zhichang.yuan | 192c4d9 | 2014-04-28 13:11:33 +0800 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (C) 2013 ARM Ltd. |
| 3 | * Copyright (C) 2013 Linaro. |
| 4 | * |
| 5 | * This code is based on glibc cortex strings work originally authored by Linaro |
| 6 | * and re-licensed under GPLv2 for the Linux kernel. The original code can |
| 7 | * be found @ |
| 8 | * |
| 9 | * http://bazaar.launchpad.net/~linaro-toolchain-dev/cortex-strings/trunk/ |
| 10 | * files/head:/src/aarch64/ |
| 11 | * |
| 12 | * This program is free software; you can redistribute it and/or modify |
| 13 | * it under the terms of the GNU General Public License version 2 as |
| 14 | * published by the Free Software Foundation. |
| 15 | * |
| 16 | * This program is distributed in the hope that it will be useful, |
| 17 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 18 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 19 | * GNU General Public License for more details. |
| 20 | * |
| 21 | * You should have received a copy of the GNU General Public License |
| 22 | * along with this program. If not, see <http://www.gnu.org/licenses/>. |
| 23 | */ |
| 24 | |
| 25 | #include <linux/linkage.h> |
| 26 | #include <asm/assembler.h> |
| 27 | |
| 28 | /* |
| 29 | * compare two strings |
| 30 | * |
| 31 | * Parameters: |
| 32 | * x0 - const string 1 pointer |
| 33 | * x1 - const string 2 pointer |
| 34 | * Returns: |
| 35 | * x0 - an integer less than, equal to, or greater than zero |
| 36 | * if s1 is found, respectively, to be less than, to match, |
| 37 | * or be greater than s2. |
| 38 | */ |
| 39 | |
| 40 | #define REP8_01 0x0101010101010101 |
| 41 | #define REP8_7f 0x7f7f7f7f7f7f7f7f |
| 42 | #define REP8_80 0x8080808080808080 |
| 43 | |
| 44 | /* Parameters and result. */ |
| 45 | src1 .req x0 |
| 46 | src2 .req x1 |
| 47 | result .req x0 |
| 48 | |
| 49 | /* Internal variables. */ |
| 50 | data1 .req x2 |
| 51 | data1w .req w2 |
| 52 | data2 .req x3 |
| 53 | data2w .req w3 |
| 54 | has_nul .req x4 |
| 55 | diff .req x5 |
| 56 | syndrome .req x6 |
| 57 | tmp1 .req x7 |
| 58 | tmp2 .req x8 |
| 59 | tmp3 .req x9 |
| 60 | zeroones .req x10 |
| 61 | pos .req x11 |
| 62 | |
| 63 | ENTRY(strcmp) |
| 64 | eor tmp1, src1, src2 |
| 65 | mov zeroones, #REP8_01 |
| 66 | tst tmp1, #7 |
| 67 | b.ne .Lmisaligned8 |
| 68 | ands tmp1, src1, #7 |
| 69 | b.ne .Lmutual_align |
| 70 | |
| 71 | /* |
| 72 | * NUL detection works on the principle that (X - 1) & (~X) & 0x80 |
| 73 | * (=> (X - 1) & ~(X | 0x7f)) is non-zero iff a byte is zero, and |
| 74 | * can be done in parallel across the entire word. |
| 75 | */ |
| 76 | .Lloop_aligned: |
| 77 | ldr data1, [src1], #8 |
| 78 | ldr data2, [src2], #8 |
| 79 | .Lstart_realigned: |
| 80 | sub tmp1, data1, zeroones |
| 81 | orr tmp2, data1, #REP8_7f |
| 82 | eor diff, data1, data2 /* Non-zero if differences found. */ |
| 83 | bic has_nul, tmp1, tmp2 /* Non-zero if NUL terminator. */ |
| 84 | orr syndrome, diff, has_nul |
| 85 | cbz syndrome, .Lloop_aligned |
| 86 | b .Lcal_cmpresult |
| 87 | |
| 88 | .Lmutual_align: |
| 89 | /* |
| 90 | * Sources are mutually aligned, but are not currently at an |
| 91 | * alignment boundary. Round down the addresses and then mask off |
| 92 | * the bytes that preceed the start point. |
| 93 | */ |
| 94 | bic src1, src1, #7 |
| 95 | bic src2, src2, #7 |
| 96 | lsl tmp1, tmp1, #3 /* Bytes beyond alignment -> bits. */ |
| 97 | ldr data1, [src1], #8 |
| 98 | neg tmp1, tmp1 /* Bits to alignment -64. */ |
| 99 | ldr data2, [src2], #8 |
| 100 | mov tmp2, #~0 |
| 101 | /* Big-endian. Early bytes are at MSB. */ |
| 102 | CPU_BE( lsl tmp2, tmp2, tmp1 ) /* Shift (tmp1 & 63). */ |
| 103 | /* Little-endian. Early bytes are at LSB. */ |
| 104 | CPU_LE( lsr tmp2, tmp2, tmp1 ) /* Shift (tmp1 & 63). */ |
| 105 | |
| 106 | orr data1, data1, tmp2 |
| 107 | orr data2, data2, tmp2 |
| 108 | b .Lstart_realigned |
| 109 | |
| 110 | .Lmisaligned8: |
| 111 | /* |
| 112 | * Get the align offset length to compare per byte first. |
| 113 | * After this process, one string's address will be aligned. |
| 114 | */ |
| 115 | and tmp1, src1, #7 |
| 116 | neg tmp1, tmp1 |
| 117 | add tmp1, tmp1, #8 |
| 118 | and tmp2, src2, #7 |
| 119 | neg tmp2, tmp2 |
| 120 | add tmp2, tmp2, #8 |
| 121 | subs tmp3, tmp1, tmp2 |
| 122 | csel pos, tmp1, tmp2, hi /*Choose the maximum. */ |
| 123 | .Ltinycmp: |
| 124 | ldrb data1w, [src1], #1 |
| 125 | ldrb data2w, [src2], #1 |
| 126 | subs pos, pos, #1 |
| 127 | ccmp data1w, #1, #0, ne /* NZCV = 0b0000. */ |
| 128 | ccmp data1w, data2w, #0, cs /* NZCV = 0b0000. */ |
| 129 | b.eq .Ltinycmp |
| 130 | cbnz pos, 1f /*find the null or unequal...*/ |
| 131 | cmp data1w, #1 |
| 132 | ccmp data1w, data2w, #0, cs |
| 133 | b.eq .Lstart_align /*the last bytes are equal....*/ |
| 134 | 1: |
| 135 | sub result, data1, data2 |
| 136 | ret |
| 137 | |
| 138 | .Lstart_align: |
| 139 | ands xzr, src1, #7 |
| 140 | b.eq .Lrecal_offset |
| 141 | /*process more leading bytes to make str1 aligned...*/ |
| 142 | add src1, src1, tmp3 |
| 143 | add src2, src2, tmp3 |
| 144 | /*load 8 bytes from aligned str1 and non-aligned str2..*/ |
| 145 | ldr data1, [src1], #8 |
| 146 | ldr data2, [src2], #8 |
| 147 | |
| 148 | sub tmp1, data1, zeroones |
| 149 | orr tmp2, data1, #REP8_7f |
| 150 | bic has_nul, tmp1, tmp2 |
| 151 | eor diff, data1, data2 /* Non-zero if differences found. */ |
| 152 | orr syndrome, diff, has_nul |
| 153 | cbnz syndrome, .Lcal_cmpresult |
| 154 | /*How far is the current str2 from the alignment boundary...*/ |
| 155 | and tmp3, tmp3, #7 |
| 156 | .Lrecal_offset: |
| 157 | neg pos, tmp3 |
| 158 | .Lloopcmp_proc: |
| 159 | /* |
| 160 | * Divide the eight bytes into two parts. First,backwards the src2 |
| 161 | * to an alignment boundary,load eight bytes from the SRC2 alignment |
| 162 | * boundary,then compare with the relative bytes from SRC1. |
| 163 | * If all 8 bytes are equal,then start the second part's comparison. |
| 164 | * Otherwise finish the comparison. |
| 165 | * This special handle can garantee all the accesses are in the |
| 166 | * thread/task space in avoid to overrange access. |
| 167 | */ |
| 168 | ldr data1, [src1,pos] |
| 169 | ldr data2, [src2,pos] |
| 170 | sub tmp1, data1, zeroones |
| 171 | orr tmp2, data1, #REP8_7f |
| 172 | bic has_nul, tmp1, tmp2 |
| 173 | eor diff, data1, data2 /* Non-zero if differences found. */ |
| 174 | orr syndrome, diff, has_nul |
| 175 | cbnz syndrome, .Lcal_cmpresult |
| 176 | |
| 177 | /*The second part process*/ |
| 178 | ldr data1, [src1], #8 |
| 179 | ldr data2, [src2], #8 |
| 180 | sub tmp1, data1, zeroones |
| 181 | orr tmp2, data1, #REP8_7f |
| 182 | bic has_nul, tmp1, tmp2 |
| 183 | eor diff, data1, data2 /* Non-zero if differences found. */ |
| 184 | orr syndrome, diff, has_nul |
| 185 | cbz syndrome, .Lloopcmp_proc |
| 186 | |
| 187 | .Lcal_cmpresult: |
| 188 | /* |
| 189 | * reversed the byte-order as big-endian,then CLZ can find the most |
| 190 | * significant zero bits. |
| 191 | */ |
| 192 | CPU_LE( rev syndrome, syndrome ) |
| 193 | CPU_LE( rev data1, data1 ) |
| 194 | CPU_LE( rev data2, data2 ) |
| 195 | |
| 196 | /* |
| 197 | * For big-endian we cannot use the trick with the syndrome value |
| 198 | * as carry-propagation can corrupt the upper bits if the trailing |
| 199 | * bytes in the string contain 0x01. |
| 200 | * However, if there is no NUL byte in the dword, we can generate |
| 201 | * the result directly. We ca not just subtract the bytes as the |
| 202 | * MSB might be significant. |
| 203 | */ |
| 204 | CPU_BE( cbnz has_nul, 1f ) |
| 205 | CPU_BE( cmp data1, data2 ) |
| 206 | CPU_BE( cset result, ne ) |
| 207 | CPU_BE( cneg result, result, lo ) |
| 208 | CPU_BE( ret ) |
| 209 | CPU_BE( 1: ) |
| 210 | /*Re-compute the NUL-byte detection, using a byte-reversed value. */ |
| 211 | CPU_BE( rev tmp3, data1 ) |
| 212 | CPU_BE( sub tmp1, tmp3, zeroones ) |
| 213 | CPU_BE( orr tmp2, tmp3, #REP8_7f ) |
| 214 | CPU_BE( bic has_nul, tmp1, tmp2 ) |
| 215 | CPU_BE( rev has_nul, has_nul ) |
| 216 | CPU_BE( orr syndrome, diff, has_nul ) |
| 217 | |
| 218 | clz pos, syndrome |
| 219 | /* |
| 220 | * The MS-non-zero bit of the syndrome marks either the first bit |
| 221 | * that is different, or the top bit of the first zero byte. |
| 222 | * Shifting left now will bring the critical information into the |
| 223 | * top bits. |
| 224 | */ |
| 225 | lsl data1, data1, pos |
| 226 | lsl data2, data2, pos |
| 227 | /* |
| 228 | * But we need to zero-extend (char is unsigned) the value and then |
| 229 | * perform a signed 32-bit subtraction. |
| 230 | */ |
| 231 | lsr data1, data1, #56 |
| 232 | sub result, data1, data2, lsr #56 |
| 233 | ret |
Ard Biesheuvel | 2079184 | 2015-10-08 20:02:03 +0100 | [diff] [blame] | 234 | ENDPIPROC(strcmp) |