Anton Blanchard | 6dd7a82 | 2016-07-01 08:19:45 +1000 | [diff] [blame^] | 1 | /* |
| 2 | * Calculate the checksum of data that is 16 byte aligned and a multiple of |
| 3 | * 16 bytes. |
| 4 | * |
| 5 | * The first step is to reduce it to 1024 bits. We do this in 8 parallel |
| 6 | * chunks in order to mask the latency of the vpmsum instructions. If we |
| 7 | * have more than 32 kB of data to checksum we repeat this step multiple |
| 8 | * times, passing in the previous 1024 bits. |
| 9 | * |
| 10 | * The next step is to reduce the 1024 bits to 64 bits. This step adds |
| 11 | * 32 bits of 0s to the end - this matches what a CRC does. We just |
| 12 | * calculate constants that land the data in this 32 bits. |
| 13 | * |
| 14 | * We then use fixed point Barrett reduction to compute a mod n over GF(2) |
| 15 | * for n = CRC using POWER8 instructions. We use x = 32. |
| 16 | * |
| 17 | * http://en.wikipedia.org/wiki/Barrett_reduction |
| 18 | * |
| 19 | * Copyright (C) 2015 Anton Blanchard <anton@au.ibm.com>, IBM |
| 20 | * |
| 21 | * This program is free software; you can redistribute it and/or |
| 22 | * modify it under the terms of the GNU General Public License |
| 23 | * as published by the Free Software Foundation; either version |
| 24 | * 2 of the License, or (at your option) any later version. |
| 25 | */ |
| 26 | #include <asm/ppc_asm.h> |
| 27 | #include <asm/ppc-opcode.h> |
| 28 | |
| 29 | .section .rodata |
| 30 | .balign 16 |
| 31 | |
| 32 | .byteswap_constant: |
| 33 | /* byte reverse permute constant */ |
| 34 | .octa 0x0F0E0D0C0B0A09080706050403020100 |
| 35 | |
| 36 | #define MAX_SIZE 32768 |
| 37 | .constants: |
| 38 | |
| 39 | /* Reduce 262144 kbits to 1024 bits */ |
| 40 | /* x^261120 mod p(x)` << 1, x^261184 mod p(x)` << 1 */ |
| 41 | .octa 0x00000000b6ca9e20000000009c37c408 |
| 42 | |
| 43 | /* x^260096 mod p(x)` << 1, x^260160 mod p(x)` << 1 */ |
| 44 | .octa 0x00000000350249a800000001b51df26c |
| 45 | |
| 46 | /* x^259072 mod p(x)` << 1, x^259136 mod p(x)` << 1 */ |
| 47 | .octa 0x00000001862dac54000000000724b9d0 |
| 48 | |
| 49 | /* x^258048 mod p(x)` << 1, x^258112 mod p(x)` << 1 */ |
| 50 | .octa 0x00000001d87fb48c00000001c00532fe |
| 51 | |
| 52 | /* x^257024 mod p(x)` << 1, x^257088 mod p(x)` << 1 */ |
| 53 | .octa 0x00000001f39b699e00000000f05a9362 |
| 54 | |
| 55 | /* x^256000 mod p(x)` << 1, x^256064 mod p(x)` << 1 */ |
| 56 | .octa 0x0000000101da11b400000001e1007970 |
| 57 | |
| 58 | /* x^254976 mod p(x)` << 1, x^255040 mod p(x)` << 1 */ |
| 59 | .octa 0x00000001cab571e000000000a57366ee |
| 60 | |
| 61 | /* x^253952 mod p(x)` << 1, x^254016 mod p(x)` << 1 */ |
| 62 | .octa 0x00000000c7020cfe0000000192011284 |
| 63 | |
| 64 | /* x^252928 mod p(x)` << 1, x^252992 mod p(x)` << 1 */ |
| 65 | .octa 0x00000000cdaed1ae0000000162716d9a |
| 66 | |
| 67 | /* x^251904 mod p(x)` << 1, x^251968 mod p(x)` << 1 */ |
| 68 | .octa 0x00000001e804effc00000000cd97ecde |
| 69 | |
| 70 | /* x^250880 mod p(x)` << 1, x^250944 mod p(x)` << 1 */ |
| 71 | .octa 0x0000000077c3ea3a0000000058812bc0 |
| 72 | |
| 73 | /* x^249856 mod p(x)` << 1, x^249920 mod p(x)` << 1 */ |
| 74 | .octa 0x0000000068df31b40000000088b8c12e |
| 75 | |
| 76 | /* x^248832 mod p(x)` << 1, x^248896 mod p(x)` << 1 */ |
| 77 | .octa 0x00000000b059b6c200000001230b234c |
| 78 | |
| 79 | /* x^247808 mod p(x)` << 1, x^247872 mod p(x)` << 1 */ |
| 80 | .octa 0x0000000145fb8ed800000001120b416e |
| 81 | |
| 82 | /* x^246784 mod p(x)` << 1, x^246848 mod p(x)` << 1 */ |
| 83 | .octa 0x00000000cbc0916800000001974aecb0 |
| 84 | |
| 85 | /* x^245760 mod p(x)` << 1, x^245824 mod p(x)` << 1 */ |
| 86 | .octa 0x000000005ceeedc2000000008ee3f226 |
| 87 | |
| 88 | /* x^244736 mod p(x)` << 1, x^244800 mod p(x)` << 1 */ |
| 89 | .octa 0x0000000047d74e8600000001089aba9a |
| 90 | |
| 91 | /* x^243712 mod p(x)` << 1, x^243776 mod p(x)` << 1 */ |
| 92 | .octa 0x00000001407e9e220000000065113872 |
| 93 | |
| 94 | /* x^242688 mod p(x)` << 1, x^242752 mod p(x)` << 1 */ |
| 95 | .octa 0x00000001da967bda000000005c07ec10 |
| 96 | |
| 97 | /* x^241664 mod p(x)` << 1, x^241728 mod p(x)` << 1 */ |
| 98 | .octa 0x000000006c8983680000000187590924 |
| 99 | |
| 100 | /* x^240640 mod p(x)` << 1, x^240704 mod p(x)` << 1 */ |
| 101 | .octa 0x00000000f2d14c9800000000e35da7c6 |
| 102 | |
| 103 | /* x^239616 mod p(x)` << 1, x^239680 mod p(x)` << 1 */ |
| 104 | .octa 0x00000001993c6ad4000000000415855a |
| 105 | |
| 106 | /* x^238592 mod p(x)` << 1, x^238656 mod p(x)` << 1 */ |
| 107 | .octa 0x000000014683d1ac0000000073617758 |
| 108 | |
| 109 | /* x^237568 mod p(x)` << 1, x^237632 mod p(x)` << 1 */ |
| 110 | .octa 0x00000001a7c93e6c0000000176021d28 |
| 111 | |
| 112 | /* x^236544 mod p(x)` << 1, x^236608 mod p(x)` << 1 */ |
| 113 | .octa 0x000000010211e90a00000001c358fd0a |
| 114 | |
| 115 | /* x^235520 mod p(x)` << 1, x^235584 mod p(x)` << 1 */ |
| 116 | .octa 0x000000001119403e00000001ff7a2c18 |
| 117 | |
| 118 | /* x^234496 mod p(x)` << 1, x^234560 mod p(x)` << 1 */ |
| 119 | .octa 0x000000001c3261aa00000000f2d9f7e4 |
| 120 | |
| 121 | /* x^233472 mod p(x)` << 1, x^233536 mod p(x)` << 1 */ |
| 122 | .octa 0x000000014e37a634000000016cf1f9c8 |
| 123 | |
| 124 | /* x^232448 mod p(x)` << 1, x^232512 mod p(x)` << 1 */ |
| 125 | .octa 0x0000000073786c0c000000010af9279a |
| 126 | |
| 127 | /* x^231424 mod p(x)` << 1, x^231488 mod p(x)` << 1 */ |
| 128 | .octa 0x000000011dc037f80000000004f101e8 |
| 129 | |
| 130 | /* x^230400 mod p(x)` << 1, x^230464 mod p(x)` << 1 */ |
| 131 | .octa 0x0000000031433dfc0000000070bcf184 |
| 132 | |
| 133 | /* x^229376 mod p(x)` << 1, x^229440 mod p(x)` << 1 */ |
| 134 | .octa 0x000000009cde8348000000000a8de642 |
| 135 | |
| 136 | /* x^228352 mod p(x)` << 1, x^228416 mod p(x)` << 1 */ |
| 137 | .octa 0x0000000038d3c2a60000000062ea130c |
| 138 | |
| 139 | /* x^227328 mod p(x)` << 1, x^227392 mod p(x)` << 1 */ |
| 140 | .octa 0x000000011b25f26000000001eb31cbb2 |
| 141 | |
| 142 | /* x^226304 mod p(x)` << 1, x^226368 mod p(x)` << 1 */ |
| 143 | .octa 0x000000001629e6f00000000170783448 |
| 144 | |
| 145 | /* x^225280 mod p(x)` << 1, x^225344 mod p(x)` << 1 */ |
| 146 | .octa 0x0000000160838b4c00000001a684b4c6 |
| 147 | |
| 148 | /* x^224256 mod p(x)` << 1, x^224320 mod p(x)` << 1 */ |
| 149 | .octa 0x000000007a44011c00000000253ca5b4 |
| 150 | |
| 151 | /* x^223232 mod p(x)` << 1, x^223296 mod p(x)` << 1 */ |
| 152 | .octa 0x00000000226f417a0000000057b4b1e2 |
| 153 | |
| 154 | /* x^222208 mod p(x)` << 1, x^222272 mod p(x)` << 1 */ |
| 155 | .octa 0x0000000045eb2eb400000000b6bd084c |
| 156 | |
| 157 | /* x^221184 mod p(x)` << 1, x^221248 mod p(x)` << 1 */ |
| 158 | .octa 0x000000014459d70c0000000123c2d592 |
| 159 | |
| 160 | /* x^220160 mod p(x)` << 1, x^220224 mod p(x)` << 1 */ |
| 161 | .octa 0x00000001d406ed8200000000159dafce |
| 162 | |
| 163 | /* x^219136 mod p(x)` << 1, x^219200 mod p(x)` << 1 */ |
| 164 | .octa 0x0000000160c8e1a80000000127e1a64e |
| 165 | |
| 166 | /* x^218112 mod p(x)` << 1, x^218176 mod p(x)` << 1 */ |
| 167 | .octa 0x0000000027ba80980000000056860754 |
| 168 | |
| 169 | /* x^217088 mod p(x)` << 1, x^217152 mod p(x)` << 1 */ |
| 170 | .octa 0x000000006d92d01800000001e661aae8 |
| 171 | |
| 172 | /* x^216064 mod p(x)` << 1, x^216128 mod p(x)` << 1 */ |
| 173 | .octa 0x000000012ed7e3f200000000f82c6166 |
| 174 | |
| 175 | /* x^215040 mod p(x)` << 1, x^215104 mod p(x)` << 1 */ |
| 176 | .octa 0x000000002dc8778800000000c4f9c7ae |
| 177 | |
| 178 | /* x^214016 mod p(x)` << 1, x^214080 mod p(x)` << 1 */ |
| 179 | .octa 0x0000000018240bb80000000074203d20 |
| 180 | |
| 181 | /* x^212992 mod p(x)` << 1, x^213056 mod p(x)` << 1 */ |
| 182 | .octa 0x000000001ad381580000000198173052 |
| 183 | |
| 184 | /* x^211968 mod p(x)` << 1, x^212032 mod p(x)` << 1 */ |
| 185 | .octa 0x00000001396b78f200000001ce8aba54 |
| 186 | |
| 187 | /* x^210944 mod p(x)` << 1, x^211008 mod p(x)` << 1 */ |
| 188 | .octa 0x000000011a68133400000001850d5d94 |
| 189 | |
| 190 | /* x^209920 mod p(x)` << 1, x^209984 mod p(x)` << 1 */ |
| 191 | .octa 0x000000012104732e00000001d609239c |
| 192 | |
| 193 | /* x^208896 mod p(x)` << 1, x^208960 mod p(x)` << 1 */ |
| 194 | .octa 0x00000000a140d90c000000001595f048 |
| 195 | |
| 196 | /* x^207872 mod p(x)` << 1, x^207936 mod p(x)` << 1 */ |
| 197 | .octa 0x00000001b7215eda0000000042ccee08 |
| 198 | |
| 199 | /* x^206848 mod p(x)` << 1, x^206912 mod p(x)` << 1 */ |
| 200 | .octa 0x00000001aaf1df3c000000010a389d74 |
| 201 | |
| 202 | /* x^205824 mod p(x)` << 1, x^205888 mod p(x)` << 1 */ |
| 203 | .octa 0x0000000029d15b8a000000012a840da6 |
| 204 | |
| 205 | /* x^204800 mod p(x)` << 1, x^204864 mod p(x)` << 1 */ |
| 206 | .octa 0x00000000f1a96922000000001d181c0c |
| 207 | |
| 208 | /* x^203776 mod p(x)` << 1, x^203840 mod p(x)` << 1 */ |
| 209 | .octa 0x00000001ac80d03c0000000068b7d1f6 |
| 210 | |
| 211 | /* x^202752 mod p(x)` << 1, x^202816 mod p(x)` << 1 */ |
| 212 | .octa 0x000000000f11d56a000000005b0f14fc |
| 213 | |
| 214 | /* x^201728 mod p(x)` << 1, x^201792 mod p(x)` << 1 */ |
| 215 | .octa 0x00000001f1c022a20000000179e9e730 |
| 216 | |
| 217 | /* x^200704 mod p(x)` << 1, x^200768 mod p(x)` << 1 */ |
| 218 | .octa 0x0000000173d00ae200000001ce1368d6 |
| 219 | |
| 220 | /* x^199680 mod p(x)` << 1, x^199744 mod p(x)` << 1 */ |
| 221 | .octa 0x00000001d4ffe4ac0000000112c3a84c |
| 222 | |
| 223 | /* x^198656 mod p(x)` << 1, x^198720 mod p(x)` << 1 */ |
| 224 | .octa 0x000000016edc5ae400000000de940fee |
| 225 | |
| 226 | /* x^197632 mod p(x)` << 1, x^197696 mod p(x)` << 1 */ |
| 227 | .octa 0x00000001f1a0214000000000fe896b7e |
| 228 | |
| 229 | /* x^196608 mod p(x)` << 1, x^196672 mod p(x)` << 1 */ |
| 230 | .octa 0x00000000ca0b28a000000001f797431c |
| 231 | |
| 232 | /* x^195584 mod p(x)` << 1, x^195648 mod p(x)` << 1 */ |
| 233 | .octa 0x00000001928e30a20000000053e989ba |
| 234 | |
| 235 | /* x^194560 mod p(x)` << 1, x^194624 mod p(x)` << 1 */ |
| 236 | .octa 0x0000000097b1b002000000003920cd16 |
| 237 | |
| 238 | /* x^193536 mod p(x)` << 1, x^193600 mod p(x)` << 1 */ |
| 239 | .octa 0x00000000b15bf90600000001e6f579b8 |
| 240 | |
| 241 | /* x^192512 mod p(x)` << 1, x^192576 mod p(x)` << 1 */ |
| 242 | .octa 0x00000000411c5d52000000007493cb0a |
| 243 | |
| 244 | /* x^191488 mod p(x)` << 1, x^191552 mod p(x)` << 1 */ |
| 245 | .octa 0x00000001c36f330000000001bdd376d8 |
| 246 | |
| 247 | /* x^190464 mod p(x)` << 1, x^190528 mod p(x)` << 1 */ |
| 248 | .octa 0x00000001119227e0000000016badfee6 |
| 249 | |
| 250 | /* x^189440 mod p(x)` << 1, x^189504 mod p(x)` << 1 */ |
| 251 | .octa 0x00000000114d47020000000071de5c58 |
| 252 | |
| 253 | /* x^188416 mod p(x)` << 1, x^188480 mod p(x)` << 1 */ |
| 254 | .octa 0x00000000458b5b9800000000453f317c |
| 255 | |
| 256 | /* x^187392 mod p(x)` << 1, x^187456 mod p(x)` << 1 */ |
| 257 | .octa 0x000000012e31fb8e0000000121675cce |
| 258 | |
| 259 | /* x^186368 mod p(x)` << 1, x^186432 mod p(x)` << 1 */ |
| 260 | .octa 0x000000005cf619d800000001f409ee92 |
| 261 | |
| 262 | /* x^185344 mod p(x)` << 1, x^185408 mod p(x)` << 1 */ |
| 263 | .octa 0x0000000063f4d8b200000000f36b9c88 |
| 264 | |
| 265 | /* x^184320 mod p(x)` << 1, x^184384 mod p(x)` << 1 */ |
| 266 | .octa 0x000000004138dc8a0000000036b398f4 |
| 267 | |
| 268 | /* x^183296 mod p(x)` << 1, x^183360 mod p(x)` << 1 */ |
| 269 | .octa 0x00000001d29ee8e000000001748f9adc |
| 270 | |
| 271 | /* x^182272 mod p(x)` << 1, x^182336 mod p(x)` << 1 */ |
| 272 | .octa 0x000000006a08ace800000001be94ec00 |
| 273 | |
| 274 | /* x^181248 mod p(x)` << 1, x^181312 mod p(x)` << 1 */ |
| 275 | .octa 0x0000000127d4201000000000b74370d6 |
| 276 | |
| 277 | /* x^180224 mod p(x)` << 1, x^180288 mod p(x)` << 1 */ |
| 278 | .octa 0x0000000019d76b6200000001174d0b98 |
| 279 | |
| 280 | /* x^179200 mod p(x)` << 1, x^179264 mod p(x)` << 1 */ |
| 281 | .octa 0x00000001b1471f6e00000000befc06a4 |
| 282 | |
| 283 | /* x^178176 mod p(x)` << 1, x^178240 mod p(x)` << 1 */ |
| 284 | .octa 0x00000001f64c19cc00000001ae125288 |
| 285 | |
| 286 | /* x^177152 mod p(x)` << 1, x^177216 mod p(x)` << 1 */ |
| 287 | .octa 0x00000000003c0ea00000000095c19b34 |
| 288 | |
| 289 | /* x^176128 mod p(x)` << 1, x^176192 mod p(x)` << 1 */ |
| 290 | .octa 0x000000014d73abf600000001a78496f2 |
| 291 | |
| 292 | /* x^175104 mod p(x)` << 1, x^175168 mod p(x)` << 1 */ |
| 293 | .octa 0x00000001620eb84400000001ac5390a0 |
| 294 | |
| 295 | /* x^174080 mod p(x)` << 1, x^174144 mod p(x)` << 1 */ |
| 296 | .octa 0x0000000147655048000000002a80ed6e |
| 297 | |
| 298 | /* x^173056 mod p(x)` << 1, x^173120 mod p(x)` << 1 */ |
| 299 | .octa 0x0000000067b5077e00000001fa9b0128 |
| 300 | |
| 301 | /* x^172032 mod p(x)` << 1, x^172096 mod p(x)` << 1 */ |
| 302 | .octa 0x0000000010ffe20600000001ea94929e |
| 303 | |
| 304 | /* x^171008 mod p(x)` << 1, x^171072 mod p(x)` << 1 */ |
| 305 | .octa 0x000000000fee8f1e0000000125f4305c |
| 306 | |
| 307 | /* x^169984 mod p(x)` << 1, x^170048 mod p(x)` << 1 */ |
| 308 | .octa 0x00000001da26fbae00000001471e2002 |
| 309 | |
| 310 | /* x^168960 mod p(x)` << 1, x^169024 mod p(x)` << 1 */ |
| 311 | .octa 0x00000001b3a8bd880000000132d2253a |
| 312 | |
| 313 | /* x^167936 mod p(x)` << 1, x^168000 mod p(x)` << 1 */ |
| 314 | .octa 0x00000000e8f3898e00000000f26b3592 |
| 315 | |
| 316 | /* x^166912 mod p(x)` << 1, x^166976 mod p(x)` << 1 */ |
| 317 | .octa 0x00000000b0d0d28c00000000bc8b67b0 |
| 318 | |
| 319 | /* x^165888 mod p(x)` << 1, x^165952 mod p(x)` << 1 */ |
| 320 | .octa 0x0000000030f2a798000000013a826ef2 |
| 321 | |
| 322 | /* x^164864 mod p(x)` << 1, x^164928 mod p(x)` << 1 */ |
| 323 | .octa 0x000000000fba10020000000081482c84 |
| 324 | |
| 325 | /* x^163840 mod p(x)` << 1, x^163904 mod p(x)` << 1 */ |
| 326 | .octa 0x00000000bdb9bd7200000000e77307c2 |
| 327 | |
| 328 | /* x^162816 mod p(x)` << 1, x^162880 mod p(x)` << 1 */ |
| 329 | .octa 0x0000000075d3bf5a00000000d4a07ec8 |
| 330 | |
| 331 | /* x^161792 mod p(x)` << 1, x^161856 mod p(x)` << 1 */ |
| 332 | .octa 0x00000000ef1f98a00000000017102100 |
| 333 | |
| 334 | /* x^160768 mod p(x)` << 1, x^160832 mod p(x)` << 1 */ |
| 335 | .octa 0x00000000689c760200000000db406486 |
| 336 | |
| 337 | /* x^159744 mod p(x)` << 1, x^159808 mod p(x)` << 1 */ |
| 338 | .octa 0x000000016d5fa5fe0000000192db7f88 |
| 339 | |
| 340 | /* x^158720 mod p(x)` << 1, x^158784 mod p(x)` << 1 */ |
| 341 | .octa 0x00000001d0d2b9ca000000018bf67b1e |
| 342 | |
| 343 | /* x^157696 mod p(x)` << 1, x^157760 mod p(x)` << 1 */ |
| 344 | .octa 0x0000000041e7b470000000007c09163e |
| 345 | |
| 346 | /* x^156672 mod p(x)` << 1, x^156736 mod p(x)` << 1 */ |
| 347 | .octa 0x00000001cbb6495e000000000adac060 |
| 348 | |
| 349 | /* x^155648 mod p(x)` << 1, x^155712 mod p(x)` << 1 */ |
| 350 | .octa 0x000000010052a0b000000000bd8316ae |
| 351 | |
| 352 | /* x^154624 mod p(x)` << 1, x^154688 mod p(x)` << 1 */ |
| 353 | .octa 0x00000001d8effb5c000000019f09ab54 |
| 354 | |
| 355 | /* x^153600 mod p(x)` << 1, x^153664 mod p(x)` << 1 */ |
| 356 | .octa 0x00000001d969853c0000000125155542 |
| 357 | |
| 358 | /* x^152576 mod p(x)` << 1, x^152640 mod p(x)` << 1 */ |
| 359 | .octa 0x00000000523ccce2000000018fdb5882 |
| 360 | |
| 361 | /* x^151552 mod p(x)` << 1, x^151616 mod p(x)` << 1 */ |
| 362 | .octa 0x000000001e2436bc00000000e794b3f4 |
| 363 | |
| 364 | /* x^150528 mod p(x)` << 1, x^150592 mod p(x)` << 1 */ |
| 365 | .octa 0x00000000ddd1c3a2000000016f9bb022 |
| 366 | |
| 367 | /* x^149504 mod p(x)` << 1, x^149568 mod p(x)` << 1 */ |
| 368 | .octa 0x0000000019fcfe3800000000290c9978 |
| 369 | |
| 370 | /* x^148480 mod p(x)` << 1, x^148544 mod p(x)` << 1 */ |
| 371 | .octa 0x00000001ce95db640000000083c0f350 |
| 372 | |
| 373 | /* x^147456 mod p(x)` << 1, x^147520 mod p(x)` << 1 */ |
| 374 | .octa 0x00000000af5828060000000173ea6628 |
| 375 | |
| 376 | /* x^146432 mod p(x)` << 1, x^146496 mod p(x)` << 1 */ |
| 377 | .octa 0x00000001006388f600000001c8b4e00a |
| 378 | |
| 379 | /* x^145408 mod p(x)` << 1, x^145472 mod p(x)` << 1 */ |
| 380 | .octa 0x0000000179eca00a00000000de95d6aa |
| 381 | |
| 382 | /* x^144384 mod p(x)` << 1, x^144448 mod p(x)` << 1 */ |
| 383 | .octa 0x0000000122410a6a000000010b7f7248 |
| 384 | |
| 385 | /* x^143360 mod p(x)` << 1, x^143424 mod p(x)` << 1 */ |
| 386 | .octa 0x000000004288e87c00000001326e3a06 |
| 387 | |
| 388 | /* x^142336 mod p(x)` << 1, x^142400 mod p(x)` << 1 */ |
| 389 | .octa 0x000000016c5490da00000000bb62c2e6 |
| 390 | |
| 391 | /* x^141312 mod p(x)` << 1, x^141376 mod p(x)` << 1 */ |
| 392 | .octa 0x00000000d1c71f6e0000000156a4b2c2 |
| 393 | |
| 394 | /* x^140288 mod p(x)` << 1, x^140352 mod p(x)` << 1 */ |
| 395 | .octa 0x00000001b4ce08a6000000011dfe763a |
| 396 | |
| 397 | /* x^139264 mod p(x)` << 1, x^139328 mod p(x)` << 1 */ |
| 398 | .octa 0x00000001466ba60c000000007bcca8e2 |
| 399 | |
| 400 | /* x^138240 mod p(x)` << 1, x^138304 mod p(x)` << 1 */ |
| 401 | .octa 0x00000001f6c488a40000000186118faa |
| 402 | |
| 403 | /* x^137216 mod p(x)` << 1, x^137280 mod p(x)` << 1 */ |
| 404 | .octa 0x000000013bfb06820000000111a65a88 |
| 405 | |
| 406 | /* x^136192 mod p(x)` << 1, x^136256 mod p(x)` << 1 */ |
| 407 | .octa 0x00000000690e9e54000000003565e1c4 |
| 408 | |
| 409 | /* x^135168 mod p(x)` << 1, x^135232 mod p(x)` << 1 */ |
| 410 | .octa 0x00000000281346b6000000012ed02a82 |
| 411 | |
| 412 | /* x^134144 mod p(x)` << 1, x^134208 mod p(x)` << 1 */ |
| 413 | .octa 0x000000015646402400000000c486ecfc |
| 414 | |
| 415 | /* x^133120 mod p(x)` << 1, x^133184 mod p(x)` << 1 */ |
| 416 | .octa 0x000000016063a8dc0000000001b951b2 |
| 417 | |
| 418 | /* x^132096 mod p(x)` << 1, x^132160 mod p(x)` << 1 */ |
| 419 | .octa 0x0000000116a663620000000048143916 |
| 420 | |
| 421 | /* x^131072 mod p(x)` << 1, x^131136 mod p(x)` << 1 */ |
| 422 | .octa 0x000000017e8aa4d200000001dc2ae124 |
| 423 | |
| 424 | /* x^130048 mod p(x)` << 1, x^130112 mod p(x)` << 1 */ |
| 425 | .octa 0x00000001728eb10c00000001416c58d6 |
| 426 | |
| 427 | /* x^129024 mod p(x)` << 1, x^129088 mod p(x)` << 1 */ |
| 428 | .octa 0x00000001b08fd7fa00000000a479744a |
| 429 | |
| 430 | /* x^128000 mod p(x)` << 1, x^128064 mod p(x)` << 1 */ |
| 431 | .octa 0x00000001092a16e80000000096ca3a26 |
| 432 | |
| 433 | /* x^126976 mod p(x)` << 1, x^127040 mod p(x)` << 1 */ |
| 434 | .octa 0x00000000a505637c00000000ff223d4e |
| 435 | |
| 436 | /* x^125952 mod p(x)` << 1, x^126016 mod p(x)` << 1 */ |
| 437 | .octa 0x00000000d94869b2000000010e84da42 |
| 438 | |
| 439 | /* x^124928 mod p(x)` << 1, x^124992 mod p(x)` << 1 */ |
| 440 | .octa 0x00000001c8b203ae00000001b61ba3d0 |
| 441 | |
| 442 | /* x^123904 mod p(x)` << 1, x^123968 mod p(x)` << 1 */ |
| 443 | .octa 0x000000005704aea000000000680f2de8 |
| 444 | |
| 445 | /* x^122880 mod p(x)` << 1, x^122944 mod p(x)` << 1 */ |
| 446 | .octa 0x000000012e295fa2000000008772a9a8 |
| 447 | |
| 448 | /* x^121856 mod p(x)` << 1, x^121920 mod p(x)` << 1 */ |
| 449 | .octa 0x000000011d0908bc0000000155f295bc |
| 450 | |
| 451 | /* x^120832 mod p(x)` << 1, x^120896 mod p(x)` << 1 */ |
| 452 | .octa 0x0000000193ed97ea00000000595f9282 |
| 453 | |
| 454 | /* x^119808 mod p(x)` << 1, x^119872 mod p(x)` << 1 */ |
| 455 | .octa 0x000000013a0f1c520000000164b1c25a |
| 456 | |
| 457 | /* x^118784 mod p(x)` << 1, x^118848 mod p(x)` << 1 */ |
| 458 | .octa 0x000000010c2c40c000000000fbd67c50 |
| 459 | |
| 460 | /* x^117760 mod p(x)` << 1, x^117824 mod p(x)` << 1 */ |
| 461 | .octa 0x00000000ff6fac3e0000000096076268 |
| 462 | |
| 463 | /* x^116736 mod p(x)` << 1, x^116800 mod p(x)` << 1 */ |
| 464 | .octa 0x000000017b3609c000000001d288e4cc |
| 465 | |
| 466 | /* x^115712 mod p(x)` << 1, x^115776 mod p(x)` << 1 */ |
| 467 | .octa 0x0000000088c8c92200000001eaac1bdc |
| 468 | |
| 469 | /* x^114688 mod p(x)` << 1, x^114752 mod p(x)` << 1 */ |
| 470 | .octa 0x00000001751baae600000001f1ea39e2 |
| 471 | |
| 472 | /* x^113664 mod p(x)` << 1, x^113728 mod p(x)` << 1 */ |
| 473 | .octa 0x000000010795297200000001eb6506fc |
| 474 | |
| 475 | /* x^112640 mod p(x)` << 1, x^112704 mod p(x)` << 1 */ |
| 476 | .octa 0x0000000162b00abe000000010f806ffe |
| 477 | |
| 478 | /* x^111616 mod p(x)` << 1, x^111680 mod p(x)` << 1 */ |
| 479 | .octa 0x000000000d7b404c000000010408481e |
| 480 | |
| 481 | /* x^110592 mod p(x)` << 1, x^110656 mod p(x)` << 1 */ |
| 482 | .octa 0x00000000763b13d40000000188260534 |
| 483 | |
| 484 | /* x^109568 mod p(x)` << 1, x^109632 mod p(x)` << 1 */ |
| 485 | .octa 0x00000000f6dc22d80000000058fc73e0 |
| 486 | |
| 487 | /* x^108544 mod p(x)` << 1, x^108608 mod p(x)` << 1 */ |
| 488 | .octa 0x000000007daae06000000000391c59b8 |
| 489 | |
| 490 | /* x^107520 mod p(x)` << 1, x^107584 mod p(x)` << 1 */ |
| 491 | .octa 0x000000013359ab7c000000018b638400 |
| 492 | |
| 493 | /* x^106496 mod p(x)` << 1, x^106560 mod p(x)` << 1 */ |
| 494 | .octa 0x000000008add438a000000011738f5c4 |
| 495 | |
| 496 | /* x^105472 mod p(x)` << 1, x^105536 mod p(x)` << 1 */ |
| 497 | .octa 0x00000001edbefdea000000008cf7c6da |
| 498 | |
| 499 | /* x^104448 mod p(x)` << 1, x^104512 mod p(x)` << 1 */ |
| 500 | .octa 0x000000004104e0f800000001ef97fb16 |
| 501 | |
| 502 | /* x^103424 mod p(x)` << 1, x^103488 mod p(x)` << 1 */ |
| 503 | .octa 0x00000000b48a82220000000102130e20 |
| 504 | |
| 505 | /* x^102400 mod p(x)` << 1, x^102464 mod p(x)` << 1 */ |
| 506 | .octa 0x00000001bcb4684400000000db968898 |
| 507 | |
| 508 | /* x^101376 mod p(x)` << 1, x^101440 mod p(x)` << 1 */ |
| 509 | .octa 0x000000013293ce0a00000000b5047b5e |
| 510 | |
| 511 | /* x^100352 mod p(x)` << 1, x^100416 mod p(x)` << 1 */ |
| 512 | .octa 0x00000001710d0844000000010b90fdb2 |
| 513 | |
| 514 | /* x^99328 mod p(x)` << 1, x^99392 mod p(x)` << 1 */ |
| 515 | .octa 0x0000000117907f6e000000004834a32e |
| 516 | |
| 517 | /* x^98304 mod p(x)` << 1, x^98368 mod p(x)` << 1 */ |
| 518 | .octa 0x0000000087ddf93e0000000059c8f2b0 |
| 519 | |
| 520 | /* x^97280 mod p(x)` << 1, x^97344 mod p(x)` << 1 */ |
| 521 | .octa 0x000000005970e9b00000000122cec508 |
| 522 | |
| 523 | /* x^96256 mod p(x)` << 1, x^96320 mod p(x)` << 1 */ |
| 524 | .octa 0x0000000185b2b7d0000000000a330cda |
| 525 | |
| 526 | /* x^95232 mod p(x)` << 1, x^95296 mod p(x)` << 1 */ |
| 527 | .octa 0x00000001dcee0efc000000014a47148c |
| 528 | |
| 529 | /* x^94208 mod p(x)` << 1, x^94272 mod p(x)` << 1 */ |
| 530 | .octa 0x0000000030da27220000000042c61cb8 |
| 531 | |
| 532 | /* x^93184 mod p(x)` << 1, x^93248 mod p(x)` << 1 */ |
| 533 | .octa 0x000000012f925a180000000012fe6960 |
| 534 | |
| 535 | /* x^92160 mod p(x)` << 1, x^92224 mod p(x)` << 1 */ |
| 536 | .octa 0x00000000dd2e357c00000000dbda2c20 |
| 537 | |
| 538 | /* x^91136 mod p(x)` << 1, x^91200 mod p(x)` << 1 */ |
| 539 | .octa 0x00000000071c80de000000011122410c |
| 540 | |
| 541 | /* x^90112 mod p(x)` << 1, x^90176 mod p(x)` << 1 */ |
| 542 | .octa 0x000000011513140a00000000977b2070 |
| 543 | |
| 544 | /* x^89088 mod p(x)` << 1, x^89152 mod p(x)` << 1 */ |
| 545 | .octa 0x00000001df876e8e000000014050438e |
| 546 | |
| 547 | /* x^88064 mod p(x)` << 1, x^88128 mod p(x)` << 1 */ |
| 548 | .octa 0x000000015f81d6ce0000000147c840e8 |
| 549 | |
| 550 | /* x^87040 mod p(x)` << 1, x^87104 mod p(x)` << 1 */ |
| 551 | .octa 0x000000019dd94dbe00000001cc7c88ce |
| 552 | |
| 553 | /* x^86016 mod p(x)` << 1, x^86080 mod p(x)` << 1 */ |
| 554 | .octa 0x00000001373d206e00000001476b35a4 |
| 555 | |
| 556 | /* x^84992 mod p(x)` << 1, x^85056 mod p(x)` << 1 */ |
| 557 | .octa 0x00000000668ccade000000013d52d508 |
| 558 | |
| 559 | /* x^83968 mod p(x)` << 1, x^84032 mod p(x)` << 1 */ |
| 560 | .octa 0x00000001b192d268000000008e4be32e |
| 561 | |
| 562 | /* x^82944 mod p(x)` << 1, x^83008 mod p(x)` << 1 */ |
| 563 | .octa 0x00000000e30f3a7800000000024120fe |
| 564 | |
| 565 | /* x^81920 mod p(x)` << 1, x^81984 mod p(x)` << 1 */ |
| 566 | .octa 0x000000010ef1f7bc00000000ddecddb4 |
| 567 | |
| 568 | /* x^80896 mod p(x)` << 1, x^80960 mod p(x)` << 1 */ |
| 569 | .octa 0x00000001f5ac738000000000d4d403bc |
| 570 | |
| 571 | /* x^79872 mod p(x)` << 1, x^79936 mod p(x)` << 1 */ |
| 572 | .octa 0x000000011822ea7000000001734b89aa |
| 573 | |
| 574 | /* x^78848 mod p(x)` << 1, x^78912 mod p(x)` << 1 */ |
| 575 | .octa 0x00000000c3a33848000000010e7a58d6 |
| 576 | |
| 577 | /* x^77824 mod p(x)` << 1, x^77888 mod p(x)` << 1 */ |
| 578 | .octa 0x00000001bd151c2400000001f9f04e9c |
| 579 | |
| 580 | /* x^76800 mod p(x)` << 1, x^76864 mod p(x)` << 1 */ |
| 581 | .octa 0x0000000056002d7600000000b692225e |
| 582 | |
| 583 | /* x^75776 mod p(x)` << 1, x^75840 mod p(x)` << 1 */ |
| 584 | .octa 0x000000014657c4f4000000019b8d3f3e |
| 585 | |
| 586 | /* x^74752 mod p(x)` << 1, x^74816 mod p(x)` << 1 */ |
| 587 | .octa 0x0000000113742d7c00000001a874f11e |
| 588 | |
| 589 | /* x^73728 mod p(x)` << 1, x^73792 mod p(x)` << 1 */ |
| 590 | .octa 0x000000019c5920ba000000010d5a4254 |
| 591 | |
| 592 | /* x^72704 mod p(x)` << 1, x^72768 mod p(x)` << 1 */ |
| 593 | .octa 0x000000005216d2d600000000bbb2f5d6 |
| 594 | |
| 595 | /* x^71680 mod p(x)` << 1, x^71744 mod p(x)` << 1 */ |
| 596 | .octa 0x0000000136f5ad8a0000000179cc0e36 |
| 597 | |
| 598 | /* x^70656 mod p(x)` << 1, x^70720 mod p(x)` << 1 */ |
| 599 | .octa 0x000000018b07beb600000001dca1da4a |
| 600 | |
| 601 | /* x^69632 mod p(x)` << 1, x^69696 mod p(x)` << 1 */ |
| 602 | .octa 0x00000000db1e93b000000000feb1a192 |
| 603 | |
| 604 | /* x^68608 mod p(x)` << 1, x^68672 mod p(x)` << 1 */ |
| 605 | .octa 0x000000000b96fa3a00000000d1eeedd6 |
| 606 | |
| 607 | /* x^67584 mod p(x)` << 1, x^67648 mod p(x)` << 1 */ |
| 608 | .octa 0x00000001d9968af0000000008fad9bb4 |
| 609 | |
| 610 | /* x^66560 mod p(x)` << 1, x^66624 mod p(x)` << 1 */ |
| 611 | .octa 0x000000000e4a77a200000001884938e4 |
| 612 | |
| 613 | /* x^65536 mod p(x)` << 1, x^65600 mod p(x)` << 1 */ |
| 614 | .octa 0x00000000508c2ac800000001bc2e9bc0 |
| 615 | |
| 616 | /* x^64512 mod p(x)` << 1, x^64576 mod p(x)` << 1 */ |
| 617 | .octa 0x0000000021572a8000000001f9658a68 |
| 618 | |
| 619 | /* x^63488 mod p(x)` << 1, x^63552 mod p(x)` << 1 */ |
| 620 | .octa 0x00000001b859daf2000000001b9224fc |
| 621 | |
| 622 | /* x^62464 mod p(x)` << 1, x^62528 mod p(x)` << 1 */ |
| 623 | .octa 0x000000016f7884740000000055b2fb84 |
| 624 | |
| 625 | /* x^61440 mod p(x)` << 1, x^61504 mod p(x)` << 1 */ |
| 626 | .octa 0x00000001b438810e000000018b090348 |
| 627 | |
| 628 | /* x^60416 mod p(x)` << 1, x^60480 mod p(x)` << 1 */ |
| 629 | .octa 0x0000000095ddc6f2000000011ccbd5ea |
| 630 | |
| 631 | /* x^59392 mod p(x)` << 1, x^59456 mod p(x)` << 1 */ |
| 632 | .octa 0x00000001d977c20c0000000007ae47f8 |
| 633 | |
| 634 | /* x^58368 mod p(x)` << 1, x^58432 mod p(x)` << 1 */ |
| 635 | .octa 0x00000000ebedb99a0000000172acbec0 |
| 636 | |
| 637 | /* x^57344 mod p(x)` << 1, x^57408 mod p(x)` << 1 */ |
| 638 | .octa 0x00000001df9e9e9200000001c6e3ff20 |
| 639 | |
| 640 | /* x^56320 mod p(x)` << 1, x^56384 mod p(x)` << 1 */ |
| 641 | .octa 0x00000001a4a3f95200000000e1b38744 |
| 642 | |
| 643 | /* x^55296 mod p(x)` << 1, x^55360 mod p(x)` << 1 */ |
| 644 | .octa 0x00000000e2f5122000000000791585b2 |
| 645 | |
| 646 | /* x^54272 mod p(x)` << 1, x^54336 mod p(x)` << 1 */ |
| 647 | .octa 0x000000004aa01f3e00000000ac53b894 |
| 648 | |
| 649 | /* x^53248 mod p(x)` << 1, x^53312 mod p(x)` << 1 */ |
| 650 | .octa 0x00000000b3e90a5800000001ed5f2cf4 |
| 651 | |
| 652 | /* x^52224 mod p(x)` << 1, x^52288 mod p(x)` << 1 */ |
| 653 | .octa 0x000000000c9ca2aa00000001df48b2e0 |
| 654 | |
| 655 | /* x^51200 mod p(x)` << 1, x^51264 mod p(x)` << 1 */ |
| 656 | .octa 0x000000015168231600000000049c1c62 |
| 657 | |
| 658 | /* x^50176 mod p(x)` << 1, x^50240 mod p(x)` << 1 */ |
| 659 | .octa 0x0000000036fce78c000000017c460c12 |
| 660 | |
| 661 | /* x^49152 mod p(x)` << 1, x^49216 mod p(x)` << 1 */ |
| 662 | .octa 0x000000009037dc10000000015be4da7e |
| 663 | |
| 664 | /* x^48128 mod p(x)` << 1, x^48192 mod p(x)` << 1 */ |
| 665 | .octa 0x00000000d3298582000000010f38f668 |
| 666 | |
| 667 | /* x^47104 mod p(x)` << 1, x^47168 mod p(x)` << 1 */ |
| 668 | .octa 0x00000001b42e8ad60000000039f40a00 |
| 669 | |
| 670 | /* x^46080 mod p(x)` << 1, x^46144 mod p(x)` << 1 */ |
| 671 | .octa 0x00000000142a983800000000bd4c10c4 |
| 672 | |
| 673 | /* x^45056 mod p(x)` << 1, x^45120 mod p(x)` << 1 */ |
| 674 | .octa 0x0000000109c7f1900000000042db1d98 |
| 675 | |
| 676 | /* x^44032 mod p(x)` << 1, x^44096 mod p(x)` << 1 */ |
| 677 | .octa 0x0000000056ff931000000001c905bae6 |
| 678 | |
| 679 | /* x^43008 mod p(x)` << 1, x^43072 mod p(x)` << 1 */ |
| 680 | .octa 0x00000001594513aa00000000069d40ea |
| 681 | |
| 682 | /* x^41984 mod p(x)` << 1, x^42048 mod p(x)` << 1 */ |
| 683 | .octa 0x00000001e3b5b1e8000000008e4fbad0 |
| 684 | |
| 685 | /* x^40960 mod p(x)` << 1, x^41024 mod p(x)` << 1 */ |
| 686 | .octa 0x000000011dd5fc080000000047bedd46 |
| 687 | |
| 688 | /* x^39936 mod p(x)` << 1, x^40000 mod p(x)` << 1 */ |
| 689 | .octa 0x00000001675f0cc20000000026396bf8 |
| 690 | |
| 691 | /* x^38912 mod p(x)` << 1, x^38976 mod p(x)` << 1 */ |
| 692 | .octa 0x00000000d1c8dd4400000000379beb92 |
| 693 | |
| 694 | /* x^37888 mod p(x)` << 1, x^37952 mod p(x)` << 1 */ |
| 695 | .octa 0x0000000115ebd3d8000000000abae54a |
| 696 | |
| 697 | /* x^36864 mod p(x)` << 1, x^36928 mod p(x)` << 1 */ |
| 698 | .octa 0x00000001ecbd0dac0000000007e6a128 |
| 699 | |
| 700 | /* x^35840 mod p(x)` << 1, x^35904 mod p(x)` << 1 */ |
| 701 | .octa 0x00000000cdf67af2000000000ade29d2 |
| 702 | |
| 703 | /* x^34816 mod p(x)` << 1, x^34880 mod p(x)` << 1 */ |
| 704 | .octa 0x000000004c01ff4c00000000f974c45c |
| 705 | |
| 706 | /* x^33792 mod p(x)` << 1, x^33856 mod p(x)` << 1 */ |
| 707 | .octa 0x00000000f2d8657e00000000e77ac60a |
| 708 | |
| 709 | /* x^32768 mod p(x)` << 1, x^32832 mod p(x)` << 1 */ |
| 710 | .octa 0x000000006bae74c40000000145895816 |
| 711 | |
| 712 | /* x^31744 mod p(x)` << 1, x^31808 mod p(x)` << 1 */ |
| 713 | .octa 0x0000000152af8aa00000000038e362be |
| 714 | |
| 715 | /* x^30720 mod p(x)` << 1, x^30784 mod p(x)` << 1 */ |
| 716 | .octa 0x0000000004663802000000007f991a64 |
| 717 | |
| 718 | /* x^29696 mod p(x)` << 1, x^29760 mod p(x)` << 1 */ |
| 719 | .octa 0x00000001ab2f5afc00000000fa366d3a |
| 720 | |
| 721 | /* x^28672 mod p(x)` << 1, x^28736 mod p(x)` << 1 */ |
| 722 | .octa 0x0000000074a4ebd400000001a2bb34f0 |
| 723 | |
| 724 | /* x^27648 mod p(x)` << 1, x^27712 mod p(x)` << 1 */ |
| 725 | .octa 0x00000001d7ab3a4c0000000028a9981e |
| 726 | |
| 727 | /* x^26624 mod p(x)` << 1, x^26688 mod p(x)` << 1 */ |
| 728 | .octa 0x00000001a8da60c600000001dbc672be |
| 729 | |
| 730 | /* x^25600 mod p(x)` << 1, x^25664 mod p(x)` << 1 */ |
| 731 | .octa 0x000000013cf6382000000000b04d77f6 |
| 732 | |
| 733 | /* x^24576 mod p(x)` << 1, x^24640 mod p(x)` << 1 */ |
| 734 | .octa 0x00000000bec12e1e0000000124400d96 |
| 735 | |
| 736 | /* x^23552 mod p(x)` << 1, x^23616 mod p(x)` << 1 */ |
| 737 | .octa 0x00000001c6368010000000014ca4b414 |
| 738 | |
| 739 | /* x^22528 mod p(x)` << 1, x^22592 mod p(x)` << 1 */ |
| 740 | .octa 0x00000001e6e78758000000012fe2c938 |
| 741 | |
| 742 | /* x^21504 mod p(x)` << 1, x^21568 mod p(x)` << 1 */ |
| 743 | .octa 0x000000008d7f2b3c00000001faed01e6 |
| 744 | |
| 745 | /* x^20480 mod p(x)` << 1, x^20544 mod p(x)` << 1 */ |
| 746 | .octa 0x000000016b4a156e000000007e80ecfe |
| 747 | |
| 748 | /* x^19456 mod p(x)` << 1, x^19520 mod p(x)` << 1 */ |
| 749 | .octa 0x00000001c63cfeb60000000098daee94 |
| 750 | |
| 751 | /* x^18432 mod p(x)` << 1, x^18496 mod p(x)` << 1 */ |
| 752 | .octa 0x000000015f902670000000010a04edea |
| 753 | |
| 754 | /* x^17408 mod p(x)` << 1, x^17472 mod p(x)` << 1 */ |
| 755 | .octa 0x00000001cd5de11e00000001c00b4524 |
| 756 | |
| 757 | /* x^16384 mod p(x)` << 1, x^16448 mod p(x)` << 1 */ |
| 758 | .octa 0x000000001acaec540000000170296550 |
| 759 | |
| 760 | /* x^15360 mod p(x)` << 1, x^15424 mod p(x)` << 1 */ |
| 761 | .octa 0x000000002bd0ca780000000181afaa48 |
| 762 | |
| 763 | /* x^14336 mod p(x)` << 1, x^14400 mod p(x)` << 1 */ |
| 764 | .octa 0x0000000032d63d5c0000000185a31ffa |
| 765 | |
| 766 | /* x^13312 mod p(x)` << 1, x^13376 mod p(x)` << 1 */ |
| 767 | .octa 0x000000001c6d4e4c000000002469f608 |
| 768 | |
| 769 | /* x^12288 mod p(x)` << 1, x^12352 mod p(x)` << 1 */ |
| 770 | .octa 0x0000000106a60b92000000006980102a |
| 771 | |
| 772 | /* x^11264 mod p(x)` << 1, x^11328 mod p(x)` << 1 */ |
| 773 | .octa 0x00000000d3855e120000000111ea9ca8 |
| 774 | |
| 775 | /* x^10240 mod p(x)` << 1, x^10304 mod p(x)` << 1 */ |
| 776 | .octa 0x00000000e312563600000001bd1d29ce |
| 777 | |
| 778 | /* x^9216 mod p(x)` << 1, x^9280 mod p(x)` << 1 */ |
| 779 | .octa 0x000000009e8f7ea400000001b34b9580 |
| 780 | |
| 781 | /* x^8192 mod p(x)` << 1, x^8256 mod p(x)` << 1 */ |
| 782 | .octa 0x00000001c82e562c000000003076054e |
| 783 | |
| 784 | /* x^7168 mod p(x)` << 1, x^7232 mod p(x)` << 1 */ |
| 785 | .octa 0x00000000ca9f09ce000000012a608ea4 |
| 786 | |
| 787 | /* x^6144 mod p(x)` << 1, x^6208 mod p(x)` << 1 */ |
| 788 | .octa 0x00000000c63764e600000000784d05fe |
| 789 | |
| 790 | /* x^5120 mod p(x)` << 1, x^5184 mod p(x)` << 1 */ |
| 791 | .octa 0x0000000168d2e49e000000016ef0d82a |
| 792 | |
| 793 | /* x^4096 mod p(x)` << 1, x^4160 mod p(x)` << 1 */ |
| 794 | .octa 0x00000000e986c1480000000075bda454 |
| 795 | |
| 796 | /* x^3072 mod p(x)` << 1, x^3136 mod p(x)` << 1 */ |
| 797 | .octa 0x00000000cfb65894000000003dc0a1c4 |
| 798 | |
| 799 | /* x^2048 mod p(x)` << 1, x^2112 mod p(x)` << 1 */ |
| 800 | .octa 0x0000000111cadee400000000e9a5d8be |
| 801 | |
| 802 | /* x^1024 mod p(x)` << 1, x^1088 mod p(x)` << 1 */ |
| 803 | .octa 0x0000000171fb63ce00000001609bc4b4 |
| 804 | |
| 805 | .short_constants: |
| 806 | |
| 807 | /* Reduce final 1024-2048 bits to 64 bits, shifting 32 bits to include the trailing 32 bits of zeros */ |
| 808 | /* x^1952 mod p(x)`, x^1984 mod p(x)`, x^2016 mod p(x)`, x^2048 mod p(x)` */ |
| 809 | .octa 0x7fec2963e5bf80485cf015c388e56f72 |
| 810 | |
| 811 | /* x^1824 mod p(x)`, x^1856 mod p(x)`, x^1888 mod p(x)`, x^1920 mod p(x)` */ |
| 812 | .octa 0x38e888d4844752a9963a18920246e2e6 |
| 813 | |
| 814 | /* x^1696 mod p(x)`, x^1728 mod p(x)`, x^1760 mod p(x)`, x^1792 mod p(x)` */ |
| 815 | .octa 0x42316c00730206ad419a441956993a31 |
| 816 | |
| 817 | /* x^1568 mod p(x)`, x^1600 mod p(x)`, x^1632 mod p(x)`, x^1664 mod p(x)` */ |
| 818 | .octa 0x543d5c543e65ddf9924752ba2b830011 |
| 819 | |
| 820 | /* x^1440 mod p(x)`, x^1472 mod p(x)`, x^1504 mod p(x)`, x^1536 mod p(x)` */ |
| 821 | .octa 0x78e87aaf56767c9255bd7f9518e4a304 |
| 822 | |
| 823 | /* x^1312 mod p(x)`, x^1344 mod p(x)`, x^1376 mod p(x)`, x^1408 mod p(x)` */ |
| 824 | .octa 0x8f68fcec1903da7f6d76739fe0553f1e |
| 825 | |
| 826 | /* x^1184 mod p(x)`, x^1216 mod p(x)`, x^1248 mod p(x)`, x^1280 mod p(x)` */ |
| 827 | .octa 0x3f4840246791d588c133722b1fe0b5c3 |
| 828 | |
| 829 | /* x^1056 mod p(x)`, x^1088 mod p(x)`, x^1120 mod p(x)`, x^1152 mod p(x)` */ |
| 830 | .octa 0x34c96751b04de25a64b67ee0e55ef1f3 |
| 831 | |
| 832 | /* x^928 mod p(x)`, x^960 mod p(x)`, x^992 mod p(x)`, x^1024 mod p(x)` */ |
| 833 | .octa 0x156c8e180b4a395b069db049b8fdb1e7 |
| 834 | |
| 835 | /* x^800 mod p(x)`, x^832 mod p(x)`, x^864 mod p(x)`, x^896 mod p(x)` */ |
| 836 | .octa 0xe0b99ccbe661f7bea11bfaf3c9e90b9e |
| 837 | |
| 838 | /* x^672 mod p(x)`, x^704 mod p(x)`, x^736 mod p(x)`, x^768 mod p(x)` */ |
| 839 | .octa 0x041d37768cd75659817cdc5119b29a35 |
| 840 | |
| 841 | /* x^544 mod p(x)`, x^576 mod p(x)`, x^608 mod p(x)`, x^640 mod p(x)` */ |
| 842 | .octa 0x3a0777818cfaa9651ce9d94b36c41f1c |
| 843 | |
| 844 | /* x^416 mod p(x)`, x^448 mod p(x)`, x^480 mod p(x)`, x^512 mod p(x)` */ |
| 845 | .octa 0x0e148e8252377a554f256efcb82be955 |
| 846 | |
| 847 | /* x^288 mod p(x)`, x^320 mod p(x)`, x^352 mod p(x)`, x^384 mod p(x)` */ |
| 848 | .octa 0x9c25531d19e65ddeec1631edb2dea967 |
| 849 | |
| 850 | /* x^160 mod p(x)`, x^192 mod p(x)`, x^224 mod p(x)`, x^256 mod p(x)` */ |
| 851 | .octa 0x790606ff9957c0a65d27e147510ac59a |
| 852 | |
| 853 | /* x^32 mod p(x)`, x^64 mod p(x)`, x^96 mod p(x)`, x^128 mod p(x)` */ |
| 854 | .octa 0x82f63b786ea2d55ca66805eb18b8ea18 |
| 855 | |
| 856 | |
| 857 | .barrett_constants: |
| 858 | /* 33 bit reflected Barrett constant m - (4^32)/n */ |
| 859 | .octa 0x000000000000000000000000dea713f1 /* x^64 div p(x)` */ |
| 860 | /* 33 bit reflected Barrett constant n */ |
| 861 | .octa 0x00000000000000000000000105ec76f1 |
| 862 | |
| 863 | .text |
| 864 | |
| 865 | #if defined(__BIG_ENDIAN__) |
| 866 | #define BYTESWAP_DATA |
| 867 | #else |
| 868 | #undef BYTESWAP_DATA |
| 869 | #endif |
| 870 | |
| 871 | #define off16 r25 |
| 872 | #define off32 r26 |
| 873 | #define off48 r27 |
| 874 | #define off64 r28 |
| 875 | #define off80 r29 |
| 876 | #define off96 r30 |
| 877 | #define off112 r31 |
| 878 | |
| 879 | #define const1 v24 |
| 880 | #define const2 v25 |
| 881 | |
| 882 | #define byteswap v26 |
| 883 | #define mask_32bit v27 |
| 884 | #define mask_64bit v28 |
| 885 | #define zeroes v29 |
| 886 | |
| 887 | #ifdef BYTESWAP_DATA |
| 888 | #define VPERM(A, B, C, D) vperm A, B, C, D |
| 889 | #else |
| 890 | #define VPERM(A, B, C, D) |
| 891 | #endif |
| 892 | |
| 893 | /* unsigned int __crc32c_vpmsum(unsigned int crc, void *p, unsigned long len) */ |
| 894 | FUNC_START(__crc32c_vpmsum) |
| 895 | std r31,-8(r1) |
| 896 | std r30,-16(r1) |
| 897 | std r29,-24(r1) |
| 898 | std r28,-32(r1) |
| 899 | std r27,-40(r1) |
| 900 | std r26,-48(r1) |
| 901 | std r25,-56(r1) |
| 902 | |
| 903 | li off16,16 |
| 904 | li off32,32 |
| 905 | li off48,48 |
| 906 | li off64,64 |
| 907 | li off80,80 |
| 908 | li off96,96 |
| 909 | li off112,112 |
| 910 | li r0,0 |
| 911 | |
| 912 | /* Enough room for saving 10 non volatile VMX registers */ |
| 913 | subi r6,r1,56+10*16 |
| 914 | subi r7,r1,56+2*16 |
| 915 | |
| 916 | stvx v20,0,r6 |
| 917 | stvx v21,off16,r6 |
| 918 | stvx v22,off32,r6 |
| 919 | stvx v23,off48,r6 |
| 920 | stvx v24,off64,r6 |
| 921 | stvx v25,off80,r6 |
| 922 | stvx v26,off96,r6 |
| 923 | stvx v27,off112,r6 |
| 924 | stvx v28,0,r7 |
| 925 | stvx v29,off16,r7 |
| 926 | |
| 927 | mr r10,r3 |
| 928 | |
| 929 | vxor zeroes,zeroes,zeroes |
| 930 | vspltisw v0,-1 |
| 931 | |
| 932 | vsldoi mask_32bit,zeroes,v0,4 |
| 933 | vsldoi mask_64bit,zeroes,v0,8 |
| 934 | |
| 935 | /* Get the initial value into v8 */ |
| 936 | vxor v8,v8,v8 |
| 937 | MTVRD(v8, R3) |
| 938 | vsldoi v8,zeroes,v8,8 /* shift into bottom 32 bits */ |
| 939 | |
| 940 | #ifdef BYTESWAP_DATA |
| 941 | addis r3,r2,.byteswap_constant@toc@ha |
| 942 | addi r3,r3,.byteswap_constant@toc@l |
| 943 | |
| 944 | lvx byteswap,0,r3 |
| 945 | addi r3,r3,16 |
| 946 | #endif |
| 947 | |
| 948 | cmpdi r5,256 |
| 949 | blt .Lshort |
| 950 | |
| 951 | rldicr r6,r5,0,56 |
| 952 | |
| 953 | /* Checksum in blocks of MAX_SIZE */ |
| 954 | 1: lis r7,MAX_SIZE@h |
| 955 | ori r7,r7,MAX_SIZE@l |
| 956 | mr r9,r7 |
| 957 | cmpd r6,r7 |
| 958 | bgt 2f |
| 959 | mr r7,r6 |
| 960 | 2: subf r6,r7,r6 |
| 961 | |
| 962 | /* our main loop does 128 bytes at a time */ |
| 963 | srdi r7,r7,7 |
| 964 | |
| 965 | /* |
| 966 | * Work out the offset into the constants table to start at. Each |
| 967 | * constant is 16 bytes, and it is used against 128 bytes of input |
| 968 | * data - 128 / 16 = 8 |
| 969 | */ |
| 970 | sldi r8,r7,4 |
| 971 | srdi r9,r9,3 |
| 972 | subf r8,r8,r9 |
| 973 | |
| 974 | /* We reduce our final 128 bytes in a separate step */ |
| 975 | addi r7,r7,-1 |
| 976 | mtctr r7 |
| 977 | |
| 978 | addis r3,r2,.constants@toc@ha |
| 979 | addi r3,r3,.constants@toc@l |
| 980 | |
| 981 | /* Find the start of our constants */ |
| 982 | add r3,r3,r8 |
| 983 | |
| 984 | /* zero v0-v7 which will contain our checksums */ |
| 985 | vxor v0,v0,v0 |
| 986 | vxor v1,v1,v1 |
| 987 | vxor v2,v2,v2 |
| 988 | vxor v3,v3,v3 |
| 989 | vxor v4,v4,v4 |
| 990 | vxor v5,v5,v5 |
| 991 | vxor v6,v6,v6 |
| 992 | vxor v7,v7,v7 |
| 993 | |
| 994 | lvx const1,0,r3 |
| 995 | |
| 996 | /* |
| 997 | * If we are looping back to consume more data we use the values |
| 998 | * already in v16-v23. |
| 999 | */ |
| 1000 | cmpdi r0,1 |
| 1001 | beq 2f |
| 1002 | |
| 1003 | /* First warm up pass */ |
| 1004 | lvx v16,0,r4 |
| 1005 | lvx v17,off16,r4 |
| 1006 | VPERM(v16,v16,v16,byteswap) |
| 1007 | VPERM(v17,v17,v17,byteswap) |
| 1008 | lvx v18,off32,r4 |
| 1009 | lvx v19,off48,r4 |
| 1010 | VPERM(v18,v18,v18,byteswap) |
| 1011 | VPERM(v19,v19,v19,byteswap) |
| 1012 | lvx v20,off64,r4 |
| 1013 | lvx v21,off80,r4 |
| 1014 | VPERM(v20,v20,v20,byteswap) |
| 1015 | VPERM(v21,v21,v21,byteswap) |
| 1016 | lvx v22,off96,r4 |
| 1017 | lvx v23,off112,r4 |
| 1018 | VPERM(v22,v22,v22,byteswap) |
| 1019 | VPERM(v23,v23,v23,byteswap) |
| 1020 | addi r4,r4,8*16 |
| 1021 | |
| 1022 | /* xor in initial value */ |
| 1023 | vxor v16,v16,v8 |
| 1024 | |
| 1025 | 2: bdz .Lfirst_warm_up_done |
| 1026 | |
| 1027 | addi r3,r3,16 |
| 1028 | lvx const2,0,r3 |
| 1029 | |
| 1030 | /* Second warm up pass */ |
| 1031 | VPMSUMD(v8,v16,const1) |
| 1032 | lvx v16,0,r4 |
| 1033 | VPERM(v16,v16,v16,byteswap) |
| 1034 | ori r2,r2,0 |
| 1035 | |
| 1036 | VPMSUMD(v9,v17,const1) |
| 1037 | lvx v17,off16,r4 |
| 1038 | VPERM(v17,v17,v17,byteswap) |
| 1039 | ori r2,r2,0 |
| 1040 | |
| 1041 | VPMSUMD(v10,v18,const1) |
| 1042 | lvx v18,off32,r4 |
| 1043 | VPERM(v18,v18,v18,byteswap) |
| 1044 | ori r2,r2,0 |
| 1045 | |
| 1046 | VPMSUMD(v11,v19,const1) |
| 1047 | lvx v19,off48,r4 |
| 1048 | VPERM(v19,v19,v19,byteswap) |
| 1049 | ori r2,r2,0 |
| 1050 | |
| 1051 | VPMSUMD(v12,v20,const1) |
| 1052 | lvx v20,off64,r4 |
| 1053 | VPERM(v20,v20,v20,byteswap) |
| 1054 | ori r2,r2,0 |
| 1055 | |
| 1056 | VPMSUMD(v13,v21,const1) |
| 1057 | lvx v21,off80,r4 |
| 1058 | VPERM(v21,v21,v21,byteswap) |
| 1059 | ori r2,r2,0 |
| 1060 | |
| 1061 | VPMSUMD(v14,v22,const1) |
| 1062 | lvx v22,off96,r4 |
| 1063 | VPERM(v22,v22,v22,byteswap) |
| 1064 | ori r2,r2,0 |
| 1065 | |
| 1066 | VPMSUMD(v15,v23,const1) |
| 1067 | lvx v23,off112,r4 |
| 1068 | VPERM(v23,v23,v23,byteswap) |
| 1069 | |
| 1070 | addi r4,r4,8*16 |
| 1071 | |
| 1072 | bdz .Lfirst_cool_down |
| 1073 | |
| 1074 | /* |
| 1075 | * main loop. We modulo schedule it such that it takes three iterations |
| 1076 | * to complete - first iteration load, second iteration vpmsum, third |
| 1077 | * iteration xor. |
| 1078 | */ |
| 1079 | .balign 16 |
| 1080 | 4: lvx const1,0,r3 |
| 1081 | addi r3,r3,16 |
| 1082 | ori r2,r2,0 |
| 1083 | |
| 1084 | vxor v0,v0,v8 |
| 1085 | VPMSUMD(v8,v16,const2) |
| 1086 | lvx v16,0,r4 |
| 1087 | VPERM(v16,v16,v16,byteswap) |
| 1088 | ori r2,r2,0 |
| 1089 | |
| 1090 | vxor v1,v1,v9 |
| 1091 | VPMSUMD(v9,v17,const2) |
| 1092 | lvx v17,off16,r4 |
| 1093 | VPERM(v17,v17,v17,byteswap) |
| 1094 | ori r2,r2,0 |
| 1095 | |
| 1096 | vxor v2,v2,v10 |
| 1097 | VPMSUMD(v10,v18,const2) |
| 1098 | lvx v18,off32,r4 |
| 1099 | VPERM(v18,v18,v18,byteswap) |
| 1100 | ori r2,r2,0 |
| 1101 | |
| 1102 | vxor v3,v3,v11 |
| 1103 | VPMSUMD(v11,v19,const2) |
| 1104 | lvx v19,off48,r4 |
| 1105 | VPERM(v19,v19,v19,byteswap) |
| 1106 | lvx const2,0,r3 |
| 1107 | ori r2,r2,0 |
| 1108 | |
| 1109 | vxor v4,v4,v12 |
| 1110 | VPMSUMD(v12,v20,const1) |
| 1111 | lvx v20,off64,r4 |
| 1112 | VPERM(v20,v20,v20,byteswap) |
| 1113 | ori r2,r2,0 |
| 1114 | |
| 1115 | vxor v5,v5,v13 |
| 1116 | VPMSUMD(v13,v21,const1) |
| 1117 | lvx v21,off80,r4 |
| 1118 | VPERM(v21,v21,v21,byteswap) |
| 1119 | ori r2,r2,0 |
| 1120 | |
| 1121 | vxor v6,v6,v14 |
| 1122 | VPMSUMD(v14,v22,const1) |
| 1123 | lvx v22,off96,r4 |
| 1124 | VPERM(v22,v22,v22,byteswap) |
| 1125 | ori r2,r2,0 |
| 1126 | |
| 1127 | vxor v7,v7,v15 |
| 1128 | VPMSUMD(v15,v23,const1) |
| 1129 | lvx v23,off112,r4 |
| 1130 | VPERM(v23,v23,v23,byteswap) |
| 1131 | |
| 1132 | addi r4,r4,8*16 |
| 1133 | |
| 1134 | bdnz 4b |
| 1135 | |
| 1136 | .Lfirst_cool_down: |
| 1137 | /* First cool down pass */ |
| 1138 | lvx const1,0,r3 |
| 1139 | addi r3,r3,16 |
| 1140 | |
| 1141 | vxor v0,v0,v8 |
| 1142 | VPMSUMD(v8,v16,const1) |
| 1143 | ori r2,r2,0 |
| 1144 | |
| 1145 | vxor v1,v1,v9 |
| 1146 | VPMSUMD(v9,v17,const1) |
| 1147 | ori r2,r2,0 |
| 1148 | |
| 1149 | vxor v2,v2,v10 |
| 1150 | VPMSUMD(v10,v18,const1) |
| 1151 | ori r2,r2,0 |
| 1152 | |
| 1153 | vxor v3,v3,v11 |
| 1154 | VPMSUMD(v11,v19,const1) |
| 1155 | ori r2,r2,0 |
| 1156 | |
| 1157 | vxor v4,v4,v12 |
| 1158 | VPMSUMD(v12,v20,const1) |
| 1159 | ori r2,r2,0 |
| 1160 | |
| 1161 | vxor v5,v5,v13 |
| 1162 | VPMSUMD(v13,v21,const1) |
| 1163 | ori r2,r2,0 |
| 1164 | |
| 1165 | vxor v6,v6,v14 |
| 1166 | VPMSUMD(v14,v22,const1) |
| 1167 | ori r2,r2,0 |
| 1168 | |
| 1169 | vxor v7,v7,v15 |
| 1170 | VPMSUMD(v15,v23,const1) |
| 1171 | ori r2,r2,0 |
| 1172 | |
| 1173 | .Lsecond_cool_down: |
| 1174 | /* Second cool down pass */ |
| 1175 | vxor v0,v0,v8 |
| 1176 | vxor v1,v1,v9 |
| 1177 | vxor v2,v2,v10 |
| 1178 | vxor v3,v3,v11 |
| 1179 | vxor v4,v4,v12 |
| 1180 | vxor v5,v5,v13 |
| 1181 | vxor v6,v6,v14 |
| 1182 | vxor v7,v7,v15 |
| 1183 | |
| 1184 | /* |
| 1185 | * vpmsumd produces a 96 bit result in the least significant bits |
| 1186 | * of the register. Since we are bit reflected we have to shift it |
| 1187 | * left 32 bits so it occupies the least significant bits in the |
| 1188 | * bit reflected domain. |
| 1189 | */ |
| 1190 | vsldoi v0,v0,zeroes,4 |
| 1191 | vsldoi v1,v1,zeroes,4 |
| 1192 | vsldoi v2,v2,zeroes,4 |
| 1193 | vsldoi v3,v3,zeroes,4 |
| 1194 | vsldoi v4,v4,zeroes,4 |
| 1195 | vsldoi v5,v5,zeroes,4 |
| 1196 | vsldoi v6,v6,zeroes,4 |
| 1197 | vsldoi v7,v7,zeroes,4 |
| 1198 | |
| 1199 | /* xor with last 1024 bits */ |
| 1200 | lvx v8,0,r4 |
| 1201 | lvx v9,off16,r4 |
| 1202 | VPERM(v8,v8,v8,byteswap) |
| 1203 | VPERM(v9,v9,v9,byteswap) |
| 1204 | lvx v10,off32,r4 |
| 1205 | lvx v11,off48,r4 |
| 1206 | VPERM(v10,v10,v10,byteswap) |
| 1207 | VPERM(v11,v11,v11,byteswap) |
| 1208 | lvx v12,off64,r4 |
| 1209 | lvx v13,off80,r4 |
| 1210 | VPERM(v12,v12,v12,byteswap) |
| 1211 | VPERM(v13,v13,v13,byteswap) |
| 1212 | lvx v14,off96,r4 |
| 1213 | lvx v15,off112,r4 |
| 1214 | VPERM(v14,v14,v14,byteswap) |
| 1215 | VPERM(v15,v15,v15,byteswap) |
| 1216 | |
| 1217 | addi r4,r4,8*16 |
| 1218 | |
| 1219 | vxor v16,v0,v8 |
| 1220 | vxor v17,v1,v9 |
| 1221 | vxor v18,v2,v10 |
| 1222 | vxor v19,v3,v11 |
| 1223 | vxor v20,v4,v12 |
| 1224 | vxor v21,v5,v13 |
| 1225 | vxor v22,v6,v14 |
| 1226 | vxor v23,v7,v15 |
| 1227 | |
| 1228 | li r0,1 |
| 1229 | cmpdi r6,0 |
| 1230 | addi r6,r6,128 |
| 1231 | bne 1b |
| 1232 | |
| 1233 | /* Work out how many bytes we have left */ |
| 1234 | andi. r5,r5,127 |
| 1235 | |
| 1236 | /* Calculate where in the constant table we need to start */ |
| 1237 | subfic r6,r5,128 |
| 1238 | add r3,r3,r6 |
| 1239 | |
| 1240 | /* How many 16 byte chunks are in the tail */ |
| 1241 | srdi r7,r5,4 |
| 1242 | mtctr r7 |
| 1243 | |
| 1244 | /* |
| 1245 | * Reduce the previously calculated 1024 bits to 64 bits, shifting |
| 1246 | * 32 bits to include the trailing 32 bits of zeros |
| 1247 | */ |
| 1248 | lvx v0,0,r3 |
| 1249 | lvx v1,off16,r3 |
| 1250 | lvx v2,off32,r3 |
| 1251 | lvx v3,off48,r3 |
| 1252 | lvx v4,off64,r3 |
| 1253 | lvx v5,off80,r3 |
| 1254 | lvx v6,off96,r3 |
| 1255 | lvx v7,off112,r3 |
| 1256 | addi r3,r3,8*16 |
| 1257 | |
| 1258 | VPMSUMW(v0,v16,v0) |
| 1259 | VPMSUMW(v1,v17,v1) |
| 1260 | VPMSUMW(v2,v18,v2) |
| 1261 | VPMSUMW(v3,v19,v3) |
| 1262 | VPMSUMW(v4,v20,v4) |
| 1263 | VPMSUMW(v5,v21,v5) |
| 1264 | VPMSUMW(v6,v22,v6) |
| 1265 | VPMSUMW(v7,v23,v7) |
| 1266 | |
| 1267 | /* Now reduce the tail (0 - 112 bytes) */ |
| 1268 | cmpdi r7,0 |
| 1269 | beq 1f |
| 1270 | |
| 1271 | lvx v16,0,r4 |
| 1272 | lvx v17,0,r3 |
| 1273 | VPERM(v16,v16,v16,byteswap) |
| 1274 | VPMSUMW(v16,v16,v17) |
| 1275 | vxor v0,v0,v16 |
| 1276 | bdz 1f |
| 1277 | |
| 1278 | lvx v16,off16,r4 |
| 1279 | lvx v17,off16,r3 |
| 1280 | VPERM(v16,v16,v16,byteswap) |
| 1281 | VPMSUMW(v16,v16,v17) |
| 1282 | vxor v0,v0,v16 |
| 1283 | bdz 1f |
| 1284 | |
| 1285 | lvx v16,off32,r4 |
| 1286 | lvx v17,off32,r3 |
| 1287 | VPERM(v16,v16,v16,byteswap) |
| 1288 | VPMSUMW(v16,v16,v17) |
| 1289 | vxor v0,v0,v16 |
| 1290 | bdz 1f |
| 1291 | |
| 1292 | lvx v16,off48,r4 |
| 1293 | lvx v17,off48,r3 |
| 1294 | VPERM(v16,v16,v16,byteswap) |
| 1295 | VPMSUMW(v16,v16,v17) |
| 1296 | vxor v0,v0,v16 |
| 1297 | bdz 1f |
| 1298 | |
| 1299 | lvx v16,off64,r4 |
| 1300 | lvx v17,off64,r3 |
| 1301 | VPERM(v16,v16,v16,byteswap) |
| 1302 | VPMSUMW(v16,v16,v17) |
| 1303 | vxor v0,v0,v16 |
| 1304 | bdz 1f |
| 1305 | |
| 1306 | lvx v16,off80,r4 |
| 1307 | lvx v17,off80,r3 |
| 1308 | VPERM(v16,v16,v16,byteswap) |
| 1309 | VPMSUMW(v16,v16,v17) |
| 1310 | vxor v0,v0,v16 |
| 1311 | bdz 1f |
| 1312 | |
| 1313 | lvx v16,off96,r4 |
| 1314 | lvx v17,off96,r3 |
| 1315 | VPERM(v16,v16,v16,byteswap) |
| 1316 | VPMSUMW(v16,v16,v17) |
| 1317 | vxor v0,v0,v16 |
| 1318 | |
| 1319 | /* Now xor all the parallel chunks together */ |
| 1320 | 1: vxor v0,v0,v1 |
| 1321 | vxor v2,v2,v3 |
| 1322 | vxor v4,v4,v5 |
| 1323 | vxor v6,v6,v7 |
| 1324 | |
| 1325 | vxor v0,v0,v2 |
| 1326 | vxor v4,v4,v6 |
| 1327 | |
| 1328 | vxor v0,v0,v4 |
| 1329 | |
| 1330 | .Lbarrett_reduction: |
| 1331 | /* Barrett constants */ |
| 1332 | addis r3,r2,.barrett_constants@toc@ha |
| 1333 | addi r3,r3,.barrett_constants@toc@l |
| 1334 | |
| 1335 | lvx const1,0,r3 |
| 1336 | lvx const2,off16,r3 |
| 1337 | |
| 1338 | vsldoi v1,v0,v0,8 |
| 1339 | vxor v0,v0,v1 /* xor two 64 bit results together */ |
| 1340 | |
| 1341 | /* shift left one bit */ |
| 1342 | vspltisb v1,1 |
| 1343 | vsl v0,v0,v1 |
| 1344 | |
| 1345 | vand v0,v0,mask_64bit |
| 1346 | |
| 1347 | /* |
| 1348 | * The reflected version of Barrett reduction. Instead of bit |
| 1349 | * reflecting our data (which is expensive to do), we bit reflect our |
| 1350 | * constants and our algorithm, which means the intermediate data in |
| 1351 | * our vector registers goes from 0-63 instead of 63-0. We can reflect |
| 1352 | * the algorithm because we don't carry in mod 2 arithmetic. |
| 1353 | */ |
| 1354 | vand v1,v0,mask_32bit /* bottom 32 bits of a */ |
| 1355 | VPMSUMD(v1,v1,const1) /* ma */ |
| 1356 | vand v1,v1,mask_32bit /* bottom 32bits of ma */ |
| 1357 | VPMSUMD(v1,v1,const2) /* qn */ |
| 1358 | vxor v0,v0,v1 /* a - qn, subtraction is xor in GF(2) */ |
| 1359 | |
| 1360 | /* |
| 1361 | * Since we are bit reflected, the result (ie the low 32 bits) is in |
| 1362 | * the high 32 bits. We just need to shift it left 4 bytes |
| 1363 | * V0 [ 0 1 X 3 ] |
| 1364 | * V0 [ 0 X 2 3 ] |
| 1365 | */ |
| 1366 | vsldoi v0,v0,zeroes,4 /* shift result into top 64 bits of */ |
| 1367 | |
| 1368 | /* Get it into r3 */ |
| 1369 | MFVRD(R3, v0) |
| 1370 | |
| 1371 | .Lout: |
| 1372 | subi r6,r1,56+10*16 |
| 1373 | subi r7,r1,56+2*16 |
| 1374 | |
| 1375 | lvx v20,0,r6 |
| 1376 | lvx v21,off16,r6 |
| 1377 | lvx v22,off32,r6 |
| 1378 | lvx v23,off48,r6 |
| 1379 | lvx v24,off64,r6 |
| 1380 | lvx v25,off80,r6 |
| 1381 | lvx v26,off96,r6 |
| 1382 | lvx v27,off112,r6 |
| 1383 | lvx v28,0,r7 |
| 1384 | lvx v29,off16,r7 |
| 1385 | |
| 1386 | ld r31,-8(r1) |
| 1387 | ld r30,-16(r1) |
| 1388 | ld r29,-24(r1) |
| 1389 | ld r28,-32(r1) |
| 1390 | ld r27,-40(r1) |
| 1391 | ld r26,-48(r1) |
| 1392 | ld r25,-56(r1) |
| 1393 | |
| 1394 | blr |
| 1395 | |
| 1396 | .Lfirst_warm_up_done: |
| 1397 | lvx const1,0,r3 |
| 1398 | addi r3,r3,16 |
| 1399 | |
| 1400 | VPMSUMD(v8,v16,const1) |
| 1401 | VPMSUMD(v9,v17,const1) |
| 1402 | VPMSUMD(v10,v18,const1) |
| 1403 | VPMSUMD(v11,v19,const1) |
| 1404 | VPMSUMD(v12,v20,const1) |
| 1405 | VPMSUMD(v13,v21,const1) |
| 1406 | VPMSUMD(v14,v22,const1) |
| 1407 | VPMSUMD(v15,v23,const1) |
| 1408 | |
| 1409 | b .Lsecond_cool_down |
| 1410 | |
| 1411 | .Lshort: |
| 1412 | cmpdi r5,0 |
| 1413 | beq .Lzero |
| 1414 | |
| 1415 | addis r3,r2,.short_constants@toc@ha |
| 1416 | addi r3,r3,.short_constants@toc@l |
| 1417 | |
| 1418 | /* Calculate where in the constant table we need to start */ |
| 1419 | subfic r6,r5,256 |
| 1420 | add r3,r3,r6 |
| 1421 | |
| 1422 | /* How many 16 byte chunks? */ |
| 1423 | srdi r7,r5,4 |
| 1424 | mtctr r7 |
| 1425 | |
| 1426 | vxor v19,v19,v19 |
| 1427 | vxor v20,v20,v20 |
| 1428 | |
| 1429 | lvx v0,0,r4 |
| 1430 | lvx v16,0,r3 |
| 1431 | VPERM(v0,v0,v16,byteswap) |
| 1432 | vxor v0,v0,v8 /* xor in initial value */ |
| 1433 | VPMSUMW(v0,v0,v16) |
| 1434 | bdz .Lv0 |
| 1435 | |
| 1436 | lvx v1,off16,r4 |
| 1437 | lvx v17,off16,r3 |
| 1438 | VPERM(v1,v1,v17,byteswap) |
| 1439 | VPMSUMW(v1,v1,v17) |
| 1440 | bdz .Lv1 |
| 1441 | |
| 1442 | lvx v2,off32,r4 |
| 1443 | lvx v16,off32,r3 |
| 1444 | VPERM(v2,v2,v16,byteswap) |
| 1445 | VPMSUMW(v2,v2,v16) |
| 1446 | bdz .Lv2 |
| 1447 | |
| 1448 | lvx v3,off48,r4 |
| 1449 | lvx v17,off48,r3 |
| 1450 | VPERM(v3,v3,v17,byteswap) |
| 1451 | VPMSUMW(v3,v3,v17) |
| 1452 | bdz .Lv3 |
| 1453 | |
| 1454 | lvx v4,off64,r4 |
| 1455 | lvx v16,off64,r3 |
| 1456 | VPERM(v4,v4,v16,byteswap) |
| 1457 | VPMSUMW(v4,v4,v16) |
| 1458 | bdz .Lv4 |
| 1459 | |
| 1460 | lvx v5,off80,r4 |
| 1461 | lvx v17,off80,r3 |
| 1462 | VPERM(v5,v5,v17,byteswap) |
| 1463 | VPMSUMW(v5,v5,v17) |
| 1464 | bdz .Lv5 |
| 1465 | |
| 1466 | lvx v6,off96,r4 |
| 1467 | lvx v16,off96,r3 |
| 1468 | VPERM(v6,v6,v16,byteswap) |
| 1469 | VPMSUMW(v6,v6,v16) |
| 1470 | bdz .Lv6 |
| 1471 | |
| 1472 | lvx v7,off112,r4 |
| 1473 | lvx v17,off112,r3 |
| 1474 | VPERM(v7,v7,v17,byteswap) |
| 1475 | VPMSUMW(v7,v7,v17) |
| 1476 | bdz .Lv7 |
| 1477 | |
| 1478 | addi r3,r3,128 |
| 1479 | addi r4,r4,128 |
| 1480 | |
| 1481 | lvx v8,0,r4 |
| 1482 | lvx v16,0,r3 |
| 1483 | VPERM(v8,v8,v16,byteswap) |
| 1484 | VPMSUMW(v8,v8,v16) |
| 1485 | bdz .Lv8 |
| 1486 | |
| 1487 | lvx v9,off16,r4 |
| 1488 | lvx v17,off16,r3 |
| 1489 | VPERM(v9,v9,v17,byteswap) |
| 1490 | VPMSUMW(v9,v9,v17) |
| 1491 | bdz .Lv9 |
| 1492 | |
| 1493 | lvx v10,off32,r4 |
| 1494 | lvx v16,off32,r3 |
| 1495 | VPERM(v10,v10,v16,byteswap) |
| 1496 | VPMSUMW(v10,v10,v16) |
| 1497 | bdz .Lv10 |
| 1498 | |
| 1499 | lvx v11,off48,r4 |
| 1500 | lvx v17,off48,r3 |
| 1501 | VPERM(v11,v11,v17,byteswap) |
| 1502 | VPMSUMW(v11,v11,v17) |
| 1503 | bdz .Lv11 |
| 1504 | |
| 1505 | lvx v12,off64,r4 |
| 1506 | lvx v16,off64,r3 |
| 1507 | VPERM(v12,v12,v16,byteswap) |
| 1508 | VPMSUMW(v12,v12,v16) |
| 1509 | bdz .Lv12 |
| 1510 | |
| 1511 | lvx v13,off80,r4 |
| 1512 | lvx v17,off80,r3 |
| 1513 | VPERM(v13,v13,v17,byteswap) |
| 1514 | VPMSUMW(v13,v13,v17) |
| 1515 | bdz .Lv13 |
| 1516 | |
| 1517 | lvx v14,off96,r4 |
| 1518 | lvx v16,off96,r3 |
| 1519 | VPERM(v14,v14,v16,byteswap) |
| 1520 | VPMSUMW(v14,v14,v16) |
| 1521 | bdz .Lv14 |
| 1522 | |
| 1523 | lvx v15,off112,r4 |
| 1524 | lvx v17,off112,r3 |
| 1525 | VPERM(v15,v15,v17,byteswap) |
| 1526 | VPMSUMW(v15,v15,v17) |
| 1527 | |
| 1528 | .Lv15: vxor v19,v19,v15 |
| 1529 | .Lv14: vxor v20,v20,v14 |
| 1530 | .Lv13: vxor v19,v19,v13 |
| 1531 | .Lv12: vxor v20,v20,v12 |
| 1532 | .Lv11: vxor v19,v19,v11 |
| 1533 | .Lv10: vxor v20,v20,v10 |
| 1534 | .Lv9: vxor v19,v19,v9 |
| 1535 | .Lv8: vxor v20,v20,v8 |
| 1536 | .Lv7: vxor v19,v19,v7 |
| 1537 | .Lv6: vxor v20,v20,v6 |
| 1538 | .Lv5: vxor v19,v19,v5 |
| 1539 | .Lv4: vxor v20,v20,v4 |
| 1540 | .Lv3: vxor v19,v19,v3 |
| 1541 | .Lv2: vxor v20,v20,v2 |
| 1542 | .Lv1: vxor v19,v19,v1 |
| 1543 | .Lv0: vxor v20,v20,v0 |
| 1544 | |
| 1545 | vxor v0,v19,v20 |
| 1546 | |
| 1547 | b .Lbarrett_reduction |
| 1548 | |
| 1549 | .Lzero: |
| 1550 | mr r3,r10 |
| 1551 | b .Lout |
| 1552 | |
| 1553 | FUNC_END(__crc32_vpmsum) |