Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* |
| 2 | * Device driver for the SYMBIOS/LSILOGIC 53C8XX and 53C1010 family |
| 3 | * of PCI-SCSI IO processors. |
| 4 | * |
| 5 | * Copyright (C) 1999-2001 Gerard Roudier <groudier@free.fr> |
| 6 | * |
| 7 | * This driver is derived from the Linux sym53c8xx driver. |
| 8 | * Copyright (C) 1998-2000 Gerard Roudier |
| 9 | * |
| 10 | * The sym53c8xx driver is derived from the ncr53c8xx driver that had been |
| 11 | * a port of the FreeBSD ncr driver to Linux-1.2.13. |
| 12 | * |
| 13 | * The original ncr driver has been written for 386bsd and FreeBSD by |
| 14 | * Wolfgang Stanglmeier <wolf@cologne.de> |
| 15 | * Stefan Esser <se@mi.Uni-Koeln.de> |
| 16 | * Copyright (C) 1994 Wolfgang Stanglmeier |
| 17 | * |
| 18 | * Other major contributions: |
| 19 | * |
| 20 | * NVRAM detection and reading. |
| 21 | * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk> |
| 22 | * |
| 23 | *----------------------------------------------------------------------------- |
| 24 | * |
| 25 | * This program is free software; you can redistribute it and/or modify |
| 26 | * it under the terms of the GNU General Public License as published by |
| 27 | * the Free Software Foundation; either version 2 of the License, or |
| 28 | * (at your option) any later version. |
| 29 | * |
| 30 | * This program is distributed in the hope that it will be useful, |
| 31 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 32 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 33 | * GNU General Public License for more details. |
| 34 | * |
| 35 | * You should have received a copy of the GNU General Public License |
| 36 | * along with this program; if not, write to the Free Software |
| 37 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| 38 | */ |
| 39 | |
| 40 | #ifdef __FreeBSD__ |
| 41 | #include <dev/sym/sym_glue.h> |
| 42 | #else |
| 43 | #include "sym_glue.h" |
| 44 | #endif |
| 45 | |
| 46 | /* |
| 47 | * Simple power of two buddy-like generic allocator. |
| 48 | * Provides naturally aligned memory chunks. |
| 49 | * |
| 50 | * This simple code is not intended to be fast, but to |
| 51 | * provide power of 2 aligned memory allocations. |
| 52 | * Since the SCRIPTS processor only supplies 8 bit arithmetic, |
| 53 | * this allocator allows simple and fast address calculations |
| 54 | * from the SCRIPTS code. In addition, cache line alignment |
| 55 | * is guaranteed for power of 2 cache line size. |
| 56 | * |
| 57 | * This allocator has been developped for the Linux sym53c8xx |
| 58 | * driver, since this O/S does not provide naturally aligned |
| 59 | * allocations. |
| 60 | * It has the advantage of allowing the driver to use private |
| 61 | * pages of memory that will be useful if we ever need to deal |
| 62 | * with IO MMUs for PCI. |
| 63 | */ |
| 64 | static void *___sym_malloc(m_pool_p mp, int size) |
| 65 | { |
| 66 | int i = 0; |
| 67 | int s = (1 << SYM_MEM_SHIFT); |
| 68 | int j; |
| 69 | void *a; |
| 70 | m_link_p h = mp->h; |
| 71 | |
| 72 | if (size > SYM_MEM_CLUSTER_SIZE) |
| 73 | return NULL; |
| 74 | |
| 75 | while (size > s) { |
| 76 | s <<= 1; |
| 77 | ++i; |
| 78 | } |
| 79 | |
| 80 | j = i; |
| 81 | while (!h[j].next) { |
| 82 | if (s == SYM_MEM_CLUSTER_SIZE) { |
| 83 | h[j].next = (m_link_p) M_GET_MEM_CLUSTER(); |
| 84 | if (h[j].next) |
| 85 | h[j].next->next = NULL; |
| 86 | break; |
| 87 | } |
| 88 | ++j; |
| 89 | s <<= 1; |
| 90 | } |
| 91 | a = h[j].next; |
| 92 | if (a) { |
| 93 | h[j].next = h[j].next->next; |
| 94 | while (j > i) { |
| 95 | j -= 1; |
| 96 | s >>= 1; |
| 97 | h[j].next = (m_link_p) (a+s); |
| 98 | h[j].next->next = NULL; |
| 99 | } |
| 100 | } |
| 101 | #ifdef DEBUG |
| 102 | printf("___sym_malloc(%d) = %p\n", size, (void *) a); |
| 103 | #endif |
| 104 | return a; |
| 105 | } |
| 106 | |
| 107 | /* |
| 108 | * Counter-part of the generic allocator. |
| 109 | */ |
| 110 | static void ___sym_mfree(m_pool_p mp, void *ptr, int size) |
| 111 | { |
| 112 | int i = 0; |
| 113 | int s = (1 << SYM_MEM_SHIFT); |
| 114 | m_link_p q; |
| 115 | unsigned long a, b; |
| 116 | m_link_p h = mp->h; |
| 117 | |
| 118 | #ifdef DEBUG |
| 119 | printf("___sym_mfree(%p, %d)\n", ptr, size); |
| 120 | #endif |
| 121 | |
| 122 | if (size > SYM_MEM_CLUSTER_SIZE) |
| 123 | return; |
| 124 | |
| 125 | while (size > s) { |
| 126 | s <<= 1; |
| 127 | ++i; |
| 128 | } |
| 129 | |
| 130 | a = (unsigned long)ptr; |
| 131 | |
| 132 | while (1) { |
| 133 | if (s == SYM_MEM_CLUSTER_SIZE) { |
| 134 | #ifdef SYM_MEM_FREE_UNUSED |
| 135 | M_FREE_MEM_CLUSTER((void *)a); |
| 136 | #else |
| 137 | ((m_link_p) a)->next = h[i].next; |
| 138 | h[i].next = (m_link_p) a; |
| 139 | #endif |
| 140 | break; |
| 141 | } |
| 142 | b = a ^ s; |
| 143 | q = &h[i]; |
| 144 | while (q->next && q->next != (m_link_p) b) { |
| 145 | q = q->next; |
| 146 | } |
| 147 | if (!q->next) { |
| 148 | ((m_link_p) a)->next = h[i].next; |
| 149 | h[i].next = (m_link_p) a; |
| 150 | break; |
| 151 | } |
| 152 | q->next = q->next->next; |
| 153 | a = a & b; |
| 154 | s <<= 1; |
| 155 | ++i; |
| 156 | } |
| 157 | } |
| 158 | |
| 159 | /* |
| 160 | * Verbose and zeroing allocator that wrapps to the generic allocator. |
| 161 | */ |
| 162 | static void *__sym_calloc2(m_pool_p mp, int size, char *name, int uflags) |
| 163 | { |
| 164 | void *p; |
| 165 | |
| 166 | p = ___sym_malloc(mp, size); |
| 167 | |
| 168 | if (DEBUG_FLAGS & DEBUG_ALLOC) { |
| 169 | printf ("new %-10s[%4d] @%p.\n", name, size, p); |
| 170 | } |
| 171 | |
| 172 | if (p) |
| 173 | memset(p, 0, size); |
| 174 | else if (uflags & SYM_MEM_WARN) |
| 175 | printf ("__sym_calloc2: failed to allocate %s[%d]\n", name, size); |
| 176 | return p; |
| 177 | } |
| 178 | #define __sym_calloc(mp, s, n) __sym_calloc2(mp, s, n, SYM_MEM_WARN) |
| 179 | |
| 180 | /* |
| 181 | * Its counter-part. |
| 182 | */ |
| 183 | static void __sym_mfree(m_pool_p mp, void *ptr, int size, char *name) |
| 184 | { |
| 185 | if (DEBUG_FLAGS & DEBUG_ALLOC) |
| 186 | printf ("freeing %-10s[%4d] @%p.\n", name, size, ptr); |
| 187 | |
| 188 | ___sym_mfree(mp, ptr, size); |
| 189 | } |
| 190 | |
| 191 | /* |
| 192 | * Default memory pool we donnot need to involve in DMA. |
| 193 | * |
| 194 | * With DMA abstraction, we use functions (methods), to |
| 195 | * distinguish between non DMAable memory and DMAable memory. |
| 196 | */ |
| 197 | static void *___mp0_get_mem_cluster(m_pool_p mp) |
| 198 | { |
| 199 | void *m = sym_get_mem_cluster(); |
| 200 | if (m) |
| 201 | ++mp->nump; |
| 202 | return m; |
| 203 | } |
| 204 | |
| 205 | #ifdef SYM_MEM_FREE_UNUSED |
| 206 | static void ___mp0_free_mem_cluster(m_pool_p mp, void *m) |
| 207 | { |
| 208 | sym_free_mem_cluster(m); |
| 209 | --mp->nump; |
| 210 | } |
| 211 | #else |
| 212 | #define ___mp0_free_mem_cluster NULL |
| 213 | #endif |
| 214 | |
| 215 | static struct sym_m_pool mp0 = { |
| 216 | NULL, |
| 217 | ___mp0_get_mem_cluster, |
| 218 | ___mp0_free_mem_cluster |
| 219 | }; |
| 220 | |
| 221 | /* |
| 222 | * Methods that maintains DMAable pools according to user allocations. |
| 223 | * New pools are created on the fly when a new pool id is provided. |
| 224 | * They are deleted on the fly when they get emptied. |
| 225 | */ |
| 226 | /* Get a memory cluster that matches the DMA constraints of a given pool */ |
| 227 | static void * ___get_dma_mem_cluster(m_pool_p mp) |
| 228 | { |
| 229 | m_vtob_p vbp; |
| 230 | void *vaddr; |
| 231 | |
| 232 | vbp = __sym_calloc(&mp0, sizeof(*vbp), "VTOB"); |
| 233 | if (!vbp) |
| 234 | goto out_err; |
| 235 | |
| 236 | vaddr = sym_m_get_dma_mem_cluster(mp, vbp); |
| 237 | if (vaddr) { |
| 238 | int hc = VTOB_HASH_CODE(vaddr); |
| 239 | vbp->next = mp->vtob[hc]; |
| 240 | mp->vtob[hc] = vbp; |
| 241 | ++mp->nump; |
| 242 | } |
| 243 | return vaddr; |
| 244 | out_err: |
| 245 | return NULL; |
| 246 | } |
| 247 | |
| 248 | #ifdef SYM_MEM_FREE_UNUSED |
| 249 | /* Free a memory cluster and associated resources for DMA */ |
| 250 | static void ___free_dma_mem_cluster(m_pool_p mp, void *m) |
| 251 | { |
| 252 | m_vtob_p *vbpp, vbp; |
| 253 | int hc = VTOB_HASH_CODE(m); |
| 254 | |
| 255 | vbpp = &mp->vtob[hc]; |
| 256 | while (*vbpp && (*vbpp)->vaddr != m) |
| 257 | vbpp = &(*vbpp)->next; |
| 258 | if (*vbpp) { |
| 259 | vbp = *vbpp; |
| 260 | *vbpp = (*vbpp)->next; |
| 261 | sym_m_free_dma_mem_cluster(mp, vbp); |
| 262 | __sym_mfree(&mp0, vbp, sizeof(*vbp), "VTOB"); |
| 263 | --mp->nump; |
| 264 | } |
| 265 | } |
| 266 | #endif |
| 267 | |
| 268 | /* Fetch the memory pool for a given pool id (i.e. DMA constraints) */ |
| 269 | static __inline m_pool_p ___get_dma_pool(m_pool_ident_t dev_dmat) |
| 270 | { |
| 271 | m_pool_p mp; |
| 272 | for (mp = mp0.next; |
| 273 | mp && !sym_m_pool_match(mp->dev_dmat, dev_dmat); |
| 274 | mp = mp->next); |
| 275 | return mp; |
| 276 | } |
| 277 | |
| 278 | /* Create a new memory DMAable pool (when fetch failed) */ |
| 279 | static m_pool_p ___cre_dma_pool(m_pool_ident_t dev_dmat) |
| 280 | { |
| 281 | m_pool_p mp = __sym_calloc(&mp0, sizeof(*mp), "MPOOL"); |
| 282 | if (mp) { |
| 283 | mp->dev_dmat = dev_dmat; |
| 284 | mp->get_mem_cluster = ___get_dma_mem_cluster; |
| 285 | #ifdef SYM_MEM_FREE_UNUSED |
| 286 | mp->free_mem_cluster = ___free_dma_mem_cluster; |
| 287 | #endif |
| 288 | mp->next = mp0.next; |
| 289 | mp0.next = mp; |
| 290 | return mp; |
| 291 | } |
| 292 | return NULL; |
| 293 | } |
| 294 | |
| 295 | #ifdef SYM_MEM_FREE_UNUSED |
| 296 | /* Destroy a DMAable memory pool (when got emptied) */ |
| 297 | static void ___del_dma_pool(m_pool_p p) |
| 298 | { |
| 299 | m_pool_p *pp = &mp0.next; |
| 300 | |
| 301 | while (*pp && *pp != p) |
| 302 | pp = &(*pp)->next; |
| 303 | if (*pp) { |
| 304 | *pp = (*pp)->next; |
| 305 | __sym_mfree(&mp0, p, sizeof(*p), "MPOOL"); |
| 306 | } |
| 307 | } |
| 308 | #endif |
| 309 | |
| 310 | /* This lock protects only the memory allocation/free. */ |
| 311 | static DEFINE_SPINLOCK(sym53c8xx_lock); |
| 312 | |
| 313 | /* |
| 314 | * Actual allocator for DMAable memory. |
| 315 | */ |
| 316 | void *__sym_calloc_dma(m_pool_ident_t dev_dmat, int size, char *name) |
| 317 | { |
| 318 | unsigned long flags; |
| 319 | m_pool_p mp; |
| 320 | void *m = NULL; |
| 321 | |
| 322 | spin_lock_irqsave(&sym53c8xx_lock, flags); |
| 323 | mp = ___get_dma_pool(dev_dmat); |
| 324 | if (!mp) |
| 325 | mp = ___cre_dma_pool(dev_dmat); |
| 326 | if (!mp) |
| 327 | goto out; |
| 328 | m = __sym_calloc(mp, size, name); |
| 329 | #ifdef SYM_MEM_FREE_UNUSED |
| 330 | if (!mp->nump) |
| 331 | ___del_dma_pool(mp); |
| 332 | #endif |
| 333 | |
| 334 | out: |
| 335 | spin_unlock_irqrestore(&sym53c8xx_lock, flags); |
| 336 | return m; |
| 337 | } |
| 338 | |
| 339 | void __sym_mfree_dma(m_pool_ident_t dev_dmat, void *m, int size, char *name) |
| 340 | { |
| 341 | unsigned long flags; |
| 342 | m_pool_p mp; |
| 343 | |
| 344 | spin_lock_irqsave(&sym53c8xx_lock, flags); |
| 345 | mp = ___get_dma_pool(dev_dmat); |
| 346 | if (!mp) |
| 347 | goto out; |
| 348 | __sym_mfree(mp, m, size, name); |
| 349 | #ifdef SYM_MEM_FREE_UNUSED |
| 350 | if (!mp->nump) |
| 351 | ___del_dma_pool(mp); |
| 352 | #endif |
| 353 | out: |
| 354 | spin_unlock_irqrestore(&sym53c8xx_lock, flags); |
| 355 | } |
| 356 | |
| 357 | /* |
| 358 | * Actual virtual to bus physical address translator |
| 359 | * for 32 bit addressable DMAable memory. |
| 360 | */ |
| 361 | dma_addr_t __vtobus(m_pool_ident_t dev_dmat, void *m) |
| 362 | { |
| 363 | unsigned long flags; |
| 364 | m_pool_p mp; |
| 365 | int hc = VTOB_HASH_CODE(m); |
| 366 | m_vtob_p vp = NULL; |
| 367 | void *a = (void *)((unsigned long)m & ~SYM_MEM_CLUSTER_MASK); |
| 368 | dma_addr_t b; |
| 369 | |
| 370 | spin_lock_irqsave(&sym53c8xx_lock, flags); |
| 371 | mp = ___get_dma_pool(dev_dmat); |
| 372 | if (mp) { |
| 373 | vp = mp->vtob[hc]; |
| 374 | while (vp && vp->vaddr != a) |
| 375 | vp = vp->next; |
| 376 | } |
| 377 | if (!vp) |
| 378 | panic("sym: VTOBUS FAILED!\n"); |
| 379 | b = vp->baddr + (m - a); |
| 380 | spin_unlock_irqrestore(&sym53c8xx_lock, flags); |
| 381 | return b; |
| 382 | } |