,R0,R1,11*8); |
| 259 | encrypt_round(R0,R1,R2,R3,12*8); |
| 260 | encrypt_round(R2,R3,R0,R1,13*8); |
| 261 | encrypt_round(R0,R1,R2,R3,14*8); |
| 262 | encrypt_last_round(R2,R3,R0,R1,15*8); |
| 263 | |
| 264 | output_whitening(%eax,%ebp,c_offset) |
| 265 | output_whitening(%ebx,%ebp,d_offset) |
| 266 | output_whitening(%ecx,%ebp,a_offset) |
| 267 | output_whitening(%edx,%ebp,b_offset) |
| 268 | mov out_blk+16(%esp),%edi; |
| 269 | mov %eax, c_offset(%edi) |
| 270 | mov %ebx, d_offset(%edi) |
| 271 | mov %ecx, (%edi) |
| 272 | mov %edx, b_offset(%edi) |
| 273 | |
| 274 | pop %edi |
| 275 | pop %esi |
| 276 | pop %ebx |
| 277 | pop %ebp |
| 278 | mov $1, %eax |
| 279 | ret |
| 280 | |
| 281 | twofish_dec_blk: |
| 282 | push %ebp /* save registers according to calling convention*/ |
| 283 | push %ebx |
| 284 | push %esi |
| 285 | push %edi |
| 286 | |
| 287 | |
| 288 | mov tfm + 16(%esp), %ebp /* abuse the base pointer: set new base bointer to the crypto tfm */ |
| 289 | add $crypto_tfm_ctx_offset, %ebp /* ctx adress */ |
| 290 | mov in_blk+16(%esp),%edi /* input adress in edi */ |
| 291 | |
| 292 | mov (%edi), %eax |
| 293 | mov b_offset(%edi), %ebx |
| 294 | mov c_offset(%edi), %ecx |
| 295 | mov d_offset(%edi), %edx |
| 296 | output_whitening(%eax,%ebp,a_offset) |
| 297 | output_whitening(%ebx,%ebp,b_offset) |
| 298 | ror $16, %ebx |
| 299 | output_whitening(%ecx,%ebp,c_offset) |
| 300 | output_whitening(%edx,%ebp,d_offset) |
| 301 | rol $1, %ecx |
| 302 | |
| 303 | decrypt_round(R0,R1,R2,R3,15*8); |
| 304 | decrypt_round(R2,R3,R0,R1,14*8); |
| 305 | decrypt_round(R0,R1,R2,R3,13*8); |
| 306 | decrypt_round(R2,R3,R0,R1,12*8); |
| 307 | decrypt_round(R0,R1,R2,R3,11*8); |
| 308 | decrypt_round(R2,R3,R0,R1,10*8); |
| 309 | decrypt_round(R0,R1,R2,R3,9*8); |
| 310 | decrypt_round(R2,R3,R0,R1,8*8); |
| 311 | decrypt_round(R0,R1,R2,R3,7*8); |
| 312 | decrypt_round(R2,R3,R0,R1,6*8); |
| 313 | decrypt_round(R0,R1,R2,R3,5*8); |
| 314 | decrypt_round(R2,R3,R0,R1,4*8); |
| 315 | decrypt_round(R0,R1,R2,R3,3*8); |
| 316 | decrypt_round(R2,R3,R0,R1,2*8); |
| 317 | decrypt_round(R0,R1,R2,R3,1*8); |
| 318 | decrypt_last_round(R2,R3,R0,R1,0); |
| 319 | |
| 320 | input_whitening(%eax,%ebp,c_offset) |
| 321 | input_whitening(%ebx,%ebp,d_offset) |
| 322 | input_whitening(%ecx,%ebp,a_offset) |
| 323 | input_whitening(%edx,%ebp,b_offset) |
| 324 | mov out_blk+16(%esp),%edi; |
| 325 | mov %eax, c_offset(%edi) |
| 326 | mov %ebx, d_offset(%edi) |
| 327 | mov %ecx, (%edi) |
| 328 | mov %edx, b_offset(%edi) |
| 329 | |
| 330 | pop %edi |
| 331 | pop %esi |
| 332 | pop %ebx |
| 333 | pop %ebp |
| 334 | mov $1, %eax |
| 335 | ret |