Casey Leedom | be839e3 | 2010-06-25 12:14:15 +0000 | [diff] [blame] | 1 | /* |
| 2 | * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet |
| 3 | * driver for Linux. |
| 4 | * |
| 5 | * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved. |
| 6 | * |
| 7 | * This software is available to you under a choice of one of two |
| 8 | * licenses. You may choose to be licensed under the terms of the GNU |
| 9 | * General Public License (GPL) Version 2, available from the file |
| 10 | * COPYING in the main directory of this source tree, or the |
| 11 | * OpenIB.org BSD license below: |
| 12 | * |
| 13 | * Redistribution and use in source and binary forms, with or |
| 14 | * without modification, are permitted provided that the following |
| 15 | * conditions are met: |
| 16 | * |
| 17 | * - Redistributions of source code must retain the above |
| 18 | * copyright notice, this list of conditions and the following |
| 19 | * disclaimer. |
| 20 | * |
| 21 | * - Redistributions in binary form must reproduce the above |
| 22 | * copyright notice, this list of conditions and the following |
| 23 | * disclaimer in the documentation and/or other materials |
| 24 | * provided with the distribution. |
| 25 | * |
| 26 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
| 27 | * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF |
| 28 | * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND |
| 29 | * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS |
| 30 | * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN |
| 31 | * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN |
| 32 | * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
| 33 | * SOFTWARE. |
| 34 | */ |
| 35 | |
| 36 | #include <linux/version.h> |
| 37 | #include <linux/module.h> |
| 38 | #include <linux/moduleparam.h> |
| 39 | #include <linux/init.h> |
| 40 | #include <linux/pci.h> |
| 41 | #include <linux/dma-mapping.h> |
| 42 | #include <linux/netdevice.h> |
| 43 | #include <linux/etherdevice.h> |
| 44 | #include <linux/debugfs.h> |
| 45 | #include <linux/ethtool.h> |
| 46 | |
| 47 | #include "t4vf_common.h" |
| 48 | #include "t4vf_defs.h" |
| 49 | |
| 50 | #include "../cxgb4/t4_regs.h" |
| 51 | #include "../cxgb4/t4_msg.h" |
| 52 | |
| 53 | /* |
| 54 | * Generic information about the driver. |
| 55 | */ |
| 56 | #define DRV_VERSION "1.0.0" |
| 57 | #define DRV_DESC "Chelsio T4 Virtual Function (VF) Network Driver" |
| 58 | |
| 59 | /* |
| 60 | * Module Parameters. |
| 61 | * ================== |
| 62 | */ |
| 63 | |
| 64 | /* |
| 65 | * Default ethtool "message level" for adapters. |
| 66 | */ |
| 67 | #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \ |
| 68 | NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\ |
| 69 | NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR) |
| 70 | |
| 71 | static int dflt_msg_enable = DFLT_MSG_ENABLE; |
| 72 | |
| 73 | module_param(dflt_msg_enable, int, 0644); |
| 74 | MODULE_PARM_DESC(dflt_msg_enable, |
| 75 | "default adapter ethtool message level bitmap"); |
| 76 | |
| 77 | /* |
| 78 | * The driver uses the best interrupt scheme available on a platform in the |
| 79 | * order MSI-X then MSI. This parameter determines which of these schemes the |
| 80 | * driver may consider as follows: |
| 81 | * |
| 82 | * msi = 2: choose from among MSI-X and MSI |
| 83 | * msi = 1: only consider MSI interrupts |
| 84 | * |
| 85 | * Note that unlike the Physical Function driver, this Virtual Function driver |
| 86 | * does _not_ support legacy INTx interrupts (this limitation is mandated by |
| 87 | * the PCI-E SR-IOV standard). |
| 88 | */ |
| 89 | #define MSI_MSIX 2 |
| 90 | #define MSI_MSI 1 |
| 91 | #define MSI_DEFAULT MSI_MSIX |
| 92 | |
| 93 | static int msi = MSI_DEFAULT; |
| 94 | |
| 95 | module_param(msi, int, 0644); |
| 96 | MODULE_PARM_DESC(msi, "whether to use MSI-X or MSI"); |
| 97 | |
| 98 | /* |
| 99 | * Fundamental constants. |
| 100 | * ====================== |
| 101 | */ |
| 102 | |
| 103 | enum { |
| 104 | MAX_TXQ_ENTRIES = 16384, |
| 105 | MAX_RSPQ_ENTRIES = 16384, |
| 106 | MAX_RX_BUFFERS = 16384, |
| 107 | |
| 108 | MIN_TXQ_ENTRIES = 32, |
| 109 | MIN_RSPQ_ENTRIES = 128, |
| 110 | MIN_FL_ENTRIES = 16, |
| 111 | |
| 112 | /* |
| 113 | * For purposes of manipulating the Free List size we need to |
| 114 | * recognize that Free Lists are actually Egress Queues (the host |
| 115 | * produces free buffers which the hardware consumes), Egress Queues |
| 116 | * indices are all in units of Egress Context Units bytes, and free |
| 117 | * list entries are 64-bit PCI DMA addresses. And since the state of |
| 118 | * the Producer Index == the Consumer Index implies an EMPTY list, we |
| 119 | * always have at least one Egress Unit's worth of Free List entries |
| 120 | * unused. See sge.c for more details ... |
| 121 | */ |
| 122 | EQ_UNIT = SGE_EQ_IDXSIZE, |
| 123 | FL_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64), |
| 124 | MIN_FL_RESID = FL_PER_EQ_UNIT, |
| 125 | }; |
| 126 | |
| 127 | /* |
| 128 | * Global driver state. |
| 129 | * ==================== |
| 130 | */ |
| 131 | |
| 132 | static struct dentry *cxgb4vf_debugfs_root; |
| 133 | |
| 134 | /* |
| 135 | * OS "Callback" functions. |
| 136 | * ======================== |
| 137 | */ |
| 138 | |
| 139 | /* |
| 140 | * The link status has changed on the indicated "port" (Virtual Interface). |
| 141 | */ |
| 142 | void t4vf_os_link_changed(struct adapter *adapter, int pidx, int link_ok) |
| 143 | { |
| 144 | struct net_device *dev = adapter->port[pidx]; |
| 145 | |
| 146 | /* |
| 147 | * If the port is disabled or the current recorded "link up" |
| 148 | * status matches the new status, just return. |
| 149 | */ |
| 150 | if (!netif_running(dev) || link_ok == netif_carrier_ok(dev)) |
| 151 | return; |
| 152 | |
| 153 | /* |
| 154 | * Tell the OS that the link status has changed and print a short |
| 155 | * informative message on the console about the event. |
| 156 | */ |
| 157 | if (link_ok) { |
| 158 | const char *s; |
| 159 | const char *fc; |
| 160 | const struct port_info *pi = netdev_priv(dev); |
| 161 | |
| 162 | netif_carrier_on(dev); |
| 163 | |
| 164 | switch (pi->link_cfg.speed) { |
| 165 | case SPEED_10000: |
| 166 | s = "10Gbps"; |
| 167 | break; |
| 168 | |
| 169 | case SPEED_1000: |
| 170 | s = "1000Mbps"; |
| 171 | break; |
| 172 | |
| 173 | case SPEED_100: |
| 174 | s = "100Mbps"; |
| 175 | break; |
| 176 | |
| 177 | default: |
| 178 | s = "unknown"; |
| 179 | break; |
| 180 | } |
| 181 | |
| 182 | switch (pi->link_cfg.fc) { |
| 183 | case PAUSE_RX: |
| 184 | fc = "RX"; |
| 185 | break; |
| 186 | |
| 187 | case PAUSE_TX: |
| 188 | fc = "TX"; |
| 189 | break; |
| 190 | |
| 191 | case PAUSE_RX|PAUSE_TX: |
| 192 | fc = "RX/TX"; |
| 193 | break; |
| 194 | |
| 195 | default: |
| 196 | fc = "no"; |
| 197 | break; |
| 198 | } |
| 199 | |
| 200 | printk(KERN_INFO "%s: link up, %s, full-duplex, %s PAUSE\n", |
| 201 | dev->name, s, fc); |
| 202 | } else { |
| 203 | netif_carrier_off(dev); |
| 204 | printk(KERN_INFO "%s: link down\n", dev->name); |
| 205 | } |
| 206 | } |
| 207 | |
| 208 | /* |
| 209 | * Net device operations. |
| 210 | * ====================== |
| 211 | */ |
| 212 | |
| 213 | /* |
| 214 | * Record our new VLAN Group and enable/disable hardware VLAN Tag extraction |
| 215 | * based on whether the specified VLAN Group pointer is NULL or not. |
| 216 | */ |
| 217 | static void cxgb4vf_vlan_rx_register(struct net_device *dev, |
| 218 | struct vlan_group *grp) |
| 219 | { |
| 220 | struct port_info *pi = netdev_priv(dev); |
| 221 | |
| 222 | pi->vlan_grp = grp; |
| 223 | t4vf_set_rxmode(pi->adapter, pi->viid, -1, -1, -1, -1, grp != NULL, 0); |
| 224 | } |
| 225 | |
| 226 | /* |
| 227 | * Perform the MAC and PHY actions needed to enable a "port" (Virtual |
| 228 | * Interface). |
| 229 | */ |
| 230 | static int link_start(struct net_device *dev) |
| 231 | { |
| 232 | int ret; |
| 233 | struct port_info *pi = netdev_priv(dev); |
| 234 | |
| 235 | /* |
| 236 | * We do not set address filters and promiscuity here, the stack does |
| 237 | * that step explicitly. |
| 238 | */ |
| 239 | ret = t4vf_set_rxmode(pi->adapter, pi->viid, dev->mtu, -1, -1, -1, -1, |
| 240 | true); |
| 241 | if (ret == 0) { |
| 242 | ret = t4vf_change_mac(pi->adapter, pi->viid, |
| 243 | pi->xact_addr_filt, dev->dev_addr, true); |
| 244 | if (ret >= 0) { |
| 245 | pi->xact_addr_filt = ret; |
| 246 | ret = 0; |
| 247 | } |
| 248 | } |
| 249 | |
| 250 | /* |
| 251 | * We don't need to actually "start the link" itself since the |
| 252 | * firmware will do that for us when the first Virtual Interface |
| 253 | * is enabled on a port. |
| 254 | */ |
| 255 | if (ret == 0) |
| 256 | ret = t4vf_enable_vi(pi->adapter, pi->viid, true, true); |
| 257 | return ret; |
| 258 | } |
| 259 | |
| 260 | /* |
| 261 | * Name the MSI-X interrupts. |
| 262 | */ |
| 263 | static void name_msix_vecs(struct adapter *adapter) |
| 264 | { |
| 265 | int namelen = sizeof(adapter->msix_info[0].desc) - 1; |
| 266 | int pidx; |
| 267 | |
| 268 | /* |
| 269 | * Firmware events. |
| 270 | */ |
| 271 | snprintf(adapter->msix_info[MSIX_FW].desc, namelen, |
| 272 | "%s-FWeventq", adapter->name); |
| 273 | adapter->msix_info[MSIX_FW].desc[namelen] = 0; |
| 274 | |
| 275 | /* |
| 276 | * Ethernet queues. |
| 277 | */ |
| 278 | for_each_port(adapter, pidx) { |
| 279 | struct net_device *dev = adapter->port[pidx]; |
| 280 | const struct port_info *pi = netdev_priv(dev); |
| 281 | int qs, msi; |
| 282 | |
| 283 | for (qs = 0, msi = MSIX_NIQFLINT; |
| 284 | qs < pi->nqsets; |
| 285 | qs++, msi++) { |
| 286 | snprintf(adapter->msix_info[msi].desc, namelen, |
| 287 | "%s-%d", dev->name, qs); |
| 288 | adapter->msix_info[msi].desc[namelen] = 0; |
| 289 | } |
| 290 | } |
| 291 | } |
| 292 | |
| 293 | /* |
| 294 | * Request all of our MSI-X resources. |
| 295 | */ |
| 296 | static int request_msix_queue_irqs(struct adapter *adapter) |
| 297 | { |
| 298 | struct sge *s = &adapter->sge; |
| 299 | int rxq, msi, err; |
| 300 | |
| 301 | /* |
| 302 | * Firmware events. |
| 303 | */ |
| 304 | err = request_irq(adapter->msix_info[MSIX_FW].vec, t4vf_sge_intr_msix, |
| 305 | 0, adapter->msix_info[MSIX_FW].desc, &s->fw_evtq); |
| 306 | if (err) |
| 307 | return err; |
| 308 | |
| 309 | /* |
| 310 | * Ethernet queues. |
| 311 | */ |
| 312 | msi = MSIX_NIQFLINT; |
| 313 | for_each_ethrxq(s, rxq) { |
| 314 | err = request_irq(adapter->msix_info[msi].vec, |
| 315 | t4vf_sge_intr_msix, 0, |
| 316 | adapter->msix_info[msi].desc, |
| 317 | &s->ethrxq[rxq].rspq); |
| 318 | if (err) |
| 319 | goto err_free_irqs; |
| 320 | msi++; |
| 321 | } |
| 322 | return 0; |
| 323 | |
| 324 | err_free_irqs: |
| 325 | while (--rxq >= 0) |
| 326 | free_irq(adapter->msix_info[--msi].vec, &s->ethrxq[rxq].rspq); |
| 327 | free_irq(adapter->msix_info[MSIX_FW].vec, &s->fw_evtq); |
| 328 | return err; |
| 329 | } |
| 330 | |
| 331 | /* |
| 332 | * Free our MSI-X resources. |
| 333 | */ |
| 334 | static void free_msix_queue_irqs(struct adapter *adapter) |
| 335 | { |
| 336 | struct sge *s = &adapter->sge; |
| 337 | int rxq, msi; |
| 338 | |
| 339 | free_irq(adapter->msix_info[MSIX_FW].vec, &s->fw_evtq); |
| 340 | msi = MSIX_NIQFLINT; |
| 341 | for_each_ethrxq(s, rxq) |
| 342 | free_irq(adapter->msix_info[msi++].vec, |
| 343 | &s->ethrxq[rxq].rspq); |
| 344 | } |
| 345 | |
| 346 | /* |
| 347 | * Turn on NAPI and start up interrupts on a response queue. |
| 348 | */ |
| 349 | static void qenable(struct sge_rspq *rspq) |
| 350 | { |
| 351 | napi_enable(&rspq->napi); |
| 352 | |
| 353 | /* |
| 354 | * 0-increment the Going To Sleep register to start the timer and |
| 355 | * enable interrupts. |
| 356 | */ |
| 357 | t4_write_reg(rspq->adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS, |
| 358 | CIDXINC(0) | |
| 359 | SEINTARM(rspq->intr_params) | |
| 360 | INGRESSQID(rspq->cntxt_id)); |
| 361 | } |
| 362 | |
| 363 | /* |
| 364 | * Enable NAPI scheduling and interrupt generation for all Receive Queues. |
| 365 | */ |
| 366 | static void enable_rx(struct adapter *adapter) |
| 367 | { |
| 368 | int rxq; |
| 369 | struct sge *s = &adapter->sge; |
| 370 | |
| 371 | for_each_ethrxq(s, rxq) |
| 372 | qenable(&s->ethrxq[rxq].rspq); |
| 373 | qenable(&s->fw_evtq); |
| 374 | |
| 375 | /* |
| 376 | * The interrupt queue doesn't use NAPI so we do the 0-increment of |
| 377 | * its Going To Sleep register here to get it started. |
| 378 | */ |
| 379 | if (adapter->flags & USING_MSI) |
| 380 | t4_write_reg(adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS, |
| 381 | CIDXINC(0) | |
| 382 | SEINTARM(s->intrq.intr_params) | |
| 383 | INGRESSQID(s->intrq.cntxt_id)); |
| 384 | |
| 385 | } |
| 386 | |
| 387 | /* |
| 388 | * Wait until all NAPI handlers are descheduled. |
| 389 | */ |
| 390 | static void quiesce_rx(struct adapter *adapter) |
| 391 | { |
| 392 | struct sge *s = &adapter->sge; |
| 393 | int rxq; |
| 394 | |
| 395 | for_each_ethrxq(s, rxq) |
| 396 | napi_disable(&s->ethrxq[rxq].rspq.napi); |
| 397 | napi_disable(&s->fw_evtq.napi); |
| 398 | } |
| 399 | |
| 400 | /* |
| 401 | * Response queue handler for the firmware event queue. |
| 402 | */ |
| 403 | static int fwevtq_handler(struct sge_rspq *rspq, const __be64 *rsp, |
| 404 | const struct pkt_gl *gl) |
| 405 | { |
| 406 | /* |
| 407 | * Extract response opcode and get pointer to CPL message body. |
| 408 | */ |
| 409 | struct adapter *adapter = rspq->adapter; |
| 410 | u8 opcode = ((const struct rss_header *)rsp)->opcode; |
| 411 | void *cpl = (void *)(rsp + 1); |
| 412 | |
| 413 | switch (opcode) { |
| 414 | case CPL_FW6_MSG: { |
| 415 | /* |
| 416 | * We've received an asynchronous message from the firmware. |
| 417 | */ |
| 418 | const struct cpl_fw6_msg *fw_msg = cpl; |
| 419 | if (fw_msg->type == FW6_TYPE_CMD_RPL) |
| 420 | t4vf_handle_fw_rpl(adapter, fw_msg->data); |
| 421 | break; |
| 422 | } |
| 423 | |
| 424 | case CPL_SGE_EGR_UPDATE: { |
| 425 | /* |
Casey Leedom | 7f9dd2f | 2010-07-12 14:39:07 -0700 | [diff] [blame] | 426 | * We've received an Egress Queue Status Update message. We |
| 427 | * get these, if the SGE is configured to send these when the |
| 428 | * firmware passes certain points in processing our TX |
| 429 | * Ethernet Queue or if we make an explicit request for one. |
| 430 | * We use these updates to determine when we may need to |
| 431 | * restart a TX Ethernet Queue which was stopped for lack of |
| 432 | * free TX Queue Descriptors ... |
Casey Leedom | be839e3 | 2010-06-25 12:14:15 +0000 | [diff] [blame] | 433 | */ |
| 434 | const struct cpl_sge_egr_update *p = (void *)cpl; |
| 435 | unsigned int qid = EGR_QID(be32_to_cpu(p->opcode_qid)); |
| 436 | struct sge *s = &adapter->sge; |
| 437 | struct sge_txq *tq; |
| 438 | struct sge_eth_txq *txq; |
| 439 | unsigned int eq_idx; |
Casey Leedom | be839e3 | 2010-06-25 12:14:15 +0000 | [diff] [blame] | 440 | |
| 441 | /* |
| 442 | * Perform sanity checking on the Queue ID to make sure it |
| 443 | * really refers to one of our TX Ethernet Egress Queues which |
| 444 | * is active and matches the queue's ID. None of these error |
| 445 | * conditions should ever happen so we may want to either make |
| 446 | * them fatal and/or conditionalized under DEBUG. |
| 447 | */ |
| 448 | eq_idx = EQ_IDX(s, qid); |
| 449 | if (unlikely(eq_idx >= MAX_EGRQ)) { |
| 450 | dev_err(adapter->pdev_dev, |
| 451 | "Egress Update QID %d out of range\n", qid); |
| 452 | break; |
| 453 | } |
| 454 | tq = s->egr_map[eq_idx]; |
| 455 | if (unlikely(tq == NULL)) { |
| 456 | dev_err(adapter->pdev_dev, |
| 457 | "Egress Update QID %d TXQ=NULL\n", qid); |
| 458 | break; |
| 459 | } |
| 460 | txq = container_of(tq, struct sge_eth_txq, q); |
| 461 | if (unlikely(tq->abs_id != qid)) { |
| 462 | dev_err(adapter->pdev_dev, |
| 463 | "Egress Update QID %d refers to TXQ %d\n", |
| 464 | qid, tq->abs_id); |
| 465 | break; |
| 466 | } |
| 467 | |
| 468 | /* |
Casey Leedom | be839e3 | 2010-06-25 12:14:15 +0000 | [diff] [blame] | 469 | * Restart a stopped TX Queue which has less than half of its |
| 470 | * TX ring in use ... |
| 471 | */ |
| 472 | txq->q.restarts++; |
| 473 | netif_tx_wake_queue(txq->txq); |
| 474 | break; |
| 475 | } |
| 476 | |
| 477 | default: |
| 478 | dev_err(adapter->pdev_dev, |
| 479 | "unexpected CPL %#x on FW event queue\n", opcode); |
| 480 | } |
| 481 | |
| 482 | return 0; |
| 483 | } |
| 484 | |
| 485 | /* |
| 486 | * Allocate SGE TX/RX response queues. Determine how many sets of SGE queues |
| 487 | * to use and initializes them. We support multiple "Queue Sets" per port if |
| 488 | * we have MSI-X, otherwise just one queue set per port. |
| 489 | */ |
| 490 | static int setup_sge_queues(struct adapter *adapter) |
| 491 | { |
| 492 | struct sge *s = &adapter->sge; |
| 493 | int err, pidx, msix; |
| 494 | |
| 495 | /* |
| 496 | * Clear "Queue Set" Free List Starving and TX Queue Mapping Error |
| 497 | * state. |
| 498 | */ |
| 499 | bitmap_zero(s->starving_fl, MAX_EGRQ); |
| 500 | |
| 501 | /* |
| 502 | * If we're using MSI interrupt mode we need to set up a "forwarded |
| 503 | * interrupt" queue which we'll set up with our MSI vector. The rest |
| 504 | * of the ingress queues will be set up to forward their interrupts to |
| 505 | * this queue ... This must be first since t4vf_sge_alloc_rxq() uses |
| 506 | * the intrq's queue ID as the interrupt forwarding queue for the |
| 507 | * subsequent calls ... |
| 508 | */ |
| 509 | if (adapter->flags & USING_MSI) { |
| 510 | err = t4vf_sge_alloc_rxq(adapter, &s->intrq, false, |
| 511 | adapter->port[0], 0, NULL, NULL); |
| 512 | if (err) |
| 513 | goto err_free_queues; |
| 514 | } |
| 515 | |
| 516 | /* |
| 517 | * Allocate our ingress queue for asynchronous firmware messages. |
| 518 | */ |
| 519 | err = t4vf_sge_alloc_rxq(adapter, &s->fw_evtq, true, adapter->port[0], |
| 520 | MSIX_FW, NULL, fwevtq_handler); |
| 521 | if (err) |
| 522 | goto err_free_queues; |
| 523 | |
| 524 | /* |
| 525 | * Allocate each "port"'s initial Queue Sets. These can be changed |
| 526 | * later on ... up to the point where any interface on the adapter is |
| 527 | * brought up at which point lots of things get nailed down |
| 528 | * permanently ... |
| 529 | */ |
| 530 | msix = MSIX_NIQFLINT; |
| 531 | for_each_port(adapter, pidx) { |
| 532 | struct net_device *dev = adapter->port[pidx]; |
| 533 | struct port_info *pi = netdev_priv(dev); |
| 534 | struct sge_eth_rxq *rxq = &s->ethrxq[pi->first_qset]; |
| 535 | struct sge_eth_txq *txq = &s->ethtxq[pi->first_qset]; |
Casey Leedom | be839e3 | 2010-06-25 12:14:15 +0000 | [diff] [blame] | 536 | int qs; |
| 537 | |
Casey Leedom | c8639a8 | 2010-07-19 17:53:48 -0700 | [diff] [blame] | 538 | for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) { |
Casey Leedom | be839e3 | 2010-06-25 12:14:15 +0000 | [diff] [blame] | 539 | err = t4vf_sge_alloc_rxq(adapter, &rxq->rspq, false, |
| 540 | dev, msix++, |
| 541 | &rxq->fl, t4vf_ethrx_handler); |
| 542 | if (err) |
| 543 | goto err_free_queues; |
| 544 | |
| 545 | err = t4vf_sge_alloc_eth_txq(adapter, txq, dev, |
| 546 | netdev_get_tx_queue(dev, qs), |
| 547 | s->fw_evtq.cntxt_id); |
| 548 | if (err) |
| 549 | goto err_free_queues; |
| 550 | |
| 551 | rxq->rspq.idx = qs; |
| 552 | memset(&rxq->stats, 0, sizeof(rxq->stats)); |
| 553 | } |
| 554 | } |
| 555 | |
| 556 | /* |
| 557 | * Create the reverse mappings for the queues. |
| 558 | */ |
| 559 | s->egr_base = s->ethtxq[0].q.abs_id - s->ethtxq[0].q.cntxt_id; |
| 560 | s->ingr_base = s->ethrxq[0].rspq.abs_id - s->ethrxq[0].rspq.cntxt_id; |
| 561 | IQ_MAP(s, s->fw_evtq.abs_id) = &s->fw_evtq; |
| 562 | for_each_port(adapter, pidx) { |
| 563 | struct net_device *dev = adapter->port[pidx]; |
| 564 | struct port_info *pi = netdev_priv(dev); |
| 565 | struct sge_eth_rxq *rxq = &s->ethrxq[pi->first_qset]; |
| 566 | struct sge_eth_txq *txq = &s->ethtxq[pi->first_qset]; |
Casey Leedom | be839e3 | 2010-06-25 12:14:15 +0000 | [diff] [blame] | 567 | int qs; |
| 568 | |
Casey Leedom | c8639a8 | 2010-07-19 17:53:48 -0700 | [diff] [blame] | 569 | for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) { |
Casey Leedom | be839e3 | 2010-06-25 12:14:15 +0000 | [diff] [blame] | 570 | IQ_MAP(s, rxq->rspq.abs_id) = &rxq->rspq; |
| 571 | EQ_MAP(s, txq->q.abs_id) = &txq->q; |
| 572 | |
| 573 | /* |
| 574 | * The FW_IQ_CMD doesn't return the Absolute Queue IDs |
| 575 | * for Free Lists but since all of the Egress Queues |
| 576 | * (including Free Lists) have Relative Queue IDs |
| 577 | * which are computed as Absolute - Base Queue ID, we |
| 578 | * can synthesize the Absolute Queue IDs for the Free |
| 579 | * Lists. This is useful for debugging purposes when |
| 580 | * we want to dump Queue Contexts via the PF Driver. |
| 581 | */ |
| 582 | rxq->fl.abs_id = rxq->fl.cntxt_id + s->egr_base; |
| 583 | EQ_MAP(s, rxq->fl.abs_id) = &rxq->fl; |
| 584 | } |
| 585 | } |
| 586 | return 0; |
| 587 | |
| 588 | err_free_queues: |
| 589 | t4vf_free_sge_resources(adapter); |
| 590 | return err; |
| 591 | } |
| 592 | |
| 593 | /* |
| 594 | * Set up Receive Side Scaling (RSS) to distribute packets to multiple receive |
| 595 | * queues. We configure the RSS CPU lookup table to distribute to the number |
| 596 | * of HW receive queues, and the response queue lookup table to narrow that |
| 597 | * down to the response queues actually configured for each "port" (Virtual |
| 598 | * Interface). We always configure the RSS mapping for all ports since the |
| 599 | * mapping table has plenty of entries. |
| 600 | */ |
| 601 | static int setup_rss(struct adapter *adapter) |
| 602 | { |
| 603 | int pidx; |
| 604 | |
| 605 | for_each_port(adapter, pidx) { |
| 606 | struct port_info *pi = adap2pinfo(adapter, pidx); |
| 607 | struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[pi->first_qset]; |
| 608 | u16 rss[MAX_PORT_QSETS]; |
| 609 | int qs, err; |
| 610 | |
| 611 | for (qs = 0; qs < pi->nqsets; qs++) |
| 612 | rss[qs] = rxq[qs].rspq.abs_id; |
| 613 | |
| 614 | err = t4vf_config_rss_range(adapter, pi->viid, |
| 615 | 0, pi->rss_size, rss, pi->nqsets); |
| 616 | if (err) |
| 617 | return err; |
| 618 | |
| 619 | /* |
| 620 | * Perform Global RSS Mode-specific initialization. |
| 621 | */ |
| 622 | switch (adapter->params.rss.mode) { |
| 623 | case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: |
| 624 | /* |
| 625 | * If Tunnel All Lookup isn't specified in the global |
| 626 | * RSS Configuration, then we need to specify a |
| 627 | * default Ingress Queue for any ingress packets which |
| 628 | * aren't hashed. We'll use our first ingress queue |
| 629 | * ... |
| 630 | */ |
| 631 | if (!adapter->params.rss.u.basicvirtual.tnlalllookup) { |
| 632 | union rss_vi_config config; |
| 633 | err = t4vf_read_rss_vi_config(adapter, |
| 634 | pi->viid, |
| 635 | &config); |
| 636 | if (err) |
| 637 | return err; |
| 638 | config.basicvirtual.defaultq = |
| 639 | rxq[0].rspq.abs_id; |
| 640 | err = t4vf_write_rss_vi_config(adapter, |
| 641 | pi->viid, |
| 642 | &config); |
| 643 | if (err) |
| 644 | return err; |
| 645 | } |
| 646 | break; |
| 647 | } |
| 648 | } |
| 649 | |
| 650 | return 0; |
| 651 | } |
| 652 | |
| 653 | /* |
| 654 | * Bring the adapter up. Called whenever we go from no "ports" open to having |
| 655 | * one open. This function performs the actions necessary to make an adapter |
| 656 | * operational, such as completing the initialization of HW modules, and |
| 657 | * enabling interrupts. Must be called with the rtnl lock held. (Note that |
| 658 | * this is called "cxgb_up" in the PF Driver.) |
| 659 | */ |
| 660 | static int adapter_up(struct adapter *adapter) |
| 661 | { |
| 662 | int err; |
| 663 | |
| 664 | /* |
| 665 | * If this is the first time we've been called, perform basic |
| 666 | * adapter setup. Once we've done this, many of our adapter |
| 667 | * parameters can no longer be changed ... |
| 668 | */ |
| 669 | if ((adapter->flags & FULL_INIT_DONE) == 0) { |
| 670 | err = setup_sge_queues(adapter); |
| 671 | if (err) |
| 672 | return err; |
| 673 | err = setup_rss(adapter); |
| 674 | if (err) { |
| 675 | t4vf_free_sge_resources(adapter); |
| 676 | return err; |
| 677 | } |
| 678 | |
| 679 | if (adapter->flags & USING_MSIX) |
| 680 | name_msix_vecs(adapter); |
| 681 | adapter->flags |= FULL_INIT_DONE; |
| 682 | } |
| 683 | |
| 684 | /* |
| 685 | * Acquire our interrupt resources. We only support MSI-X and MSI. |
| 686 | */ |
| 687 | BUG_ON((adapter->flags & (USING_MSIX|USING_MSI)) == 0); |
| 688 | if (adapter->flags & USING_MSIX) |
| 689 | err = request_msix_queue_irqs(adapter); |
| 690 | else |
| 691 | err = request_irq(adapter->pdev->irq, |
| 692 | t4vf_intr_handler(adapter), 0, |
| 693 | adapter->name, adapter); |
| 694 | if (err) { |
| 695 | dev_err(adapter->pdev_dev, "request_irq failed, err %d\n", |
| 696 | err); |
| 697 | return err; |
| 698 | } |
| 699 | |
| 700 | /* |
| 701 | * Enable NAPI ingress processing and return success. |
| 702 | */ |
| 703 | enable_rx(adapter); |
| 704 | t4vf_sge_start(adapter); |
| 705 | return 0; |
| 706 | } |
| 707 | |
| 708 | /* |
| 709 | * Bring the adapter down. Called whenever the last "port" (Virtual |
| 710 | * Interface) closed. (Note that this routine is called "cxgb_down" in the PF |
| 711 | * Driver.) |
| 712 | */ |
| 713 | static void adapter_down(struct adapter *adapter) |
| 714 | { |
| 715 | /* |
| 716 | * Free interrupt resources. |
| 717 | */ |
| 718 | if (adapter->flags & USING_MSIX) |
| 719 | free_msix_queue_irqs(adapter); |
| 720 | else |
| 721 | free_irq(adapter->pdev->irq, adapter); |
| 722 | |
| 723 | /* |
| 724 | * Wait for NAPI handlers to finish. |
| 725 | */ |
| 726 | quiesce_rx(adapter); |
| 727 | } |
| 728 | |
| 729 | /* |
| 730 | * Start up a net device. |
| 731 | */ |
| 732 | static int cxgb4vf_open(struct net_device *dev) |
| 733 | { |
| 734 | int err; |
| 735 | struct port_info *pi = netdev_priv(dev); |
| 736 | struct adapter *adapter = pi->adapter; |
| 737 | |
| 738 | /* |
| 739 | * If this is the first interface that we're opening on the "adapter", |
| 740 | * bring the "adapter" up now. |
| 741 | */ |
| 742 | if (adapter->open_device_map == 0) { |
| 743 | err = adapter_up(adapter); |
| 744 | if (err) |
| 745 | return err; |
| 746 | } |
| 747 | |
| 748 | /* |
| 749 | * Note that this interface is up and start everything up ... |
| 750 | */ |
| 751 | dev->real_num_tx_queues = pi->nqsets; |
| 752 | set_bit(pi->port_id, &adapter->open_device_map); |
| 753 | link_start(dev); |
| 754 | netif_tx_start_all_queues(dev); |
| 755 | return 0; |
| 756 | } |
| 757 | |
| 758 | /* |
| 759 | * Shut down a net device. This routine is called "cxgb_close" in the PF |
| 760 | * Driver ... |
| 761 | */ |
| 762 | static int cxgb4vf_stop(struct net_device *dev) |
| 763 | { |
| 764 | int ret; |
| 765 | struct port_info *pi = netdev_priv(dev); |
| 766 | struct adapter *adapter = pi->adapter; |
| 767 | |
| 768 | netif_tx_stop_all_queues(dev); |
| 769 | netif_carrier_off(dev); |
| 770 | ret = t4vf_enable_vi(adapter, pi->viid, false, false); |
| 771 | pi->link_cfg.link_ok = 0; |
| 772 | |
| 773 | clear_bit(pi->port_id, &adapter->open_device_map); |
| 774 | if (adapter->open_device_map == 0) |
| 775 | adapter_down(adapter); |
| 776 | return 0; |
| 777 | } |
| 778 | |
| 779 | /* |
| 780 | * Translate our basic statistics into the standard "ifconfig" statistics. |
| 781 | */ |
| 782 | static struct net_device_stats *cxgb4vf_get_stats(struct net_device *dev) |
| 783 | { |
| 784 | struct t4vf_port_stats stats; |
| 785 | struct port_info *pi = netdev2pinfo(dev); |
| 786 | struct adapter *adapter = pi->adapter; |
| 787 | struct net_device_stats *ns = &dev->stats; |
| 788 | int err; |
| 789 | |
| 790 | spin_lock(&adapter->stats_lock); |
| 791 | err = t4vf_get_port_stats(adapter, pi->pidx, &stats); |
| 792 | spin_unlock(&adapter->stats_lock); |
| 793 | |
| 794 | memset(ns, 0, sizeof(*ns)); |
| 795 | if (err) |
| 796 | return ns; |
| 797 | |
| 798 | ns->tx_bytes = (stats.tx_bcast_bytes + stats.tx_mcast_bytes + |
| 799 | stats.tx_ucast_bytes + stats.tx_offload_bytes); |
| 800 | ns->tx_packets = (stats.tx_bcast_frames + stats.tx_mcast_frames + |
| 801 | stats.tx_ucast_frames + stats.tx_offload_frames); |
| 802 | ns->rx_bytes = (stats.rx_bcast_bytes + stats.rx_mcast_bytes + |
| 803 | stats.rx_ucast_bytes); |
| 804 | ns->rx_packets = (stats.rx_bcast_frames + stats.rx_mcast_frames + |
| 805 | stats.rx_ucast_frames); |
| 806 | ns->multicast = stats.rx_mcast_frames; |
| 807 | ns->tx_errors = stats.tx_drop_frames; |
| 808 | ns->rx_errors = stats.rx_err_frames; |
| 809 | |
| 810 | return ns; |
| 811 | } |
| 812 | |
| 813 | /* |
| 814 | * Collect up to maxaddrs worth of a netdevice's unicast addresses into an |
| 815 | * array of addrss pointers and return the number collected. |
| 816 | */ |
| 817 | static inline int collect_netdev_uc_list_addrs(const struct net_device *dev, |
| 818 | const u8 **addr, |
| 819 | unsigned int maxaddrs) |
| 820 | { |
| 821 | unsigned int naddr = 0; |
| 822 | const struct netdev_hw_addr *ha; |
| 823 | |
| 824 | for_each_dev_addr(dev, ha) { |
| 825 | addr[naddr++] = ha->addr; |
| 826 | if (naddr >= maxaddrs) |
| 827 | break; |
| 828 | } |
| 829 | return naddr; |
| 830 | } |
| 831 | |
| 832 | /* |
| 833 | * Collect up to maxaddrs worth of a netdevice's multicast addresses into an |
| 834 | * array of addrss pointers and return the number collected. |
| 835 | */ |
| 836 | static inline int collect_netdev_mc_list_addrs(const struct net_device *dev, |
| 837 | const u8 **addr, |
| 838 | unsigned int maxaddrs) |
| 839 | { |
| 840 | unsigned int naddr = 0; |
| 841 | const struct netdev_hw_addr *ha; |
| 842 | |
| 843 | netdev_for_each_mc_addr(ha, dev) { |
| 844 | addr[naddr++] = ha->addr; |
| 845 | if (naddr >= maxaddrs) |
| 846 | break; |
| 847 | } |
| 848 | return naddr; |
| 849 | } |
| 850 | |
| 851 | /* |
| 852 | * Configure the exact and hash address filters to handle a port's multicast |
| 853 | * and secondary unicast MAC addresses. |
| 854 | */ |
| 855 | static int set_addr_filters(const struct net_device *dev, bool sleep) |
| 856 | { |
| 857 | u64 mhash = 0; |
| 858 | u64 uhash = 0; |
| 859 | bool free = true; |
| 860 | u16 filt_idx[7]; |
| 861 | const u8 *addr[7]; |
| 862 | int ret, naddr = 0; |
| 863 | const struct port_info *pi = netdev_priv(dev); |
| 864 | |
| 865 | /* first do the secondary unicast addresses */ |
| 866 | naddr = collect_netdev_uc_list_addrs(dev, addr, ARRAY_SIZE(addr)); |
| 867 | if (naddr > 0) { |
| 868 | ret = t4vf_alloc_mac_filt(pi->adapter, pi->viid, free, |
| 869 | naddr, addr, filt_idx, &uhash, sleep); |
| 870 | if (ret < 0) |
| 871 | return ret; |
| 872 | |
| 873 | free = false; |
| 874 | } |
| 875 | |
| 876 | /* next set up the multicast addresses */ |
| 877 | naddr = collect_netdev_mc_list_addrs(dev, addr, ARRAY_SIZE(addr)); |
| 878 | if (naddr > 0) { |
| 879 | ret = t4vf_alloc_mac_filt(pi->adapter, pi->viid, free, |
| 880 | naddr, addr, filt_idx, &mhash, sleep); |
| 881 | if (ret < 0) |
| 882 | return ret; |
| 883 | } |
| 884 | |
| 885 | return t4vf_set_addr_hash(pi->adapter, pi->viid, uhash != 0, |
| 886 | uhash | mhash, sleep); |
| 887 | } |
| 888 | |
| 889 | /* |
| 890 | * Set RX properties of a port, such as promiscruity, address filters, and MTU. |
| 891 | * If @mtu is -1 it is left unchanged. |
| 892 | */ |
| 893 | static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok) |
| 894 | { |
| 895 | int ret; |
| 896 | struct port_info *pi = netdev_priv(dev); |
| 897 | |
| 898 | ret = set_addr_filters(dev, sleep_ok); |
| 899 | if (ret == 0) |
| 900 | ret = t4vf_set_rxmode(pi->adapter, pi->viid, -1, |
| 901 | (dev->flags & IFF_PROMISC) != 0, |
| 902 | (dev->flags & IFF_ALLMULTI) != 0, |
| 903 | 1, -1, sleep_ok); |
| 904 | return ret; |
| 905 | } |
| 906 | |
| 907 | /* |
| 908 | * Set the current receive modes on the device. |
| 909 | */ |
| 910 | static void cxgb4vf_set_rxmode(struct net_device *dev) |
| 911 | { |
| 912 | /* unfortunately we can't return errors to the stack */ |
| 913 | set_rxmode(dev, -1, false); |
| 914 | } |
| 915 | |
| 916 | /* |
| 917 | * Find the entry in the interrupt holdoff timer value array which comes |
| 918 | * closest to the specified interrupt holdoff value. |
| 919 | */ |
| 920 | static int closest_timer(const struct sge *s, int us) |
| 921 | { |
| 922 | int i, timer_idx = 0, min_delta = INT_MAX; |
| 923 | |
| 924 | for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) { |
| 925 | int delta = us - s->timer_val[i]; |
| 926 | if (delta < 0) |
| 927 | delta = -delta; |
| 928 | if (delta < min_delta) { |
| 929 | min_delta = delta; |
| 930 | timer_idx = i; |
| 931 | } |
| 932 | } |
| 933 | return timer_idx; |
| 934 | } |
| 935 | |
| 936 | static int closest_thres(const struct sge *s, int thres) |
| 937 | { |
| 938 | int i, delta, pktcnt_idx = 0, min_delta = INT_MAX; |
| 939 | |
| 940 | for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) { |
| 941 | delta = thres - s->counter_val[i]; |
| 942 | if (delta < 0) |
| 943 | delta = -delta; |
| 944 | if (delta < min_delta) { |
| 945 | min_delta = delta; |
| 946 | pktcnt_idx = i; |
| 947 | } |
| 948 | } |
| 949 | return pktcnt_idx; |
| 950 | } |
| 951 | |
| 952 | /* |
| 953 | * Return a queue's interrupt hold-off time in us. 0 means no timer. |
| 954 | */ |
| 955 | static unsigned int qtimer_val(const struct adapter *adapter, |
| 956 | const struct sge_rspq *rspq) |
| 957 | { |
| 958 | unsigned int timer_idx = QINTR_TIMER_IDX_GET(rspq->intr_params); |
| 959 | |
| 960 | return timer_idx < SGE_NTIMERS |
| 961 | ? adapter->sge.timer_val[timer_idx] |
| 962 | : 0; |
| 963 | } |
| 964 | |
| 965 | /** |
| 966 | * set_rxq_intr_params - set a queue's interrupt holdoff parameters |
| 967 | * @adapter: the adapter |
| 968 | * @rspq: the RX response queue |
| 969 | * @us: the hold-off time in us, or 0 to disable timer |
| 970 | * @cnt: the hold-off packet count, or 0 to disable counter |
| 971 | * |
| 972 | * Sets an RX response queue's interrupt hold-off time and packet count. |
| 973 | * At least one of the two needs to be enabled for the queue to generate |
| 974 | * interrupts. |
| 975 | */ |
| 976 | static int set_rxq_intr_params(struct adapter *adapter, struct sge_rspq *rspq, |
| 977 | unsigned int us, unsigned int cnt) |
| 978 | { |
| 979 | unsigned int timer_idx; |
| 980 | |
| 981 | /* |
| 982 | * If both the interrupt holdoff timer and count are specified as |
| 983 | * zero, default to a holdoff count of 1 ... |
| 984 | */ |
| 985 | if ((us | cnt) == 0) |
| 986 | cnt = 1; |
| 987 | |
| 988 | /* |
| 989 | * If an interrupt holdoff count has been specified, then find the |
| 990 | * closest configured holdoff count and use that. If the response |
| 991 | * queue has already been created, then update its queue context |
| 992 | * parameters ... |
| 993 | */ |
| 994 | if (cnt) { |
| 995 | int err; |
| 996 | u32 v, pktcnt_idx; |
| 997 | |
| 998 | pktcnt_idx = closest_thres(&adapter->sge, cnt); |
| 999 | if (rspq->desc && rspq->pktcnt_idx != pktcnt_idx) { |
| 1000 | v = FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) | |
| 1001 | FW_PARAMS_PARAM_X( |
| 1002 | FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) | |
| 1003 | FW_PARAMS_PARAM_YZ(rspq->cntxt_id); |
| 1004 | err = t4vf_set_params(adapter, 1, &v, &pktcnt_idx); |
| 1005 | if (err) |
| 1006 | return err; |
| 1007 | } |
| 1008 | rspq->pktcnt_idx = pktcnt_idx; |
| 1009 | } |
| 1010 | |
| 1011 | /* |
| 1012 | * Compute the closest holdoff timer index from the supplied holdoff |
| 1013 | * timer value. |
| 1014 | */ |
| 1015 | timer_idx = (us == 0 |
| 1016 | ? SGE_TIMER_RSTRT_CNTR |
| 1017 | : closest_timer(&adapter->sge, us)); |
| 1018 | |
| 1019 | /* |
| 1020 | * Update the response queue's interrupt coalescing parameters and |
| 1021 | * return success. |
| 1022 | */ |
| 1023 | rspq->intr_params = (QINTR_TIMER_IDX(timer_idx) | |
| 1024 | (cnt > 0 ? QINTR_CNT_EN : 0)); |
| 1025 | return 0; |
| 1026 | } |
| 1027 | |
| 1028 | /* |
| 1029 | * Return a version number to identify the type of adapter. The scheme is: |
| 1030 | * - bits 0..9: chip version |
| 1031 | * - bits 10..15: chip revision |
| 1032 | */ |
| 1033 | static inline unsigned int mk_adap_vers(const struct adapter *adapter) |
| 1034 | { |
| 1035 | /* |
| 1036 | * Chip version 4, revision 0x3f (cxgb4vf). |
| 1037 | */ |
| 1038 | return 4 | (0x3f << 10); |
| 1039 | } |
| 1040 | |
| 1041 | /* |
| 1042 | * Execute the specified ioctl command. |
| 1043 | */ |
| 1044 | static int cxgb4vf_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) |
| 1045 | { |
| 1046 | int ret = 0; |
| 1047 | |
| 1048 | switch (cmd) { |
| 1049 | /* |
| 1050 | * The VF Driver doesn't have access to any of the other |
| 1051 | * common Ethernet device ioctl()'s (like reading/writing |
| 1052 | * PHY registers, etc. |
| 1053 | */ |
| 1054 | |
| 1055 | default: |
| 1056 | ret = -EOPNOTSUPP; |
| 1057 | break; |
| 1058 | } |
| 1059 | return ret; |
| 1060 | } |
| 1061 | |
| 1062 | /* |
| 1063 | * Change the device's MTU. |
| 1064 | */ |
| 1065 | static int cxgb4vf_change_mtu(struct net_device *dev, int new_mtu) |
| 1066 | { |
| 1067 | int ret; |
| 1068 | struct port_info *pi = netdev_priv(dev); |
| 1069 | |
| 1070 | /* accommodate SACK */ |
| 1071 | if (new_mtu < 81) |
| 1072 | return -EINVAL; |
| 1073 | |
| 1074 | ret = t4vf_set_rxmode(pi->adapter, pi->viid, new_mtu, |
| 1075 | -1, -1, -1, -1, true); |
| 1076 | if (!ret) |
| 1077 | dev->mtu = new_mtu; |
| 1078 | return ret; |
| 1079 | } |
| 1080 | |
| 1081 | /* |
| 1082 | * Change the devices MAC address. |
| 1083 | */ |
| 1084 | static int cxgb4vf_set_mac_addr(struct net_device *dev, void *_addr) |
| 1085 | { |
| 1086 | int ret; |
| 1087 | struct sockaddr *addr = _addr; |
| 1088 | struct port_info *pi = netdev_priv(dev); |
| 1089 | |
| 1090 | if (!is_valid_ether_addr(addr->sa_data)) |
| 1091 | return -EINVAL; |
| 1092 | |
| 1093 | ret = t4vf_change_mac(pi->adapter, pi->viid, pi->xact_addr_filt, |
| 1094 | addr->sa_data, true); |
| 1095 | if (ret < 0) |
| 1096 | return ret; |
| 1097 | |
| 1098 | memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); |
| 1099 | pi->xact_addr_filt = ret; |
| 1100 | return 0; |
| 1101 | } |
| 1102 | |
| 1103 | /* |
| 1104 | * Return a TX Queue on which to send the specified skb. |
| 1105 | */ |
| 1106 | static u16 cxgb4vf_select_queue(struct net_device *dev, struct sk_buff *skb) |
| 1107 | { |
| 1108 | /* |
| 1109 | * XXX For now just use the default hash but we probably want to |
| 1110 | * XXX look at other possibilities ... |
| 1111 | */ |
| 1112 | return skb_tx_hash(dev, skb); |
| 1113 | } |
| 1114 | |
| 1115 | #ifdef CONFIG_NET_POLL_CONTROLLER |
| 1116 | /* |
| 1117 | * Poll all of our receive queues. This is called outside of normal interrupt |
| 1118 | * context. |
| 1119 | */ |
| 1120 | static void cxgb4vf_poll_controller(struct net_device *dev) |
| 1121 | { |
| 1122 | struct port_info *pi = netdev_priv(dev); |
| 1123 | struct adapter *adapter = pi->adapter; |
| 1124 | |
| 1125 | if (adapter->flags & USING_MSIX) { |
| 1126 | struct sge_eth_rxq *rxq; |
| 1127 | int nqsets; |
| 1128 | |
| 1129 | rxq = &adapter->sge.ethrxq[pi->first_qset]; |
| 1130 | for (nqsets = pi->nqsets; nqsets; nqsets--) { |
| 1131 | t4vf_sge_intr_msix(0, &rxq->rspq); |
| 1132 | rxq++; |
| 1133 | } |
| 1134 | } else |
| 1135 | t4vf_intr_handler(adapter)(0, adapter); |
| 1136 | } |
| 1137 | #endif |
| 1138 | |
| 1139 | /* |
| 1140 | * Ethtool operations. |
| 1141 | * =================== |
| 1142 | * |
| 1143 | * Note that we don't support any ethtool operations which change the physical |
| 1144 | * state of the port to which we're linked. |
| 1145 | */ |
| 1146 | |
| 1147 | /* |
| 1148 | * Return current port link settings. |
| 1149 | */ |
| 1150 | static int cxgb4vf_get_settings(struct net_device *dev, |
| 1151 | struct ethtool_cmd *cmd) |
| 1152 | { |
| 1153 | const struct port_info *pi = netdev_priv(dev); |
| 1154 | |
| 1155 | cmd->supported = pi->link_cfg.supported; |
| 1156 | cmd->advertising = pi->link_cfg.advertising; |
| 1157 | cmd->speed = netif_carrier_ok(dev) ? pi->link_cfg.speed : -1; |
| 1158 | cmd->duplex = DUPLEX_FULL; |
| 1159 | |
| 1160 | cmd->port = (cmd->supported & SUPPORTED_TP) ? PORT_TP : PORT_FIBRE; |
| 1161 | cmd->phy_address = pi->port_id; |
| 1162 | cmd->transceiver = XCVR_EXTERNAL; |
| 1163 | cmd->autoneg = pi->link_cfg.autoneg; |
| 1164 | cmd->maxtxpkt = 0; |
| 1165 | cmd->maxrxpkt = 0; |
| 1166 | return 0; |
| 1167 | } |
| 1168 | |
| 1169 | /* |
| 1170 | * Return our driver information. |
| 1171 | */ |
| 1172 | static void cxgb4vf_get_drvinfo(struct net_device *dev, |
| 1173 | struct ethtool_drvinfo *drvinfo) |
| 1174 | { |
| 1175 | struct adapter *adapter = netdev2adap(dev); |
| 1176 | |
| 1177 | strcpy(drvinfo->driver, KBUILD_MODNAME); |
| 1178 | strcpy(drvinfo->version, DRV_VERSION); |
| 1179 | strcpy(drvinfo->bus_info, pci_name(to_pci_dev(dev->dev.parent))); |
| 1180 | snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version), |
| 1181 | "%u.%u.%u.%u, TP %u.%u.%u.%u", |
| 1182 | FW_HDR_FW_VER_MAJOR_GET(adapter->params.dev.fwrev), |
| 1183 | FW_HDR_FW_VER_MINOR_GET(adapter->params.dev.fwrev), |
| 1184 | FW_HDR_FW_VER_MICRO_GET(adapter->params.dev.fwrev), |
| 1185 | FW_HDR_FW_VER_BUILD_GET(adapter->params.dev.fwrev), |
| 1186 | FW_HDR_FW_VER_MAJOR_GET(adapter->params.dev.tprev), |
| 1187 | FW_HDR_FW_VER_MINOR_GET(adapter->params.dev.tprev), |
| 1188 | FW_HDR_FW_VER_MICRO_GET(adapter->params.dev.tprev), |
| 1189 | FW_HDR_FW_VER_BUILD_GET(adapter->params.dev.tprev)); |
| 1190 | } |
| 1191 | |
| 1192 | /* |
| 1193 | * Return current adapter message level. |
| 1194 | */ |
| 1195 | static u32 cxgb4vf_get_msglevel(struct net_device *dev) |
| 1196 | { |
| 1197 | return netdev2adap(dev)->msg_enable; |
| 1198 | } |
| 1199 | |
| 1200 | /* |
| 1201 | * Set current adapter message level. |
| 1202 | */ |
| 1203 | static void cxgb4vf_set_msglevel(struct net_device *dev, u32 msglevel) |
| 1204 | { |
| 1205 | netdev2adap(dev)->msg_enable = msglevel; |
| 1206 | } |
| 1207 | |
| 1208 | /* |
| 1209 | * Return the device's current Queue Set ring size parameters along with the |
| 1210 | * allowed maximum values. Since ethtool doesn't understand the concept of |
| 1211 | * multi-queue devices, we just return the current values associated with the |
| 1212 | * first Queue Set. |
| 1213 | */ |
| 1214 | static void cxgb4vf_get_ringparam(struct net_device *dev, |
| 1215 | struct ethtool_ringparam *rp) |
| 1216 | { |
| 1217 | const struct port_info *pi = netdev_priv(dev); |
| 1218 | const struct sge *s = &pi->adapter->sge; |
| 1219 | |
| 1220 | rp->rx_max_pending = MAX_RX_BUFFERS; |
| 1221 | rp->rx_mini_max_pending = MAX_RSPQ_ENTRIES; |
| 1222 | rp->rx_jumbo_max_pending = 0; |
| 1223 | rp->tx_max_pending = MAX_TXQ_ENTRIES; |
| 1224 | |
| 1225 | rp->rx_pending = s->ethrxq[pi->first_qset].fl.size - MIN_FL_RESID; |
| 1226 | rp->rx_mini_pending = s->ethrxq[pi->first_qset].rspq.size; |
| 1227 | rp->rx_jumbo_pending = 0; |
| 1228 | rp->tx_pending = s->ethtxq[pi->first_qset].q.size; |
| 1229 | } |
| 1230 | |
| 1231 | /* |
| 1232 | * Set the Queue Set ring size parameters for the device. Again, since |
| 1233 | * ethtool doesn't allow for the concept of multiple queues per device, we'll |
| 1234 | * apply these new values across all of the Queue Sets associated with the |
| 1235 | * device -- after vetting them of course! |
| 1236 | */ |
| 1237 | static int cxgb4vf_set_ringparam(struct net_device *dev, |
| 1238 | struct ethtool_ringparam *rp) |
| 1239 | { |
| 1240 | const struct port_info *pi = netdev_priv(dev); |
| 1241 | struct adapter *adapter = pi->adapter; |
| 1242 | struct sge *s = &adapter->sge; |
| 1243 | int qs; |
| 1244 | |
| 1245 | if (rp->rx_pending > MAX_RX_BUFFERS || |
| 1246 | rp->rx_jumbo_pending || |
| 1247 | rp->tx_pending > MAX_TXQ_ENTRIES || |
| 1248 | rp->rx_mini_pending > MAX_RSPQ_ENTRIES || |
| 1249 | rp->rx_mini_pending < MIN_RSPQ_ENTRIES || |
| 1250 | rp->rx_pending < MIN_FL_ENTRIES || |
| 1251 | rp->tx_pending < MIN_TXQ_ENTRIES) |
| 1252 | return -EINVAL; |
| 1253 | |
| 1254 | if (adapter->flags & FULL_INIT_DONE) |
| 1255 | return -EBUSY; |
| 1256 | |
| 1257 | for (qs = pi->first_qset; qs < pi->first_qset + pi->nqsets; qs++) { |
| 1258 | s->ethrxq[qs].fl.size = rp->rx_pending + MIN_FL_RESID; |
| 1259 | s->ethrxq[qs].rspq.size = rp->rx_mini_pending; |
| 1260 | s->ethtxq[qs].q.size = rp->tx_pending; |
| 1261 | } |
| 1262 | return 0; |
| 1263 | } |
| 1264 | |
| 1265 | /* |
| 1266 | * Return the interrupt holdoff timer and count for the first Queue Set on the |
| 1267 | * device. Our extension ioctl() (the cxgbtool interface) allows the |
| 1268 | * interrupt holdoff timer to be read on all of the device's Queue Sets. |
| 1269 | */ |
| 1270 | static int cxgb4vf_get_coalesce(struct net_device *dev, |
| 1271 | struct ethtool_coalesce *coalesce) |
| 1272 | { |
| 1273 | const struct port_info *pi = netdev_priv(dev); |
| 1274 | const struct adapter *adapter = pi->adapter; |
| 1275 | const struct sge_rspq *rspq = &adapter->sge.ethrxq[pi->first_qset].rspq; |
| 1276 | |
| 1277 | coalesce->rx_coalesce_usecs = qtimer_val(adapter, rspq); |
| 1278 | coalesce->rx_max_coalesced_frames = |
| 1279 | ((rspq->intr_params & QINTR_CNT_EN) |
| 1280 | ? adapter->sge.counter_val[rspq->pktcnt_idx] |
| 1281 | : 0); |
| 1282 | return 0; |
| 1283 | } |
| 1284 | |
| 1285 | /* |
| 1286 | * Set the RX interrupt holdoff timer and count for the first Queue Set on the |
| 1287 | * interface. Our extension ioctl() (the cxgbtool interface) allows us to set |
| 1288 | * the interrupt holdoff timer on any of the device's Queue Sets. |
| 1289 | */ |
| 1290 | static int cxgb4vf_set_coalesce(struct net_device *dev, |
| 1291 | struct ethtool_coalesce *coalesce) |
| 1292 | { |
| 1293 | const struct port_info *pi = netdev_priv(dev); |
| 1294 | struct adapter *adapter = pi->adapter; |
| 1295 | |
| 1296 | return set_rxq_intr_params(adapter, |
| 1297 | &adapter->sge.ethrxq[pi->first_qset].rspq, |
| 1298 | coalesce->rx_coalesce_usecs, |
| 1299 | coalesce->rx_max_coalesced_frames); |
| 1300 | } |
| 1301 | |
| 1302 | /* |
| 1303 | * Report current port link pause parameter settings. |
| 1304 | */ |
| 1305 | static void cxgb4vf_get_pauseparam(struct net_device *dev, |
| 1306 | struct ethtool_pauseparam *pauseparam) |
| 1307 | { |
| 1308 | struct port_info *pi = netdev_priv(dev); |
| 1309 | |
| 1310 | pauseparam->autoneg = (pi->link_cfg.requested_fc & PAUSE_AUTONEG) != 0; |
| 1311 | pauseparam->rx_pause = (pi->link_cfg.fc & PAUSE_RX) != 0; |
| 1312 | pauseparam->tx_pause = (pi->link_cfg.fc & PAUSE_TX) != 0; |
| 1313 | } |
| 1314 | |
| 1315 | /* |
| 1316 | * Return whether RX Checksum Offloading is currently enabled for the device. |
| 1317 | */ |
| 1318 | static u32 cxgb4vf_get_rx_csum(struct net_device *dev) |
| 1319 | { |
| 1320 | struct port_info *pi = netdev_priv(dev); |
| 1321 | |
| 1322 | return (pi->rx_offload & RX_CSO) != 0; |
| 1323 | } |
| 1324 | |
| 1325 | /* |
| 1326 | * Turn RX Checksum Offloading on or off for the device. |
| 1327 | */ |
| 1328 | static int cxgb4vf_set_rx_csum(struct net_device *dev, u32 csum) |
| 1329 | { |
| 1330 | struct port_info *pi = netdev_priv(dev); |
| 1331 | |
| 1332 | if (csum) |
| 1333 | pi->rx_offload |= RX_CSO; |
| 1334 | else |
| 1335 | pi->rx_offload &= ~RX_CSO; |
| 1336 | return 0; |
| 1337 | } |
| 1338 | |
| 1339 | /* |
| 1340 | * Identify the port by blinking the port's LED. |
| 1341 | */ |
| 1342 | static int cxgb4vf_phys_id(struct net_device *dev, u32 id) |
| 1343 | { |
| 1344 | struct port_info *pi = netdev_priv(dev); |
| 1345 | |
| 1346 | return t4vf_identify_port(pi->adapter, pi->viid, 5); |
| 1347 | } |
| 1348 | |
| 1349 | /* |
| 1350 | * Port stats maintained per queue of the port. |
| 1351 | */ |
| 1352 | struct queue_port_stats { |
| 1353 | u64 tso; |
| 1354 | u64 tx_csum; |
| 1355 | u64 rx_csum; |
| 1356 | u64 vlan_ex; |
| 1357 | u64 vlan_ins; |
| 1358 | }; |
| 1359 | |
| 1360 | /* |
| 1361 | * Strings for the ETH_SS_STATS statistics set ("ethtool -S"). Note that |
| 1362 | * these need to match the order of statistics returned by |
| 1363 | * t4vf_get_port_stats(). |
| 1364 | */ |
| 1365 | static const char stats_strings[][ETH_GSTRING_LEN] = { |
| 1366 | /* |
| 1367 | * These must match the layout of the t4vf_port_stats structure. |
| 1368 | */ |
| 1369 | "TxBroadcastBytes ", |
| 1370 | "TxBroadcastFrames ", |
| 1371 | "TxMulticastBytes ", |
| 1372 | "TxMulticastFrames ", |
| 1373 | "TxUnicastBytes ", |
| 1374 | "TxUnicastFrames ", |
| 1375 | "TxDroppedFrames ", |
| 1376 | "TxOffloadBytes ", |
| 1377 | "TxOffloadFrames ", |
| 1378 | "RxBroadcastBytes ", |
| 1379 | "RxBroadcastFrames ", |
| 1380 | "RxMulticastBytes ", |
| 1381 | "RxMulticastFrames ", |
| 1382 | "RxUnicastBytes ", |
| 1383 | "RxUnicastFrames ", |
| 1384 | "RxErrorFrames ", |
| 1385 | |
| 1386 | /* |
| 1387 | * These are accumulated per-queue statistics and must match the |
| 1388 | * order of the fields in the queue_port_stats structure. |
| 1389 | */ |
| 1390 | "TSO ", |
| 1391 | "TxCsumOffload ", |
| 1392 | "RxCsumGood ", |
| 1393 | "VLANextractions ", |
| 1394 | "VLANinsertions ", |
| 1395 | }; |
| 1396 | |
| 1397 | /* |
| 1398 | * Return the number of statistics in the specified statistics set. |
| 1399 | */ |
| 1400 | static int cxgb4vf_get_sset_count(struct net_device *dev, int sset) |
| 1401 | { |
| 1402 | switch (sset) { |
| 1403 | case ETH_SS_STATS: |
| 1404 | return ARRAY_SIZE(stats_strings); |
| 1405 | default: |
| 1406 | return -EOPNOTSUPP; |
| 1407 | } |
| 1408 | /*NOTREACHED*/ |
| 1409 | } |
| 1410 | |
| 1411 | /* |
| 1412 | * Return the strings for the specified statistics set. |
| 1413 | */ |
| 1414 | static void cxgb4vf_get_strings(struct net_device *dev, |
| 1415 | u32 sset, |
| 1416 | u8 *data) |
| 1417 | { |
| 1418 | switch (sset) { |
| 1419 | case ETH_SS_STATS: |
| 1420 | memcpy(data, stats_strings, sizeof(stats_strings)); |
| 1421 | break; |
| 1422 | } |
| 1423 | } |
| 1424 | |
| 1425 | /* |
| 1426 | * Small utility routine to accumulate queue statistics across the queues of |
| 1427 | * a "port". |
| 1428 | */ |
| 1429 | static void collect_sge_port_stats(const struct adapter *adapter, |
| 1430 | const struct port_info *pi, |
| 1431 | struct queue_port_stats *stats) |
| 1432 | { |
| 1433 | const struct sge_eth_txq *txq = &adapter->sge.ethtxq[pi->first_qset]; |
| 1434 | const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[pi->first_qset]; |
| 1435 | int qs; |
| 1436 | |
| 1437 | memset(stats, 0, sizeof(*stats)); |
| 1438 | for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) { |
| 1439 | stats->tso += txq->tso; |
| 1440 | stats->tx_csum += txq->tx_cso; |
| 1441 | stats->rx_csum += rxq->stats.rx_cso; |
| 1442 | stats->vlan_ex += rxq->stats.vlan_ex; |
| 1443 | stats->vlan_ins += txq->vlan_ins; |
| 1444 | } |
| 1445 | } |
| 1446 | |
| 1447 | /* |
| 1448 | * Return the ETH_SS_STATS statistics set. |
| 1449 | */ |
| 1450 | static void cxgb4vf_get_ethtool_stats(struct net_device *dev, |
| 1451 | struct ethtool_stats *stats, |
| 1452 | u64 *data) |
| 1453 | { |
| 1454 | struct port_info *pi = netdev2pinfo(dev); |
| 1455 | struct adapter *adapter = pi->adapter; |
| 1456 | int err = t4vf_get_port_stats(adapter, pi->pidx, |
| 1457 | (struct t4vf_port_stats *)data); |
| 1458 | if (err) |
| 1459 | memset(data, 0, sizeof(struct t4vf_port_stats)); |
| 1460 | |
| 1461 | data += sizeof(struct t4vf_port_stats) / sizeof(u64); |
| 1462 | collect_sge_port_stats(adapter, pi, (struct queue_port_stats *)data); |
| 1463 | } |
| 1464 | |
| 1465 | /* |
| 1466 | * Return the size of our register map. |
| 1467 | */ |
| 1468 | static int cxgb4vf_get_regs_len(struct net_device *dev) |
| 1469 | { |
| 1470 | return T4VF_REGMAP_SIZE; |
| 1471 | } |
| 1472 | |
| 1473 | /* |
| 1474 | * Dump a block of registers, start to end inclusive, into a buffer. |
| 1475 | */ |
| 1476 | static void reg_block_dump(struct adapter *adapter, void *regbuf, |
| 1477 | unsigned int start, unsigned int end) |
| 1478 | { |
| 1479 | u32 *bp = regbuf + start - T4VF_REGMAP_START; |
| 1480 | |
| 1481 | for ( ; start <= end; start += sizeof(u32)) { |
| 1482 | /* |
| 1483 | * Avoid reading the Mailbox Control register since that |
| 1484 | * can trigger a Mailbox Ownership Arbitration cycle and |
| 1485 | * interfere with communication with the firmware. |
| 1486 | */ |
| 1487 | if (start == T4VF_CIM_BASE_ADDR + CIM_VF_EXT_MAILBOX_CTRL) |
| 1488 | *bp++ = 0xffff; |
| 1489 | else |
| 1490 | *bp++ = t4_read_reg(adapter, start); |
| 1491 | } |
| 1492 | } |
| 1493 | |
| 1494 | /* |
| 1495 | * Copy our entire register map into the provided buffer. |
| 1496 | */ |
| 1497 | static void cxgb4vf_get_regs(struct net_device *dev, |
| 1498 | struct ethtool_regs *regs, |
| 1499 | void *regbuf) |
| 1500 | { |
| 1501 | struct adapter *adapter = netdev2adap(dev); |
| 1502 | |
| 1503 | regs->version = mk_adap_vers(adapter); |
| 1504 | |
| 1505 | /* |
| 1506 | * Fill in register buffer with our register map. |
| 1507 | */ |
| 1508 | memset(regbuf, 0, T4VF_REGMAP_SIZE); |
| 1509 | |
| 1510 | reg_block_dump(adapter, regbuf, |
| 1511 | T4VF_SGE_BASE_ADDR + T4VF_MOD_MAP_SGE_FIRST, |
| 1512 | T4VF_SGE_BASE_ADDR + T4VF_MOD_MAP_SGE_LAST); |
| 1513 | reg_block_dump(adapter, regbuf, |
| 1514 | T4VF_MPS_BASE_ADDR + T4VF_MOD_MAP_MPS_FIRST, |
| 1515 | T4VF_MPS_BASE_ADDR + T4VF_MOD_MAP_MPS_LAST); |
| 1516 | reg_block_dump(adapter, regbuf, |
| 1517 | T4VF_PL_BASE_ADDR + T4VF_MOD_MAP_PL_FIRST, |
| 1518 | T4VF_PL_BASE_ADDR + T4VF_MOD_MAP_PL_LAST); |
| 1519 | reg_block_dump(adapter, regbuf, |
| 1520 | T4VF_CIM_BASE_ADDR + T4VF_MOD_MAP_CIM_FIRST, |
| 1521 | T4VF_CIM_BASE_ADDR + T4VF_MOD_MAP_CIM_LAST); |
| 1522 | |
| 1523 | reg_block_dump(adapter, regbuf, |
| 1524 | T4VF_MBDATA_BASE_ADDR + T4VF_MBDATA_FIRST, |
| 1525 | T4VF_MBDATA_BASE_ADDR + T4VF_MBDATA_LAST); |
| 1526 | } |
| 1527 | |
| 1528 | /* |
| 1529 | * Report current Wake On LAN settings. |
| 1530 | */ |
| 1531 | static void cxgb4vf_get_wol(struct net_device *dev, |
| 1532 | struct ethtool_wolinfo *wol) |
| 1533 | { |
| 1534 | wol->supported = 0; |
| 1535 | wol->wolopts = 0; |
| 1536 | memset(&wol->sopass, 0, sizeof(wol->sopass)); |
| 1537 | } |
| 1538 | |
| 1539 | /* |
| 1540 | * Set TCP Segmentation Offloading feature capabilities. |
| 1541 | */ |
| 1542 | static int cxgb4vf_set_tso(struct net_device *dev, u32 tso) |
| 1543 | { |
| 1544 | if (tso) |
| 1545 | dev->features |= NETIF_F_TSO | NETIF_F_TSO6; |
| 1546 | else |
| 1547 | dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6); |
| 1548 | return 0; |
| 1549 | } |
| 1550 | |
| 1551 | static struct ethtool_ops cxgb4vf_ethtool_ops = { |
| 1552 | .get_settings = cxgb4vf_get_settings, |
| 1553 | .get_drvinfo = cxgb4vf_get_drvinfo, |
| 1554 | .get_msglevel = cxgb4vf_get_msglevel, |
| 1555 | .set_msglevel = cxgb4vf_set_msglevel, |
| 1556 | .get_ringparam = cxgb4vf_get_ringparam, |
| 1557 | .set_ringparam = cxgb4vf_set_ringparam, |
| 1558 | .get_coalesce = cxgb4vf_get_coalesce, |
| 1559 | .set_coalesce = cxgb4vf_set_coalesce, |
| 1560 | .get_pauseparam = cxgb4vf_get_pauseparam, |
| 1561 | .get_rx_csum = cxgb4vf_get_rx_csum, |
| 1562 | .set_rx_csum = cxgb4vf_set_rx_csum, |
| 1563 | .set_tx_csum = ethtool_op_set_tx_ipv6_csum, |
| 1564 | .set_sg = ethtool_op_set_sg, |
| 1565 | .get_link = ethtool_op_get_link, |
| 1566 | .get_strings = cxgb4vf_get_strings, |
| 1567 | .phys_id = cxgb4vf_phys_id, |
| 1568 | .get_sset_count = cxgb4vf_get_sset_count, |
| 1569 | .get_ethtool_stats = cxgb4vf_get_ethtool_stats, |
| 1570 | .get_regs_len = cxgb4vf_get_regs_len, |
| 1571 | .get_regs = cxgb4vf_get_regs, |
| 1572 | .get_wol = cxgb4vf_get_wol, |
| 1573 | .set_tso = cxgb4vf_set_tso, |
| 1574 | }; |
| 1575 | |
| 1576 | /* |
| 1577 | * /sys/kernel/debug/cxgb4vf support code and data. |
| 1578 | * ================================================ |
| 1579 | */ |
| 1580 | |
| 1581 | /* |
| 1582 | * Show SGE Queue Set information. We display QPL Queues Sets per line. |
| 1583 | */ |
| 1584 | #define QPL 4 |
| 1585 | |
| 1586 | static int sge_qinfo_show(struct seq_file *seq, void *v) |
| 1587 | { |
| 1588 | struct adapter *adapter = seq->private; |
| 1589 | int eth_entries = DIV_ROUND_UP(adapter->sge.ethqsets, QPL); |
| 1590 | int qs, r = (uintptr_t)v - 1; |
| 1591 | |
| 1592 | if (r) |
| 1593 | seq_putc(seq, '\n'); |
| 1594 | |
| 1595 | #define S3(fmt_spec, s, v) \ |
| 1596 | do {\ |
| 1597 | seq_printf(seq, "%-12s", s); \ |
| 1598 | for (qs = 0; qs < n; ++qs) \ |
| 1599 | seq_printf(seq, " %16" fmt_spec, v); \ |
| 1600 | seq_putc(seq, '\n'); \ |
| 1601 | } while (0) |
| 1602 | #define S(s, v) S3("s", s, v) |
| 1603 | #define T(s, v) S3("u", s, txq[qs].v) |
| 1604 | #define R(s, v) S3("u", s, rxq[qs].v) |
| 1605 | |
| 1606 | if (r < eth_entries) { |
| 1607 | const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[r * QPL]; |
| 1608 | const struct sge_eth_txq *txq = &adapter->sge.ethtxq[r * QPL]; |
| 1609 | int n = min(QPL, adapter->sge.ethqsets - QPL * r); |
| 1610 | |
| 1611 | S("QType:", "Ethernet"); |
| 1612 | S("Interface:", |
| 1613 | (rxq[qs].rspq.netdev |
| 1614 | ? rxq[qs].rspq.netdev->name |
| 1615 | : "N/A")); |
| 1616 | S3("d", "Port:", |
| 1617 | (rxq[qs].rspq.netdev |
| 1618 | ? ((struct port_info *) |
| 1619 | netdev_priv(rxq[qs].rspq.netdev))->port_id |
| 1620 | : -1)); |
| 1621 | T("TxQ ID:", q.abs_id); |
| 1622 | T("TxQ size:", q.size); |
| 1623 | T("TxQ inuse:", q.in_use); |
| 1624 | T("TxQ PIdx:", q.pidx); |
| 1625 | T("TxQ CIdx:", q.cidx); |
| 1626 | R("RspQ ID:", rspq.abs_id); |
| 1627 | R("RspQ size:", rspq.size); |
| 1628 | R("RspQE size:", rspq.iqe_len); |
| 1629 | S3("u", "Intr delay:", qtimer_val(adapter, &rxq[qs].rspq)); |
| 1630 | S3("u", "Intr pktcnt:", |
| 1631 | adapter->sge.counter_val[rxq[qs].rspq.pktcnt_idx]); |
| 1632 | R("RspQ CIdx:", rspq.cidx); |
| 1633 | R("RspQ Gen:", rspq.gen); |
| 1634 | R("FL ID:", fl.abs_id); |
| 1635 | R("FL size:", fl.size - MIN_FL_RESID); |
| 1636 | R("FL avail:", fl.avail); |
| 1637 | R("FL PIdx:", fl.pidx); |
| 1638 | R("FL CIdx:", fl.cidx); |
| 1639 | return 0; |
| 1640 | } |
| 1641 | |
| 1642 | r -= eth_entries; |
| 1643 | if (r == 0) { |
| 1644 | const struct sge_rspq *evtq = &adapter->sge.fw_evtq; |
| 1645 | |
| 1646 | seq_printf(seq, "%-12s %16s\n", "QType:", "FW event queue"); |
| 1647 | seq_printf(seq, "%-12s %16u\n", "RspQ ID:", evtq->abs_id); |
| 1648 | seq_printf(seq, "%-12s %16u\n", "Intr delay:", |
| 1649 | qtimer_val(adapter, evtq)); |
| 1650 | seq_printf(seq, "%-12s %16u\n", "Intr pktcnt:", |
| 1651 | adapter->sge.counter_val[evtq->pktcnt_idx]); |
| 1652 | seq_printf(seq, "%-12s %16u\n", "RspQ Cidx:", evtq->cidx); |
| 1653 | seq_printf(seq, "%-12s %16u\n", "RspQ Gen:", evtq->gen); |
| 1654 | } else if (r == 1) { |
| 1655 | const struct sge_rspq *intrq = &adapter->sge.intrq; |
| 1656 | |
| 1657 | seq_printf(seq, "%-12s %16s\n", "QType:", "Interrupt Queue"); |
| 1658 | seq_printf(seq, "%-12s %16u\n", "RspQ ID:", intrq->abs_id); |
| 1659 | seq_printf(seq, "%-12s %16u\n", "Intr delay:", |
| 1660 | qtimer_val(adapter, intrq)); |
| 1661 | seq_printf(seq, "%-12s %16u\n", "Intr pktcnt:", |
| 1662 | adapter->sge.counter_val[intrq->pktcnt_idx]); |
| 1663 | seq_printf(seq, "%-12s %16u\n", "RspQ Cidx:", intrq->cidx); |
| 1664 | seq_printf(seq, "%-12s %16u\n", "RspQ Gen:", intrq->gen); |
| 1665 | } |
| 1666 | |
| 1667 | #undef R |
| 1668 | #undef T |
| 1669 | #undef S |
| 1670 | #undef S3 |
| 1671 | |
| 1672 | return 0; |
| 1673 | } |
| 1674 | |
| 1675 | /* |
| 1676 | * Return the number of "entries" in our "file". We group the multi-Queue |
| 1677 | * sections with QPL Queue Sets per "entry". The sections of the output are: |
| 1678 | * |
| 1679 | * Ethernet RX/TX Queue Sets |
| 1680 | * Firmware Event Queue |
| 1681 | * Forwarded Interrupt Queue (if in MSI mode) |
| 1682 | */ |
| 1683 | static int sge_queue_entries(const struct adapter *adapter) |
| 1684 | { |
| 1685 | return DIV_ROUND_UP(adapter->sge.ethqsets, QPL) + 1 + |
| 1686 | ((adapter->flags & USING_MSI) != 0); |
| 1687 | } |
| 1688 | |
| 1689 | static void *sge_queue_start(struct seq_file *seq, loff_t *pos) |
| 1690 | { |
| 1691 | int entries = sge_queue_entries(seq->private); |
| 1692 | |
| 1693 | return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL; |
| 1694 | } |
| 1695 | |
| 1696 | static void sge_queue_stop(struct seq_file *seq, void *v) |
| 1697 | { |
| 1698 | } |
| 1699 | |
| 1700 | static void *sge_queue_next(struct seq_file *seq, void *v, loff_t *pos) |
| 1701 | { |
| 1702 | int entries = sge_queue_entries(seq->private); |
| 1703 | |
| 1704 | ++*pos; |
| 1705 | return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL; |
| 1706 | } |
| 1707 | |
| 1708 | static const struct seq_operations sge_qinfo_seq_ops = { |
| 1709 | .start = sge_queue_start, |
| 1710 | .next = sge_queue_next, |
| 1711 | .stop = sge_queue_stop, |
| 1712 | .show = sge_qinfo_show |
| 1713 | }; |
| 1714 | |
| 1715 | static int sge_qinfo_open(struct inode *inode, struct file *file) |
| 1716 | { |
| 1717 | int res = seq_open(file, &sge_qinfo_seq_ops); |
| 1718 | |
| 1719 | if (!res) { |
| 1720 | struct seq_file *seq = file->private_data; |
| 1721 | seq->private = inode->i_private; |
| 1722 | } |
| 1723 | return res; |
| 1724 | } |
| 1725 | |
| 1726 | static const struct file_operations sge_qinfo_debugfs_fops = { |
| 1727 | .owner = THIS_MODULE, |
| 1728 | .open = sge_qinfo_open, |
| 1729 | .read = seq_read, |
| 1730 | .llseek = seq_lseek, |
| 1731 | .release = seq_release, |
| 1732 | }; |
| 1733 | |
| 1734 | /* |
| 1735 | * Show SGE Queue Set statistics. We display QPL Queues Sets per line. |
| 1736 | */ |
| 1737 | #define QPL 4 |
| 1738 | |
| 1739 | static int sge_qstats_show(struct seq_file *seq, void *v) |
| 1740 | { |
| 1741 | struct adapter *adapter = seq->private; |
| 1742 | int eth_entries = DIV_ROUND_UP(adapter->sge.ethqsets, QPL); |
| 1743 | int qs, r = (uintptr_t)v - 1; |
| 1744 | |
| 1745 | if (r) |
| 1746 | seq_putc(seq, '\n'); |
| 1747 | |
| 1748 | #define S3(fmt, s, v) \ |
| 1749 | do { \ |
| 1750 | seq_printf(seq, "%-16s", s); \ |
| 1751 | for (qs = 0; qs < n; ++qs) \ |
| 1752 | seq_printf(seq, " %8" fmt, v); \ |
| 1753 | seq_putc(seq, '\n'); \ |
| 1754 | } while (0) |
| 1755 | #define S(s, v) S3("s", s, v) |
| 1756 | |
| 1757 | #define T3(fmt, s, v) S3(fmt, s, txq[qs].v) |
| 1758 | #define T(s, v) T3("lu", s, v) |
| 1759 | |
| 1760 | #define R3(fmt, s, v) S3(fmt, s, rxq[qs].v) |
| 1761 | #define R(s, v) R3("lu", s, v) |
| 1762 | |
| 1763 | if (r < eth_entries) { |
| 1764 | const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[r * QPL]; |
| 1765 | const struct sge_eth_txq *txq = &adapter->sge.ethtxq[r * QPL]; |
| 1766 | int n = min(QPL, adapter->sge.ethqsets - QPL * r); |
| 1767 | |
| 1768 | S("QType:", "Ethernet"); |
| 1769 | S("Interface:", |
| 1770 | (rxq[qs].rspq.netdev |
| 1771 | ? rxq[qs].rspq.netdev->name |
| 1772 | : "N/A")); |
Casey Leedom | 68dc9d3 | 2010-07-08 10:05:48 -0700 | [diff] [blame] | 1773 | R3("u", "RspQNullInts:", rspq.unhandled_irqs); |
Casey Leedom | be839e3 | 2010-06-25 12:14:15 +0000 | [diff] [blame] | 1774 | R("RxPackets:", stats.pkts); |
| 1775 | R("RxCSO:", stats.rx_cso); |
| 1776 | R("VLANxtract:", stats.vlan_ex); |
| 1777 | R("LROmerged:", stats.lro_merged); |
| 1778 | R("LROpackets:", stats.lro_pkts); |
| 1779 | R("RxDrops:", stats.rx_drops); |
| 1780 | T("TSO:", tso); |
| 1781 | T("TxCSO:", tx_cso); |
| 1782 | T("VLANins:", vlan_ins); |
| 1783 | T("TxQFull:", q.stops); |
| 1784 | T("TxQRestarts:", q.restarts); |
| 1785 | T("TxMapErr:", mapping_err); |
| 1786 | R("FLAllocErr:", fl.alloc_failed); |
| 1787 | R("FLLrgAlcErr:", fl.large_alloc_failed); |
| 1788 | R("FLStarving:", fl.starving); |
| 1789 | return 0; |
| 1790 | } |
| 1791 | |
| 1792 | r -= eth_entries; |
| 1793 | if (r == 0) { |
| 1794 | const struct sge_rspq *evtq = &adapter->sge.fw_evtq; |
| 1795 | |
| 1796 | seq_printf(seq, "%-8s %16s\n", "QType:", "FW event queue"); |
Casey Leedom | 68dc9d3 | 2010-07-08 10:05:48 -0700 | [diff] [blame] | 1797 | seq_printf(seq, "%-16s %8u\n", "RspQNullInts:", |
| 1798 | evtq->unhandled_irqs); |
Casey Leedom | be839e3 | 2010-06-25 12:14:15 +0000 | [diff] [blame] | 1799 | seq_printf(seq, "%-16s %8u\n", "RspQ CIdx:", evtq->cidx); |
| 1800 | seq_printf(seq, "%-16s %8u\n", "RspQ Gen:", evtq->gen); |
| 1801 | } else if (r == 1) { |
| 1802 | const struct sge_rspq *intrq = &adapter->sge.intrq; |
| 1803 | |
| 1804 | seq_printf(seq, "%-8s %16s\n", "QType:", "Interrupt Queue"); |
Casey Leedom | 68dc9d3 | 2010-07-08 10:05:48 -0700 | [diff] [blame] | 1805 | seq_printf(seq, "%-16s %8u\n", "RspQNullInts:", |
| 1806 | intrq->unhandled_irqs); |
Casey Leedom | be839e3 | 2010-06-25 12:14:15 +0000 | [diff] [blame] | 1807 | seq_printf(seq, "%-16s %8u\n", "RspQ CIdx:", intrq->cidx); |
| 1808 | seq_printf(seq, "%-16s %8u\n", "RspQ Gen:", intrq->gen); |
| 1809 | } |
| 1810 | |
| 1811 | #undef R |
| 1812 | #undef T |
| 1813 | #undef S |
| 1814 | #undef R3 |
| 1815 | #undef T3 |
| 1816 | #undef S3 |
| 1817 | |
| 1818 | return 0; |
| 1819 | } |
| 1820 | |
| 1821 | /* |
| 1822 | * Return the number of "entries" in our "file". We group the multi-Queue |
| 1823 | * sections with QPL Queue Sets per "entry". The sections of the output are: |
| 1824 | * |
| 1825 | * Ethernet RX/TX Queue Sets |
| 1826 | * Firmware Event Queue |
| 1827 | * Forwarded Interrupt Queue (if in MSI mode) |
| 1828 | */ |
| 1829 | static int sge_qstats_entries(const struct adapter *adapter) |
| 1830 | { |
| 1831 | return DIV_ROUND_UP(adapter->sge.ethqsets, QPL) + 1 + |
| 1832 | ((adapter->flags & USING_MSI) != 0); |
| 1833 | } |
| 1834 | |
| 1835 | static void *sge_qstats_start(struct seq_file *seq, loff_t *pos) |
| 1836 | { |
| 1837 | int entries = sge_qstats_entries(seq->private); |
| 1838 | |
| 1839 | return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL; |
| 1840 | } |
| 1841 | |
| 1842 | static void sge_qstats_stop(struct seq_file *seq, void *v) |
| 1843 | { |
| 1844 | } |
| 1845 | |
| 1846 | static void *sge_qstats_next(struct seq_file *seq, void *v, loff_t *pos) |
| 1847 | { |
| 1848 | int entries = sge_qstats_entries(seq->private); |
| 1849 | |
| 1850 | (*pos)++; |
| 1851 | return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL; |
| 1852 | } |
| 1853 | |
| 1854 | static const struct seq_operations sge_qstats_seq_ops = { |
| 1855 | .start = sge_qstats_start, |
| 1856 | .next = sge_qstats_next, |
| 1857 | .stop = sge_qstats_stop, |
| 1858 | .show = sge_qstats_show |
| 1859 | }; |
| 1860 | |
| 1861 | static int sge_qstats_open(struct inode *inode, struct file *file) |
| 1862 | { |
| 1863 | int res = seq_open(file, &sge_qstats_seq_ops); |
| 1864 | |
| 1865 | if (res == 0) { |
| 1866 | struct seq_file *seq = file->private_data; |
| 1867 | seq->private = inode->i_private; |
| 1868 | } |
| 1869 | return res; |
| 1870 | } |
| 1871 | |
| 1872 | static const struct file_operations sge_qstats_proc_fops = { |
| 1873 | .owner = THIS_MODULE, |
| 1874 | .open = sge_qstats_open, |
| 1875 | .read = seq_read, |
| 1876 | .llseek = seq_lseek, |
| 1877 | .release = seq_release, |
| 1878 | }; |
| 1879 | |
| 1880 | /* |
| 1881 | * Show PCI-E SR-IOV Virtual Function Resource Limits. |
| 1882 | */ |
| 1883 | static int resources_show(struct seq_file *seq, void *v) |
| 1884 | { |
| 1885 | struct adapter *adapter = seq->private; |
| 1886 | struct vf_resources *vfres = &adapter->params.vfres; |
| 1887 | |
| 1888 | #define S(desc, fmt, var) \ |
| 1889 | seq_printf(seq, "%-60s " fmt "\n", \ |
| 1890 | desc " (" #var "):", vfres->var) |
| 1891 | |
| 1892 | S("Virtual Interfaces", "%d", nvi); |
| 1893 | S("Egress Queues", "%d", neq); |
| 1894 | S("Ethernet Control", "%d", nethctrl); |
| 1895 | S("Ingress Queues/w Free Lists/Interrupts", "%d", niqflint); |
| 1896 | S("Ingress Queues", "%d", niq); |
| 1897 | S("Traffic Class", "%d", tc); |
| 1898 | S("Port Access Rights Mask", "%#x", pmask); |
| 1899 | S("MAC Address Filters", "%d", nexactf); |
| 1900 | S("Firmware Command Read Capabilities", "%#x", r_caps); |
| 1901 | S("Firmware Command Write/Execute Capabilities", "%#x", wx_caps); |
| 1902 | |
| 1903 | #undef S |
| 1904 | |
| 1905 | return 0; |
| 1906 | } |
| 1907 | |
| 1908 | static int resources_open(struct inode *inode, struct file *file) |
| 1909 | { |
| 1910 | return single_open(file, resources_show, inode->i_private); |
| 1911 | } |
| 1912 | |
| 1913 | static const struct file_operations resources_proc_fops = { |
| 1914 | .owner = THIS_MODULE, |
| 1915 | .open = resources_open, |
| 1916 | .read = seq_read, |
| 1917 | .llseek = seq_lseek, |
| 1918 | .release = single_release, |
| 1919 | }; |
| 1920 | |
| 1921 | /* |
| 1922 | * Show Virtual Interfaces. |
| 1923 | */ |
| 1924 | static int interfaces_show(struct seq_file *seq, void *v) |
| 1925 | { |
| 1926 | if (v == SEQ_START_TOKEN) { |
| 1927 | seq_puts(seq, "Interface Port VIID\n"); |
| 1928 | } else { |
| 1929 | struct adapter *adapter = seq->private; |
| 1930 | int pidx = (uintptr_t)v - 2; |
| 1931 | struct net_device *dev = adapter->port[pidx]; |
| 1932 | struct port_info *pi = netdev_priv(dev); |
| 1933 | |
| 1934 | seq_printf(seq, "%9s %4d %#5x\n", |
| 1935 | dev->name, pi->port_id, pi->viid); |
| 1936 | } |
| 1937 | return 0; |
| 1938 | } |
| 1939 | |
| 1940 | static inline void *interfaces_get_idx(struct adapter *adapter, loff_t pos) |
| 1941 | { |
| 1942 | return pos <= adapter->params.nports |
| 1943 | ? (void *)(uintptr_t)(pos + 1) |
| 1944 | : NULL; |
| 1945 | } |
| 1946 | |
| 1947 | static void *interfaces_start(struct seq_file *seq, loff_t *pos) |
| 1948 | { |
| 1949 | return *pos |
| 1950 | ? interfaces_get_idx(seq->private, *pos) |
| 1951 | : SEQ_START_TOKEN; |
| 1952 | } |
| 1953 | |
| 1954 | static void *interfaces_next(struct seq_file *seq, void *v, loff_t *pos) |
| 1955 | { |
| 1956 | (*pos)++; |
| 1957 | return interfaces_get_idx(seq->private, *pos); |
| 1958 | } |
| 1959 | |
| 1960 | static void interfaces_stop(struct seq_file *seq, void *v) |
| 1961 | { |
| 1962 | } |
| 1963 | |
| 1964 | static const struct seq_operations interfaces_seq_ops = { |
| 1965 | .start = interfaces_start, |
| 1966 | .next = interfaces_next, |
| 1967 | .stop = interfaces_stop, |
| 1968 | .show = interfaces_show |
| 1969 | }; |
| 1970 | |
| 1971 | static int interfaces_open(struct inode *inode, struct file *file) |
| 1972 | { |
| 1973 | int res = seq_open(file, &interfaces_seq_ops); |
| 1974 | |
| 1975 | if (res == 0) { |
| 1976 | struct seq_file *seq = file->private_data; |
| 1977 | seq->private = inode->i_private; |
| 1978 | } |
| 1979 | return res; |
| 1980 | } |
| 1981 | |
| 1982 | static const struct file_operations interfaces_proc_fops = { |
| 1983 | .owner = THIS_MODULE, |
| 1984 | .open = interfaces_open, |
| 1985 | .read = seq_read, |
| 1986 | .llseek = seq_lseek, |
| 1987 | .release = seq_release, |
| 1988 | }; |
| 1989 | |
| 1990 | /* |
| 1991 | * /sys/kernel/debugfs/cxgb4vf/ files list. |
| 1992 | */ |
| 1993 | struct cxgb4vf_debugfs_entry { |
| 1994 | const char *name; /* name of debugfs node */ |
| 1995 | mode_t mode; /* file system mode */ |
| 1996 | const struct file_operations *fops; |
| 1997 | }; |
| 1998 | |
| 1999 | static struct cxgb4vf_debugfs_entry debugfs_files[] = { |
| 2000 | { "sge_qinfo", S_IRUGO, &sge_qinfo_debugfs_fops }, |
| 2001 | { "sge_qstats", S_IRUGO, &sge_qstats_proc_fops }, |
| 2002 | { "resources", S_IRUGO, &resources_proc_fops }, |
| 2003 | { "interfaces", S_IRUGO, &interfaces_proc_fops }, |
| 2004 | }; |
| 2005 | |
| 2006 | /* |
| 2007 | * Module and device initialization and cleanup code. |
| 2008 | * ================================================== |
| 2009 | */ |
| 2010 | |
| 2011 | /* |
| 2012 | * Set up out /sys/kernel/debug/cxgb4vf sub-nodes. We assume that the |
| 2013 | * directory (debugfs_root) has already been set up. |
| 2014 | */ |
| 2015 | static int __devinit setup_debugfs(struct adapter *adapter) |
| 2016 | { |
| 2017 | int i; |
| 2018 | |
| 2019 | BUG_ON(adapter->debugfs_root == NULL); |
| 2020 | |
| 2021 | /* |
| 2022 | * Debugfs support is best effort. |
| 2023 | */ |
| 2024 | for (i = 0; i < ARRAY_SIZE(debugfs_files); i++) |
| 2025 | (void)debugfs_create_file(debugfs_files[i].name, |
| 2026 | debugfs_files[i].mode, |
| 2027 | adapter->debugfs_root, |
| 2028 | (void *)adapter, |
| 2029 | debugfs_files[i].fops); |
| 2030 | |
| 2031 | return 0; |
| 2032 | } |
| 2033 | |
| 2034 | /* |
| 2035 | * Tear down the /sys/kernel/debug/cxgb4vf sub-nodes created above. We leave |
| 2036 | * it to our caller to tear down the directory (debugfs_root). |
| 2037 | */ |
| 2038 | static void __devexit cleanup_debugfs(struct adapter *adapter) |
| 2039 | { |
| 2040 | BUG_ON(adapter->debugfs_root == NULL); |
| 2041 | |
| 2042 | /* |
| 2043 | * Unlike our sister routine cleanup_proc(), we don't need to remove |
| 2044 | * individual entries because a call will be made to |
| 2045 | * debugfs_remove_recursive(). We just need to clean up any ancillary |
| 2046 | * persistent state. |
| 2047 | */ |
| 2048 | /* nothing to do */ |
| 2049 | } |
| 2050 | |
| 2051 | /* |
| 2052 | * Perform early "adapter" initialization. This is where we discover what |
| 2053 | * adapter parameters we're going to be using and initialize basic adapter |
| 2054 | * hardware support. |
| 2055 | */ |
| 2056 | static int adap_init0(struct adapter *adapter) |
| 2057 | { |
| 2058 | struct vf_resources *vfres = &adapter->params.vfres; |
| 2059 | struct sge_params *sge_params = &adapter->params.sge; |
| 2060 | struct sge *s = &adapter->sge; |
| 2061 | unsigned int ethqsets; |
| 2062 | int err; |
| 2063 | |
| 2064 | /* |
| 2065 | * Wait for the device to become ready before proceeding ... |
| 2066 | */ |
| 2067 | err = t4vf_wait_dev_ready(adapter); |
| 2068 | if (err) { |
| 2069 | dev_err(adapter->pdev_dev, "device didn't become ready:" |
| 2070 | " err=%d\n", err); |
| 2071 | return err; |
| 2072 | } |
| 2073 | |
| 2074 | /* |
| 2075 | * Grab basic operational parameters. These will predominantly have |
| 2076 | * been set up by the Physical Function Driver or will be hard coded |
| 2077 | * into the adapter. We just have to live with them ... Note that |
| 2078 | * we _must_ get our VPD parameters before our SGE parameters because |
| 2079 | * we need to know the adapter's core clock from the VPD in order to |
| 2080 | * properly decode the SGE Timer Values. |
| 2081 | */ |
| 2082 | err = t4vf_get_dev_params(adapter); |
| 2083 | if (err) { |
| 2084 | dev_err(adapter->pdev_dev, "unable to retrieve adapter" |
| 2085 | " device parameters: err=%d\n", err); |
| 2086 | return err; |
| 2087 | } |
| 2088 | err = t4vf_get_vpd_params(adapter); |
| 2089 | if (err) { |
| 2090 | dev_err(adapter->pdev_dev, "unable to retrieve adapter" |
| 2091 | " VPD parameters: err=%d\n", err); |
| 2092 | return err; |
| 2093 | } |
| 2094 | err = t4vf_get_sge_params(adapter); |
| 2095 | if (err) { |
| 2096 | dev_err(adapter->pdev_dev, "unable to retrieve adapter" |
| 2097 | " SGE parameters: err=%d\n", err); |
| 2098 | return err; |
| 2099 | } |
| 2100 | err = t4vf_get_rss_glb_config(adapter); |
| 2101 | if (err) { |
| 2102 | dev_err(adapter->pdev_dev, "unable to retrieve adapter" |
| 2103 | " RSS parameters: err=%d\n", err); |
| 2104 | return err; |
| 2105 | } |
| 2106 | if (adapter->params.rss.mode != |
| 2107 | FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) { |
| 2108 | dev_err(adapter->pdev_dev, "unable to operate with global RSS" |
| 2109 | " mode %d\n", adapter->params.rss.mode); |
| 2110 | return -EINVAL; |
| 2111 | } |
| 2112 | err = t4vf_sge_init(adapter); |
| 2113 | if (err) { |
| 2114 | dev_err(adapter->pdev_dev, "unable to use adapter parameters:" |
| 2115 | " err=%d\n", err); |
| 2116 | return err; |
| 2117 | } |
| 2118 | |
| 2119 | /* |
| 2120 | * Retrieve our RX interrupt holdoff timer values and counter |
| 2121 | * threshold values from the SGE parameters. |
| 2122 | */ |
| 2123 | s->timer_val[0] = core_ticks_to_us(adapter, |
| 2124 | TIMERVALUE0_GET(sge_params->sge_timer_value_0_and_1)); |
| 2125 | s->timer_val[1] = core_ticks_to_us(adapter, |
| 2126 | TIMERVALUE1_GET(sge_params->sge_timer_value_0_and_1)); |
| 2127 | s->timer_val[2] = core_ticks_to_us(adapter, |
| 2128 | TIMERVALUE0_GET(sge_params->sge_timer_value_2_and_3)); |
| 2129 | s->timer_val[3] = core_ticks_to_us(adapter, |
| 2130 | TIMERVALUE1_GET(sge_params->sge_timer_value_2_and_3)); |
| 2131 | s->timer_val[4] = core_ticks_to_us(adapter, |
| 2132 | TIMERVALUE0_GET(sge_params->sge_timer_value_4_and_5)); |
| 2133 | s->timer_val[5] = core_ticks_to_us(adapter, |
| 2134 | TIMERVALUE1_GET(sge_params->sge_timer_value_4_and_5)); |
| 2135 | |
| 2136 | s->counter_val[0] = |
| 2137 | THRESHOLD_0_GET(sge_params->sge_ingress_rx_threshold); |
| 2138 | s->counter_val[1] = |
| 2139 | THRESHOLD_1_GET(sge_params->sge_ingress_rx_threshold); |
| 2140 | s->counter_val[2] = |
| 2141 | THRESHOLD_2_GET(sge_params->sge_ingress_rx_threshold); |
| 2142 | s->counter_val[3] = |
| 2143 | THRESHOLD_3_GET(sge_params->sge_ingress_rx_threshold); |
| 2144 | |
| 2145 | /* |
| 2146 | * Grab our Virtual Interface resource allocation, extract the |
| 2147 | * features that we're interested in and do a bit of sanity testing on |
| 2148 | * what we discover. |
| 2149 | */ |
| 2150 | err = t4vf_get_vfres(adapter); |
| 2151 | if (err) { |
| 2152 | dev_err(adapter->pdev_dev, "unable to get virtual interface" |
| 2153 | " resources: err=%d\n", err); |
| 2154 | return err; |
| 2155 | } |
| 2156 | |
| 2157 | /* |
| 2158 | * The number of "ports" which we support is equal to the number of |
| 2159 | * Virtual Interfaces with which we've been provisioned. |
| 2160 | */ |
| 2161 | adapter->params.nports = vfres->nvi; |
| 2162 | if (adapter->params.nports > MAX_NPORTS) { |
| 2163 | dev_warn(adapter->pdev_dev, "only using %d of %d allowed" |
| 2164 | " virtual interfaces\n", MAX_NPORTS, |
| 2165 | adapter->params.nports); |
| 2166 | adapter->params.nports = MAX_NPORTS; |
| 2167 | } |
| 2168 | |
| 2169 | /* |
| 2170 | * We need to reserve a number of the ingress queues with Free List |
| 2171 | * and Interrupt capabilities for special interrupt purposes (like |
| 2172 | * asynchronous firmware messages, or forwarded interrupts if we're |
| 2173 | * using MSI). The rest of the FL/Intr-capable ingress queues will be |
| 2174 | * matched up one-for-one with Ethernet/Control egress queues in order |
| 2175 | * to form "Queue Sets" which will be aportioned between the "ports". |
| 2176 | * For each Queue Set, we'll need the ability to allocate two Egress |
| 2177 | * Contexts -- one for the Ingress Queue Free List and one for the TX |
| 2178 | * Ethernet Queue. |
| 2179 | */ |
| 2180 | ethqsets = vfres->niqflint - INGQ_EXTRAS; |
| 2181 | if (vfres->nethctrl != ethqsets) { |
| 2182 | dev_warn(adapter->pdev_dev, "unequal number of [available]" |
| 2183 | " ingress/egress queues (%d/%d); using minimum for" |
| 2184 | " number of Queue Sets\n", ethqsets, vfres->nethctrl); |
| 2185 | ethqsets = min(vfres->nethctrl, ethqsets); |
| 2186 | } |
| 2187 | if (vfres->neq < ethqsets*2) { |
| 2188 | dev_warn(adapter->pdev_dev, "Not enough Egress Contexts (%d)" |
| 2189 | " to support Queue Sets (%d); reducing allowed Queue" |
| 2190 | " Sets\n", vfres->neq, ethqsets); |
| 2191 | ethqsets = vfres->neq/2; |
| 2192 | } |
| 2193 | if (ethqsets > MAX_ETH_QSETS) { |
| 2194 | dev_warn(adapter->pdev_dev, "only using %d of %d allowed Queue" |
| 2195 | " Sets\n", MAX_ETH_QSETS, adapter->sge.max_ethqsets); |
| 2196 | ethqsets = MAX_ETH_QSETS; |
| 2197 | } |
| 2198 | if (vfres->niq != 0 || vfres->neq > ethqsets*2) { |
| 2199 | dev_warn(adapter->pdev_dev, "unused resources niq/neq (%d/%d)" |
| 2200 | " ignored\n", vfres->niq, vfres->neq - ethqsets*2); |
| 2201 | } |
| 2202 | adapter->sge.max_ethqsets = ethqsets; |
| 2203 | |
| 2204 | /* |
| 2205 | * Check for various parameter sanity issues. Most checks simply |
| 2206 | * result in us using fewer resources than our provissioning but we |
| 2207 | * do need at least one "port" with which to work ... |
| 2208 | */ |
| 2209 | if (adapter->sge.max_ethqsets < adapter->params.nports) { |
| 2210 | dev_warn(adapter->pdev_dev, "only using %d of %d available" |
| 2211 | " virtual interfaces (too few Queue Sets)\n", |
| 2212 | adapter->sge.max_ethqsets, adapter->params.nports); |
| 2213 | adapter->params.nports = adapter->sge.max_ethqsets; |
| 2214 | } |
| 2215 | if (adapter->params.nports == 0) { |
| 2216 | dev_err(adapter->pdev_dev, "no virtual interfaces configured/" |
| 2217 | "usable!\n"); |
| 2218 | return -EINVAL; |
| 2219 | } |
| 2220 | return 0; |
| 2221 | } |
| 2222 | |
| 2223 | static inline void init_rspq(struct sge_rspq *rspq, u8 timer_idx, |
| 2224 | u8 pkt_cnt_idx, unsigned int size, |
| 2225 | unsigned int iqe_size) |
| 2226 | { |
| 2227 | rspq->intr_params = (QINTR_TIMER_IDX(timer_idx) | |
| 2228 | (pkt_cnt_idx < SGE_NCOUNTERS ? QINTR_CNT_EN : 0)); |
| 2229 | rspq->pktcnt_idx = (pkt_cnt_idx < SGE_NCOUNTERS |
| 2230 | ? pkt_cnt_idx |
| 2231 | : 0); |
| 2232 | rspq->iqe_len = iqe_size; |
| 2233 | rspq->size = size; |
| 2234 | } |
| 2235 | |
| 2236 | /* |
| 2237 | * Perform default configuration of DMA queues depending on the number and |
| 2238 | * type of ports we found and the number of available CPUs. Most settings can |
| 2239 | * be modified by the admin via ethtool and cxgbtool prior to the adapter |
| 2240 | * being brought up for the first time. |
| 2241 | */ |
| 2242 | static void __devinit cfg_queues(struct adapter *adapter) |
| 2243 | { |
| 2244 | struct sge *s = &adapter->sge; |
| 2245 | int q10g, n10g, qidx, pidx, qs; |
| 2246 | |
| 2247 | /* |
| 2248 | * We should not be called till we know how many Queue Sets we can |
| 2249 | * support. In particular, this means that we need to know what kind |
| 2250 | * of interrupts we'll be using ... |
| 2251 | */ |
| 2252 | BUG_ON((adapter->flags & (USING_MSIX|USING_MSI)) == 0); |
| 2253 | |
| 2254 | /* |
| 2255 | * Count the number of 10GbE Virtual Interfaces that we have. |
| 2256 | */ |
| 2257 | n10g = 0; |
| 2258 | for_each_port(adapter, pidx) |
| 2259 | n10g += is_10g_port(&adap2pinfo(adapter, pidx)->link_cfg); |
| 2260 | |
| 2261 | /* |
| 2262 | * We default to 1 queue per non-10G port and up to # of cores queues |
| 2263 | * per 10G port. |
| 2264 | */ |
| 2265 | if (n10g == 0) |
| 2266 | q10g = 0; |
| 2267 | else { |
| 2268 | int n1g = (adapter->params.nports - n10g); |
| 2269 | q10g = (adapter->sge.max_ethqsets - n1g) / n10g; |
| 2270 | if (q10g > num_online_cpus()) |
| 2271 | q10g = num_online_cpus(); |
| 2272 | } |
| 2273 | |
| 2274 | /* |
| 2275 | * Allocate the "Queue Sets" to the various Virtual Interfaces. |
| 2276 | * The layout will be established in setup_sge_queues() when the |
| 2277 | * adapter is brough up for the first time. |
| 2278 | */ |
| 2279 | qidx = 0; |
| 2280 | for_each_port(adapter, pidx) { |
| 2281 | struct port_info *pi = adap2pinfo(adapter, pidx); |
| 2282 | |
| 2283 | pi->first_qset = qidx; |
| 2284 | pi->nqsets = is_10g_port(&pi->link_cfg) ? q10g : 1; |
| 2285 | qidx += pi->nqsets; |
| 2286 | } |
| 2287 | s->ethqsets = qidx; |
| 2288 | |
| 2289 | /* |
| 2290 | * Set up default Queue Set parameters ... Start off with the |
| 2291 | * shortest interrupt holdoff timer. |
| 2292 | */ |
| 2293 | for (qs = 0; qs < s->max_ethqsets; qs++) { |
| 2294 | struct sge_eth_rxq *rxq = &s->ethrxq[qs]; |
| 2295 | struct sge_eth_txq *txq = &s->ethtxq[qs]; |
| 2296 | |
| 2297 | init_rspq(&rxq->rspq, 0, 0, 1024, L1_CACHE_BYTES); |
| 2298 | rxq->fl.size = 72; |
| 2299 | txq->q.size = 1024; |
| 2300 | } |
| 2301 | |
| 2302 | /* |
| 2303 | * The firmware event queue is used for link state changes and |
| 2304 | * notifications of TX DMA completions. |
| 2305 | */ |
| 2306 | init_rspq(&s->fw_evtq, SGE_TIMER_RSTRT_CNTR, 0, 512, |
| 2307 | L1_CACHE_BYTES); |
| 2308 | |
| 2309 | /* |
| 2310 | * The forwarded interrupt queue is used when we're in MSI interrupt |
| 2311 | * mode. In this mode all interrupts associated with RX queues will |
| 2312 | * be forwarded to a single queue which we'll associate with our MSI |
| 2313 | * interrupt vector. The messages dropped in the forwarded interrupt |
| 2314 | * queue will indicate which ingress queue needs servicing ... This |
| 2315 | * queue needs to be large enough to accommodate all of the ingress |
| 2316 | * queues which are forwarding their interrupt (+1 to prevent the PIDX |
| 2317 | * from equalling the CIDX if every ingress queue has an outstanding |
| 2318 | * interrupt). The queue doesn't need to be any larger because no |
| 2319 | * ingress queue will ever have more than one outstanding interrupt at |
| 2320 | * any time ... |
| 2321 | */ |
| 2322 | init_rspq(&s->intrq, SGE_TIMER_RSTRT_CNTR, 0, MSIX_ENTRIES + 1, |
| 2323 | L1_CACHE_BYTES); |
| 2324 | } |
| 2325 | |
| 2326 | /* |
| 2327 | * Reduce the number of Ethernet queues across all ports to at most n. |
| 2328 | * n provides at least one queue per port. |
| 2329 | */ |
| 2330 | static void __devinit reduce_ethqs(struct adapter *adapter, int n) |
| 2331 | { |
| 2332 | int i; |
| 2333 | struct port_info *pi; |
| 2334 | |
| 2335 | /* |
| 2336 | * While we have too many active Ether Queue Sets, interate across the |
| 2337 | * "ports" and reduce their individual Queue Set allocations. |
| 2338 | */ |
| 2339 | BUG_ON(n < adapter->params.nports); |
| 2340 | while (n < adapter->sge.ethqsets) |
| 2341 | for_each_port(adapter, i) { |
| 2342 | pi = adap2pinfo(adapter, i); |
| 2343 | if (pi->nqsets > 1) { |
| 2344 | pi->nqsets--; |
| 2345 | adapter->sge.ethqsets--; |
| 2346 | if (adapter->sge.ethqsets <= n) |
| 2347 | break; |
| 2348 | } |
| 2349 | } |
| 2350 | |
| 2351 | /* |
| 2352 | * Reassign the starting Queue Sets for each of the "ports" ... |
| 2353 | */ |
| 2354 | n = 0; |
| 2355 | for_each_port(adapter, i) { |
| 2356 | pi = adap2pinfo(adapter, i); |
| 2357 | pi->first_qset = n; |
| 2358 | n += pi->nqsets; |
| 2359 | } |
| 2360 | } |
| 2361 | |
| 2362 | /* |
| 2363 | * We need to grab enough MSI-X vectors to cover our interrupt needs. Ideally |
| 2364 | * we get a separate MSI-X vector for every "Queue Set" plus any extras we |
| 2365 | * need. Minimally we need one for every Virtual Interface plus those needed |
| 2366 | * for our "extras". Note that this process may lower the maximum number of |
| 2367 | * allowed Queue Sets ... |
| 2368 | */ |
| 2369 | static int __devinit enable_msix(struct adapter *adapter) |
| 2370 | { |
| 2371 | int i, err, want, need; |
| 2372 | struct msix_entry entries[MSIX_ENTRIES]; |
| 2373 | struct sge *s = &adapter->sge; |
| 2374 | |
| 2375 | for (i = 0; i < MSIX_ENTRIES; ++i) |
| 2376 | entries[i].entry = i; |
| 2377 | |
| 2378 | /* |
| 2379 | * We _want_ enough MSI-X interrupts to cover all of our "Queue Sets" |
| 2380 | * plus those needed for our "extras" (for example, the firmware |
| 2381 | * message queue). We _need_ at least one "Queue Set" per Virtual |
| 2382 | * Interface plus those needed for our "extras". So now we get to see |
| 2383 | * if the song is right ... |
| 2384 | */ |
| 2385 | want = s->max_ethqsets + MSIX_EXTRAS; |
| 2386 | need = adapter->params.nports + MSIX_EXTRAS; |
| 2387 | while ((err = pci_enable_msix(adapter->pdev, entries, want)) >= need) |
| 2388 | want = err; |
| 2389 | |
| 2390 | if (err == 0) { |
| 2391 | int nqsets = want - MSIX_EXTRAS; |
| 2392 | if (nqsets < s->max_ethqsets) { |
| 2393 | dev_warn(adapter->pdev_dev, "only enough MSI-X vectors" |
| 2394 | " for %d Queue Sets\n", nqsets); |
| 2395 | s->max_ethqsets = nqsets; |
| 2396 | if (nqsets < s->ethqsets) |
| 2397 | reduce_ethqs(adapter, nqsets); |
| 2398 | } |
| 2399 | for (i = 0; i < want; ++i) |
| 2400 | adapter->msix_info[i].vec = entries[i].vector; |
| 2401 | } else if (err > 0) { |
| 2402 | pci_disable_msix(adapter->pdev); |
| 2403 | dev_info(adapter->pdev_dev, "only %d MSI-X vectors left," |
| 2404 | " not using MSI-X\n", err); |
| 2405 | } |
| 2406 | return err; |
| 2407 | } |
| 2408 | |
| 2409 | #ifdef HAVE_NET_DEVICE_OPS |
| 2410 | static const struct net_device_ops cxgb4vf_netdev_ops = { |
| 2411 | .ndo_open = cxgb4vf_open, |
| 2412 | .ndo_stop = cxgb4vf_stop, |
| 2413 | .ndo_start_xmit = t4vf_eth_xmit, |
| 2414 | .ndo_get_stats = cxgb4vf_get_stats, |
| 2415 | .ndo_set_rx_mode = cxgb4vf_set_rxmode, |
| 2416 | .ndo_set_mac_address = cxgb4vf_set_mac_addr, |
| 2417 | .ndo_select_queue = cxgb4vf_select_queue, |
| 2418 | .ndo_validate_addr = eth_validate_addr, |
| 2419 | .ndo_do_ioctl = cxgb4vf_do_ioctl, |
| 2420 | .ndo_change_mtu = cxgb4vf_change_mtu, |
| 2421 | .ndo_vlan_rx_register = cxgb4vf_vlan_rx_register, |
| 2422 | #ifdef CONFIG_NET_POLL_CONTROLLER |
| 2423 | .ndo_poll_controller = cxgb4vf_poll_controller, |
| 2424 | #endif |
| 2425 | }; |
| 2426 | #endif |
| 2427 | |
| 2428 | /* |
| 2429 | * "Probe" a device: initialize a device and construct all kernel and driver |
| 2430 | * state needed to manage the device. This routine is called "init_one" in |
| 2431 | * the PF Driver ... |
| 2432 | */ |
| 2433 | static int __devinit cxgb4vf_pci_probe(struct pci_dev *pdev, |
| 2434 | const struct pci_device_id *ent) |
| 2435 | { |
| 2436 | static int version_printed; |
| 2437 | |
| 2438 | int pci_using_dac; |
| 2439 | int err, pidx; |
| 2440 | unsigned int pmask; |
| 2441 | struct adapter *adapter; |
| 2442 | struct port_info *pi; |
| 2443 | struct net_device *netdev; |
| 2444 | |
| 2445 | /* |
| 2446 | * Vet our module parameters. |
| 2447 | */ |
| 2448 | if (msi != MSI_MSIX && msi != MSI_MSI) { |
| 2449 | dev_err(&pdev->dev, "bad module parameter msi=%d; must be %d" |
| 2450 | " (MSI-X or MSI) or %d (MSI)\n", msi, MSI_MSIX, |
| 2451 | MSI_MSI); |
| 2452 | err = -EINVAL; |
| 2453 | goto err_out; |
| 2454 | } |
| 2455 | |
| 2456 | /* |
| 2457 | * Print our driver banner the first time we're called to initialize a |
| 2458 | * device. |
| 2459 | */ |
| 2460 | if (version_printed == 0) { |
| 2461 | printk(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION); |
| 2462 | version_printed = 1; |
| 2463 | } |
| 2464 | |
| 2465 | /* |
| 2466 | * Reserve PCI resources for the device. If we can't get them some |
| 2467 | * other driver may have already claimed the device ... |
| 2468 | */ |
| 2469 | err = pci_request_regions(pdev, KBUILD_MODNAME); |
| 2470 | if (err) { |
| 2471 | dev_err(&pdev->dev, "cannot obtain PCI resources\n"); |
| 2472 | return err; |
| 2473 | } |
| 2474 | |
| 2475 | /* |
| 2476 | * Initialize generic PCI device state. |
| 2477 | */ |
| 2478 | err = pci_enable_device(pdev); |
| 2479 | if (err) { |
| 2480 | dev_err(&pdev->dev, "cannot enable PCI device\n"); |
| 2481 | goto err_release_regions; |
| 2482 | } |
| 2483 | |
| 2484 | /* |
| 2485 | * Set up our DMA mask: try for 64-bit address masking first and |
| 2486 | * fall back to 32-bit if we can't get 64 bits ... |
| 2487 | */ |
| 2488 | err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64)); |
| 2489 | if (err == 0) { |
| 2490 | err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)); |
| 2491 | if (err) { |
| 2492 | dev_err(&pdev->dev, "unable to obtain 64-bit DMA for" |
| 2493 | " coherent allocations\n"); |
| 2494 | goto err_disable_device; |
| 2495 | } |
| 2496 | pci_using_dac = 1; |
| 2497 | } else { |
| 2498 | err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); |
| 2499 | if (err != 0) { |
| 2500 | dev_err(&pdev->dev, "no usable DMA configuration\n"); |
| 2501 | goto err_disable_device; |
| 2502 | } |
| 2503 | pci_using_dac = 0; |
| 2504 | } |
| 2505 | |
| 2506 | /* |
| 2507 | * Enable bus mastering for the device ... |
| 2508 | */ |
| 2509 | pci_set_master(pdev); |
| 2510 | |
| 2511 | /* |
| 2512 | * Allocate our adapter data structure and attach it to the device. |
| 2513 | */ |
| 2514 | adapter = kzalloc(sizeof(*adapter), GFP_KERNEL); |
| 2515 | if (!adapter) { |
| 2516 | err = -ENOMEM; |
| 2517 | goto err_disable_device; |
| 2518 | } |
| 2519 | pci_set_drvdata(pdev, adapter); |
| 2520 | adapter->pdev = pdev; |
| 2521 | adapter->pdev_dev = &pdev->dev; |
| 2522 | |
| 2523 | /* |
| 2524 | * Initialize SMP data synchronization resources. |
| 2525 | */ |
| 2526 | spin_lock_init(&adapter->stats_lock); |
| 2527 | |
| 2528 | /* |
| 2529 | * Map our I/O registers in BAR0. |
| 2530 | */ |
| 2531 | adapter->regs = pci_ioremap_bar(pdev, 0); |
| 2532 | if (!adapter->regs) { |
| 2533 | dev_err(&pdev->dev, "cannot map device registers\n"); |
| 2534 | err = -ENOMEM; |
| 2535 | goto err_free_adapter; |
| 2536 | } |
| 2537 | |
| 2538 | /* |
| 2539 | * Initialize adapter level features. |
| 2540 | */ |
| 2541 | adapter->name = pci_name(pdev); |
| 2542 | adapter->msg_enable = dflt_msg_enable; |
| 2543 | err = adap_init0(adapter); |
| 2544 | if (err) |
| 2545 | goto err_unmap_bar; |
| 2546 | |
| 2547 | /* |
| 2548 | * Allocate our "adapter ports" and stitch everything together. |
| 2549 | */ |
| 2550 | pmask = adapter->params.vfres.pmask; |
| 2551 | for_each_port(adapter, pidx) { |
| 2552 | int port_id, viid; |
| 2553 | |
| 2554 | /* |
| 2555 | * We simplistically allocate our virtual interfaces |
| 2556 | * sequentially across the port numbers to which we have |
| 2557 | * access rights. This should be configurable in some manner |
| 2558 | * ... |
| 2559 | */ |
| 2560 | if (pmask == 0) |
| 2561 | break; |
| 2562 | port_id = ffs(pmask) - 1; |
| 2563 | pmask &= ~(1 << port_id); |
| 2564 | viid = t4vf_alloc_vi(adapter, port_id); |
| 2565 | if (viid < 0) { |
| 2566 | dev_err(&pdev->dev, "cannot allocate VI for port %d:" |
| 2567 | " err=%d\n", port_id, viid); |
| 2568 | err = viid; |
| 2569 | goto err_free_dev; |
| 2570 | } |
| 2571 | |
| 2572 | /* |
| 2573 | * Allocate our network device and stitch things together. |
| 2574 | */ |
| 2575 | netdev = alloc_etherdev_mq(sizeof(struct port_info), |
| 2576 | MAX_PORT_QSETS); |
| 2577 | if (netdev == NULL) { |
| 2578 | dev_err(&pdev->dev, "cannot allocate netdev for" |
| 2579 | " port %d\n", port_id); |
| 2580 | t4vf_free_vi(adapter, viid); |
| 2581 | err = -ENOMEM; |
| 2582 | goto err_free_dev; |
| 2583 | } |
| 2584 | adapter->port[pidx] = netdev; |
| 2585 | SET_NETDEV_DEV(netdev, &pdev->dev); |
| 2586 | pi = netdev_priv(netdev); |
| 2587 | pi->adapter = adapter; |
| 2588 | pi->pidx = pidx; |
| 2589 | pi->port_id = port_id; |
| 2590 | pi->viid = viid; |
| 2591 | |
| 2592 | /* |
| 2593 | * Initialize the starting state of our "port" and register |
| 2594 | * it. |
| 2595 | */ |
| 2596 | pi->xact_addr_filt = -1; |
| 2597 | pi->rx_offload = RX_CSO; |
| 2598 | netif_carrier_off(netdev); |
| 2599 | netif_tx_stop_all_queues(netdev); |
| 2600 | netdev->irq = pdev->irq; |
| 2601 | |
| 2602 | netdev->features = (NETIF_F_SG | NETIF_F_TSO | NETIF_F_TSO6 | |
| 2603 | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | |
| 2604 | NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX | |
| 2605 | NETIF_F_GRO); |
| 2606 | if (pci_using_dac) |
| 2607 | netdev->features |= NETIF_F_HIGHDMA; |
| 2608 | netdev->vlan_features = |
| 2609 | (netdev->features & |
| 2610 | ~(NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX)); |
| 2611 | |
| 2612 | #ifdef HAVE_NET_DEVICE_OPS |
| 2613 | netdev->netdev_ops = &cxgb4vf_netdev_ops; |
| 2614 | #else |
| 2615 | netdev->vlan_rx_register = cxgb4vf_vlan_rx_register; |
| 2616 | netdev->open = cxgb4vf_open; |
| 2617 | netdev->stop = cxgb4vf_stop; |
| 2618 | netdev->hard_start_xmit = t4vf_eth_xmit; |
| 2619 | netdev->get_stats = cxgb4vf_get_stats; |
| 2620 | netdev->set_rx_mode = cxgb4vf_set_rxmode; |
| 2621 | netdev->do_ioctl = cxgb4vf_do_ioctl; |
| 2622 | netdev->change_mtu = cxgb4vf_change_mtu; |
| 2623 | netdev->set_mac_address = cxgb4vf_set_mac_addr; |
| 2624 | netdev->select_queue = cxgb4vf_select_queue; |
| 2625 | #ifdef CONFIG_NET_POLL_CONTROLLER |
| 2626 | netdev->poll_controller = cxgb4vf_poll_controller; |
| 2627 | #endif |
| 2628 | #endif |
| 2629 | SET_ETHTOOL_OPS(netdev, &cxgb4vf_ethtool_ops); |
| 2630 | |
| 2631 | /* |
| 2632 | * Initialize the hardware/software state for the port. |
| 2633 | */ |
| 2634 | err = t4vf_port_init(adapter, pidx); |
| 2635 | if (err) { |
| 2636 | dev_err(&pdev->dev, "cannot initialize port %d\n", |
| 2637 | pidx); |
| 2638 | goto err_free_dev; |
| 2639 | } |
| 2640 | } |
| 2641 | |
| 2642 | /* |
| 2643 | * The "card" is now ready to go. If any errors occur during device |
| 2644 | * registration we do not fail the whole "card" but rather proceed |
| 2645 | * only with the ports we manage to register successfully. However we |
| 2646 | * must register at least one net device. |
| 2647 | */ |
| 2648 | for_each_port(adapter, pidx) { |
| 2649 | netdev = adapter->port[pidx]; |
| 2650 | if (netdev == NULL) |
| 2651 | continue; |
| 2652 | |
| 2653 | err = register_netdev(netdev); |
| 2654 | if (err) { |
| 2655 | dev_warn(&pdev->dev, "cannot register net device %s," |
| 2656 | " skipping\n", netdev->name); |
| 2657 | continue; |
| 2658 | } |
| 2659 | |
| 2660 | set_bit(pidx, &adapter->registered_device_map); |
| 2661 | } |
| 2662 | if (adapter->registered_device_map == 0) { |
| 2663 | dev_err(&pdev->dev, "could not register any net devices\n"); |
| 2664 | goto err_free_dev; |
| 2665 | } |
| 2666 | |
| 2667 | /* |
| 2668 | * Set up our debugfs entries. |
| 2669 | */ |
| 2670 | if (cxgb4vf_debugfs_root) { |
| 2671 | adapter->debugfs_root = |
| 2672 | debugfs_create_dir(pci_name(pdev), |
| 2673 | cxgb4vf_debugfs_root); |
| 2674 | if (adapter->debugfs_root == NULL) |
| 2675 | dev_warn(&pdev->dev, "could not create debugfs" |
| 2676 | " directory"); |
| 2677 | else |
| 2678 | setup_debugfs(adapter); |
| 2679 | } |
| 2680 | |
| 2681 | /* |
| 2682 | * See what interrupts we'll be using. If we've been configured to |
| 2683 | * use MSI-X interrupts, try to enable them but fall back to using |
| 2684 | * MSI interrupts if we can't enable MSI-X interrupts. If we can't |
| 2685 | * get MSI interrupts we bail with the error. |
| 2686 | */ |
| 2687 | if (msi == MSI_MSIX && enable_msix(adapter) == 0) |
| 2688 | adapter->flags |= USING_MSIX; |
| 2689 | else { |
| 2690 | err = pci_enable_msi(pdev); |
| 2691 | if (err) { |
| 2692 | dev_err(&pdev->dev, "Unable to allocate %s interrupts;" |
| 2693 | " err=%d\n", |
| 2694 | msi == MSI_MSIX ? "MSI-X or MSI" : "MSI", err); |
| 2695 | goto err_free_debugfs; |
| 2696 | } |
| 2697 | adapter->flags |= USING_MSI; |
| 2698 | } |
| 2699 | |
| 2700 | /* |
| 2701 | * Now that we know how many "ports" we have and what their types are, |
| 2702 | * and how many Queue Sets we can support, we can configure our queue |
| 2703 | * resources. |
| 2704 | */ |
| 2705 | cfg_queues(adapter); |
| 2706 | |
| 2707 | /* |
| 2708 | * Print a short notice on the existance and configuration of the new |
| 2709 | * VF network device ... |
| 2710 | */ |
| 2711 | for_each_port(adapter, pidx) { |
| 2712 | dev_info(adapter->pdev_dev, "%s: Chelsio VF NIC PCIe %s\n", |
| 2713 | adapter->port[pidx]->name, |
| 2714 | (adapter->flags & USING_MSIX) ? "MSI-X" : |
| 2715 | (adapter->flags & USING_MSI) ? "MSI" : ""); |
| 2716 | } |
| 2717 | |
| 2718 | /* |
| 2719 | * Return success! |
| 2720 | */ |
| 2721 | return 0; |
| 2722 | |
| 2723 | /* |
| 2724 | * Error recovery and exit code. Unwind state that's been created |
| 2725 | * so far and return the error. |
| 2726 | */ |
| 2727 | |
| 2728 | err_free_debugfs: |
| 2729 | if (adapter->debugfs_root) { |
| 2730 | cleanup_debugfs(adapter); |
| 2731 | debugfs_remove_recursive(adapter->debugfs_root); |
| 2732 | } |
| 2733 | |
| 2734 | err_free_dev: |
| 2735 | for_each_port(adapter, pidx) { |
| 2736 | netdev = adapter->port[pidx]; |
| 2737 | if (netdev == NULL) |
| 2738 | continue; |
| 2739 | pi = netdev_priv(netdev); |
| 2740 | t4vf_free_vi(adapter, pi->viid); |
| 2741 | if (test_bit(pidx, &adapter->registered_device_map)) |
| 2742 | unregister_netdev(netdev); |
| 2743 | free_netdev(netdev); |
| 2744 | } |
| 2745 | |
| 2746 | err_unmap_bar: |
| 2747 | iounmap(adapter->regs); |
| 2748 | |
| 2749 | err_free_adapter: |
| 2750 | kfree(adapter); |
| 2751 | pci_set_drvdata(pdev, NULL); |
| 2752 | |
| 2753 | err_disable_device: |
| 2754 | pci_disable_device(pdev); |
| 2755 | pci_clear_master(pdev); |
| 2756 | |
| 2757 | err_release_regions: |
| 2758 | pci_release_regions(pdev); |
| 2759 | pci_set_drvdata(pdev, NULL); |
| 2760 | |
| 2761 | err_out: |
| 2762 | return err; |
| 2763 | } |
| 2764 | |
| 2765 | /* |
| 2766 | * "Remove" a device: tear down all kernel and driver state created in the |
| 2767 | * "probe" routine and quiesce the device (disable interrupts, etc.). (Note |
| 2768 | * that this is called "remove_one" in the PF Driver.) |
| 2769 | */ |
| 2770 | static void __devexit cxgb4vf_pci_remove(struct pci_dev *pdev) |
| 2771 | { |
| 2772 | struct adapter *adapter = pci_get_drvdata(pdev); |
| 2773 | |
| 2774 | /* |
| 2775 | * Tear down driver state associated with device. |
| 2776 | */ |
| 2777 | if (adapter) { |
| 2778 | int pidx; |
| 2779 | |
| 2780 | /* |
| 2781 | * Stop all of our activity. Unregister network port, |
| 2782 | * disable interrupts, etc. |
| 2783 | */ |
| 2784 | for_each_port(adapter, pidx) |
| 2785 | if (test_bit(pidx, &adapter->registered_device_map)) |
| 2786 | unregister_netdev(adapter->port[pidx]); |
| 2787 | t4vf_sge_stop(adapter); |
| 2788 | if (adapter->flags & USING_MSIX) { |
| 2789 | pci_disable_msix(adapter->pdev); |
| 2790 | adapter->flags &= ~USING_MSIX; |
| 2791 | } else if (adapter->flags & USING_MSI) { |
| 2792 | pci_disable_msi(adapter->pdev); |
| 2793 | adapter->flags &= ~USING_MSI; |
| 2794 | } |
| 2795 | |
| 2796 | /* |
| 2797 | * Tear down our debugfs entries. |
| 2798 | */ |
| 2799 | if (adapter->debugfs_root) { |
| 2800 | cleanup_debugfs(adapter); |
| 2801 | debugfs_remove_recursive(adapter->debugfs_root); |
| 2802 | } |
| 2803 | |
| 2804 | /* |
| 2805 | * Free all of the various resources which we've acquired ... |
| 2806 | */ |
| 2807 | t4vf_free_sge_resources(adapter); |
| 2808 | for_each_port(adapter, pidx) { |
| 2809 | struct net_device *netdev = adapter->port[pidx]; |
| 2810 | struct port_info *pi; |
| 2811 | |
| 2812 | if (netdev == NULL) |
| 2813 | continue; |
| 2814 | |
| 2815 | pi = netdev_priv(netdev); |
| 2816 | t4vf_free_vi(adapter, pi->viid); |
| 2817 | free_netdev(netdev); |
| 2818 | } |
| 2819 | iounmap(adapter->regs); |
| 2820 | kfree(adapter); |
| 2821 | pci_set_drvdata(pdev, NULL); |
| 2822 | } |
| 2823 | |
| 2824 | /* |
| 2825 | * Disable the device and release its PCI resources. |
| 2826 | */ |
| 2827 | pci_disable_device(pdev); |
| 2828 | pci_clear_master(pdev); |
| 2829 | pci_release_regions(pdev); |
| 2830 | } |
| 2831 | |
| 2832 | /* |
| 2833 | * PCI Device registration data structures. |
| 2834 | */ |
| 2835 | #define CH_DEVICE(devid, idx) \ |
| 2836 | { PCI_VENDOR_ID_CHELSIO, devid, PCI_ANY_ID, PCI_ANY_ID, 0, 0, idx } |
| 2837 | |
| 2838 | static struct pci_device_id cxgb4vf_pci_tbl[] = { |
| 2839 | CH_DEVICE(0xb000, 0), /* PE10K FPGA */ |
| 2840 | CH_DEVICE(0x4800, 0), /* T440-dbg */ |
| 2841 | CH_DEVICE(0x4801, 0), /* T420-cr */ |
| 2842 | CH_DEVICE(0x4802, 0), /* T422-cr */ |
| 2843 | { 0, } |
| 2844 | }; |
| 2845 | |
| 2846 | MODULE_DESCRIPTION(DRV_DESC); |
| 2847 | MODULE_AUTHOR("Chelsio Communications"); |
| 2848 | MODULE_LICENSE("Dual BSD/GPL"); |
| 2849 | MODULE_VERSION(DRV_VERSION); |
| 2850 | MODULE_DEVICE_TABLE(pci, cxgb4vf_pci_tbl); |
| 2851 | |
| 2852 | static struct pci_driver cxgb4vf_driver = { |
| 2853 | .name = KBUILD_MODNAME, |
| 2854 | .id_table = cxgb4vf_pci_tbl, |
| 2855 | .probe = cxgb4vf_pci_probe, |
| 2856 | .remove = __devexit_p(cxgb4vf_pci_remove), |
| 2857 | }; |
| 2858 | |
| 2859 | /* |
| 2860 | * Initialize global driver state. |
| 2861 | */ |
| 2862 | static int __init cxgb4vf_module_init(void) |
| 2863 | { |
| 2864 | int ret; |
| 2865 | |
| 2866 | /* Debugfs support is optional, just warn if this fails */ |
| 2867 | cxgb4vf_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL); |
| 2868 | if (!cxgb4vf_debugfs_root) |
| 2869 | printk(KERN_WARNING KBUILD_MODNAME ": could not create" |
| 2870 | " debugfs entry, continuing\n"); |
| 2871 | |
| 2872 | ret = pci_register_driver(&cxgb4vf_driver); |
| 2873 | if (ret < 0) |
| 2874 | debugfs_remove(cxgb4vf_debugfs_root); |
| 2875 | return ret; |
| 2876 | } |
| 2877 | |
| 2878 | /* |
| 2879 | * Tear down global driver state. |
| 2880 | */ |
| 2881 | static void __exit cxgb4vf_module_exit(void) |
| 2882 | { |
| 2883 | pci_unregister_driver(&cxgb4vf_driver); |
| 2884 | debugfs_remove(cxgb4vf_debugfs_root); |
| 2885 | } |
| 2886 | |
| 2887 | module_init(cxgb4vf_module_init); |
| 2888 | module_exit(cxgb4vf_module_exit); |