blob: 266afd972ad3fa34e90dd5f20ed4c37fdfbd0601 [file] [log] [blame]
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +00001/*
2 * Copyright (C) 2012,2013 - ARM Ltd
3 * Author: Marc Zyngier <marc.zyngier@arm.com>
4 *
5 * Derived from arch/arm/kvm/coproc.c:
6 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
7 * Authors: Rusty Russell <rusty@rustcorp.com.au>
8 * Christoffer Dall <c.dall@virtualopensystems.com>
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License, version 2, as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program. If not, see <http://www.gnu.org/licenses/>.
21 */
22
23#include <linux/mm.h>
24#include <linux/kvm_host.h>
25#include <linux/uaccess.h>
26#include <asm/kvm_arm.h>
27#include <asm/kvm_host.h>
28#include <asm/kvm_emulate.h>
29#include <asm/kvm_coproc.h>
Marc Zyngier9d218a12014-01-15 12:50:23 +000030#include <asm/kvm_mmu.h>
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +000031#include <asm/cacheflush.h>
32#include <asm/cputype.h>
Marc Zyngier0c557ed2014-04-24 10:24:46 +010033#include <asm/debug-monitors.h>
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +000034#include <trace/events/kvm.h>
35
36#include "sys_regs.h"
37
38/*
39 * All of this file is extremly similar to the ARM coproc.c, but the
40 * types are different. My gut feeling is that it should be pretty
41 * easy to merge, but that would be an ABI breakage -- again. VFP
42 * would also need to be abstracted.
Marc Zyngier62a89c42013-02-07 10:32:33 +000043 *
44 * For AArch32, we only take care of what is being trapped. Anything
45 * that has to do with init and userspace access has to go via the
46 * 64bit interface.
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +000047 */
48
49/* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
50static u32 cache_levels;
51
52/* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
53#define CSSELR_MAX 12
54
55/* Which cache CCSIDR represents depends on CSSELR value. */
56static u32 get_ccsidr(u32 csselr)
57{
58 u32 ccsidr;
59
60 /* Make sure noone else changes CSSELR during this! */
61 local_irq_disable();
62 /* Put value into CSSELR */
63 asm volatile("msr csselr_el1, %x0" : : "r" (csselr));
64 isb();
65 /* Read result out of CCSIDR */
66 asm volatile("mrs %0, ccsidr_el1" : "=r" (ccsidr));
67 local_irq_enable();
68
69 return ccsidr;
70}
71
72static void do_dc_cisw(u32 val)
73{
74 asm volatile("dc cisw, %x0" : : "r" (val));
Will Deacon98f76852014-05-02 16:24:10 +010075 dsb(ish);
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +000076}
77
78static void do_dc_csw(u32 val)
79{
80 asm volatile("dc csw, %x0" : : "r" (val));
Will Deacon98f76852014-05-02 16:24:10 +010081 dsb(ish);
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +000082}
83
84/* See note at ARM ARM B1.14.4 */
85static bool access_dcsw(struct kvm_vcpu *vcpu,
86 const struct sys_reg_params *p,
87 const struct sys_reg_desc *r)
88{
89 unsigned long val;
90 int cpu;
91
92 if (!p->is_write)
93 return read_from_write_only(vcpu, p);
94
95 cpu = get_cpu();
96
97 cpumask_setall(&vcpu->arch.require_dcache_flush);
98 cpumask_clear_cpu(cpu, &vcpu->arch.require_dcache_flush);
99
100 /* If we were already preempted, take the long way around */
101 if (cpu != vcpu->arch.last_pcpu) {
102 flush_cache_all();
103 goto done;
104 }
105
106 val = *vcpu_reg(vcpu, p->Rt);
107
108 switch (p->CRm) {
109 case 6: /* Upgrade DCISW to DCCISW, as per HCR.SWIO */
110 case 14: /* DCCISW */
111 do_dc_cisw(val);
112 break;
113
114 case 10: /* DCCSW */
115 do_dc_csw(val);
116 break;
117 }
118
119done:
120 put_cpu();
121
122 return true;
123}
124
125/*
Marc Zyngier4d449232014-01-14 18:00:55 +0000126 * Generic accessor for VM registers. Only called as long as HCR_TVM
127 * is set.
128 */
129static bool access_vm_reg(struct kvm_vcpu *vcpu,
130 const struct sys_reg_params *p,
131 const struct sys_reg_desc *r)
132{
133 unsigned long val;
134
135 BUG_ON(!p->is_write);
136
137 val = *vcpu_reg(vcpu, p->Rt);
Victor Kamenskyf0a3eaf2014-07-02 17:19:30 +0100138 if (!p->is_aarch32 || !p->is_32bit)
Marc Zyngier4d449232014-01-14 18:00:55 +0000139 vcpu_sys_reg(vcpu, r->reg) = val;
Victor Kamenskyf0a3eaf2014-07-02 17:19:30 +0100140 else
141 vcpu_cp15_64_low(vcpu, r->reg) = val & 0xffffffffUL;
142
Marc Zyngier4d449232014-01-14 18:00:55 +0000143 return true;
144}
145
146/*
147 * SCTLR_EL1 accessor. Only called as long as HCR_TVM is set. If the
148 * guest enables the MMU, we stop trapping the VM sys_regs and leave
149 * it in complete control of the caches.
150 */
151static bool access_sctlr(struct kvm_vcpu *vcpu,
152 const struct sys_reg_params *p,
153 const struct sys_reg_desc *r)
154{
155 access_vm_reg(vcpu, p, r);
156
Marc Zyngier9d218a12014-01-15 12:50:23 +0000157 if (vcpu_has_cache_enabled(vcpu)) { /* MMU+Caches enabled? */
Marc Zyngier4d449232014-01-14 18:00:55 +0000158 vcpu->arch.hcr_el2 &= ~HCR_TVM;
Marc Zyngier9d218a12014-01-15 12:50:23 +0000159 stage2_flush_vm(vcpu->kvm);
160 }
Marc Zyngier4d449232014-01-14 18:00:55 +0000161
162 return true;
163}
164
Marc Zyngier7609c122014-04-24 10:21:16 +0100165static bool trap_raz_wi(struct kvm_vcpu *vcpu,
166 const struct sys_reg_params *p,
167 const struct sys_reg_desc *r)
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000168{
169 if (p->is_write)
170 return ignore_write(vcpu, p);
171 else
172 return read_zero(vcpu, p);
173}
174
Marc Zyngier0c557ed2014-04-24 10:24:46 +0100175static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
176 const struct sys_reg_params *p,
177 const struct sys_reg_desc *r)
178{
179 if (p->is_write) {
180 return ignore_write(vcpu, p);
181 } else {
182 *vcpu_reg(vcpu, p->Rt) = (1 << 3);
183 return true;
184 }
185}
186
187static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
188 const struct sys_reg_params *p,
189 const struct sys_reg_desc *r)
190{
191 if (p->is_write) {
192 return ignore_write(vcpu, p);
193 } else {
194 u32 val;
195 asm volatile("mrs %0, dbgauthstatus_el1" : "=r" (val));
196 *vcpu_reg(vcpu, p->Rt) = val;
197 return true;
198 }
199}
200
201/*
202 * We want to avoid world-switching all the DBG registers all the
203 * time:
204 *
205 * - If we've touched any debug register, it is likely that we're
206 * going to touch more of them. It then makes sense to disable the
207 * traps and start doing the save/restore dance
208 * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
209 * then mandatory to save/restore the registers, as the guest
210 * depends on them.
211 *
212 * For this, we use a DIRTY bit, indicating the guest has modified the
213 * debug registers, used as follow:
214 *
215 * On guest entry:
216 * - If the dirty bit is set (because we're coming back from trapping),
217 * disable the traps, save host registers, restore guest registers.
218 * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
219 * set the dirty bit, disable the traps, save host registers,
220 * restore guest registers.
221 * - Otherwise, enable the traps
222 *
223 * On guest exit:
224 * - If the dirty bit is set, save guest registers, restore host
225 * registers and clear the dirty bit. This ensure that the host can
226 * now use the debug registers.
227 */
228static bool trap_debug_regs(struct kvm_vcpu *vcpu,
229 const struct sys_reg_params *p,
230 const struct sys_reg_desc *r)
231{
232 if (p->is_write) {
233 vcpu_sys_reg(vcpu, r->reg) = *vcpu_reg(vcpu, p->Rt);
234 vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
235 } else {
236 *vcpu_reg(vcpu, p->Rt) = vcpu_sys_reg(vcpu, r->reg);
237 }
238
239 return true;
240}
241
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000242static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
243{
244 u64 amair;
245
246 asm volatile("mrs %0, amair_el1\n" : "=r" (amair));
247 vcpu_sys_reg(vcpu, AMAIR_EL1) = amair;
248}
249
250static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
251{
252 /*
253 * Simply map the vcpu_id into the Aff0 field of the MPIDR.
254 */
255 vcpu_sys_reg(vcpu, MPIDR_EL1) = (1UL << 31) | (vcpu->vcpu_id & 0xff);
256}
257
Marc Zyngier0c557ed2014-04-24 10:24:46 +0100258/* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
259#define DBG_BCR_BVR_WCR_WVR_EL1(n) \
260 /* DBGBVRn_EL1 */ \
261 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b100), \
262 trap_debug_regs, reset_val, (DBGBVR0_EL1 + (n)), 0 }, \
263 /* DBGBCRn_EL1 */ \
264 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b101), \
265 trap_debug_regs, reset_val, (DBGBCR0_EL1 + (n)), 0 }, \
266 /* DBGWVRn_EL1 */ \
267 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b110), \
268 trap_debug_regs, reset_val, (DBGWVR0_EL1 + (n)), 0 }, \
269 /* DBGWCRn_EL1 */ \
270 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b111), \
271 trap_debug_regs, reset_val, (DBGWCR0_EL1 + (n)), 0 }
272
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000273/*
274 * Architected system registers.
275 * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
Marc Zyngier7609c122014-04-24 10:21:16 +0100276 *
277 * We could trap ID_DFR0 and tell the guest we don't support performance
278 * monitoring. Unfortunately the patch to make the kernel check ID_DFR0 was
279 * NAKed, so it will read the PMCR anyway.
280 *
281 * Therefore we tell the guest we have 0 counters. Unfortunately, we
282 * must always support PMCCNTR (the cycle counter): we just RAZ/WI for
283 * all PM registers, which doesn't crash the guest kernel at least.
284 *
Marc Zyngier0c557ed2014-04-24 10:24:46 +0100285 * Debug handling: We do trap most, if not all debug related system
286 * registers. The implementation is good enough to ensure that a guest
287 * can use these with minimal performance degradation. The drawback is
288 * that we don't implement any of the external debug, none of the
289 * OSlock protocol. This should be revisited if we ever encounter a
290 * more demanding guest...
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000291 */
292static const struct sys_reg_desc sys_reg_descs[] = {
293 /* DC ISW */
294 { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b0110), Op2(0b010),
295 access_dcsw },
296 /* DC CSW */
297 { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1010), Op2(0b010),
298 access_dcsw },
299 /* DC CISW */
300 { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1110), Op2(0b010),
301 access_dcsw },
302
Marc Zyngier0c557ed2014-04-24 10:24:46 +0100303 DBG_BCR_BVR_WCR_WVR_EL1(0),
304 DBG_BCR_BVR_WCR_WVR_EL1(1),
305 /* MDCCINT_EL1 */
306 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b000),
307 trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
308 /* MDSCR_EL1 */
309 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b010),
310 trap_debug_regs, reset_val, MDSCR_EL1, 0 },
311 DBG_BCR_BVR_WCR_WVR_EL1(2),
312 DBG_BCR_BVR_WCR_WVR_EL1(3),
313 DBG_BCR_BVR_WCR_WVR_EL1(4),
314 DBG_BCR_BVR_WCR_WVR_EL1(5),
315 DBG_BCR_BVR_WCR_WVR_EL1(6),
316 DBG_BCR_BVR_WCR_WVR_EL1(7),
317 DBG_BCR_BVR_WCR_WVR_EL1(8),
318 DBG_BCR_BVR_WCR_WVR_EL1(9),
319 DBG_BCR_BVR_WCR_WVR_EL1(10),
320 DBG_BCR_BVR_WCR_WVR_EL1(11),
321 DBG_BCR_BVR_WCR_WVR_EL1(12),
322 DBG_BCR_BVR_WCR_WVR_EL1(13),
323 DBG_BCR_BVR_WCR_WVR_EL1(14),
324 DBG_BCR_BVR_WCR_WVR_EL1(15),
325
326 /* MDRAR_EL1 */
327 { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b000),
328 trap_raz_wi },
329 /* OSLAR_EL1 */
330 { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b100),
331 trap_raz_wi },
332 /* OSLSR_EL1 */
333 { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0001), Op2(0b100),
334 trap_oslsr_el1 },
335 /* OSDLR_EL1 */
336 { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0011), Op2(0b100),
337 trap_raz_wi },
338 /* DBGPRCR_EL1 */
339 { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0100), Op2(0b100),
340 trap_raz_wi },
341 /* DBGCLAIMSET_EL1 */
342 { Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1000), Op2(0b110),
343 trap_raz_wi },
344 /* DBGCLAIMCLR_EL1 */
345 { Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1001), Op2(0b110),
346 trap_raz_wi },
347 /* DBGAUTHSTATUS_EL1 */
348 { Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1110), Op2(0b110),
349 trap_dbgauthstatus_el1 },
350
Marc Zyngier62a89c42013-02-07 10:32:33 +0000351 /* TEECR32_EL1 */
352 { Op0(0b10), Op1(0b010), CRn(0b0000), CRm(0b0000), Op2(0b000),
353 NULL, reset_val, TEECR32_EL1, 0 },
354 /* TEEHBR32_EL1 */
355 { Op0(0b10), Op1(0b010), CRn(0b0001), CRm(0b0000), Op2(0b000),
356 NULL, reset_val, TEEHBR32_EL1, 0 },
Marc Zyngier0c557ed2014-04-24 10:24:46 +0100357
358 /* MDCCSR_EL1 */
359 { Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0001), Op2(0b000),
360 trap_raz_wi },
361 /* DBGDTR_EL0 */
362 { Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0100), Op2(0b000),
363 trap_raz_wi },
364 /* DBGDTR[TR]X_EL0 */
365 { Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0101), Op2(0b000),
366 trap_raz_wi },
367
Marc Zyngier62a89c42013-02-07 10:32:33 +0000368 /* DBGVCR32_EL2 */
369 { Op0(0b10), Op1(0b100), CRn(0b0000), CRm(0b0111), Op2(0b000),
370 NULL, reset_val, DBGVCR32_EL2, 0 },
371
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000372 /* MPIDR_EL1 */
373 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b101),
374 NULL, reset_mpidr, MPIDR_EL1 },
375 /* SCTLR_EL1 */
376 { Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b000),
Marc Zyngier4d449232014-01-14 18:00:55 +0000377 access_sctlr, reset_val, SCTLR_EL1, 0x00C50078 },
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000378 /* CPACR_EL1 */
379 { Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b010),
380 NULL, reset_val, CPACR_EL1, 0 },
381 /* TTBR0_EL1 */
382 { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b000),
Marc Zyngier4d449232014-01-14 18:00:55 +0000383 access_vm_reg, reset_unknown, TTBR0_EL1 },
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000384 /* TTBR1_EL1 */
385 { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b001),
Marc Zyngier4d449232014-01-14 18:00:55 +0000386 access_vm_reg, reset_unknown, TTBR1_EL1 },
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000387 /* TCR_EL1 */
388 { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b010),
Marc Zyngier4d449232014-01-14 18:00:55 +0000389 access_vm_reg, reset_val, TCR_EL1, 0 },
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000390
391 /* AFSR0_EL1 */
392 { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b000),
Marc Zyngier4d449232014-01-14 18:00:55 +0000393 access_vm_reg, reset_unknown, AFSR0_EL1 },
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000394 /* AFSR1_EL1 */
395 { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b001),
Marc Zyngier4d449232014-01-14 18:00:55 +0000396 access_vm_reg, reset_unknown, AFSR1_EL1 },
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000397 /* ESR_EL1 */
398 { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0010), Op2(0b000),
Marc Zyngier4d449232014-01-14 18:00:55 +0000399 access_vm_reg, reset_unknown, ESR_EL1 },
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000400 /* FAR_EL1 */
401 { Op0(0b11), Op1(0b000), CRn(0b0110), CRm(0b0000), Op2(0b000),
Marc Zyngier4d449232014-01-14 18:00:55 +0000402 access_vm_reg, reset_unknown, FAR_EL1 },
Marc Zyngier1bbd8052013-06-07 11:02:34 +0100403 /* PAR_EL1 */
404 { Op0(0b11), Op1(0b000), CRn(0b0111), CRm(0b0100), Op2(0b000),
405 NULL, reset_unknown, PAR_EL1 },
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000406
407 /* PMINTENSET_EL1 */
408 { Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b001),
Marc Zyngier7609c122014-04-24 10:21:16 +0100409 trap_raz_wi },
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000410 /* PMINTENCLR_EL1 */
411 { Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b010),
Marc Zyngier7609c122014-04-24 10:21:16 +0100412 trap_raz_wi },
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000413
414 /* MAIR_EL1 */
415 { Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0010), Op2(0b000),
Marc Zyngier4d449232014-01-14 18:00:55 +0000416 access_vm_reg, reset_unknown, MAIR_EL1 },
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000417 /* AMAIR_EL1 */
418 { Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0011), Op2(0b000),
Marc Zyngier4d449232014-01-14 18:00:55 +0000419 access_vm_reg, reset_amair_el1, AMAIR_EL1 },
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000420
421 /* VBAR_EL1 */
422 { Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b0000), Op2(0b000),
423 NULL, reset_val, VBAR_EL1, 0 },
424 /* CONTEXTIDR_EL1 */
425 { Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b001),
Marc Zyngier4d449232014-01-14 18:00:55 +0000426 access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000427 /* TPIDR_EL1 */
428 { Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b100),
429 NULL, reset_unknown, TPIDR_EL1 },
430
431 /* CNTKCTL_EL1 */
432 { Op0(0b11), Op1(0b000), CRn(0b1110), CRm(0b0001), Op2(0b000),
433 NULL, reset_val, CNTKCTL_EL1, 0},
434
435 /* CSSELR_EL1 */
436 { Op0(0b11), Op1(0b010), CRn(0b0000), CRm(0b0000), Op2(0b000),
437 NULL, reset_unknown, CSSELR_EL1 },
438
439 /* PMCR_EL0 */
440 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b000),
Marc Zyngier7609c122014-04-24 10:21:16 +0100441 trap_raz_wi },
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000442 /* PMCNTENSET_EL0 */
443 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b001),
Marc Zyngier7609c122014-04-24 10:21:16 +0100444 trap_raz_wi },
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000445 /* PMCNTENCLR_EL0 */
446 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b010),
Marc Zyngier7609c122014-04-24 10:21:16 +0100447 trap_raz_wi },
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000448 /* PMOVSCLR_EL0 */
449 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b011),
Marc Zyngier7609c122014-04-24 10:21:16 +0100450 trap_raz_wi },
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000451 /* PMSWINC_EL0 */
452 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b100),
Marc Zyngier7609c122014-04-24 10:21:16 +0100453 trap_raz_wi },
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000454 /* PMSELR_EL0 */
455 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b101),
Marc Zyngier7609c122014-04-24 10:21:16 +0100456 trap_raz_wi },
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000457 /* PMCEID0_EL0 */
458 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b110),
Marc Zyngier7609c122014-04-24 10:21:16 +0100459 trap_raz_wi },
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000460 /* PMCEID1_EL0 */
461 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b111),
Marc Zyngier7609c122014-04-24 10:21:16 +0100462 trap_raz_wi },
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000463 /* PMCCNTR_EL0 */
464 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b000),
Marc Zyngier7609c122014-04-24 10:21:16 +0100465 trap_raz_wi },
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000466 /* PMXEVTYPER_EL0 */
467 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b001),
Marc Zyngier7609c122014-04-24 10:21:16 +0100468 trap_raz_wi },
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000469 /* PMXEVCNTR_EL0 */
470 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b010),
Marc Zyngier7609c122014-04-24 10:21:16 +0100471 trap_raz_wi },
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000472 /* PMUSERENR_EL0 */
473 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b000),
Marc Zyngier7609c122014-04-24 10:21:16 +0100474 trap_raz_wi },
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000475 /* PMOVSSET_EL0 */
476 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b011),
Marc Zyngier7609c122014-04-24 10:21:16 +0100477 trap_raz_wi },
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000478
479 /* TPIDR_EL0 */
480 { Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b010),
481 NULL, reset_unknown, TPIDR_EL0 },
482 /* TPIDRRO_EL0 */
483 { Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b011),
484 NULL, reset_unknown, TPIDRRO_EL0 },
Marc Zyngier62a89c42013-02-07 10:32:33 +0000485
486 /* DACR32_EL2 */
487 { Op0(0b11), Op1(0b100), CRn(0b0011), CRm(0b0000), Op2(0b000),
488 NULL, reset_unknown, DACR32_EL2 },
489 /* IFSR32_EL2 */
490 { Op0(0b11), Op1(0b100), CRn(0b0101), CRm(0b0000), Op2(0b001),
491 NULL, reset_unknown, IFSR32_EL2 },
492 /* FPEXC32_EL2 */
493 { Op0(0b11), Op1(0b100), CRn(0b0101), CRm(0b0011), Op2(0b000),
494 NULL, reset_val, FPEXC32_EL2, 0x70 },
495};
496
Marc Zyngier72564012014-04-24 10:27:13 +0100497/* Trapped cp14 registers */
498static const struct sys_reg_desc cp14_regs[] = {
499};
500
Marc Zyngier4d449232014-01-14 18:00:55 +0000501/*
502 * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
503 * depending on the way they are accessed (as a 32bit or a 64bit
504 * register).
505 */
Marc Zyngier62a89c42013-02-07 10:32:33 +0000506static const struct sys_reg_desc cp15_regs[] = {
Marc Zyngier4d449232014-01-14 18:00:55 +0000507 { Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
508 { Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_sctlr, NULL, c1_SCTLR },
509 { Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
510 { Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, c2_TTBR1 },
511 { Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, c2_TTBCR },
512 { Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, c3_DACR },
513 { Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, c5_DFSR },
514 { Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, c5_IFSR },
515 { Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, c5_ADFSR },
516 { Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, c5_AIFSR },
517 { Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, c6_DFAR },
518 { Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, c6_IFAR },
519
Marc Zyngier62a89c42013-02-07 10:32:33 +0000520 /*
521 * DC{C,I,CI}SW operations:
522 */
523 { Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
524 { Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
525 { Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
Marc Zyngier4d449232014-01-14 18:00:55 +0000526
Marc Zyngier7609c122014-04-24 10:21:16 +0100527 /* PMU */
528 { Op1( 0), CRn( 9), CRm(12), Op2( 0), trap_raz_wi },
529 { Op1( 0), CRn( 9), CRm(12), Op2( 1), trap_raz_wi },
530 { Op1( 0), CRn( 9), CRm(12), Op2( 2), trap_raz_wi },
531 { Op1( 0), CRn( 9), CRm(12), Op2( 3), trap_raz_wi },
532 { Op1( 0), CRn( 9), CRm(12), Op2( 5), trap_raz_wi },
533 { Op1( 0), CRn( 9), CRm(12), Op2( 6), trap_raz_wi },
534 { Op1( 0), CRn( 9), CRm(12), Op2( 7), trap_raz_wi },
535 { Op1( 0), CRn( 9), CRm(13), Op2( 0), trap_raz_wi },
536 { Op1( 0), CRn( 9), CRm(13), Op2( 1), trap_raz_wi },
537 { Op1( 0), CRn( 9), CRm(13), Op2( 2), trap_raz_wi },
538 { Op1( 0), CRn( 9), CRm(14), Op2( 0), trap_raz_wi },
539 { Op1( 0), CRn( 9), CRm(14), Op2( 1), trap_raz_wi },
540 { Op1( 0), CRn( 9), CRm(14), Op2( 2), trap_raz_wi },
Marc Zyngier4d449232014-01-14 18:00:55 +0000541
542 { Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, c10_PRRR },
543 { Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, c10_NMRR },
544 { Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, c10_AMAIR0 },
545 { Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, c10_AMAIR1 },
546 { Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, c13_CID },
547
548 { Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR1 },
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000549};
550
551/* Target specific emulation tables */
552static struct kvm_sys_reg_target_table *target_tables[KVM_ARM_NUM_TARGETS];
553
554void kvm_register_target_sys_reg_table(unsigned int target,
555 struct kvm_sys_reg_target_table *table)
556{
557 target_tables[target] = table;
558}
559
560/* Get specific register table for this target. */
Marc Zyngier62a89c42013-02-07 10:32:33 +0000561static const struct sys_reg_desc *get_target_table(unsigned target,
562 bool mode_is_64,
563 size_t *num)
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000564{
565 struct kvm_sys_reg_target_table *table;
566
567 table = target_tables[target];
Marc Zyngier62a89c42013-02-07 10:32:33 +0000568 if (mode_is_64) {
569 *num = table->table64.num;
570 return table->table64.table;
571 } else {
572 *num = table->table32.num;
573 return table->table32.table;
574 }
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000575}
576
577static const struct sys_reg_desc *find_reg(const struct sys_reg_params *params,
578 const struct sys_reg_desc table[],
579 unsigned int num)
580{
581 unsigned int i;
582
583 for (i = 0; i < num; i++) {
584 const struct sys_reg_desc *r = &table[i];
585
586 if (params->Op0 != r->Op0)
587 continue;
588 if (params->Op1 != r->Op1)
589 continue;
590 if (params->CRn != r->CRn)
591 continue;
592 if (params->CRm != r->CRm)
593 continue;
594 if (params->Op2 != r->Op2)
595 continue;
596
597 return r;
598 }
599 return NULL;
600}
601
Marc Zyngier62a89c42013-02-07 10:32:33 +0000602int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
603{
604 kvm_inject_undefined(vcpu);
605 return 1;
606}
607
Marc Zyngier72564012014-04-24 10:27:13 +0100608/*
609 * emulate_cp -- tries to match a sys_reg access in a handling table, and
610 * call the corresponding trap handler.
611 *
612 * @params: pointer to the descriptor of the access
613 * @table: array of trap descriptors
614 * @num: size of the trap descriptor array
615 *
616 * Return 0 if the access has been handled, and -1 if not.
617 */
618static int emulate_cp(struct kvm_vcpu *vcpu,
619 const struct sys_reg_params *params,
620 const struct sys_reg_desc *table,
621 size_t num)
Marc Zyngier62a89c42013-02-07 10:32:33 +0000622{
Marc Zyngier72564012014-04-24 10:27:13 +0100623 const struct sys_reg_desc *r;
Marc Zyngier62a89c42013-02-07 10:32:33 +0000624
Marc Zyngier72564012014-04-24 10:27:13 +0100625 if (!table)
626 return -1; /* Not handled */
Marc Zyngier62a89c42013-02-07 10:32:33 +0000627
Marc Zyngier62a89c42013-02-07 10:32:33 +0000628 r = find_reg(params, table, num);
Marc Zyngier62a89c42013-02-07 10:32:33 +0000629
Marc Zyngier72564012014-04-24 10:27:13 +0100630 if (r) {
Marc Zyngier62a89c42013-02-07 10:32:33 +0000631 /*
632 * Not having an accessor means that we have
633 * configured a trap that we don't know how to
634 * handle. This certainly qualifies as a gross bug
635 * that should be fixed right away.
636 */
637 BUG_ON(!r->access);
638
639 if (likely(r->access(vcpu, params, r))) {
640 /* Skip instruction, since it was emulated */
641 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
Marc Zyngier62a89c42013-02-07 10:32:33 +0000642 }
Marc Zyngier72564012014-04-24 10:27:13 +0100643
644 /* Handled */
645 return 0;
Marc Zyngier62a89c42013-02-07 10:32:33 +0000646 }
647
Marc Zyngier72564012014-04-24 10:27:13 +0100648 /* Not handled */
649 return -1;
650}
651
652static void unhandled_cp_access(struct kvm_vcpu *vcpu,
653 struct sys_reg_params *params)
654{
655 u8 hsr_ec = kvm_vcpu_trap_get_class(vcpu);
656 int cp;
657
658 switch(hsr_ec) {
659 case ESR_EL2_EC_CP15_32:
660 case ESR_EL2_EC_CP15_64:
661 cp = 15;
662 break;
663 case ESR_EL2_EC_CP14_MR:
664 case ESR_EL2_EC_CP14_64:
665 cp = 14;
666 break;
667 default:
668 WARN_ON((cp = -1));
669 }
670
671 kvm_err("Unsupported guest CP%d access at: %08lx\n",
672 cp, *vcpu_pc(vcpu));
Marc Zyngier62a89c42013-02-07 10:32:33 +0000673 print_sys_reg_instr(params);
674 kvm_inject_undefined(vcpu);
675}
676
677/**
Marc Zyngier72564012014-04-24 10:27:13 +0100678 * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP15 access
Marc Zyngier62a89c42013-02-07 10:32:33 +0000679 * @vcpu: The VCPU pointer
680 * @run: The kvm_run struct
681 */
Marc Zyngier72564012014-04-24 10:27:13 +0100682static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
683 const struct sys_reg_desc *global,
684 size_t nr_global,
685 const struct sys_reg_desc *target_specific,
686 size_t nr_specific)
Marc Zyngier62a89c42013-02-07 10:32:33 +0000687{
688 struct sys_reg_params params;
689 u32 hsr = kvm_vcpu_get_hsr(vcpu);
690 int Rt2 = (hsr >> 10) & 0xf;
691
Marc Zyngier2072d292014-01-21 10:55:17 +0000692 params.is_aarch32 = true;
693 params.is_32bit = false;
Marc Zyngier62a89c42013-02-07 10:32:33 +0000694 params.CRm = (hsr >> 1) & 0xf;
695 params.Rt = (hsr >> 5) & 0xf;
696 params.is_write = ((hsr & 1) == 0);
697
698 params.Op0 = 0;
699 params.Op1 = (hsr >> 16) & 0xf;
700 params.Op2 = 0;
701 params.CRn = 0;
702
703 /*
704 * Massive hack here. Store Rt2 in the top 32bits so we only
705 * have one register to deal with. As we use the same trap
706 * backends between AArch32 and AArch64, we get away with it.
707 */
708 if (params.is_write) {
709 u64 val = *vcpu_reg(vcpu, params.Rt);
710 val &= 0xffffffff;
711 val |= *vcpu_reg(vcpu, Rt2) << 32;
712 *vcpu_reg(vcpu, params.Rt) = val;
713 }
714
Marc Zyngier72564012014-04-24 10:27:13 +0100715 if (!emulate_cp(vcpu, &params, target_specific, nr_specific))
716 goto out;
717 if (!emulate_cp(vcpu, &params, global, nr_global))
718 goto out;
Marc Zyngier62a89c42013-02-07 10:32:33 +0000719
Marc Zyngier72564012014-04-24 10:27:13 +0100720 unhandled_cp_access(vcpu, &params);
721
722out:
Marc Zyngier62a89c42013-02-07 10:32:33 +0000723 /* Do the opposite hack for the read side */
724 if (!params.is_write) {
725 u64 val = *vcpu_reg(vcpu, params.Rt);
726 val >>= 32;
727 *vcpu_reg(vcpu, Rt2) = val;
728 }
729
730 return 1;
731}
732
733/**
734 * kvm_handle_cp15_32 -- handles a mrc/mcr trap on a guest CP15 access
735 * @vcpu: The VCPU pointer
736 * @run: The kvm_run struct
737 */
Marc Zyngier72564012014-04-24 10:27:13 +0100738static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
739 const struct sys_reg_desc *global,
740 size_t nr_global,
741 const struct sys_reg_desc *target_specific,
742 size_t nr_specific)
Marc Zyngier62a89c42013-02-07 10:32:33 +0000743{
744 struct sys_reg_params params;
745 u32 hsr = kvm_vcpu_get_hsr(vcpu);
746
Marc Zyngier2072d292014-01-21 10:55:17 +0000747 params.is_aarch32 = true;
748 params.is_32bit = true;
Marc Zyngier62a89c42013-02-07 10:32:33 +0000749 params.CRm = (hsr >> 1) & 0xf;
750 params.Rt = (hsr >> 5) & 0xf;
751 params.is_write = ((hsr & 1) == 0);
752 params.CRn = (hsr >> 10) & 0xf;
753 params.Op0 = 0;
754 params.Op1 = (hsr >> 14) & 0x7;
755 params.Op2 = (hsr >> 17) & 0x7;
756
Marc Zyngier72564012014-04-24 10:27:13 +0100757 if (!emulate_cp(vcpu, &params, target_specific, nr_specific))
758 return 1;
759 if (!emulate_cp(vcpu, &params, global, nr_global))
760 return 1;
761
762 unhandled_cp_access(vcpu, &params);
Marc Zyngier62a89c42013-02-07 10:32:33 +0000763 return 1;
764}
765
Marc Zyngier72564012014-04-24 10:27:13 +0100766int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
767{
768 const struct sys_reg_desc *target_specific;
769 size_t num;
770
771 target_specific = get_target_table(vcpu->arch.target, false, &num);
772 return kvm_handle_cp_64(vcpu,
773 cp15_regs, ARRAY_SIZE(cp15_regs),
774 target_specific, num);
775}
776
777int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
778{
779 const struct sys_reg_desc *target_specific;
780 size_t num;
781
782 target_specific = get_target_table(vcpu->arch.target, false, &num);
783 return kvm_handle_cp_32(vcpu,
784 cp15_regs, ARRAY_SIZE(cp15_regs),
785 target_specific, num);
786}
787
788int kvm_handle_cp14_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
789{
790 return kvm_handle_cp_64(vcpu,
791 cp14_regs, ARRAY_SIZE(cp14_regs),
792 NULL, 0);
793}
794
795int kvm_handle_cp14_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
796{
797 return kvm_handle_cp_32(vcpu,
798 cp14_regs, ARRAY_SIZE(cp14_regs),
799 NULL, 0);
800}
801
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000802static int emulate_sys_reg(struct kvm_vcpu *vcpu,
803 const struct sys_reg_params *params)
804{
805 size_t num;
806 const struct sys_reg_desc *table, *r;
807
Marc Zyngier62a89c42013-02-07 10:32:33 +0000808 table = get_target_table(vcpu->arch.target, true, &num);
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000809
810 /* Search target-specific then generic table. */
811 r = find_reg(params, table, num);
812 if (!r)
813 r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
814
815 if (likely(r)) {
816 /*
817 * Not having an accessor means that we have
818 * configured a trap that we don't know how to
819 * handle. This certainly qualifies as a gross bug
820 * that should be fixed right away.
821 */
822 BUG_ON(!r->access);
823
824 if (likely(r->access(vcpu, params, r))) {
825 /* Skip instruction, since it was emulated */
826 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
827 return 1;
828 }
829 /* If access function fails, it should complain. */
830 } else {
831 kvm_err("Unsupported guest sys_reg access at: %lx\n",
832 *vcpu_pc(vcpu));
833 print_sys_reg_instr(params);
834 }
835 kvm_inject_undefined(vcpu);
836 return 1;
837}
838
839static void reset_sys_reg_descs(struct kvm_vcpu *vcpu,
840 const struct sys_reg_desc *table, size_t num)
841{
842 unsigned long i;
843
844 for (i = 0; i < num; i++)
845 if (table[i].reset)
846 table[i].reset(vcpu, &table[i]);
847}
848
849/**
850 * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
851 * @vcpu: The VCPU pointer
852 * @run: The kvm_run struct
853 */
854int kvm_handle_sys_reg(struct kvm_vcpu *vcpu, struct kvm_run *run)
855{
856 struct sys_reg_params params;
857 unsigned long esr = kvm_vcpu_get_hsr(vcpu);
858
Marc Zyngier2072d292014-01-21 10:55:17 +0000859 params.is_aarch32 = false;
860 params.is_32bit = false;
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000861 params.Op0 = (esr >> 20) & 3;
862 params.Op1 = (esr >> 14) & 0x7;
863 params.CRn = (esr >> 10) & 0xf;
864 params.CRm = (esr >> 1) & 0xf;
865 params.Op2 = (esr >> 17) & 0x7;
866 params.Rt = (esr >> 5) & 0x1f;
867 params.is_write = !(esr & 1);
868
869 return emulate_sys_reg(vcpu, &params);
870}
871
872/******************************************************************************
873 * Userspace API
874 *****************************************************************************/
875
876static bool index_to_params(u64 id, struct sys_reg_params *params)
877{
878 switch (id & KVM_REG_SIZE_MASK) {
879 case KVM_REG_SIZE_U64:
880 /* Any unused index bits means it's not valid. */
881 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
882 | KVM_REG_ARM_COPROC_MASK
883 | KVM_REG_ARM64_SYSREG_OP0_MASK
884 | KVM_REG_ARM64_SYSREG_OP1_MASK
885 | KVM_REG_ARM64_SYSREG_CRN_MASK
886 | KVM_REG_ARM64_SYSREG_CRM_MASK
887 | KVM_REG_ARM64_SYSREG_OP2_MASK))
888 return false;
889 params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
890 >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
891 params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
892 >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
893 params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
894 >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
895 params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
896 >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
897 params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
898 >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
899 return true;
900 default:
901 return false;
902 }
903}
904
905/* Decode an index value, and find the sys_reg_desc entry. */
906static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu,
907 u64 id)
908{
909 size_t num;
910 const struct sys_reg_desc *table, *r;
911 struct sys_reg_params params;
912
913 /* We only do sys_reg for now. */
914 if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
915 return NULL;
916
917 if (!index_to_params(id, &params))
918 return NULL;
919
Marc Zyngier62a89c42013-02-07 10:32:33 +0000920 table = get_target_table(vcpu->arch.target, true, &num);
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000921 r = find_reg(&params, table, num);
922 if (!r)
923 r = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
924
925 /* Not saved in the sys_reg array? */
926 if (r && !r->reg)
927 r = NULL;
928
929 return r;
930}
931
932/*
933 * These are the invariant sys_reg registers: we let the guest see the
934 * host versions of these, so they're part of the guest state.
935 *
936 * A future CPU may provide a mechanism to present different values to
937 * the guest, or a future kvm may trap them.
938 */
939
940#define FUNCTION_INVARIANT(reg) \
941 static void get_##reg(struct kvm_vcpu *v, \
942 const struct sys_reg_desc *r) \
943 { \
944 u64 val; \
945 \
946 asm volatile("mrs %0, " __stringify(reg) "\n" \
947 : "=r" (val)); \
948 ((struct sys_reg_desc *)r)->val = val; \
949 }
950
951FUNCTION_INVARIANT(midr_el1)
952FUNCTION_INVARIANT(ctr_el0)
953FUNCTION_INVARIANT(revidr_el1)
954FUNCTION_INVARIANT(id_pfr0_el1)
955FUNCTION_INVARIANT(id_pfr1_el1)
956FUNCTION_INVARIANT(id_dfr0_el1)
957FUNCTION_INVARIANT(id_afr0_el1)
958FUNCTION_INVARIANT(id_mmfr0_el1)
959FUNCTION_INVARIANT(id_mmfr1_el1)
960FUNCTION_INVARIANT(id_mmfr2_el1)
961FUNCTION_INVARIANT(id_mmfr3_el1)
962FUNCTION_INVARIANT(id_isar0_el1)
963FUNCTION_INVARIANT(id_isar1_el1)
964FUNCTION_INVARIANT(id_isar2_el1)
965FUNCTION_INVARIANT(id_isar3_el1)
966FUNCTION_INVARIANT(id_isar4_el1)
967FUNCTION_INVARIANT(id_isar5_el1)
968FUNCTION_INVARIANT(clidr_el1)
969FUNCTION_INVARIANT(aidr_el1)
970
971/* ->val is filled in by kvm_sys_reg_table_init() */
972static struct sys_reg_desc invariant_sys_regs[] = {
973 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b000),
974 NULL, get_midr_el1 },
975 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b110),
976 NULL, get_revidr_el1 },
977 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b000),
978 NULL, get_id_pfr0_el1 },
979 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b001),
980 NULL, get_id_pfr1_el1 },
981 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b010),
982 NULL, get_id_dfr0_el1 },
983 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b011),
984 NULL, get_id_afr0_el1 },
985 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b100),
986 NULL, get_id_mmfr0_el1 },
987 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b101),
988 NULL, get_id_mmfr1_el1 },
989 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b110),
990 NULL, get_id_mmfr2_el1 },
991 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b111),
992 NULL, get_id_mmfr3_el1 },
993 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b000),
994 NULL, get_id_isar0_el1 },
995 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b001),
996 NULL, get_id_isar1_el1 },
997 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b010),
998 NULL, get_id_isar2_el1 },
999 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b011),
1000 NULL, get_id_isar3_el1 },
1001 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b100),
1002 NULL, get_id_isar4_el1 },
1003 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b101),
1004 NULL, get_id_isar5_el1 },
1005 { Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b001),
1006 NULL, get_clidr_el1 },
1007 { Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b111),
1008 NULL, get_aidr_el1 },
1009 { Op0(0b11), Op1(0b011), CRn(0b0000), CRm(0b0000), Op2(0b001),
1010 NULL, get_ctr_el0 },
1011};
1012
Victor Kamensky26c99af2014-06-12 09:30:12 -07001013static int reg_from_user(u64 *val, const void __user *uaddr, u64 id)
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +00001014{
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +00001015 if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
1016 return -EFAULT;
1017 return 0;
1018}
1019
Victor Kamensky26c99af2014-06-12 09:30:12 -07001020static int reg_to_user(void __user *uaddr, const u64 *val, u64 id)
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +00001021{
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +00001022 if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
1023 return -EFAULT;
1024 return 0;
1025}
1026
1027static int get_invariant_sys_reg(u64 id, void __user *uaddr)
1028{
1029 struct sys_reg_params params;
1030 const struct sys_reg_desc *r;
1031
1032 if (!index_to_params(id, &params))
1033 return -ENOENT;
1034
1035 r = find_reg(&params, invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs));
1036 if (!r)
1037 return -ENOENT;
1038
1039 return reg_to_user(uaddr, &r->val, id);
1040}
1041
1042static int set_invariant_sys_reg(u64 id, void __user *uaddr)
1043{
1044 struct sys_reg_params params;
1045 const struct sys_reg_desc *r;
1046 int err;
1047 u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */
1048
1049 if (!index_to_params(id, &params))
1050 return -ENOENT;
1051 r = find_reg(&params, invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs));
1052 if (!r)
1053 return -ENOENT;
1054
1055 err = reg_from_user(&val, uaddr, id);
1056 if (err)
1057 return err;
1058
1059 /* This is what we mean by invariant: you can't change it. */
1060 if (r->val != val)
1061 return -EINVAL;
1062
1063 return 0;
1064}
1065
1066static bool is_valid_cache(u32 val)
1067{
1068 u32 level, ctype;
1069
1070 if (val >= CSSELR_MAX)
1071 return -ENOENT;
1072
1073 /* Bottom bit is Instruction or Data bit. Next 3 bits are level. */
1074 level = (val >> 1);
1075 ctype = (cache_levels >> (level * 3)) & 7;
1076
1077 switch (ctype) {
1078 case 0: /* No cache */
1079 return false;
1080 case 1: /* Instruction cache only */
1081 return (val & 1);
1082 case 2: /* Data cache only */
1083 case 4: /* Unified cache */
1084 return !(val & 1);
1085 case 3: /* Separate instruction and data caches */
1086 return true;
1087 default: /* Reserved: we can't know instruction or data. */
1088 return false;
1089 }
1090}
1091
1092static int demux_c15_get(u64 id, void __user *uaddr)
1093{
1094 u32 val;
1095 u32 __user *uval = uaddr;
1096
1097 /* Fail if we have unknown bits set. */
1098 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
1099 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
1100 return -ENOENT;
1101
1102 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
1103 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
1104 if (KVM_REG_SIZE(id) != 4)
1105 return -ENOENT;
1106 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
1107 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
1108 if (!is_valid_cache(val))
1109 return -ENOENT;
1110
1111 return put_user(get_ccsidr(val), uval);
1112 default:
1113 return -ENOENT;
1114 }
1115}
1116
1117static int demux_c15_set(u64 id, void __user *uaddr)
1118{
1119 u32 val, newval;
1120 u32 __user *uval = uaddr;
1121
1122 /* Fail if we have unknown bits set. */
1123 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
1124 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
1125 return -ENOENT;
1126
1127 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
1128 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
1129 if (KVM_REG_SIZE(id) != 4)
1130 return -ENOENT;
1131 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
1132 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
1133 if (!is_valid_cache(val))
1134 return -ENOENT;
1135
1136 if (get_user(newval, uval))
1137 return -EFAULT;
1138
1139 /* This is also invariant: you can't change it. */
1140 if (newval != get_ccsidr(val))
1141 return -EINVAL;
1142 return 0;
1143 default:
1144 return -ENOENT;
1145 }
1146}
1147
1148int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
1149{
1150 const struct sys_reg_desc *r;
1151 void __user *uaddr = (void __user *)(unsigned long)reg->addr;
1152
1153 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
1154 return demux_c15_get(reg->id, uaddr);
1155
1156 if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
1157 return -ENOENT;
1158
1159 r = index_to_sys_reg_desc(vcpu, reg->id);
1160 if (!r)
1161 return get_invariant_sys_reg(reg->id, uaddr);
1162
1163 return reg_to_user(uaddr, &vcpu_sys_reg(vcpu, r->reg), reg->id);
1164}
1165
1166int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
1167{
1168 const struct sys_reg_desc *r;
1169 void __user *uaddr = (void __user *)(unsigned long)reg->addr;
1170
1171 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
1172 return demux_c15_set(reg->id, uaddr);
1173
1174 if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
1175 return -ENOENT;
1176
1177 r = index_to_sys_reg_desc(vcpu, reg->id);
1178 if (!r)
1179 return set_invariant_sys_reg(reg->id, uaddr);
1180
1181 return reg_from_user(&vcpu_sys_reg(vcpu, r->reg), uaddr, reg->id);
1182}
1183
1184static unsigned int num_demux_regs(void)
1185{
1186 unsigned int i, count = 0;
1187
1188 for (i = 0; i < CSSELR_MAX; i++)
1189 if (is_valid_cache(i))
1190 count++;
1191
1192 return count;
1193}
1194
1195static int write_demux_regids(u64 __user *uindices)
1196{
Alex Bennéeefd48ce2014-07-01 16:53:13 +01001197 u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +00001198 unsigned int i;
1199
1200 val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
1201 for (i = 0; i < CSSELR_MAX; i++) {
1202 if (!is_valid_cache(i))
1203 continue;
1204 if (put_user(val | i, uindices))
1205 return -EFAULT;
1206 uindices++;
1207 }
1208 return 0;
1209}
1210
1211static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
1212{
1213 return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
1214 KVM_REG_ARM64_SYSREG |
1215 (reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
1216 (reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
1217 (reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
1218 (reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
1219 (reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
1220}
1221
1222static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
1223{
1224 if (!*uind)
1225 return true;
1226
1227 if (put_user(sys_reg_to_index(reg), *uind))
1228 return false;
1229
1230 (*uind)++;
1231 return true;
1232}
1233
1234/* Assumed ordered tables, see kvm_sys_reg_table_init. */
1235static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
1236{
1237 const struct sys_reg_desc *i1, *i2, *end1, *end2;
1238 unsigned int total = 0;
1239 size_t num;
1240
1241 /* We check for duplicates here, to allow arch-specific overrides. */
Marc Zyngier62a89c42013-02-07 10:32:33 +00001242 i1 = get_target_table(vcpu->arch.target, true, &num);
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +00001243 end1 = i1 + num;
1244 i2 = sys_reg_descs;
1245 end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
1246
1247 BUG_ON(i1 == end1 || i2 == end2);
1248
1249 /* Walk carefully, as both tables may refer to the same register. */
1250 while (i1 || i2) {
1251 int cmp = cmp_sys_reg(i1, i2);
1252 /* target-specific overrides generic entry. */
1253 if (cmp <= 0) {
1254 /* Ignore registers we trap but don't save. */
1255 if (i1->reg) {
1256 if (!copy_reg_to_user(i1, &uind))
1257 return -EFAULT;
1258 total++;
1259 }
1260 } else {
1261 /* Ignore registers we trap but don't save. */
1262 if (i2->reg) {
1263 if (!copy_reg_to_user(i2, &uind))
1264 return -EFAULT;
1265 total++;
1266 }
1267 }
1268
1269 if (cmp <= 0 && ++i1 == end1)
1270 i1 = NULL;
1271 if (cmp >= 0 && ++i2 == end2)
1272 i2 = NULL;
1273 }
1274 return total;
1275}
1276
1277unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
1278{
1279 return ARRAY_SIZE(invariant_sys_regs)
1280 + num_demux_regs()
1281 + walk_sys_regs(vcpu, (u64 __user *)NULL);
1282}
1283
1284int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
1285{
1286 unsigned int i;
1287 int err;
1288
1289 /* Then give them all the invariant registers' indices. */
1290 for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
1291 if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
1292 return -EFAULT;
1293 uindices++;
1294 }
1295
1296 err = walk_sys_regs(vcpu, uindices);
1297 if (err < 0)
1298 return err;
1299 uindices += err;
1300
1301 return write_demux_regids(uindices);
1302}
1303
1304void kvm_sys_reg_table_init(void)
1305{
1306 unsigned int i;
1307 struct sys_reg_desc clidr;
1308
1309 /* Make sure tables are unique and in order. */
1310 for (i = 1; i < ARRAY_SIZE(sys_reg_descs); i++)
1311 BUG_ON(cmp_sys_reg(&sys_reg_descs[i-1], &sys_reg_descs[i]) >= 0);
1312
1313 /* We abuse the reset function to overwrite the table itself. */
1314 for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
1315 invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
1316
1317 /*
1318 * CLIDR format is awkward, so clean it up. See ARM B4.1.20:
1319 *
1320 * If software reads the Cache Type fields from Ctype1
1321 * upwards, once it has seen a value of 0b000, no caches
1322 * exist at further-out levels of the hierarchy. So, for
1323 * example, if Ctype3 is the first Cache Type field with a
1324 * value of 0b000, the values of Ctype4 to Ctype7 must be
1325 * ignored.
1326 */
1327 get_clidr_el1(NULL, &clidr); /* Ugly... */
1328 cache_levels = clidr.val;
1329 for (i = 0; i < 7; i++)
1330 if (((cache_levels >> (i*3)) & 7) == 0)
1331 break;
1332 /* Clear all higher bits. */
1333 cache_levels &= (1 << (i*3))-1;
1334}
1335
1336/**
1337 * kvm_reset_sys_regs - sets system registers to reset value
1338 * @vcpu: The VCPU pointer
1339 *
1340 * This function finds the right table above and sets the registers on the
1341 * virtual CPU struct to their architecturally defined reset values.
1342 */
1343void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
1344{
1345 size_t num;
1346 const struct sys_reg_desc *table;
1347
1348 /* Catch someone adding a register without putting in reset entry. */
1349 memset(&vcpu->arch.ctxt.sys_regs, 0x42, sizeof(vcpu->arch.ctxt.sys_regs));
1350
1351 /* Generic chip reset first (so target could override). */
1352 reset_sys_reg_descs(vcpu, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
1353
Marc Zyngier62a89c42013-02-07 10:32:33 +00001354 table = get_target_table(vcpu->arch.target, true, &num);
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +00001355 reset_sys_reg_descs(vcpu, table, num);
1356
1357 for (num = 1; num < NR_SYS_REGS; num++)
1358 if (vcpu_sys_reg(vcpu, num) == 0x4242424242424242)
1359 panic("Didn't reset vcpu_sys_reg(%zi)", num);
1360}