blob: f15ac37956e7a2f1f9e9606f7f9736d7acbeaab8 [file] [log] [blame]
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001/*
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 * Authors: Adrian Hunter
20 * Artem Bityutskiy (Битюцкий Артём)
21 */
22
23/*
24 * This file implements TNC (Tree Node Cache) which caches indexing nodes of
25 * the UBIFS B-tree.
26 *
27 * At the moment the locking rules of the TNC tree are quite simple and
28 * straightforward. We just have a mutex and lock it when we traverse the
29 * tree. If a znode is not in memory, we read it from flash while still having
30 * the mutex locked.
31 */
32
33#include <linux/crc32.h>
Tejun Heo5a0e3ad2010-03-24 17:04:11 +090034#include <linux/slab.h>
Artem Bityutskiy1e517642008-07-14 19:08:37 +030035#include "ubifs.h"
36
Richard Weinberger1cb51a12017-01-10 11:49:40 +010037static int try_read_node(const struct ubifs_info *c, void *buf, int type,
38 int len, int lnum, int offs);
39static int fallible_read_node(struct ubifs_info *c, const union ubifs_key *key,
40 struct ubifs_zbranch *zbr, void *node);
41
Artem Bityutskiy1e517642008-07-14 19:08:37 +030042/*
43 * Returned codes of 'matches_name()' and 'fallible_matches_name()' functions.
44 * @NAME_LESS: name corresponding to the first argument is less than second
45 * @NAME_MATCHES: names match
46 * @NAME_GREATER: name corresponding to the second argument is greater than
47 * first
48 * @NOT_ON_MEDIA: node referred by zbranch does not exist on the media
49 *
50 * These constants were introduce to improve readability.
51 */
52enum {
53 NAME_LESS = 0,
54 NAME_MATCHES = 1,
55 NAME_GREATER = 2,
56 NOT_ON_MEDIA = 3,
57};
58
59/**
60 * insert_old_idx - record an index node obsoleted since the last commit start.
61 * @c: UBIFS file-system description object
62 * @lnum: LEB number of obsoleted index node
63 * @offs: offset of obsoleted index node
64 *
65 * Returns %0 on success, and a negative error code on failure.
66 *
67 * For recovery, there must always be a complete intact version of the index on
68 * flash at all times. That is called the "old index". It is the index as at the
69 * time of the last successful commit. Many of the index nodes in the old index
70 * may be dirty, but they must not be erased until the next successful commit
71 * (at which point that index becomes the old index).
72 *
73 * That means that the garbage collection and the in-the-gaps method of
74 * committing must be able to determine if an index node is in the old index.
75 * Most of the old index nodes can be found by looking up the TNC using the
76 * 'lookup_znode()' function. However, some of the old index nodes may have
77 * been deleted from the current index or may have been changed so much that
78 * they cannot be easily found. In those cases, an entry is added to an RB-tree.
79 * That is what this function does. The RB-tree is ordered by LEB number and
80 * offset because they uniquely identify the old index node.
81 */
82static int insert_old_idx(struct ubifs_info *c, int lnum, int offs)
83{
84 struct ubifs_old_idx *old_idx, *o;
85 struct rb_node **p, *parent = NULL;
86
87 old_idx = kmalloc(sizeof(struct ubifs_old_idx), GFP_NOFS);
88 if (unlikely(!old_idx))
89 return -ENOMEM;
90 old_idx->lnum = lnum;
91 old_idx->offs = offs;
92
93 p = &c->old_idx.rb_node;
94 while (*p) {
95 parent = *p;
96 o = rb_entry(parent, struct ubifs_old_idx, rb);
97 if (lnum < o->lnum)
98 p = &(*p)->rb_left;
99 else if (lnum > o->lnum)
100 p = &(*p)->rb_right;
101 else if (offs < o->offs)
102 p = &(*p)->rb_left;
103 else if (offs > o->offs)
104 p = &(*p)->rb_right;
105 else {
Sheng Yong235c3622015-03-20 10:39:42 +0000106 ubifs_err(c, "old idx added twice!");
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300107 kfree(old_idx);
108 return 0;
109 }
110 }
111 rb_link_node(&old_idx->rb, parent, p);
112 rb_insert_color(&old_idx->rb, &c->old_idx);
113 return 0;
114}
115
116/**
117 * insert_old_idx_znode - record a znode obsoleted since last commit start.
118 * @c: UBIFS file-system description object
119 * @znode: znode of obsoleted index node
120 *
121 * Returns %0 on success, and a negative error code on failure.
122 */
123int insert_old_idx_znode(struct ubifs_info *c, struct ubifs_znode *znode)
124{
125 if (znode->parent) {
126 struct ubifs_zbranch *zbr;
127
128 zbr = &znode->parent->zbranch[znode->iip];
129 if (zbr->len)
130 return insert_old_idx(c, zbr->lnum, zbr->offs);
131 } else
132 if (c->zroot.len)
133 return insert_old_idx(c, c->zroot.lnum,
134 c->zroot.offs);
135 return 0;
136}
137
138/**
139 * ins_clr_old_idx_znode - record a znode obsoleted since last commit start.
140 * @c: UBIFS file-system description object
141 * @znode: znode of obsoleted index node
142 *
143 * Returns %0 on success, and a negative error code on failure.
144 */
145static int ins_clr_old_idx_znode(struct ubifs_info *c,
146 struct ubifs_znode *znode)
147{
148 int err;
149
150 if (znode->parent) {
151 struct ubifs_zbranch *zbr;
152
153 zbr = &znode->parent->zbranch[znode->iip];
154 if (zbr->len) {
155 err = insert_old_idx(c, zbr->lnum, zbr->offs);
156 if (err)
157 return err;
158 zbr->lnum = 0;
159 zbr->offs = 0;
160 zbr->len = 0;
161 }
162 } else
163 if (c->zroot.len) {
164 err = insert_old_idx(c, c->zroot.lnum, c->zroot.offs);
165 if (err)
166 return err;
167 c->zroot.lnum = 0;
168 c->zroot.offs = 0;
169 c->zroot.len = 0;
170 }
171 return 0;
172}
173
174/**
175 * destroy_old_idx - destroy the old_idx RB-tree.
176 * @c: UBIFS file-system description object
177 *
178 * During start commit, the old_idx RB-tree is used to avoid overwriting index
179 * nodes that were in the index last commit but have since been deleted. This
180 * is necessary for recovery i.e. the old index must be kept intact until the
181 * new index is successfully written. The old-idx RB-tree is used for the
182 * in-the-gaps method of writing index nodes and is destroyed every commit.
183 */
184void destroy_old_idx(struct ubifs_info *c)
185{
Cody P Schaferbb25e492014-01-23 15:56:08 -0800186 struct ubifs_old_idx *old_idx, *n;
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300187
Cody P Schaferbb25e492014-01-23 15:56:08 -0800188 rbtree_postorder_for_each_entry_safe(old_idx, n, &c->old_idx, rb)
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300189 kfree(old_idx);
Cody P Schaferbb25e492014-01-23 15:56:08 -0800190
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300191 c->old_idx = RB_ROOT;
192}
193
194/**
195 * copy_znode - copy a dirty znode.
196 * @c: UBIFS file-system description object
197 * @znode: znode to copy
198 *
199 * A dirty znode being committed may not be changed, so it is copied.
200 */
201static struct ubifs_znode *copy_znode(struct ubifs_info *c,
202 struct ubifs_znode *znode)
203{
204 struct ubifs_znode *zn;
205
Andrzej Hajdabbc8a0042015-08-07 09:59:31 +0200206 zn = kmemdup(znode, c->max_znode_sz, GFP_NOFS);
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300207 if (unlikely(!zn))
208 return ERR_PTR(-ENOMEM);
209
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300210 zn->cnext = NULL;
211 __set_bit(DIRTY_ZNODE, &zn->flags);
212 __clear_bit(COW_ZNODE, &zn->flags);
213
Richard Weinberger6eb61d52018-07-12 13:01:57 +0200214 ubifs_assert(c, !ubifs_zn_obsolete(znode));
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300215 __set_bit(OBSOLETE_ZNODE, &znode->flags);
216
217 if (znode->level != 0) {
218 int i;
219 const int n = zn->child_cnt;
220
221 /* The children now have new parent */
222 for (i = 0; i < n; i++) {
223 struct ubifs_zbranch *zbr = &zn->zbranch[i];
224
225 if (zbr->znode)
226 zbr->znode->parent = zn;
227 }
228 }
229
230 atomic_long_inc(&c->dirty_zn_cnt);
231 return zn;
232}
233
234/**
235 * add_idx_dirt - add dirt due to a dirty znode.
236 * @c: UBIFS file-system description object
237 * @lnum: LEB number of index node
238 * @dirt: size of index node
239 *
240 * This function updates lprops dirty space and the new size of the index.
241 */
242static int add_idx_dirt(struct ubifs_info *c, int lnum, int dirt)
243{
244 c->calc_idx_sz -= ALIGN(dirt, 8);
245 return ubifs_add_dirt(c, lnum, dirt);
246}
247
248/**
249 * dirty_cow_znode - ensure a znode is not being committed.
250 * @c: UBIFS file-system description object
251 * @zbr: branch of znode to check
252 *
253 * Returns dirtied znode on success or negative error code on failure.
254 */
255static struct ubifs_znode *dirty_cow_znode(struct ubifs_info *c,
256 struct ubifs_zbranch *zbr)
257{
258 struct ubifs_znode *znode = zbr->znode;
259 struct ubifs_znode *zn;
260 int err;
261
Artem Bityutskiyf42eed72011-05-30 14:45:30 +0300262 if (!ubifs_zn_cow(znode)) {
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300263 /* znode is not being committed */
264 if (!test_and_set_bit(DIRTY_ZNODE, &znode->flags)) {
265 atomic_long_inc(&c->dirty_zn_cnt);
266 atomic_long_dec(&c->clean_zn_cnt);
267 atomic_long_dec(&ubifs_clean_zn_cnt);
268 err = add_idx_dirt(c, zbr->lnum, zbr->len);
269 if (unlikely(err))
270 return ERR_PTR(err);
271 }
272 return znode;
273 }
274
275 zn = copy_znode(c, znode);
Hirofumi Nakagawa8d47aef2008-08-21 17:16:40 +0300276 if (IS_ERR(zn))
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300277 return zn;
278
279 if (zbr->len) {
280 err = insert_old_idx(c, zbr->lnum, zbr->offs);
281 if (unlikely(err))
282 return ERR_PTR(err);
283 err = add_idx_dirt(c, zbr->lnum, zbr->len);
284 } else
285 err = 0;
286
287 zbr->znode = zn;
288 zbr->lnum = 0;
289 zbr->offs = 0;
290 zbr->len = 0;
291
292 if (unlikely(err))
293 return ERR_PTR(err);
294 return zn;
295}
296
297/**
298 * lnc_add - add a leaf node to the leaf node cache.
299 * @c: UBIFS file-system description object
300 * @zbr: zbranch of leaf node
301 * @node: leaf node
302 *
303 * Leaf nodes are non-index nodes directory entry nodes or data nodes. The
304 * purpose of the leaf node cache is to save re-reading the same leaf node over
305 * and over again. Most things are cached by VFS, however the file system must
306 * cache directory entries for readdir and for resolving hash collisions. The
307 * present implementation of the leaf node cache is extremely simple, and
308 * allows for error returns that are not used but that may be needed if a more
309 * complex implementation is created.
310 *
311 * Note, this function does not add the @node object to LNC directly, but
312 * allocates a copy of the object and adds the copy to LNC. The reason for this
313 * is that @node has been allocated outside of the TNC subsystem and will be
314 * used with @c->tnc_mutex unlock upon return from the TNC subsystem. But LNC
315 * may be changed at any time, e.g. freed by the shrinker.
316 */
317static int lnc_add(struct ubifs_info *c, struct ubifs_zbranch *zbr,
318 const void *node)
319{
320 int err;
321 void *lnc_node;
322 const struct ubifs_dent_node *dent = node;
323
Richard Weinberger6eb61d52018-07-12 13:01:57 +0200324 ubifs_assert(c, !zbr->leaf);
325 ubifs_assert(c, zbr->len != 0);
326 ubifs_assert(c, is_hash_key(c, &zbr->key));
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300327
328 err = ubifs_validate_entry(c, dent);
329 if (err) {
Artem Bityutskiy7c46d0a2012-05-16 19:04:54 +0300330 dump_stack();
Artem Bityutskiyedf6be22012-05-16 19:15:56 +0300331 ubifs_dump_node(c, dent);
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300332 return err;
333 }
334
Thomas Meyereaecf432011-11-18 00:00:52 +0100335 lnc_node = kmemdup(node, zbr->len, GFP_NOFS);
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300336 if (!lnc_node)
337 /* We don't have to have the cache, so no error */
338 return 0;
339
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300340 zbr->leaf = lnc_node;
341 return 0;
342}
343
344 /**
345 * lnc_add_directly - add a leaf node to the leaf-node-cache.
346 * @c: UBIFS file-system description object
347 * @zbr: zbranch of leaf node
348 * @node: leaf node
349 *
350 * This function is similar to 'lnc_add()', but it does not create a copy of
351 * @node but inserts @node to TNC directly.
352 */
353static int lnc_add_directly(struct ubifs_info *c, struct ubifs_zbranch *zbr,
354 void *node)
355{
356 int err;
357
Richard Weinberger6eb61d52018-07-12 13:01:57 +0200358 ubifs_assert(c, !zbr->leaf);
359 ubifs_assert(c, zbr->len != 0);
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300360
361 err = ubifs_validate_entry(c, node);
362 if (err) {
Artem Bityutskiy7c46d0a2012-05-16 19:04:54 +0300363 dump_stack();
Artem Bityutskiyedf6be22012-05-16 19:15:56 +0300364 ubifs_dump_node(c, node);
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300365 return err;
366 }
367
368 zbr->leaf = node;
369 return 0;
370}
371
372/**
373 * lnc_free - remove a leaf node from the leaf node cache.
374 * @zbr: zbranch of leaf node
375 * @node: leaf node
376 */
377static void lnc_free(struct ubifs_zbranch *zbr)
378{
379 if (!zbr->leaf)
380 return;
381 kfree(zbr->leaf);
382 zbr->leaf = NULL;
383}
384
385/**
Richard Weinbergerb91dc982016-10-10 10:14:40 +0200386 * tnc_read_hashed_node - read a "hashed" leaf node.
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300387 * @c: UBIFS file-system description object
388 * @zbr: key and position of the node
389 * @node: node is returned here
390 *
391 * This function reads a "hashed" node defined by @zbr from the leaf node cache
392 * (in it is there) or from the hash media, in which case the node is also
393 * added to LNC. Returns zero in case of success or a negative negative error
394 * code in case of failure.
395 */
Richard Weinbergerb91dc982016-10-10 10:14:40 +0200396static int tnc_read_hashed_node(struct ubifs_info *c, struct ubifs_zbranch *zbr,
397 void *node)
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300398{
399 int err;
400
Richard Weinberger6eb61d52018-07-12 13:01:57 +0200401 ubifs_assert(c, is_hash_key(c, &zbr->key));
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300402
403 if (zbr->leaf) {
404 /* Read from the leaf node cache */
Richard Weinberger6eb61d52018-07-12 13:01:57 +0200405 ubifs_assert(c, zbr->len != 0);
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300406 memcpy(node, zbr->leaf, zbr->len);
407 return 0;
408 }
409
Richard Weinberger1cb51a12017-01-10 11:49:40 +0100410 if (c->replaying) {
411 err = fallible_read_node(c, &zbr->key, zbr, node);
412 /*
413 * When the node was not found, return -ENOENT, 0 otherwise.
414 * Negative return codes stay as-is.
415 */
416 if (err == 0)
417 err = -ENOENT;
418 else if (err == 1)
419 err = 0;
420 } else {
421 err = ubifs_tnc_read_node(c, zbr, node);
422 }
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300423 if (err)
424 return err;
425
426 /* Add the node to the leaf node cache */
427 err = lnc_add(c, zbr, node);
428 return err;
429}
430
431/**
432 * try_read_node - read a node if it is a node.
433 * @c: UBIFS file-system description object
434 * @buf: buffer to read to
435 * @type: node type
436 * @len: node length (not aligned)
437 * @lnum: LEB number of node to read
438 * @offs: offset of node to read
439 *
440 * This function tries to read a node of known type and length, checks it and
441 * stores it in @buf. This function returns %1 if a node is present and %0 if
442 * a node is not present. A negative error code is returned for I/O errors.
443 * This function performs that same function as ubifs_read_node except that
444 * it does not require that there is actually a node present and instead
445 * the return code indicates if a node was read.
Artem Bityutskiy6f7ab6d2009-01-27 16:12:31 +0200446 *
447 * Note, this function does not check CRC of data nodes if @c->no_chk_data_crc
448 * is true (it is controlled by corresponding mount option). However, if
Artem Bityutskiy18d1d7f2011-01-17 22:27:56 +0200449 * @c->mounting or @c->remounting_rw is true (we are mounting or re-mounting to
450 * R/W mode), @c->no_chk_data_crc is ignored and CRC is checked. This is
451 * because during mounting or re-mounting from R/O mode to R/W mode we may read
452 * journal nodes (when replying the journal or doing the recovery) and the
453 * journal nodes may potentially be corrupted, so checking is required.
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300454 */
455static int try_read_node(const struct ubifs_info *c, void *buf, int type,
456 int len, int lnum, int offs)
457{
458 int err, node_len;
459 struct ubifs_ch *ch = buf;
460 uint32_t crc, node_crc;
461
462 dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len);
463
Artem Bityutskiyd3048202011-06-03 14:03:25 +0300464 err = ubifs_leb_read(c, lnum, buf, offs, len, 1);
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300465 if (err) {
Sheng Yong235c3622015-03-20 10:39:42 +0000466 ubifs_err(c, "cannot read node type %d from LEB %d:%d, error %d",
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300467 type, lnum, offs, err);
468 return err;
469 }
470
471 if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC)
472 return 0;
473
474 if (ch->node_type != type)
475 return 0;
476
477 node_len = le32_to_cpu(ch->len);
478 if (node_len != len)
479 return 0;
480
Artem Bityutskiy18d1d7f2011-01-17 22:27:56 +0200481 if (type == UBIFS_DATA_NODE && c->no_chk_data_crc && !c->mounting &&
482 !c->remounting_rw)
Artem Bityutskiy6f7ab6d2009-01-27 16:12:31 +0200483 return 1;
Adrian Hunter2953e732008-09-04 16:26:00 +0300484
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300485 crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8);
486 node_crc = le32_to_cpu(ch->crc);
487 if (crc != node_crc)
488 return 0;
489
490 return 1;
491}
492
493/**
494 * fallible_read_node - try to read a leaf node.
495 * @c: UBIFS file-system description object
496 * @key: key of node to read
497 * @zbr: position of node
498 * @node: node returned
499 *
500 * This function tries to read a node and returns %1 if the node is read, %0
501 * if the node is not present, and a negative error code in the case of error.
502 */
503static int fallible_read_node(struct ubifs_info *c, const union ubifs_key *key,
504 struct ubifs_zbranch *zbr, void *node)
505{
506 int ret;
507
Artem Bityutskiy515315a2012-01-13 12:33:53 +0200508 dbg_tnck(key, "LEB %d:%d, key ", zbr->lnum, zbr->offs);
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300509
510 ret = try_read_node(c, node, key_type(c, key), zbr->len, zbr->lnum,
511 zbr->offs);
512 if (ret == 1) {
513 union ubifs_key node_key;
514 struct ubifs_dent_node *dent = node;
515
516 /* All nodes have key in the same place */
517 key_read(c, &dent->key, &node_key);
518 if (keys_cmp(c, key, &node_key) != 0)
519 ret = 0;
520 }
Adrian Hunter601c0bc2008-08-22 14:23:35 +0300521 if (ret == 0 && c->replaying)
Artem Bityutskiy515315a2012-01-13 12:33:53 +0200522 dbg_mntk(key, "dangling branch LEB %d:%d len %d, key ",
523 zbr->lnum, zbr->offs, zbr->len);
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300524 return ret;
525}
526
527/**
528 * matches_name - determine if a direntry or xattr entry matches a given name.
529 * @c: UBIFS file-system description object
530 * @zbr: zbranch of dent
531 * @nm: name to match
532 *
533 * This function checks if xentry/direntry referred by zbranch @zbr matches name
534 * @nm. Returns %NAME_MATCHES if it does, %NAME_LESS if the name referred by
535 * @zbr is less than @nm, and %NAME_GREATER if it is greater than @nm. In case
536 * of failure, a negative error code is returned.
537 */
538static int matches_name(struct ubifs_info *c, struct ubifs_zbranch *zbr,
Richard Weinbergerf4f61d22016-11-11 22:50:29 +0100539 const struct fscrypt_name *nm)
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300540{
541 struct ubifs_dent_node *dent;
542 int nlen, err;
543
544 /* If possible, match against the dent in the leaf node cache */
545 if (!zbr->leaf) {
546 dent = kmalloc(zbr->len, GFP_NOFS);
547 if (!dent)
548 return -ENOMEM;
549
550 err = ubifs_tnc_read_node(c, zbr, dent);
551 if (err)
552 goto out_free;
553
554 /* Add the node to the leaf node cache */
555 err = lnc_add_directly(c, zbr, dent);
556 if (err)
557 goto out_free;
558 } else
559 dent = zbr->leaf;
560
561 nlen = le16_to_cpu(dent->nlen);
Richard Weinbergerf4f61d22016-11-11 22:50:29 +0100562 err = memcmp(dent->name, fname_name(nm), min_t(int, nlen, fname_len(nm)));
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300563 if (err == 0) {
Richard Weinbergerf4f61d22016-11-11 22:50:29 +0100564 if (nlen == fname_len(nm))
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300565 return NAME_MATCHES;
Richard Weinbergerf4f61d22016-11-11 22:50:29 +0100566 else if (nlen < fname_len(nm))
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300567 return NAME_LESS;
568 else
569 return NAME_GREATER;
570 } else if (err < 0)
571 return NAME_LESS;
572 else
573 return NAME_GREATER;
574
575out_free:
576 kfree(dent);
577 return err;
578}
579
580/**
581 * get_znode - get a TNC znode that may not be loaded yet.
582 * @c: UBIFS file-system description object
583 * @znode: parent znode
584 * @n: znode branch slot number
585 *
586 * This function returns the znode or a negative error code.
587 */
588static struct ubifs_znode *get_znode(struct ubifs_info *c,
589 struct ubifs_znode *znode, int n)
590{
591 struct ubifs_zbranch *zbr;
592
593 zbr = &znode->zbranch[n];
594 if (zbr->znode)
595 znode = zbr->znode;
596 else
597 znode = ubifs_load_znode(c, zbr, znode, n);
598 return znode;
599}
600
601/**
602 * tnc_next - find next TNC entry.
603 * @c: UBIFS file-system description object
604 * @zn: znode is passed and returned here
605 * @n: znode branch slot number is passed and returned here
606 *
607 * This function returns %0 if the next TNC entry is found, %-ENOENT if there is
608 * no next entry, or a negative error code otherwise.
609 */
610static int tnc_next(struct ubifs_info *c, struct ubifs_znode **zn, int *n)
611{
612 struct ubifs_znode *znode = *zn;
613 int nn = *n;
614
615 nn += 1;
616 if (nn < znode->child_cnt) {
617 *n = nn;
618 return 0;
619 }
620 while (1) {
621 struct ubifs_znode *zp;
622
623 zp = znode->parent;
624 if (!zp)
625 return -ENOENT;
626 nn = znode->iip + 1;
627 znode = zp;
628 if (nn < znode->child_cnt) {
629 znode = get_znode(c, znode, nn);
630 if (IS_ERR(znode))
631 return PTR_ERR(znode);
632 while (znode->level != 0) {
633 znode = get_znode(c, znode, 0);
634 if (IS_ERR(znode))
635 return PTR_ERR(znode);
636 }
637 nn = 0;
638 break;
639 }
640 }
641 *zn = znode;
642 *n = nn;
643 return 0;
644}
645
646/**
647 * tnc_prev - find previous TNC entry.
648 * @c: UBIFS file-system description object
649 * @zn: znode is returned here
650 * @n: znode branch slot number is passed and returned here
651 *
652 * This function returns %0 if the previous TNC entry is found, %-ENOENT if
653 * there is no next entry, or a negative error code otherwise.
654 */
655static int tnc_prev(struct ubifs_info *c, struct ubifs_znode **zn, int *n)
656{
657 struct ubifs_znode *znode = *zn;
658 int nn = *n;
659
660 if (nn > 0) {
661 *n = nn - 1;
662 return 0;
663 }
664 while (1) {
665 struct ubifs_znode *zp;
666
667 zp = znode->parent;
668 if (!zp)
669 return -ENOENT;
670 nn = znode->iip - 1;
671 znode = zp;
672 if (nn >= 0) {
673 znode = get_znode(c, znode, nn);
674 if (IS_ERR(znode))
675 return PTR_ERR(znode);
676 while (znode->level != 0) {
677 nn = znode->child_cnt - 1;
678 znode = get_znode(c, znode, nn);
679 if (IS_ERR(znode))
680 return PTR_ERR(znode);
681 }
682 nn = znode->child_cnt - 1;
683 break;
684 }
685 }
686 *zn = znode;
687 *n = nn;
688 return 0;
689}
690
691/**
692 * resolve_collision - resolve a collision.
693 * @c: UBIFS file-system description object
694 * @key: key of a directory or extended attribute entry
695 * @zn: znode is returned here
696 * @n: zbranch number is passed and returned here
697 * @nm: name of the entry
698 *
699 * This function is called for "hashed" keys to make sure that the found key
700 * really corresponds to the looked up node (directory or extended attribute
701 * entry). It returns %1 and sets @zn and @n if the collision is resolved.
702 * %0 is returned if @nm is not found and @zn and @n are set to the previous
703 * entry, i.e. to the entry after which @nm could follow if it were in TNC.
704 * This means that @n may be set to %-1 if the leftmost key in @zn is the
705 * previous one. A negative error code is returned on failures.
706 */
707static int resolve_collision(struct ubifs_info *c, const union ubifs_key *key,
708 struct ubifs_znode **zn, int *n,
Richard Weinbergerf4f61d22016-11-11 22:50:29 +0100709 const struct fscrypt_name *nm)
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300710{
711 int err;
712
713 err = matches_name(c, &(*zn)->zbranch[*n], nm);
714 if (unlikely(err < 0))
715 return err;
716 if (err == NAME_MATCHES)
717 return 1;
718
719 if (err == NAME_GREATER) {
720 /* Look left */
721 while (1) {
722 err = tnc_prev(c, zn, n);
723 if (err == -ENOENT) {
Richard Weinberger6eb61d52018-07-12 13:01:57 +0200724 ubifs_assert(c, *n == 0);
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300725 *n = -1;
726 return 0;
727 }
728 if (err < 0)
729 return err;
730 if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) {
731 /*
732 * We have found the branch after which we would
733 * like to insert, but inserting in this znode
734 * may still be wrong. Consider the following 3
735 * znodes, in the case where we are resolving a
736 * collision with Key2.
737 *
738 * znode zp
739 * ----------------------
740 * level 1 | Key0 | Key1 |
741 * -----------------------
742 * | |
743 * znode za | | znode zb
744 * ------------ ------------
745 * level 0 | Key0 | | Key2 |
746 * ------------ ------------
747 *
748 * The lookup finds Key2 in znode zb. Lets say
749 * there is no match and the name is greater so
750 * we look left. When we find Key0, we end up
751 * here. If we return now, we will insert into
752 * znode za at slot n = 1. But that is invalid
753 * according to the parent's keys. Key2 must
754 * be inserted into znode zb.
755 *
756 * Note, this problem is not relevant for the
757 * case when we go right, because
758 * 'tnc_insert()' would correct the parent key.
759 */
760 if (*n == (*zn)->child_cnt - 1) {
761 err = tnc_next(c, zn, n);
762 if (err) {
763 /* Should be impossible */
Richard Weinberger6eb61d52018-07-12 13:01:57 +0200764 ubifs_assert(c, 0);
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300765 if (err == -ENOENT)
766 err = -EINVAL;
767 return err;
768 }
Richard Weinberger6eb61d52018-07-12 13:01:57 +0200769 ubifs_assert(c, *n == 0);
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300770 *n = -1;
771 }
772 return 0;
773 }
774 err = matches_name(c, &(*zn)->zbranch[*n], nm);
775 if (err < 0)
776 return err;
777 if (err == NAME_LESS)
778 return 0;
779 if (err == NAME_MATCHES)
780 return 1;
Richard Weinberger6eb61d52018-07-12 13:01:57 +0200781 ubifs_assert(c, err == NAME_GREATER);
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300782 }
783 } else {
784 int nn = *n;
785 struct ubifs_znode *znode = *zn;
786
787 /* Look right */
788 while (1) {
789 err = tnc_next(c, &znode, &nn);
790 if (err == -ENOENT)
791 return 0;
792 if (err < 0)
793 return err;
794 if (keys_cmp(c, &znode->zbranch[nn].key, key))
795 return 0;
796 err = matches_name(c, &znode->zbranch[nn], nm);
797 if (err < 0)
798 return err;
799 if (err == NAME_GREATER)
800 return 0;
801 *zn = znode;
802 *n = nn;
803 if (err == NAME_MATCHES)
804 return 1;
Richard Weinberger6eb61d52018-07-12 13:01:57 +0200805 ubifs_assert(c, err == NAME_LESS);
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300806 }
807 }
808}
809
810/**
811 * fallible_matches_name - determine if a dent matches a given name.
812 * @c: UBIFS file-system description object
813 * @zbr: zbranch of dent
814 * @nm: name to match
815 *
816 * This is a "fallible" version of 'matches_name()' function which does not
817 * panic if the direntry/xentry referred by @zbr does not exist on the media.
818 *
819 * This function checks if xentry/direntry referred by zbranch @zbr matches name
820 * @nm. Returns %NAME_MATCHES it does, %NAME_LESS if the name referred by @zbr
821 * is less than @nm, %NAME_GREATER if it is greater than @nm, and @NOT_ON_MEDIA
822 * if xentry/direntry referred by @zbr does not exist on the media. A negative
823 * error code is returned in case of failure.
824 */
825static int fallible_matches_name(struct ubifs_info *c,
826 struct ubifs_zbranch *zbr,
Richard Weinbergerf4f61d22016-11-11 22:50:29 +0100827 const struct fscrypt_name *nm)
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300828{
829 struct ubifs_dent_node *dent;
830 int nlen, err;
831
832 /* If possible, match against the dent in the leaf node cache */
833 if (!zbr->leaf) {
834 dent = kmalloc(zbr->len, GFP_NOFS);
835 if (!dent)
836 return -ENOMEM;
837
838 err = fallible_read_node(c, &zbr->key, zbr, dent);
839 if (err < 0)
840 goto out_free;
841 if (err == 0) {
842 /* The node was not present */
843 err = NOT_ON_MEDIA;
844 goto out_free;
845 }
Richard Weinberger6eb61d52018-07-12 13:01:57 +0200846 ubifs_assert(c, err == 1);
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300847
848 err = lnc_add_directly(c, zbr, dent);
849 if (err)
850 goto out_free;
851 } else
852 dent = zbr->leaf;
853
854 nlen = le16_to_cpu(dent->nlen);
Richard Weinbergerf4f61d22016-11-11 22:50:29 +0100855 err = memcmp(dent->name, fname_name(nm), min_t(int, nlen, fname_len(nm)));
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300856 if (err == 0) {
Richard Weinbergerf4f61d22016-11-11 22:50:29 +0100857 if (nlen == fname_len(nm))
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300858 return NAME_MATCHES;
Richard Weinbergerf4f61d22016-11-11 22:50:29 +0100859 else if (nlen < fname_len(nm))
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300860 return NAME_LESS;
861 else
862 return NAME_GREATER;
863 } else if (err < 0)
864 return NAME_LESS;
865 else
866 return NAME_GREATER;
867
868out_free:
869 kfree(dent);
870 return err;
871}
872
873/**
874 * fallible_resolve_collision - resolve a collision even if nodes are missing.
875 * @c: UBIFS file-system description object
876 * @key: key
877 * @zn: znode is returned here
878 * @n: branch number is passed and returned here
879 * @nm: name of directory entry
880 * @adding: indicates caller is adding a key to the TNC
881 *
882 * This is a "fallible" version of the 'resolve_collision()' function which
883 * does not panic if one of the nodes referred to by TNC does not exist on the
884 * media. This may happen when replaying the journal if a deleted node was
885 * Garbage-collected and the commit was not done. A branch that refers to a node
886 * that is not present is called a dangling branch. The following are the return
887 * codes for this function:
888 * o if @nm was found, %1 is returned and @zn and @n are set to the found
889 * branch;
890 * o if we are @adding and @nm was not found, %0 is returned;
891 * o if we are not @adding and @nm was not found, but a dangling branch was
892 * found, then %1 is returned and @zn and @n are set to the dangling branch;
893 * o a negative error code is returned in case of failure.
894 */
895static int fallible_resolve_collision(struct ubifs_info *c,
896 const union ubifs_key *key,
897 struct ubifs_znode **zn, int *n,
Richard Weinbergerf4f61d22016-11-11 22:50:29 +0100898 const struct fscrypt_name *nm,
899 int adding)
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300900{
901 struct ubifs_znode *o_znode = NULL, *znode = *zn;
902 int uninitialized_var(o_n), err, cmp, unsure = 0, nn = *n;
903
904 cmp = fallible_matches_name(c, &znode->zbranch[nn], nm);
905 if (unlikely(cmp < 0))
906 return cmp;
907 if (cmp == NAME_MATCHES)
908 return 1;
909 if (cmp == NOT_ON_MEDIA) {
910 o_znode = znode;
911 o_n = nn;
912 /*
913 * We are unlucky and hit a dangling branch straight away.
914 * Now we do not really know where to go to find the needed
915 * branch - to the left or to the right. Well, let's try left.
916 */
917 unsure = 1;
918 } else if (!adding)
919 unsure = 1; /* Remove a dangling branch wherever it is */
920
921 if (cmp == NAME_GREATER || unsure) {
922 /* Look left */
923 while (1) {
924 err = tnc_prev(c, zn, n);
925 if (err == -ENOENT) {
Richard Weinberger6eb61d52018-07-12 13:01:57 +0200926 ubifs_assert(c, *n == 0);
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300927 *n = -1;
928 break;
929 }
930 if (err < 0)
931 return err;
932 if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) {
933 /* See comments in 'resolve_collision()' */
934 if (*n == (*zn)->child_cnt - 1) {
935 err = tnc_next(c, zn, n);
936 if (err) {
937 /* Should be impossible */
Richard Weinberger6eb61d52018-07-12 13:01:57 +0200938 ubifs_assert(c, 0);
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300939 if (err == -ENOENT)
940 err = -EINVAL;
941 return err;
942 }
Richard Weinberger6eb61d52018-07-12 13:01:57 +0200943 ubifs_assert(c, *n == 0);
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300944 *n = -1;
945 }
946 break;
947 }
948 err = fallible_matches_name(c, &(*zn)->zbranch[*n], nm);
949 if (err < 0)
950 return err;
951 if (err == NAME_MATCHES)
952 return 1;
953 if (err == NOT_ON_MEDIA) {
954 o_znode = *zn;
955 o_n = *n;
956 continue;
957 }
958 if (!adding)
959 continue;
960 if (err == NAME_LESS)
961 break;
962 else
963 unsure = 0;
964 }
965 }
966
967 if (cmp == NAME_LESS || unsure) {
968 /* Look right */
969 *zn = znode;
970 *n = nn;
971 while (1) {
972 err = tnc_next(c, &znode, &nn);
973 if (err == -ENOENT)
974 break;
975 if (err < 0)
976 return err;
977 if (keys_cmp(c, &znode->zbranch[nn].key, key))
978 break;
979 err = fallible_matches_name(c, &znode->zbranch[nn], nm);
980 if (err < 0)
981 return err;
982 if (err == NAME_GREATER)
983 break;
984 *zn = znode;
985 *n = nn;
986 if (err == NAME_MATCHES)
987 return 1;
988 if (err == NOT_ON_MEDIA) {
989 o_znode = znode;
990 o_n = nn;
991 }
992 }
993 }
994
995 /* Never match a dangling branch when adding */
996 if (adding || !o_znode)
997 return 0;
998
Artem Bityutskiy515315a2012-01-13 12:33:53 +0200999 dbg_mntk(key, "dangling match LEB %d:%d len %d key ",
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001000 o_znode->zbranch[o_n].lnum, o_znode->zbranch[o_n].offs,
Artem Bityutskiy515315a2012-01-13 12:33:53 +02001001 o_znode->zbranch[o_n].len);
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001002 *zn = o_znode;
1003 *n = o_n;
1004 return 1;
1005}
1006
1007/**
1008 * matches_position - determine if a zbranch matches a given position.
1009 * @zbr: zbranch of dent
1010 * @lnum: LEB number of dent to match
1011 * @offs: offset of dent to match
1012 *
1013 * This function returns %1 if @lnum:@offs matches, and %0 otherwise.
1014 */
1015static int matches_position(struct ubifs_zbranch *zbr, int lnum, int offs)
1016{
1017 if (zbr->lnum == lnum && zbr->offs == offs)
1018 return 1;
1019 else
1020 return 0;
1021}
1022
1023/**
1024 * resolve_collision_directly - resolve a collision directly.
1025 * @c: UBIFS file-system description object
1026 * @key: key of directory entry
1027 * @zn: znode is passed and returned here
1028 * @n: zbranch number is passed and returned here
1029 * @lnum: LEB number of dent node to match
1030 * @offs: offset of dent node to match
1031 *
1032 * This function is used for "hashed" keys to make sure the found directory or
1033 * extended attribute entry node is what was looked for. It is used when the
1034 * flash address of the right node is known (@lnum:@offs) which makes it much
1035 * easier to resolve collisions (no need to read entries and match full
1036 * names). This function returns %1 and sets @zn and @n if the collision is
1037 * resolved, %0 if @lnum:@offs is not found and @zn and @n are set to the
1038 * previous directory entry. Otherwise a negative error code is returned.
1039 */
1040static int resolve_collision_directly(struct ubifs_info *c,
1041 const union ubifs_key *key,
1042 struct ubifs_znode **zn, int *n,
1043 int lnum, int offs)
1044{
1045 struct ubifs_znode *znode;
1046 int nn, err;
1047
1048 znode = *zn;
1049 nn = *n;
1050 if (matches_position(&znode->zbranch[nn], lnum, offs))
1051 return 1;
1052
1053 /* Look left */
1054 while (1) {
1055 err = tnc_prev(c, &znode, &nn);
1056 if (err == -ENOENT)
1057 break;
1058 if (err < 0)
1059 return err;
1060 if (keys_cmp(c, &znode->zbranch[nn].key, key))
1061 break;
1062 if (matches_position(&znode->zbranch[nn], lnum, offs)) {
1063 *zn = znode;
1064 *n = nn;
1065 return 1;
1066 }
1067 }
1068
1069 /* Look right */
1070 znode = *zn;
1071 nn = *n;
1072 while (1) {
1073 err = tnc_next(c, &znode, &nn);
1074 if (err == -ENOENT)
1075 return 0;
1076 if (err < 0)
1077 return err;
1078 if (keys_cmp(c, &znode->zbranch[nn].key, key))
1079 return 0;
1080 *zn = znode;
1081 *n = nn;
1082 if (matches_position(&znode->zbranch[nn], lnum, offs))
1083 return 1;
1084 }
1085}
1086
1087/**
1088 * dirty_cow_bottom_up - dirty a znode and its ancestors.
1089 * @c: UBIFS file-system description object
1090 * @znode: znode to dirty
1091 *
1092 * If we do not have a unique key that resides in a znode, then we cannot
1093 * dirty that znode from the top down (i.e. by using lookup_level0_dirty)
1094 * This function records the path back to the last dirty ancestor, and then
1095 * dirties the znodes on that path.
1096 */
1097static struct ubifs_znode *dirty_cow_bottom_up(struct ubifs_info *c,
1098 struct ubifs_znode *znode)
1099{
1100 struct ubifs_znode *zp;
1101 int *path = c->bottom_up_buf, p = 0;
1102
Richard Weinberger6eb61d52018-07-12 13:01:57 +02001103 ubifs_assert(c, c->zroot.znode);
1104 ubifs_assert(c, znode);
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001105 if (c->zroot.znode->level > BOTTOM_UP_HEIGHT) {
1106 kfree(c->bottom_up_buf);
Kees Cook6da2ec52018-06-12 13:55:00 -07001107 c->bottom_up_buf = kmalloc_array(c->zroot.znode->level,
1108 sizeof(int),
1109 GFP_NOFS);
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001110 if (!c->bottom_up_buf)
1111 return ERR_PTR(-ENOMEM);
1112 path = c->bottom_up_buf;
1113 }
1114 if (c->zroot.znode->level) {
1115 /* Go up until parent is dirty */
1116 while (1) {
1117 int n;
1118
1119 zp = znode->parent;
1120 if (!zp)
1121 break;
1122 n = znode->iip;
Richard Weinberger6eb61d52018-07-12 13:01:57 +02001123 ubifs_assert(c, p < c->zroot.znode->level);
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001124 path[p++] = n;
1125 if (!zp->cnext && ubifs_zn_dirty(znode))
1126 break;
1127 znode = zp;
1128 }
1129 }
1130
1131 /* Come back down, dirtying as we go */
1132 while (1) {
1133 struct ubifs_zbranch *zbr;
1134
1135 zp = znode->parent;
1136 if (zp) {
Richard Weinberger6eb61d52018-07-12 13:01:57 +02001137 ubifs_assert(c, path[p - 1] >= 0);
1138 ubifs_assert(c, path[p - 1] < zp->child_cnt);
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001139 zbr = &zp->zbranch[path[--p]];
1140 znode = dirty_cow_znode(c, zbr);
1141 } else {
Richard Weinberger6eb61d52018-07-12 13:01:57 +02001142 ubifs_assert(c, znode == c->zroot.znode);
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001143 znode = dirty_cow_znode(c, &c->zroot);
1144 }
Hirofumi Nakagawa8d47aef2008-08-21 17:16:40 +03001145 if (IS_ERR(znode) || !p)
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001146 break;
Richard Weinberger6eb61d52018-07-12 13:01:57 +02001147 ubifs_assert(c, path[p - 1] >= 0);
1148 ubifs_assert(c, path[p - 1] < znode->child_cnt);
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001149 znode = znode->zbranch[path[p - 1]].znode;
1150 }
1151
1152 return znode;
1153}
1154
1155/**
1156 * ubifs_lookup_level0 - search for zero-level znode.
1157 * @c: UBIFS file-system description object
1158 * @key: key to lookup
1159 * @zn: znode is returned here
1160 * @n: znode branch slot number is returned here
1161 *
1162 * This function looks up the TNC tree and search for zero-level znode which
1163 * refers key @key. The found zero-level znode is returned in @zn. There are 3
1164 * cases:
1165 * o exact match, i.e. the found zero-level znode contains key @key, then %1
1166 * is returned and slot number of the matched branch is stored in @n;
1167 * o not exact match, which means that zero-level znode does not contain
Richard Weinberger72cd2302019-05-14 22:31:08 +02001168 * @key, then %0 is returned and slot number of the closest branch or %-1
1169 * is stored in @n; In this case calling tnc_next() is mandatory.
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001170 * o @key is so small that it is even less than the lowest key of the
1171 * leftmost zero-level node, then %0 is returned and %0 is stored in @n.
1172 *
1173 * Note, when the TNC tree is traversed, some znodes may be absent, then this
1174 * function reads corresponding indexing nodes and inserts them to TNC. In
1175 * case of failure, a negative error code is returned.
1176 */
1177int ubifs_lookup_level0(struct ubifs_info *c, const union ubifs_key *key,
1178 struct ubifs_znode **zn, int *n)
1179{
1180 int err, exact;
1181 struct ubifs_znode *znode;
Arnd Bergmann6cff5732018-07-13 16:31:56 +02001182 time64_t time = ktime_get_seconds();
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001183
Artem Bityutskiy515315a2012-01-13 12:33:53 +02001184 dbg_tnck(key, "search key ");
Richard Weinberger6eb61d52018-07-12 13:01:57 +02001185 ubifs_assert(c, key_type(c, key) < UBIFS_INVALID_KEY);
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001186
1187 znode = c->zroot.znode;
1188 if (unlikely(!znode)) {
1189 znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1190 if (IS_ERR(znode))
1191 return PTR_ERR(znode);
1192 }
1193
1194 znode->time = time;
1195
1196 while (1) {
1197 struct ubifs_zbranch *zbr;
1198
1199 exact = ubifs_search_zbranch(c, znode, key, n);
1200
1201 if (znode->level == 0)
1202 break;
1203
1204 if (*n < 0)
1205 *n = 0;
1206 zbr = &znode->zbranch[*n];
1207
1208 if (zbr->znode) {
1209 znode->time = time;
1210 znode = zbr->znode;
1211 continue;
1212 }
1213
1214 /* znode is not in TNC cache, load it from the media */
1215 znode = ubifs_load_znode(c, zbr, znode, *n);
1216 if (IS_ERR(znode))
1217 return PTR_ERR(znode);
1218 }
1219
1220 *zn = znode;
1221 if (exact || !is_hash_key(c, key) || *n != -1) {
1222 dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n);
1223 return exact;
1224 }
1225
1226 /*
1227 * Here is a tricky place. We have not found the key and this is a
1228 * "hashed" key, which may collide. The rest of the code deals with
1229 * situations like this:
1230 *
1231 * | 3 | 5 |
1232 * / \
1233 * | 3 | 5 | | 6 | 7 | (x)
1234 *
1235 * Or more a complex example:
1236 *
1237 * | 1 | 5 |
1238 * / \
1239 * | 1 | 3 | | 5 | 8 |
1240 * \ /
1241 * | 5 | 5 | | 6 | 7 | (x)
1242 *
1243 * In the examples, if we are looking for key "5", we may reach nodes
1244 * marked with "(x)". In this case what we have do is to look at the
1245 * left and see if there is "5" key there. If there is, we have to
1246 * return it.
1247 *
1248 * Note, this whole situation is possible because we allow to have
1249 * elements which are equivalent to the next key in the parent in the
1250 * children of current znode. For example, this happens if we split a
1251 * znode like this: | 3 | 5 | 5 | 6 | 7 |, which results in something
1252 * like this:
1253 * | 3 | 5 |
1254 * / \
1255 * | 3 | 5 | | 5 | 6 | 7 |
1256 * ^
1257 * And this becomes what is at the first "picture" after key "5" marked
1258 * with "^" is removed. What could be done is we could prohibit
1259 * splitting in the middle of the colliding sequence. Also, when
1260 * removing the leftmost key, we would have to correct the key of the
1261 * parent node, which would introduce additional complications. Namely,
Artem Bityutskiy7d4e9cc2009-03-20 19:11:12 +02001262 * if we changed the leftmost key of the parent znode, the garbage
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001263 * collector would be unable to find it (GC is doing this when GC'ing
1264 * indexing LEBs). Although we already have an additional RB-tree where
1265 * we save such changed znodes (see 'ins_clr_old_idx_znode()') until
1266 * after the commit. But anyway, this does not look easy to implement
1267 * so we did not try this.
1268 */
1269 err = tnc_prev(c, &znode, n);
1270 if (err == -ENOENT) {
1271 dbg_tnc("found 0, lvl %d, n -1", znode->level);
1272 *n = -1;
1273 return 0;
1274 }
1275 if (unlikely(err < 0))
1276 return err;
1277 if (keys_cmp(c, key, &znode->zbranch[*n].key)) {
1278 dbg_tnc("found 0, lvl %d, n -1", znode->level);
1279 *n = -1;
1280 return 0;
1281 }
1282
1283 dbg_tnc("found 1, lvl %d, n %d", znode->level, *n);
1284 *zn = znode;
1285 return 1;
1286}
1287
1288/**
1289 * lookup_level0_dirty - search for zero-level znode dirtying.
1290 * @c: UBIFS file-system description object
1291 * @key: key to lookup
1292 * @zn: znode is returned here
1293 * @n: znode branch slot number is returned here
1294 *
1295 * This function looks up the TNC tree and search for zero-level znode which
1296 * refers key @key. The found zero-level znode is returned in @zn. There are 3
1297 * cases:
1298 * o exact match, i.e. the found zero-level znode contains key @key, then %1
1299 * is returned and slot number of the matched branch is stored in @n;
1300 * o not exact match, which means that zero-level znode does not contain @key
1301 * then %0 is returned and slot number of the closed branch is stored in
1302 * @n;
1303 * o @key is so small that it is even less than the lowest key of the
1304 * leftmost zero-level node, then %0 is returned and %-1 is stored in @n.
1305 *
1306 * Additionally all znodes in the path from the root to the located zero-level
1307 * znode are marked as dirty.
1308 *
1309 * Note, when the TNC tree is traversed, some znodes may be absent, then this
1310 * function reads corresponding indexing nodes and inserts them to TNC. In
1311 * case of failure, a negative error code is returned.
1312 */
1313static int lookup_level0_dirty(struct ubifs_info *c, const union ubifs_key *key,
1314 struct ubifs_znode **zn, int *n)
1315{
1316 int err, exact;
1317 struct ubifs_znode *znode;
Arnd Bergmann6cff5732018-07-13 16:31:56 +02001318 time64_t time = ktime_get_seconds();
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001319
Artem Bityutskiy515315a2012-01-13 12:33:53 +02001320 dbg_tnck(key, "search and dirty key ");
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001321
1322 znode = c->zroot.znode;
1323 if (unlikely(!znode)) {
1324 znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1325 if (IS_ERR(znode))
1326 return PTR_ERR(znode);
1327 }
1328
1329 znode = dirty_cow_znode(c, &c->zroot);
1330 if (IS_ERR(znode))
1331 return PTR_ERR(znode);
1332
1333 znode->time = time;
1334
1335 while (1) {
1336 struct ubifs_zbranch *zbr;
1337
1338 exact = ubifs_search_zbranch(c, znode, key, n);
1339
1340 if (znode->level == 0)
1341 break;
1342
1343 if (*n < 0)
1344 *n = 0;
1345 zbr = &znode->zbranch[*n];
1346
1347 if (zbr->znode) {
1348 znode->time = time;
1349 znode = dirty_cow_znode(c, zbr);
1350 if (IS_ERR(znode))
1351 return PTR_ERR(znode);
1352 continue;
1353 }
1354
1355 /* znode is not in TNC cache, load it from the media */
1356 znode = ubifs_load_znode(c, zbr, znode, *n);
1357 if (IS_ERR(znode))
1358 return PTR_ERR(znode);
1359 znode = dirty_cow_znode(c, zbr);
1360 if (IS_ERR(znode))
1361 return PTR_ERR(znode);
1362 }
1363
1364 *zn = znode;
1365 if (exact || !is_hash_key(c, key) || *n != -1) {
1366 dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n);
1367 return exact;
1368 }
1369
1370 /*
1371 * See huge comment at 'lookup_level0_dirty()' what is the rest of the
1372 * code.
1373 */
1374 err = tnc_prev(c, &znode, n);
1375 if (err == -ENOENT) {
1376 *n = -1;
1377 dbg_tnc("found 0, lvl %d, n -1", znode->level);
1378 return 0;
1379 }
1380 if (unlikely(err < 0))
1381 return err;
1382 if (keys_cmp(c, key, &znode->zbranch[*n].key)) {
1383 *n = -1;
1384 dbg_tnc("found 0, lvl %d, n -1", znode->level);
1385 return 0;
1386 }
1387
1388 if (znode->cnext || !ubifs_zn_dirty(znode)) {
1389 znode = dirty_cow_bottom_up(c, znode);
1390 if (IS_ERR(znode))
1391 return PTR_ERR(znode);
1392 }
1393
1394 dbg_tnc("found 1, lvl %d, n %d", znode->level, *n);
1395 *zn = znode;
1396 return 1;
1397}
1398
1399/**
Adrian Hunter601c0bc2008-08-22 14:23:35 +03001400 * maybe_leb_gced - determine if a LEB may have been garbage collected.
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001401 * @c: UBIFS file-system description object
Adrian Hunter601c0bc2008-08-22 14:23:35 +03001402 * @lnum: LEB number
1403 * @gc_seq1: garbage collection sequence number
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001404 *
Adrian Hunter601c0bc2008-08-22 14:23:35 +03001405 * This function determines if @lnum may have been garbage collected since
1406 * sequence number @gc_seq1. If it may have been then %1 is returned, otherwise
1407 * %0 is returned.
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001408 */
Adrian Hunter601c0bc2008-08-22 14:23:35 +03001409static int maybe_leb_gced(struct ubifs_info *c, int lnum, int gc_seq1)
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001410{
Adrian Hunter601c0bc2008-08-22 14:23:35 +03001411 int gc_seq2, gced_lnum;
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001412
Adrian Hunter601c0bc2008-08-22 14:23:35 +03001413 gced_lnum = c->gced_lnum;
1414 smp_rmb();
1415 gc_seq2 = c->gc_seq;
1416 /* Same seq means no GC */
1417 if (gc_seq1 == gc_seq2)
1418 return 0;
1419 /* Different by more than 1 means we don't know */
1420 if (gc_seq1 + 1 != gc_seq2)
1421 return 1;
1422 /*
1423 * We have seen the sequence number has increased by 1. Now we need to
1424 * be sure we read the right LEB number, so read it again.
1425 */
1426 smp_rmb();
1427 if (gced_lnum != c->gced_lnum)
1428 return 1;
1429 /* Finally we can check lnum */
1430 if (gced_lnum == lnum)
1431 return 1;
1432 return 0;
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001433}
1434
1435/**
1436 * ubifs_tnc_locate - look up a file-system node and return it and its location.
1437 * @c: UBIFS file-system description object
1438 * @key: node key to lookup
1439 * @node: the node is returned here
1440 * @lnum: LEB number is returned here
1441 * @offs: offset is returned here
1442 *
Artem Bityutskiye3c3efc2009-08-27 16:34:19 +03001443 * This function looks up and reads node with key @key. The caller has to make
Adrian Hunter601c0bc2008-08-22 14:23:35 +03001444 * sure the @node buffer is large enough to fit the node. Returns zero in case
1445 * of success, %-ENOENT if the node was not found, and a negative error code in
1446 * case of failure. The node location can be returned in @lnum and @offs.
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001447 */
1448int ubifs_tnc_locate(struct ubifs_info *c, const union ubifs_key *key,
1449 void *node, int *lnum, int *offs)
1450{
Adrian Hunter601c0bc2008-08-22 14:23:35 +03001451 int found, n, err, safely = 0, gc_seq1;
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001452 struct ubifs_znode *znode;
1453 struct ubifs_zbranch zbr, *zt;
1454
Adrian Hunter601c0bc2008-08-22 14:23:35 +03001455again:
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001456 mutex_lock(&c->tnc_mutex);
1457 found = ubifs_lookup_level0(c, key, &znode, &n);
1458 if (!found) {
1459 err = -ENOENT;
1460 goto out;
1461 } else if (found < 0) {
1462 err = found;
1463 goto out;
1464 }
1465 zt = &znode->zbranch[n];
Adrian Hunter601c0bc2008-08-22 14:23:35 +03001466 if (lnum) {
1467 *lnum = zt->lnum;
1468 *offs = zt->offs;
1469 }
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001470 if (is_hash_key(c, key)) {
1471 /*
1472 * In this case the leaf node cache gets used, so we pass the
1473 * address of the zbranch and keep the mutex locked
1474 */
Richard Weinbergerb91dc982016-10-10 10:14:40 +02001475 err = tnc_read_hashed_node(c, zt, node);
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001476 goto out;
1477 }
Adrian Hunter601c0bc2008-08-22 14:23:35 +03001478 if (safely) {
1479 err = ubifs_tnc_read_node(c, zt, node);
1480 goto out;
1481 }
1482 /* Drop the TNC mutex prematurely and race with garbage collection */
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001483 zbr = znode->zbranch[n];
Adrian Hunter601c0bc2008-08-22 14:23:35 +03001484 gc_seq1 = c->gc_seq;
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001485 mutex_unlock(&c->tnc_mutex);
1486
Adrian Hunter601c0bc2008-08-22 14:23:35 +03001487 if (ubifs_get_wbuf(c, zbr.lnum)) {
1488 /* We do not GC journal heads */
1489 err = ubifs_tnc_read_node(c, &zbr, node);
1490 return err;
1491 }
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001492
Adrian Hunter601c0bc2008-08-22 14:23:35 +03001493 err = fallible_read_node(c, key, &zbr, node);
Adrian Hunter6dcfac42008-09-12 12:27:47 +03001494 if (err <= 0 || maybe_leb_gced(c, zbr.lnum, gc_seq1)) {
Adrian Hunter601c0bc2008-08-22 14:23:35 +03001495 /*
1496 * The node may have been GC'ed out from under us so try again
1497 * while keeping the TNC mutex locked.
1498 */
1499 safely = 1;
1500 goto again;
1501 }
1502 return 0;
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001503
1504out:
1505 mutex_unlock(&c->tnc_mutex);
1506 return err;
1507}
1508
1509/**
Adrian Hunter4793e7c2008-09-02 16:29:46 +03001510 * ubifs_tnc_get_bu_keys - lookup keys for bulk-read.
1511 * @c: UBIFS file-system description object
1512 * @bu: bulk-read parameters and results
1513 *
1514 * Lookup consecutive data node keys for the same inode that reside
Artem Bityutskiy6c0c42c2008-11-18 20:20:05 +02001515 * consecutively in the same LEB. This function returns zero in case of success
1516 * and a negative error code in case of failure.
1517 *
1518 * Note, if the bulk-read buffer length (@bu->buf_len) is known, this function
1519 * makes sure bulk-read nodes fit the buffer. Otherwise, this function prepares
Artem Bityutskiy6f7ab6d2009-01-27 16:12:31 +02001520 * maximum possible amount of nodes for bulk-read.
Adrian Hunter4793e7c2008-09-02 16:29:46 +03001521 */
1522int ubifs_tnc_get_bu_keys(struct ubifs_info *c, struct bu_info *bu)
1523{
1524 int n, err = 0, lnum = -1, uninitialized_var(offs);
1525 int uninitialized_var(len);
1526 unsigned int block = key_block(c, &bu->key);
1527 struct ubifs_znode *znode;
1528
1529 bu->cnt = 0;
1530 bu->blk_cnt = 0;
1531 bu->eof = 0;
1532
1533 mutex_lock(&c->tnc_mutex);
1534 /* Find first key */
1535 err = ubifs_lookup_level0(c, &bu->key, &znode, &n);
1536 if (err < 0)
1537 goto out;
1538 if (err) {
1539 /* Key found */
1540 len = znode->zbranch[n].len;
1541 /* The buffer must be big enough for at least 1 node */
1542 if (len > bu->buf_len) {
1543 err = -EINVAL;
1544 goto out;
1545 }
1546 /* Add this key */
1547 bu->zbranch[bu->cnt++] = znode->zbranch[n];
1548 bu->blk_cnt += 1;
1549 lnum = znode->zbranch[n].lnum;
1550 offs = ALIGN(znode->zbranch[n].offs + len, 8);
1551 }
1552 while (1) {
1553 struct ubifs_zbranch *zbr;
1554 union ubifs_key *key;
1555 unsigned int next_block;
1556
1557 /* Find next key */
1558 err = tnc_next(c, &znode, &n);
1559 if (err)
1560 goto out;
1561 zbr = &znode->zbranch[n];
1562 key = &zbr->key;
1563 /* See if there is another data key for this file */
1564 if (key_inum(c, key) != key_inum(c, &bu->key) ||
1565 key_type(c, key) != UBIFS_DATA_KEY) {
1566 err = -ENOENT;
1567 goto out;
1568 }
1569 if (lnum < 0) {
1570 /* First key found */
1571 lnum = zbr->lnum;
1572 offs = ALIGN(zbr->offs + zbr->len, 8);
1573 len = zbr->len;
1574 if (len > bu->buf_len) {
1575 err = -EINVAL;
1576 goto out;
1577 }
1578 } else {
1579 /*
1580 * The data nodes must be in consecutive positions in
1581 * the same LEB.
1582 */
1583 if (zbr->lnum != lnum || zbr->offs != offs)
1584 goto out;
1585 offs += ALIGN(zbr->len, 8);
1586 len = ALIGN(len, 8) + zbr->len;
1587 /* Must not exceed buffer length */
1588 if (len > bu->buf_len)
1589 goto out;
1590 }
1591 /* Allow for holes */
1592 next_block = key_block(c, key);
1593 bu->blk_cnt += (next_block - block - 1);
1594 if (bu->blk_cnt >= UBIFS_MAX_BULK_READ)
1595 goto out;
1596 block = next_block;
1597 /* Add this key */
1598 bu->zbranch[bu->cnt++] = *zbr;
1599 bu->blk_cnt += 1;
1600 /* See if we have room for more */
1601 if (bu->cnt >= UBIFS_MAX_BULK_READ)
1602 goto out;
1603 if (bu->blk_cnt >= UBIFS_MAX_BULK_READ)
1604 goto out;
1605 }
1606out:
1607 if (err == -ENOENT) {
1608 bu->eof = 1;
1609 err = 0;
1610 }
1611 bu->gc_seq = c->gc_seq;
1612 mutex_unlock(&c->tnc_mutex);
1613 if (err)
1614 return err;
1615 /*
1616 * An enormous hole could cause bulk-read to encompass too many
1617 * page cache pages, so limit the number here.
1618 */
Adrian Hunter63c300b2008-09-17 12:11:13 +03001619 if (bu->blk_cnt > UBIFS_MAX_BULK_READ)
Adrian Hunter4793e7c2008-09-02 16:29:46 +03001620 bu->blk_cnt = UBIFS_MAX_BULK_READ;
1621 /*
1622 * Ensure that bulk-read covers a whole number of page cache
1623 * pages.
1624 */
1625 if (UBIFS_BLOCKS_PER_PAGE == 1 ||
1626 !(bu->blk_cnt & (UBIFS_BLOCKS_PER_PAGE - 1)))
1627 return 0;
1628 if (bu->eof) {
1629 /* At the end of file we can round up */
1630 bu->blk_cnt += UBIFS_BLOCKS_PER_PAGE - 1;
1631 return 0;
1632 }
1633 /* Exclude data nodes that do not make up a whole page cache page */
1634 block = key_block(c, &bu->key) + bu->blk_cnt;
1635 block &= ~(UBIFS_BLOCKS_PER_PAGE - 1);
1636 while (bu->cnt) {
1637 if (key_block(c, &bu->zbranch[bu->cnt - 1].key) < block)
1638 break;
1639 bu->cnt -= 1;
1640 }
1641 return 0;
1642}
1643
1644/**
1645 * read_wbuf - bulk-read from a LEB with a wbuf.
1646 * @wbuf: wbuf that may overlap the read
1647 * @buf: buffer into which to read
1648 * @len: read length
1649 * @lnum: LEB number from which to read
1650 * @offs: offset from which to read
1651 *
1652 * This functions returns %0 on success or a negative error code on failure.
1653 */
1654static int read_wbuf(struct ubifs_wbuf *wbuf, void *buf, int len, int lnum,
1655 int offs)
1656{
1657 const struct ubifs_info *c = wbuf->c;
1658 int rlen, overlap;
1659
1660 dbg_io("LEB %d:%d, length %d", lnum, offs, len);
Richard Weinberger6eb61d52018-07-12 13:01:57 +02001661 ubifs_assert(c, wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
1662 ubifs_assert(c, !(offs & 7) && offs < c->leb_size);
1663 ubifs_assert(c, offs + len <= c->leb_size);
Adrian Hunter4793e7c2008-09-02 16:29:46 +03001664
1665 spin_lock(&wbuf->lock);
1666 overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs);
1667 if (!overlap) {
1668 /* We may safely unlock the write-buffer and read the data */
1669 spin_unlock(&wbuf->lock);
Artem Bityutskiyd3048202011-06-03 14:03:25 +03001670 return ubifs_leb_read(c, lnum, buf, offs, len, 0);
Adrian Hunter4793e7c2008-09-02 16:29:46 +03001671 }
1672
1673 /* Don't read under wbuf */
1674 rlen = wbuf->offs - offs;
1675 if (rlen < 0)
1676 rlen = 0;
1677
1678 /* Copy the rest from the write-buffer */
1679 memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen);
1680 spin_unlock(&wbuf->lock);
1681
1682 if (rlen > 0)
1683 /* Read everything that goes before write-buffer */
Artem Bityutskiyd3048202011-06-03 14:03:25 +03001684 return ubifs_leb_read(c, lnum, buf, offs, rlen, 0);
Adrian Hunter4793e7c2008-09-02 16:29:46 +03001685
1686 return 0;
1687}
1688
1689/**
1690 * validate_data_node - validate data nodes for bulk-read.
1691 * @c: UBIFS file-system description object
1692 * @buf: buffer containing data node to validate
1693 * @zbr: zbranch of data node to validate
1694 *
1695 * This functions returns %0 on success or a negative error code on failure.
1696 */
1697static int validate_data_node(struct ubifs_info *c, void *buf,
1698 struct ubifs_zbranch *zbr)
1699{
1700 union ubifs_key key1;
1701 struct ubifs_ch *ch = buf;
1702 int err, len;
1703
1704 if (ch->node_type != UBIFS_DATA_NODE) {
Sheng Yong235c3622015-03-20 10:39:42 +00001705 ubifs_err(c, "bad node type (%d but expected %d)",
Adrian Hunter4793e7c2008-09-02 16:29:46 +03001706 ch->node_type, UBIFS_DATA_NODE);
1707 goto out_err;
1708 }
1709
Adrian Hunter2953e732008-09-04 16:26:00 +03001710 err = ubifs_check_node(c, buf, zbr->lnum, zbr->offs, 0, 0);
Adrian Hunter4793e7c2008-09-02 16:29:46 +03001711 if (err) {
Sheng Yong235c3622015-03-20 10:39:42 +00001712 ubifs_err(c, "expected node type %d", UBIFS_DATA_NODE);
Adrian Hunter4793e7c2008-09-02 16:29:46 +03001713 goto out;
1714 }
1715
1716 len = le32_to_cpu(ch->len);
1717 if (len != zbr->len) {
Sheng Yong235c3622015-03-20 10:39:42 +00001718 ubifs_err(c, "bad node length %d, expected %d", len, zbr->len);
Adrian Hunter4793e7c2008-09-02 16:29:46 +03001719 goto out_err;
1720 }
1721
1722 /* Make sure the key of the read node is correct */
1723 key_read(c, buf + UBIFS_KEY_OFFSET, &key1);
1724 if (!keys_eq(c, &zbr->key, &key1)) {
Sheng Yong235c3622015-03-20 10:39:42 +00001725 ubifs_err(c, "bad key in node at LEB %d:%d",
Adrian Hunter4793e7c2008-09-02 16:29:46 +03001726 zbr->lnum, zbr->offs);
Artem Bityutskiy515315a2012-01-13 12:33:53 +02001727 dbg_tnck(&zbr->key, "looked for key ");
1728 dbg_tnck(&key1, "found node's key ");
Adrian Hunter4793e7c2008-09-02 16:29:46 +03001729 goto out_err;
1730 }
1731
1732 return 0;
1733
1734out_err:
1735 err = -EINVAL;
1736out:
Sheng Yong235c3622015-03-20 10:39:42 +00001737 ubifs_err(c, "bad node at LEB %d:%d", zbr->lnum, zbr->offs);
Artem Bityutskiyedf6be22012-05-16 19:15:56 +03001738 ubifs_dump_node(c, buf);
Artem Bityutskiy7c46d0a2012-05-16 19:04:54 +03001739 dump_stack();
Adrian Hunter4793e7c2008-09-02 16:29:46 +03001740 return err;
1741}
1742
1743/**
1744 * ubifs_tnc_bulk_read - read a number of data nodes in one go.
1745 * @c: UBIFS file-system description object
1746 * @bu: bulk-read parameters and results
1747 *
1748 * This functions reads and validates the data nodes that were identified by the
1749 * 'ubifs_tnc_get_bu_keys()' function. This functions returns %0 on success,
1750 * -EAGAIN to indicate a race with GC, or another negative error code on
1751 * failure.
1752 */
1753int ubifs_tnc_bulk_read(struct ubifs_info *c, struct bu_info *bu)
1754{
1755 int lnum = bu->zbranch[0].lnum, offs = bu->zbranch[0].offs, len, err, i;
1756 struct ubifs_wbuf *wbuf;
1757 void *buf;
1758
1759 len = bu->zbranch[bu->cnt - 1].offs;
1760 len += bu->zbranch[bu->cnt - 1].len - offs;
1761 if (len > bu->buf_len) {
Sheng Yong235c3622015-03-20 10:39:42 +00001762 ubifs_err(c, "buffer too small %d vs %d", bu->buf_len, len);
Adrian Hunter4793e7c2008-09-02 16:29:46 +03001763 return -EINVAL;
1764 }
1765
1766 /* Do the read */
1767 wbuf = ubifs_get_wbuf(c, lnum);
1768 if (wbuf)
1769 err = read_wbuf(wbuf, bu->buf, len, lnum, offs);
1770 else
Artem Bityutskiyd3048202011-06-03 14:03:25 +03001771 err = ubifs_leb_read(c, lnum, bu->buf, offs, len, 0);
Adrian Hunter4793e7c2008-09-02 16:29:46 +03001772
1773 /* Check for a race with GC */
1774 if (maybe_leb_gced(c, lnum, bu->gc_seq))
1775 return -EAGAIN;
1776
1777 if (err && err != -EBADMSG) {
Sheng Yong235c3622015-03-20 10:39:42 +00001778 ubifs_err(c, "failed to read from LEB %d:%d, error %d",
Adrian Hunter4793e7c2008-09-02 16:29:46 +03001779 lnum, offs, err);
Artem Bityutskiy7c46d0a2012-05-16 19:04:54 +03001780 dump_stack();
Artem Bityutskiy515315a2012-01-13 12:33:53 +02001781 dbg_tnck(&bu->key, "key ");
Adrian Hunter4793e7c2008-09-02 16:29:46 +03001782 return err;
1783 }
1784
1785 /* Validate the nodes read */
1786 buf = bu->buf;
1787 for (i = 0; i < bu->cnt; i++) {
1788 err = validate_data_node(c, buf, &bu->zbranch[i]);
1789 if (err)
1790 return err;
1791 buf = buf + ALIGN(bu->zbranch[i].len, 8);
1792 }
1793
1794 return 0;
1795}
1796
1797/**
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001798 * do_lookup_nm- look up a "hashed" node.
1799 * @c: UBIFS file-system description object
1800 * @key: node key to lookup
1801 * @node: the node is returned here
1802 * @nm: node name
1803 *
Richard Weinberger528e3d12016-11-11 20:46:06 +01001804 * This function looks up and reads a node which contains name hash in the key.
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001805 * Since the hash may have collisions, there may be many nodes with the same
1806 * key, so we have to sequentially look to all of them until the needed one is
1807 * found. This function returns zero in case of success, %-ENOENT if the node
1808 * was not found, and a negative error code in case of failure.
1809 */
1810static int do_lookup_nm(struct ubifs_info *c, const union ubifs_key *key,
Richard Weinbergerf4f61d22016-11-11 22:50:29 +01001811 void *node, const struct fscrypt_name *nm)
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001812{
1813 int found, n, err;
1814 struct ubifs_znode *znode;
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001815
Richard Weinberger35ee3142017-05-17 10:36:48 +02001816 dbg_tnck(key, "key ");
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001817 mutex_lock(&c->tnc_mutex);
1818 found = ubifs_lookup_level0(c, key, &znode, &n);
1819 if (!found) {
1820 err = -ENOENT;
1821 goto out_unlock;
1822 } else if (found < 0) {
1823 err = found;
1824 goto out_unlock;
1825 }
1826
Richard Weinberger6eb61d52018-07-12 13:01:57 +02001827 ubifs_assert(c, n >= 0);
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001828
1829 err = resolve_collision(c, key, &znode, &n, nm);
1830 dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n);
1831 if (unlikely(err < 0))
1832 goto out_unlock;
1833 if (err == 0) {
1834 err = -ENOENT;
1835 goto out_unlock;
1836 }
1837
Richard Weinbergerb91dc982016-10-10 10:14:40 +02001838 err = tnc_read_hashed_node(c, &znode->zbranch[n], node);
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001839
1840out_unlock:
1841 mutex_unlock(&c->tnc_mutex);
1842 return err;
1843}
1844
1845/**
1846 * ubifs_tnc_lookup_nm - look up a "hashed" node.
1847 * @c: UBIFS file-system description object
1848 * @key: node key to lookup
1849 * @node: the node is returned here
1850 * @nm: node name
1851 *
Richard Weinberger528e3d12016-11-11 20:46:06 +01001852 * This function looks up and reads a node which contains name hash in the key.
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001853 * Since the hash may have collisions, there may be many nodes with the same
1854 * key, so we have to sequentially look to all of them until the needed one is
1855 * found. This function returns zero in case of success, %-ENOENT if the node
1856 * was not found, and a negative error code in case of failure.
1857 */
1858int ubifs_tnc_lookup_nm(struct ubifs_info *c, const union ubifs_key *key,
Richard Weinbergerf4f61d22016-11-11 22:50:29 +01001859 void *node, const struct fscrypt_name *nm)
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001860{
1861 int err, len;
1862 const struct ubifs_dent_node *dent = node;
1863
1864 /*
1865 * We assume that in most of the cases there are no name collisions and
1866 * 'ubifs_tnc_lookup()' returns us the right direntry.
1867 */
1868 err = ubifs_tnc_lookup(c, key, node);
1869 if (err)
1870 return err;
1871
1872 len = le16_to_cpu(dent->nlen);
Richard Weinbergerf4f61d22016-11-11 22:50:29 +01001873 if (fname_len(nm) == len && !memcmp(dent->name, fname_name(nm), len))
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001874 return 0;
1875
1876 /*
1877 * Unluckily, there are hash collisions and we have to iterate over
1878 * them look at each direntry with colliding name hash sequentially.
1879 */
Richard Weinberger528e3d12016-11-11 20:46:06 +01001880
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001881 return do_lookup_nm(c, key, node, nm);
1882}
1883
Richard Weinberger781f6752017-05-17 10:36:46 +02001884static int search_dh_cookie(struct ubifs_info *c, const union ubifs_key *key,
1885 struct ubifs_dent_node *dent, uint32_t cookie,
Richard Weinberger72cd2302019-05-14 22:31:08 +02001886 struct ubifs_znode **zn, int *n, int exact)
Richard Weinberger781f6752017-05-17 10:36:46 +02001887{
1888 int err;
1889 struct ubifs_znode *znode = *zn;
1890 struct ubifs_zbranch *zbr;
1891 union ubifs_key *dkey;
1892
Richard Weinberger72cd2302019-05-14 22:31:08 +02001893 if (!exact) {
1894 err = tnc_next(c, &znode, n);
1895 if (err)
1896 return err;
1897 }
1898
Richard Weinberger781f6752017-05-17 10:36:46 +02001899 for (;;) {
Richard Weinberger781f6752017-05-17 10:36:46 +02001900 zbr = &znode->zbranch[*n];
1901 dkey = &zbr->key;
1902
1903 if (key_inum(c, dkey) != key_inum(c, key) ||
1904 key_type(c, dkey) != key_type(c, key)) {
Geert Uytterhoevenc8771542017-09-17 10:32:20 +02001905 return -ENOENT;
Richard Weinberger781f6752017-05-17 10:36:46 +02001906 }
1907
1908 err = tnc_read_hashed_node(c, zbr, dent);
1909 if (err)
Geert Uytterhoevenc8771542017-09-17 10:32:20 +02001910 return err;
Richard Weinberger781f6752017-05-17 10:36:46 +02001911
1912 if (key_hash(c, key) == key_hash(c, dkey) &&
1913 le32_to_cpu(dent->cookie) == cookie) {
1914 *zn = znode;
Geert Uytterhoevenc8771542017-09-17 10:32:20 +02001915 return 0;
Richard Weinberger781f6752017-05-17 10:36:46 +02001916 }
Geert Uytterhoevenc8771542017-09-17 10:32:20 +02001917
1918 err = tnc_next(c, &znode, n);
1919 if (err)
1920 return err;
Richard Weinberger781f6752017-05-17 10:36:46 +02001921 }
Richard Weinberger781f6752017-05-17 10:36:46 +02001922}
1923
Richard Weinberger528e3d12016-11-11 20:46:06 +01001924static int do_lookup_dh(struct ubifs_info *c, const union ubifs_key *key,
1925 struct ubifs_dent_node *dent, uint32_t cookie)
1926{
Richard Weinberger781f6752017-05-17 10:36:46 +02001927 int n, err;
Richard Weinberger528e3d12016-11-11 20:46:06 +01001928 struct ubifs_znode *znode;
Richard Weinberger781f6752017-05-17 10:36:46 +02001929 union ubifs_key start_key;
Richard Weinberger528e3d12016-11-11 20:46:06 +01001930
Richard Weinberger6eb61d52018-07-12 13:01:57 +02001931 ubifs_assert(c, is_hash_key(c, key));
Richard Weinberger528e3d12016-11-11 20:46:06 +01001932
1933 lowest_dent_key(c, &start_key, key_inum(c, key));
1934
1935 mutex_lock(&c->tnc_mutex);
1936 err = ubifs_lookup_level0(c, &start_key, &znode, &n);
1937 if (unlikely(err < 0))
1938 goto out_unlock;
1939
Richard Weinberger72cd2302019-05-14 22:31:08 +02001940 err = search_dh_cookie(c, key, dent, cookie, &znode, &n, err);
Richard Weinberger528e3d12016-11-11 20:46:06 +01001941
1942out_unlock:
1943 mutex_unlock(&c->tnc_mutex);
1944 return err;
1945}
1946
1947/**
1948 * ubifs_tnc_lookup_dh - look up a "double hashed" node.
1949 * @c: UBIFS file-system description object
1950 * @key: node key to lookup
1951 * @node: the node is returned here
1952 * @cookie: node cookie for collision resolution
1953 *
1954 * This function looks up and reads a node which contains name hash in the key.
1955 * Since the hash may have collisions, there may be many nodes with the same
1956 * key, so we have to sequentially look to all of them until the needed one
1957 * with the same cookie value is found.
1958 * This function returns zero in case of success, %-ENOENT if the node
1959 * was not found, and a negative error code in case of failure.
1960 */
1961int ubifs_tnc_lookup_dh(struct ubifs_info *c, const union ubifs_key *key,
1962 void *node, uint32_t cookie)
1963{
1964 int err;
1965 const struct ubifs_dent_node *dent = node;
1966
Richard Weinbergerd63d61c2016-10-19 15:59:12 +02001967 if (!c->double_hash)
1968 return -EOPNOTSUPP;
1969
Richard Weinberger528e3d12016-11-11 20:46:06 +01001970 /*
1971 * We assume that in most of the cases there are no name collisions and
1972 * 'ubifs_tnc_lookup()' returns us the right direntry.
1973 */
1974 err = ubifs_tnc_lookup(c, key, node);
1975 if (err)
1976 return err;
1977
1978 if (le32_to_cpu(dent->cookie) == cookie)
1979 return 0;
1980
1981 /*
1982 * Unluckily, there are hash collisions and we have to iterate over
1983 * them look at each direntry with colliding name hash sequentially.
1984 */
1985 return do_lookup_dh(c, key, node, cookie);
1986}
1987
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001988/**
1989 * correct_parent_keys - correct parent znodes' keys.
1990 * @c: UBIFS file-system description object
1991 * @znode: znode to correct parent znodes for
1992 *
1993 * This is a helper function for 'tnc_insert()'. When the key of the leftmost
1994 * zbranch changes, keys of parent znodes have to be corrected. This helper
1995 * function is called in such situations and corrects the keys if needed.
1996 */
1997static void correct_parent_keys(const struct ubifs_info *c,
1998 struct ubifs_znode *znode)
1999{
2000 union ubifs_key *key, *key1;
2001
Richard Weinberger6eb61d52018-07-12 13:01:57 +02002002 ubifs_assert(c, znode->parent);
2003 ubifs_assert(c, znode->iip == 0);
Artem Bityutskiy1e517642008-07-14 19:08:37 +03002004
2005 key = &znode->zbranch[0].key;
2006 key1 = &znode->parent->zbranch[0].key;
2007
2008 while (keys_cmp(c, key, key1) < 0) {
2009 key_copy(c, key, key1);
2010 znode = znode->parent;
2011 znode->alt = 1;
2012 if (!znode->parent || znode->iip)
2013 break;
2014 key1 = &znode->parent->zbranch[0].key;
2015 }
2016}
2017
2018/**
2019 * insert_zbranch - insert a zbranch into a znode.
Richard Weinberger6eb61d52018-07-12 13:01:57 +02002020 * @c: UBIFS file-system description object
Artem Bityutskiy1e517642008-07-14 19:08:37 +03002021 * @znode: znode into which to insert
2022 * @zbr: zbranch to insert
2023 * @n: slot number to insert to
2024 *
2025 * This is a helper function for 'tnc_insert()'. UBIFS does not allow "gaps" in
2026 * znode's array of zbranches and keeps zbranches consolidated, so when a new
2027 * zbranch has to be inserted to the @znode->zbranches[]' array at the @n-th
2028 * slot, zbranches starting from @n have to be moved right.
2029 */
Richard Weinberger6eb61d52018-07-12 13:01:57 +02002030static void insert_zbranch(struct ubifs_info *c, struct ubifs_znode *znode,
Artem Bityutskiy1e517642008-07-14 19:08:37 +03002031 const struct ubifs_zbranch *zbr, int n)
2032{
2033 int i;
2034
Richard Weinberger6eb61d52018-07-12 13:01:57 +02002035 ubifs_assert(c, ubifs_zn_dirty(znode));
Artem Bityutskiy1e517642008-07-14 19:08:37 +03002036
2037 if (znode->level) {
2038 for (i = znode->child_cnt; i > n; i--) {
2039 znode->zbranch[i] = znode->zbranch[i - 1];
2040 if (znode->zbranch[i].znode)
2041 znode->zbranch[i].znode->iip = i;
2042 }
2043 if (zbr->znode)
2044 zbr->znode->iip = n;
2045 } else
2046 for (i = znode->child_cnt; i > n; i--)
2047 znode->zbranch[i] = znode->zbranch[i - 1];
2048
2049 znode->zbranch[n] = *zbr;
2050 znode->child_cnt += 1;
2051
2052 /*
2053 * After inserting at slot zero, the lower bound of the key range of
2054 * this znode may have changed. If this znode is subsequently split
2055 * then the upper bound of the key range may change, and furthermore
2056 * it could change to be lower than the original lower bound. If that
2057 * happens, then it will no longer be possible to find this znode in the
2058 * TNC using the key from the index node on flash. That is bad because
2059 * if it is not found, we will assume it is obsolete and may overwrite
2060 * it. Then if there is an unclean unmount, we will start using the
2061 * old index which will be broken.
2062 *
2063 * So we first mark znodes that have insertions at slot zero, and then
2064 * if they are split we add their lnum/offs to the old_idx tree.
2065 */
2066 if (n == 0)
2067 znode->alt = 1;
2068}
2069
2070/**
2071 * tnc_insert - insert a node into TNC.
2072 * @c: UBIFS file-system description object
2073 * @znode: znode to insert into
2074 * @zbr: branch to insert
2075 * @n: slot number to insert new zbranch to
2076 *
2077 * This function inserts a new node described by @zbr into znode @znode. If
2078 * znode does not have a free slot for new zbranch, it is split. Parent znodes
2079 * are splat as well if needed. Returns zero in case of success or a negative
2080 * error code in case of failure.
2081 */
2082static int tnc_insert(struct ubifs_info *c, struct ubifs_znode *znode,
2083 struct ubifs_zbranch *zbr, int n)
2084{
2085 struct ubifs_znode *zn, *zi, *zp;
2086 int i, keep, move, appending = 0;
Adrian Hunter2242c682008-09-05 11:56:05 +03002087 union ubifs_key *key = &zbr->key, *key1;
Artem Bityutskiy1e517642008-07-14 19:08:37 +03002088
Richard Weinberger6eb61d52018-07-12 13:01:57 +02002089 ubifs_assert(c, n >= 0 && n <= c->fanout);
Artem Bityutskiy1e517642008-07-14 19:08:37 +03002090
2091 /* Implement naive insert for now */
2092again:
2093 zp = znode->parent;
2094 if (znode->child_cnt < c->fanout) {
Richard Weinberger6eb61d52018-07-12 13:01:57 +02002095 ubifs_assert(c, n != c->fanout);
Artem Bityutskiy515315a2012-01-13 12:33:53 +02002096 dbg_tnck(key, "inserted at %d level %d, key ", n, znode->level);
Artem Bityutskiy1e517642008-07-14 19:08:37 +03002097
Richard Weinberger6eb61d52018-07-12 13:01:57 +02002098 insert_zbranch(c, znode, zbr, n);
Artem Bityutskiy1e517642008-07-14 19:08:37 +03002099
2100 /* Ensure parent's key is correct */
2101 if (n == 0 && zp && znode->iip == 0)
2102 correct_parent_keys(c, znode);
2103
2104 return 0;
2105 }
2106
2107 /*
2108 * Unfortunately, @znode does not have more empty slots and we have to
2109 * split it.
2110 */
Artem Bityutskiy515315a2012-01-13 12:33:53 +02002111 dbg_tnck(key, "splitting level %d, key ", znode->level);
Artem Bityutskiy1e517642008-07-14 19:08:37 +03002112
2113 if (znode->alt)
2114 /*
2115 * We can no longer be sure of finding this znode by key, so we
2116 * record it in the old_idx tree.
2117 */
2118 ins_clr_old_idx_znode(c, znode);
2119
2120 zn = kzalloc(c->max_znode_sz, GFP_NOFS);
2121 if (!zn)
2122 return -ENOMEM;
2123 zn->parent = zp;
2124 zn->level = znode->level;
2125
2126 /* Decide where to split */
Adrian Hunter2242c682008-09-05 11:56:05 +03002127 if (znode->level == 0 && key_type(c, key) == UBIFS_DATA_KEY) {
2128 /* Try not to split consecutive data keys */
2129 if (n == c->fanout) {
2130 key1 = &znode->zbranch[n - 1].key;
2131 if (key_inum(c, key1) == key_inum(c, key) &&
2132 key_type(c, key1) == UBIFS_DATA_KEY)
2133 appending = 1;
2134 } else
2135 goto check_split;
2136 } else if (appending && n != c->fanout) {
2137 /* Try not to split consecutive data keys */
2138 appending = 0;
2139check_split:
2140 if (n >= (c->fanout + 1) / 2) {
2141 key1 = &znode->zbranch[0].key;
2142 if (key_inum(c, key1) == key_inum(c, key) &&
2143 key_type(c, key1) == UBIFS_DATA_KEY) {
2144 key1 = &znode->zbranch[n].key;
2145 if (key_inum(c, key1) != key_inum(c, key) ||
2146 key_type(c, key1) != UBIFS_DATA_KEY) {
2147 keep = n;
2148 move = c->fanout - keep;
2149 zi = znode;
2150 goto do_split;
2151 }
2152 }
2153 }
Artem Bityutskiy1e517642008-07-14 19:08:37 +03002154 }
2155
2156 if (appending) {
2157 keep = c->fanout;
2158 move = 0;
2159 } else {
2160 keep = (c->fanout + 1) / 2;
2161 move = c->fanout - keep;
2162 }
2163
2164 /*
2165 * Although we don't at present, we could look at the neighbors and see
2166 * if we can move some zbranches there.
2167 */
2168
2169 if (n < keep) {
2170 /* Insert into existing znode */
2171 zi = znode;
2172 move += 1;
2173 keep -= 1;
2174 } else {
2175 /* Insert into new znode */
2176 zi = zn;
2177 n -= keep;
2178 /* Re-parent */
2179 if (zn->level != 0)
2180 zbr->znode->parent = zn;
2181 }
2182
Adrian Hunter2242c682008-09-05 11:56:05 +03002183do_split:
2184
Artem Bityutskiy1e517642008-07-14 19:08:37 +03002185 __set_bit(DIRTY_ZNODE, &zn->flags);
2186 atomic_long_inc(&c->dirty_zn_cnt);
2187
2188 zn->child_cnt = move;
2189 znode->child_cnt = keep;
2190
2191 dbg_tnc("moving %d, keeping %d", move, keep);
2192
2193 /* Move zbranch */
2194 for (i = 0; i < move; i++) {
2195 zn->zbranch[i] = znode->zbranch[keep + i];
2196 /* Re-parent */
2197 if (zn->level != 0)
2198 if (zn->zbranch[i].znode) {
2199 zn->zbranch[i].znode->parent = zn;
2200 zn->zbranch[i].znode->iip = i;
2201 }
2202 }
2203
2204 /* Insert new key and branch */
Artem Bityutskiy515315a2012-01-13 12:33:53 +02002205 dbg_tnck(key, "inserting at %d level %d, key ", n, zn->level);
Artem Bityutskiy1e517642008-07-14 19:08:37 +03002206
Richard Weinberger6eb61d52018-07-12 13:01:57 +02002207 insert_zbranch(c, zi, zbr, n);
Artem Bityutskiy1e517642008-07-14 19:08:37 +03002208
2209 /* Insert new znode (produced by spitting) into the parent */
2210 if (zp) {
Adrian Hunter2242c682008-09-05 11:56:05 +03002211 if (n == 0 && zi == znode && znode->iip == 0)
2212 correct_parent_keys(c, znode);
2213
Artem Bityutskiy1e517642008-07-14 19:08:37 +03002214 /* Locate insertion point */
2215 n = znode->iip + 1;
Artem Bityutskiy1e517642008-07-14 19:08:37 +03002216
2217 /* Tail recursion */
2218 zbr->key = zn->zbranch[0].key;
2219 zbr->znode = zn;
2220 zbr->lnum = 0;
2221 zbr->offs = 0;
2222 zbr->len = 0;
2223 znode = zp;
2224
2225 goto again;
2226 }
2227
2228 /* We have to split root znode */
2229 dbg_tnc("creating new zroot at level %d", znode->level + 1);
2230
2231 zi = kzalloc(c->max_znode_sz, GFP_NOFS);
2232 if (!zi)
2233 return -ENOMEM;
2234
2235 zi->child_cnt = 2;
2236 zi->level = znode->level + 1;
2237
2238 __set_bit(DIRTY_ZNODE, &zi->flags);
2239 atomic_long_inc(&c->dirty_zn_cnt);
2240
2241 zi->zbranch[0].key = znode->zbranch[0].key;
2242 zi->zbranch[0].znode = znode;
2243 zi->zbranch[0].lnum = c->zroot.lnum;
2244 zi->zbranch[0].offs = c->zroot.offs;
2245 zi->zbranch[0].len = c->zroot.len;
2246 zi->zbranch[1].key = zn->zbranch[0].key;
2247 zi->zbranch[1].znode = zn;
2248
2249 c->zroot.lnum = 0;
2250 c->zroot.offs = 0;
2251 c->zroot.len = 0;
2252 c->zroot.znode = zi;
2253
2254 zn->parent = zi;
2255 zn->iip = 1;
2256 znode->parent = zi;
2257 znode->iip = 0;
2258
2259 return 0;
2260}
2261
2262/**
2263 * ubifs_tnc_add - add a node to TNC.
2264 * @c: UBIFS file-system description object
2265 * @key: key to add
2266 * @lnum: LEB number of node
2267 * @offs: node offset
2268 * @len: node length
2269 *
2270 * This function adds a node with key @key to TNC. The node may be new or it may
2271 * obsolete some existing one. Returns %0 on success or negative error code on
2272 * failure.
2273 */
2274int ubifs_tnc_add(struct ubifs_info *c, const union ubifs_key *key, int lnum,
2275 int offs, int len)
2276{
2277 int found, n, err = 0;
2278 struct ubifs_znode *znode;
2279
2280 mutex_lock(&c->tnc_mutex);
Artem Bityutskiy515315a2012-01-13 12:33:53 +02002281 dbg_tnck(key, "%d:%d, len %d, key ", lnum, offs, len);
Artem Bityutskiy1e517642008-07-14 19:08:37 +03002282 found = lookup_level0_dirty(c, key, &znode, &n);
2283 if (!found) {
2284 struct ubifs_zbranch zbr;
2285
2286 zbr.znode = NULL;
2287 zbr.lnum = lnum;
2288 zbr.offs = offs;
2289 zbr.len = len;
2290 key_copy(c, key, &zbr.key);
2291 err = tnc_insert(c, znode, &zbr, n + 1);
2292 } else if (found == 1) {
2293 struct ubifs_zbranch *zbr = &znode->zbranch[n];
2294
2295 lnc_free(zbr);
2296 err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2297 zbr->lnum = lnum;
2298 zbr->offs = offs;
2299 zbr->len = len;
2300 } else
2301 err = found;
2302 if (!err)
2303 err = dbg_check_tnc(c, 0);
2304 mutex_unlock(&c->tnc_mutex);
2305
2306 return err;
2307}
2308
2309/**
2310 * ubifs_tnc_replace - replace a node in the TNC only if the old node is found.
2311 * @c: UBIFS file-system description object
2312 * @key: key to add
2313 * @old_lnum: LEB number of old node
2314 * @old_offs: old node offset
2315 * @lnum: LEB number of node
2316 * @offs: node offset
2317 * @len: node length
2318 *
2319 * This function replaces a node with key @key in the TNC only if the old node
2320 * is found. This function is called by garbage collection when node are moved.
2321 * Returns %0 on success or negative error code on failure.
2322 */
2323int ubifs_tnc_replace(struct ubifs_info *c, const union ubifs_key *key,
2324 int old_lnum, int old_offs, int lnum, int offs, int len)
2325{
2326 int found, n, err = 0;
2327 struct ubifs_znode *znode;
2328
2329 mutex_lock(&c->tnc_mutex);
Artem Bityutskiy515315a2012-01-13 12:33:53 +02002330 dbg_tnck(key, "old LEB %d:%d, new LEB %d:%d, len %d, key ", old_lnum,
2331 old_offs, lnum, offs, len);
Artem Bityutskiy1e517642008-07-14 19:08:37 +03002332 found = lookup_level0_dirty(c, key, &znode, &n);
2333 if (found < 0) {
2334 err = found;
2335 goto out_unlock;
2336 }
2337
2338 if (found == 1) {
2339 struct ubifs_zbranch *zbr = &znode->zbranch[n];
2340
2341 found = 0;
2342 if (zbr->lnum == old_lnum && zbr->offs == old_offs) {
2343 lnc_free(zbr);
2344 err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2345 if (err)
2346 goto out_unlock;
2347 zbr->lnum = lnum;
2348 zbr->offs = offs;
2349 zbr->len = len;
2350 found = 1;
2351 } else if (is_hash_key(c, key)) {
2352 found = resolve_collision_directly(c, key, &znode, &n,
2353 old_lnum, old_offs);
2354 dbg_tnc("rc returned %d, znode %p, n %d, LEB %d:%d",
2355 found, znode, n, old_lnum, old_offs);
2356 if (found < 0) {
2357 err = found;
2358 goto out_unlock;
2359 }
2360
2361 if (found) {
2362 /* Ensure the znode is dirtied */
2363 if (znode->cnext || !ubifs_zn_dirty(znode)) {
Artem Bityutskiyf92b9822008-12-28 11:34:26 +02002364 znode = dirty_cow_bottom_up(c, znode);
2365 if (IS_ERR(znode)) {
2366 err = PTR_ERR(znode);
2367 goto out_unlock;
2368 }
Artem Bityutskiy1e517642008-07-14 19:08:37 +03002369 }
2370 zbr = &znode->zbranch[n];
2371 lnc_free(zbr);
2372 err = ubifs_add_dirt(c, zbr->lnum,
2373 zbr->len);
2374 if (err)
2375 goto out_unlock;
2376 zbr->lnum = lnum;
2377 zbr->offs = offs;
2378 zbr->len = len;
2379 }
2380 }
2381 }
2382
2383 if (!found)
2384 err = ubifs_add_dirt(c, lnum, len);
2385
2386 if (!err)
2387 err = dbg_check_tnc(c, 0);
2388
2389out_unlock:
2390 mutex_unlock(&c->tnc_mutex);
2391 return err;
2392}
2393
2394/**
2395 * ubifs_tnc_add_nm - add a "hashed" node to TNC.
2396 * @c: UBIFS file-system description object
2397 * @key: key to add
2398 * @lnum: LEB number of node
2399 * @offs: node offset
2400 * @len: node length
2401 * @nm: node name
2402 *
2403 * This is the same as 'ubifs_tnc_add()' but it should be used with keys which
2404 * may have collisions, like directory entry keys.
2405 */
2406int ubifs_tnc_add_nm(struct ubifs_info *c, const union ubifs_key *key,
Richard Weinbergerf4f61d22016-11-11 22:50:29 +01002407 int lnum, int offs, int len,
2408 const struct fscrypt_name *nm)
Artem Bityutskiy1e517642008-07-14 19:08:37 +03002409{
2410 int found, n, err = 0;
2411 struct ubifs_znode *znode;
2412
2413 mutex_lock(&c->tnc_mutex);
Richard Weinberger35ee3142017-05-17 10:36:48 +02002414 dbg_tnck(key, "LEB %d:%d, key ", lnum, offs);
Artem Bityutskiy1e517642008-07-14 19:08:37 +03002415 found = lookup_level0_dirty(c, key, &znode, &n);
2416 if (found < 0) {
2417 err = found;
2418 goto out_unlock;
2419 }
2420
2421 if (found == 1) {
2422 if (c->replaying)
2423 found = fallible_resolve_collision(c, key, &znode, &n,
2424 nm, 1);
2425 else
2426 found = resolve_collision(c, key, &znode, &n, nm);
2427 dbg_tnc("rc returned %d, znode %p, n %d", found, znode, n);
2428 if (found < 0) {
2429 err = found;
2430 goto out_unlock;
2431 }
2432
2433 /* Ensure the znode is dirtied */
2434 if (znode->cnext || !ubifs_zn_dirty(znode)) {
Artem Bityutskiyf92b9822008-12-28 11:34:26 +02002435 znode = dirty_cow_bottom_up(c, znode);
2436 if (IS_ERR(znode)) {
2437 err = PTR_ERR(znode);
2438 goto out_unlock;
2439 }
Artem Bityutskiy1e517642008-07-14 19:08:37 +03002440 }
2441
2442 if (found == 1) {
2443 struct ubifs_zbranch *zbr = &znode->zbranch[n];
2444
2445 lnc_free(zbr);
2446 err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2447 zbr->lnum = lnum;
2448 zbr->offs = offs;
2449 zbr->len = len;
2450 goto out_unlock;
2451 }
2452 }
2453
2454 if (!found) {
2455 struct ubifs_zbranch zbr;
2456
2457 zbr.znode = NULL;
2458 zbr.lnum = lnum;
2459 zbr.offs = offs;
2460 zbr.len = len;
2461 key_copy(c, key, &zbr.key);
2462 err = tnc_insert(c, znode, &zbr, n + 1);
2463 if (err)
2464 goto out_unlock;
2465 if (c->replaying) {
2466 /*
2467 * We did not find it in the index so there may be a
2468 * dangling branch still in the index. So we remove it
2469 * by passing 'ubifs_tnc_remove_nm()' the same key but
2470 * an unmatchable name.
2471 */
Richard Weinbergerf4f61d22016-11-11 22:50:29 +01002472 struct fscrypt_name noname = { .disk_name = { .name = "", .len = 1 } };
Artem Bityutskiy1e517642008-07-14 19:08:37 +03002473
2474 err = dbg_check_tnc(c, 0);
2475 mutex_unlock(&c->tnc_mutex);
2476 if (err)
2477 return err;
2478 return ubifs_tnc_remove_nm(c, key, &noname);
2479 }
2480 }
2481
2482out_unlock:
2483 if (!err)
2484 err = dbg_check_tnc(c, 0);
2485 mutex_unlock(&c->tnc_mutex);
2486 return err;
2487}
2488
2489/**
2490 * tnc_delete - delete a znode form TNC.
2491 * @c: UBIFS file-system description object
2492 * @znode: znode to delete from
2493 * @n: zbranch slot number to delete
2494 *
2495 * This function deletes a leaf node from @n-th slot of @znode. Returns zero in
2496 * case of success and a negative error code in case of failure.
2497 */
2498static int tnc_delete(struct ubifs_info *c, struct ubifs_znode *znode, int n)
2499{
2500 struct ubifs_zbranch *zbr;
2501 struct ubifs_znode *zp;
2502 int i, err;
2503
2504 /* Delete without merge for now */
Richard Weinberger6eb61d52018-07-12 13:01:57 +02002505 ubifs_assert(c, znode->level == 0);
2506 ubifs_assert(c, n >= 0 && n < c->fanout);
Artem Bityutskiy515315a2012-01-13 12:33:53 +02002507 dbg_tnck(&znode->zbranch[n].key, "deleting key ");
Artem Bityutskiy1e517642008-07-14 19:08:37 +03002508
2509 zbr = &znode->zbranch[n];
2510 lnc_free(zbr);
2511
2512 err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2513 if (err) {
Artem Bityutskiyedf6be22012-05-16 19:15:56 +03002514 ubifs_dump_znode(c, znode);
Artem Bityutskiy1e517642008-07-14 19:08:37 +03002515 return err;
2516 }
2517
2518 /* We do not "gap" zbranch slots */
2519 for (i = n; i < znode->child_cnt - 1; i++)
2520 znode->zbranch[i] = znode->zbranch[i + 1];
2521 znode->child_cnt -= 1;
2522
2523 if (znode->child_cnt > 0)
2524 return 0;
2525
2526 /*
2527 * This was the last zbranch, we have to delete this znode from the
2528 * parent.
2529 */
2530
2531 do {
Richard Weinberger6eb61d52018-07-12 13:01:57 +02002532 ubifs_assert(c, !ubifs_zn_obsolete(znode));
2533 ubifs_assert(c, ubifs_zn_dirty(znode));
Artem Bityutskiy1e517642008-07-14 19:08:37 +03002534
2535 zp = znode->parent;
2536 n = znode->iip;
2537
2538 atomic_long_dec(&c->dirty_zn_cnt);
2539
2540 err = insert_old_idx_znode(c, znode);
2541 if (err)
2542 return err;
2543
2544 if (znode->cnext) {
2545 __set_bit(OBSOLETE_ZNODE, &znode->flags);
2546 atomic_long_inc(&c->clean_zn_cnt);
2547 atomic_long_inc(&ubifs_clean_zn_cnt);
2548 } else
2549 kfree(znode);
2550 znode = zp;
2551 } while (znode->child_cnt == 1); /* while removing last child */
2552
2553 /* Remove from znode, entry n - 1 */
2554 znode->child_cnt -= 1;
Richard Weinberger6eb61d52018-07-12 13:01:57 +02002555 ubifs_assert(c, znode->level != 0);
Artem Bityutskiy1e517642008-07-14 19:08:37 +03002556 for (i = n; i < znode->child_cnt; i++) {
2557 znode->zbranch[i] = znode->zbranch[i + 1];
2558 if (znode->zbranch[i].znode)
2559 znode->zbranch[i].znode->iip = i;
2560 }
2561
2562 /*
2563 * If this is the root and it has only 1 child then
2564 * collapse the tree.
2565 */
2566 if (!znode->parent) {
2567 while (znode->child_cnt == 1 && znode->level != 0) {
2568 zp = znode;
2569 zbr = &znode->zbranch[0];
2570 znode = get_znode(c, znode, 0);
2571 if (IS_ERR(znode))
2572 return PTR_ERR(znode);
2573 znode = dirty_cow_znode(c, zbr);
2574 if (IS_ERR(znode))
2575 return PTR_ERR(znode);
2576 znode->parent = NULL;
2577 znode->iip = 0;
2578 if (c->zroot.len) {
2579 err = insert_old_idx(c, c->zroot.lnum,
2580 c->zroot.offs);
2581 if (err)
2582 return err;
2583 }
2584 c->zroot.lnum = zbr->lnum;
2585 c->zroot.offs = zbr->offs;
2586 c->zroot.len = zbr->len;
2587 c->zroot.znode = znode;
Richard Weinberger6eb61d52018-07-12 13:01:57 +02002588 ubifs_assert(c, !ubifs_zn_obsolete(zp));
2589 ubifs_assert(c, ubifs_zn_dirty(zp));
Artem Bityutskiy1e517642008-07-14 19:08:37 +03002590 atomic_long_dec(&c->dirty_zn_cnt);
2591
2592 if (zp->cnext) {
2593 __set_bit(OBSOLETE_ZNODE, &zp->flags);
2594 atomic_long_inc(&c->clean_zn_cnt);
2595 atomic_long_inc(&ubifs_clean_zn_cnt);
2596 } else
2597 kfree(zp);
2598 }
2599 }
2600
2601 return 0;
2602}
2603
2604/**
2605 * ubifs_tnc_remove - remove an index entry of a node.
2606 * @c: UBIFS file-system description object
2607 * @key: key of node
2608 *
2609 * Returns %0 on success or negative error code on failure.
2610 */
2611int ubifs_tnc_remove(struct ubifs_info *c, const union ubifs_key *key)
2612{
2613 int found, n, err = 0;
2614 struct ubifs_znode *znode;
2615
2616 mutex_lock(&c->tnc_mutex);
Artem Bityutskiy515315a2012-01-13 12:33:53 +02002617 dbg_tnck(key, "key ");
Artem Bityutskiy1e517642008-07-14 19:08:37 +03002618 found = lookup_level0_dirty(c, key, &znode, &n);
2619 if (found < 0) {
2620 err = found;
2621 goto out_unlock;
2622 }
2623 if (found == 1)
2624 err = tnc_delete(c, znode, n);
2625 if (!err)
2626 err = dbg_check_tnc(c, 0);
2627
2628out_unlock:
2629 mutex_unlock(&c->tnc_mutex);
2630 return err;
2631}
2632
2633/**
2634 * ubifs_tnc_remove_nm - remove an index entry for a "hashed" node.
2635 * @c: UBIFS file-system description object
2636 * @key: key of node
2637 * @nm: directory entry name
2638 *
2639 * Returns %0 on success or negative error code on failure.
2640 */
2641int ubifs_tnc_remove_nm(struct ubifs_info *c, const union ubifs_key *key,
Richard Weinbergerf4f61d22016-11-11 22:50:29 +01002642 const struct fscrypt_name *nm)
Artem Bityutskiy1e517642008-07-14 19:08:37 +03002643{
2644 int n, err;
2645 struct ubifs_znode *znode;
2646
2647 mutex_lock(&c->tnc_mutex);
Richard Weinberger35ee3142017-05-17 10:36:48 +02002648 dbg_tnck(key, "key ");
Artem Bityutskiy1e517642008-07-14 19:08:37 +03002649 err = lookup_level0_dirty(c, key, &znode, &n);
2650 if (err < 0)
2651 goto out_unlock;
2652
2653 if (err) {
2654 if (c->replaying)
2655 err = fallible_resolve_collision(c, key, &znode, &n,
2656 nm, 0);
2657 else
2658 err = resolve_collision(c, key, &znode, &n, nm);
2659 dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n);
2660 if (err < 0)
2661 goto out_unlock;
2662 if (err) {
2663 /* Ensure the znode is dirtied */
2664 if (znode->cnext || !ubifs_zn_dirty(znode)) {
Artem Bityutskiyc4361572011-03-25 15:27:40 +02002665 znode = dirty_cow_bottom_up(c, znode);
2666 if (IS_ERR(znode)) {
2667 err = PTR_ERR(znode);
2668 goto out_unlock;
2669 }
Artem Bityutskiy1e517642008-07-14 19:08:37 +03002670 }
2671 err = tnc_delete(c, znode, n);
2672 }
2673 }
2674
2675out_unlock:
2676 if (!err)
2677 err = dbg_check_tnc(c, 0);
2678 mutex_unlock(&c->tnc_mutex);
2679 return err;
2680}
2681
2682/**
Richard Weinberger781f6752017-05-17 10:36:46 +02002683 * ubifs_tnc_remove_dh - remove an index entry for a "double hashed" node.
2684 * @c: UBIFS file-system description object
2685 * @key: key of node
2686 * @cookie: node cookie for collision resolution
2687 *
2688 * Returns %0 on success or negative error code on failure.
2689 */
2690int ubifs_tnc_remove_dh(struct ubifs_info *c, const union ubifs_key *key,
2691 uint32_t cookie)
2692{
2693 int n, err;
2694 struct ubifs_znode *znode;
2695 struct ubifs_dent_node *dent;
2696 struct ubifs_zbranch *zbr;
2697
2698 if (!c->double_hash)
2699 return -EOPNOTSUPP;
2700
2701 mutex_lock(&c->tnc_mutex);
2702 err = lookup_level0_dirty(c, key, &znode, &n);
2703 if (err <= 0)
2704 goto out_unlock;
2705
2706 zbr = &znode->zbranch[n];
2707 dent = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
2708 if (!dent) {
2709 err = -ENOMEM;
2710 goto out_unlock;
2711 }
2712
2713 err = tnc_read_hashed_node(c, zbr, dent);
2714 if (err)
2715 goto out_free;
2716
2717 /* If the cookie does not match, we're facing a hash collision. */
2718 if (le32_to_cpu(dent->cookie) != cookie) {
2719 union ubifs_key start_key;
2720
2721 lowest_dent_key(c, &start_key, key_inum(c, key));
2722
2723 err = ubifs_lookup_level0(c, &start_key, &znode, &n);
2724 if (unlikely(err < 0))
2725 goto out_free;
2726
Richard Weinberger72cd2302019-05-14 22:31:08 +02002727 err = search_dh_cookie(c, key, dent, cookie, &znode, &n, err);
Richard Weinberger781f6752017-05-17 10:36:46 +02002728 if (err)
2729 goto out_free;
2730 }
2731
2732 if (znode->cnext || !ubifs_zn_dirty(znode)) {
2733 znode = dirty_cow_bottom_up(c, znode);
2734 if (IS_ERR(znode)) {
2735 err = PTR_ERR(znode);
2736 goto out_free;
2737 }
2738 }
2739 err = tnc_delete(c, znode, n);
2740
2741out_free:
2742 kfree(dent);
2743out_unlock:
2744 if (!err)
2745 err = dbg_check_tnc(c, 0);
2746 mutex_unlock(&c->tnc_mutex);
2747 return err;
2748}
2749
2750/**
Artem Bityutskiy1e517642008-07-14 19:08:37 +03002751 * key_in_range - determine if a key falls within a range of keys.
2752 * @c: UBIFS file-system description object
2753 * @key: key to check
2754 * @from_key: lowest key in range
2755 * @to_key: highest key in range
2756 *
2757 * This function returns %1 if the key is in range and %0 otherwise.
2758 */
2759static int key_in_range(struct ubifs_info *c, union ubifs_key *key,
2760 union ubifs_key *from_key, union ubifs_key *to_key)
2761{
2762 if (keys_cmp(c, key, from_key) < 0)
2763 return 0;
2764 if (keys_cmp(c, key, to_key) > 0)
2765 return 0;
2766 return 1;
2767}
2768
2769/**
2770 * ubifs_tnc_remove_range - remove index entries in range.
2771 * @c: UBIFS file-system description object
2772 * @from_key: lowest key to remove
2773 * @to_key: highest key to remove
2774 *
2775 * This function removes index entries starting at @from_key and ending at
2776 * @to_key. This function returns zero in case of success and a negative error
2777 * code in case of failure.
2778 */
2779int ubifs_tnc_remove_range(struct ubifs_info *c, union ubifs_key *from_key,
2780 union ubifs_key *to_key)
2781{
2782 int i, n, k, err = 0;
2783 struct ubifs_znode *znode;
2784 union ubifs_key *key;
2785
2786 mutex_lock(&c->tnc_mutex);
2787 while (1) {
2788 /* Find first level 0 znode that contains keys to remove */
2789 err = ubifs_lookup_level0(c, from_key, &znode, &n);
2790 if (err < 0)
2791 goto out_unlock;
2792
2793 if (err)
2794 key = from_key;
2795 else {
2796 err = tnc_next(c, &znode, &n);
2797 if (err == -ENOENT) {
2798 err = 0;
2799 goto out_unlock;
2800 }
2801 if (err < 0)
2802 goto out_unlock;
2803 key = &znode->zbranch[n].key;
2804 if (!key_in_range(c, key, from_key, to_key)) {
2805 err = 0;
2806 goto out_unlock;
2807 }
2808 }
2809
2810 /* Ensure the znode is dirtied */
2811 if (znode->cnext || !ubifs_zn_dirty(znode)) {
Artem Bityutskiyf92b9822008-12-28 11:34:26 +02002812 znode = dirty_cow_bottom_up(c, znode);
2813 if (IS_ERR(znode)) {
2814 err = PTR_ERR(znode);
2815 goto out_unlock;
2816 }
Artem Bityutskiy1e517642008-07-14 19:08:37 +03002817 }
2818
2819 /* Remove all keys in range except the first */
2820 for (i = n + 1, k = 0; i < znode->child_cnt; i++, k++) {
2821 key = &znode->zbranch[i].key;
2822 if (!key_in_range(c, key, from_key, to_key))
2823 break;
2824 lnc_free(&znode->zbranch[i]);
2825 err = ubifs_add_dirt(c, znode->zbranch[i].lnum,
2826 znode->zbranch[i].len);
2827 if (err) {
Artem Bityutskiyedf6be22012-05-16 19:15:56 +03002828 ubifs_dump_znode(c, znode);
Artem Bityutskiy1e517642008-07-14 19:08:37 +03002829 goto out_unlock;
2830 }
Artem Bityutskiy515315a2012-01-13 12:33:53 +02002831 dbg_tnck(key, "removing key ");
Artem Bityutskiy1e517642008-07-14 19:08:37 +03002832 }
2833 if (k) {
2834 for (i = n + 1 + k; i < znode->child_cnt; i++)
2835 znode->zbranch[i - k] = znode->zbranch[i];
2836 znode->child_cnt -= k;
2837 }
2838
2839 /* Now delete the first */
2840 err = tnc_delete(c, znode, n);
2841 if (err)
2842 goto out_unlock;
2843 }
2844
2845out_unlock:
2846 if (!err)
2847 err = dbg_check_tnc(c, 0);
2848 mutex_unlock(&c->tnc_mutex);
2849 return err;
2850}
2851
2852/**
2853 * ubifs_tnc_remove_ino - remove an inode from TNC.
2854 * @c: UBIFS file-system description object
2855 * @inum: inode number to remove
2856 *
2857 * This function remove inode @inum and all the extended attributes associated
2858 * with the anode from TNC and returns zero in case of success or a negative
2859 * error code in case of failure.
2860 */
2861int ubifs_tnc_remove_ino(struct ubifs_info *c, ino_t inum)
2862{
2863 union ubifs_key key1, key2;
2864 struct ubifs_dent_node *xent, *pxent = NULL;
Richard Weinbergerf4f61d22016-11-11 22:50:29 +01002865 struct fscrypt_name nm = {0};
Artem Bityutskiy1e517642008-07-14 19:08:37 +03002866
Artem Bityutskiye84461a2008-10-29 12:08:43 +02002867 dbg_tnc("ino %lu", (unsigned long)inum);
Artem Bityutskiy1e517642008-07-14 19:08:37 +03002868
2869 /*
2870 * Walk all extended attribute entries and remove them together with
2871 * corresponding extended attribute inodes.
2872 */
2873 lowest_xent_key(c, &key1, inum);
2874 while (1) {
2875 ino_t xattr_inum;
2876 int err;
2877
2878 xent = ubifs_tnc_next_ent(c, &key1, &nm);
2879 if (IS_ERR(xent)) {
2880 err = PTR_ERR(xent);
2881 if (err == -ENOENT)
2882 break;
2883 return err;
2884 }
2885
2886 xattr_inum = le64_to_cpu(xent->inum);
Artem Bityutskiye84461a2008-10-29 12:08:43 +02002887 dbg_tnc("xent '%s', ino %lu", xent->name,
2888 (unsigned long)xattr_inum);
Artem Bityutskiy1e517642008-07-14 19:08:37 +03002889
Richard Weinberger272eda82017-05-17 00:20:27 +02002890 ubifs_evict_xattr_inode(c, xattr_inum);
2891
Richard Weinbergerf4f61d22016-11-11 22:50:29 +01002892 fname_name(&nm) = xent->name;
2893 fname_len(&nm) = le16_to_cpu(xent->nlen);
Artem Bityutskiy1e517642008-07-14 19:08:37 +03002894 err = ubifs_tnc_remove_nm(c, &key1, &nm);
2895 if (err) {
2896 kfree(xent);
2897 return err;
2898 }
2899
2900 lowest_ino_key(c, &key1, xattr_inum);
2901 highest_ino_key(c, &key2, xattr_inum);
2902 err = ubifs_tnc_remove_range(c, &key1, &key2);
2903 if (err) {
2904 kfree(xent);
2905 return err;
2906 }
2907
2908 kfree(pxent);
2909 pxent = xent;
2910 key_read(c, &xent->key, &key1);
2911 }
2912
2913 kfree(pxent);
2914 lowest_ino_key(c, &key1, inum);
2915 highest_ino_key(c, &key2, inum);
2916
2917 return ubifs_tnc_remove_range(c, &key1, &key2);
2918}
2919
2920/**
2921 * ubifs_tnc_next_ent - walk directory or extended attribute entries.
2922 * @c: UBIFS file-system description object
2923 * @key: key of last entry
2924 * @nm: name of last entry found or %NULL
2925 *
2926 * This function finds and reads the next directory or extended attribute entry
2927 * after the given key (@key) if there is one. @nm is used to resolve
2928 * collisions.
2929 *
2930 * If the name of the current entry is not known and only the key is known,
2931 * @nm->name has to be %NULL. In this case the semantics of this function is a
2932 * little bit different and it returns the entry corresponding to this key, not
2933 * the next one. If the key was not found, the closest "right" entry is
2934 * returned.
2935 *
2936 * If the fist entry has to be found, @key has to contain the lowest possible
2937 * key value for this inode and @name has to be %NULL.
2938 *
2939 * This function returns the found directory or extended attribute entry node
2940 * in case of success, %-ENOENT is returned if no entry was found, and a
2941 * negative error code is returned in case of failure.
2942 */
2943struct ubifs_dent_node *ubifs_tnc_next_ent(struct ubifs_info *c,
2944 union ubifs_key *key,
Richard Weinbergerf4f61d22016-11-11 22:50:29 +01002945 const struct fscrypt_name *nm)
Artem Bityutskiy1e517642008-07-14 19:08:37 +03002946{
2947 int n, err, type = key_type(c, key);
2948 struct ubifs_znode *znode;
2949 struct ubifs_dent_node *dent;
2950 struct ubifs_zbranch *zbr;
2951 union ubifs_key *dkey;
2952
Richard Weinberger35ee3142017-05-17 10:36:48 +02002953 dbg_tnck(key, "key ");
Richard Weinberger6eb61d52018-07-12 13:01:57 +02002954 ubifs_assert(c, is_hash_key(c, key));
Artem Bityutskiy1e517642008-07-14 19:08:37 +03002955
2956 mutex_lock(&c->tnc_mutex);
2957 err = ubifs_lookup_level0(c, key, &znode, &n);
2958 if (unlikely(err < 0))
2959 goto out_unlock;
2960
Richard Weinbergerf4f61d22016-11-11 22:50:29 +01002961 if (fname_len(nm) > 0) {
Artem Bityutskiy1e517642008-07-14 19:08:37 +03002962 if (err) {
2963 /* Handle collisions */
Richard Weinberger1cb51a12017-01-10 11:49:40 +01002964 if (c->replaying)
2965 err = fallible_resolve_collision(c, key, &znode, &n,
2966 nm, 0);
2967 else
2968 err = resolve_collision(c, key, &znode, &n, nm);
Artem Bityutskiy1e517642008-07-14 19:08:37 +03002969 dbg_tnc("rc returned %d, znode %p, n %d",
2970 err, znode, n);
2971 if (unlikely(err < 0))
2972 goto out_unlock;
2973 }
2974
2975 /* Now find next entry */
2976 err = tnc_next(c, &znode, &n);
2977 if (unlikely(err))
2978 goto out_unlock;
2979 } else {
2980 /*
2981 * The full name of the entry was not given, in which case the
2982 * behavior of this function is a little different and it
2983 * returns current entry, not the next one.
2984 */
2985 if (!err) {
2986 /*
2987 * However, the given key does not exist in the TNC
2988 * tree and @znode/@n variables contain the closest
2989 * "preceding" element. Switch to the next one.
2990 */
2991 err = tnc_next(c, &znode, &n);
2992 if (err)
2993 goto out_unlock;
2994 }
2995 }
2996
2997 zbr = &znode->zbranch[n];
2998 dent = kmalloc(zbr->len, GFP_NOFS);
2999 if (unlikely(!dent)) {
3000 err = -ENOMEM;
3001 goto out_unlock;
3002 }
3003
3004 /*
3005 * The above 'tnc_next()' call could lead us to the next inode, check
3006 * this.
3007 */
3008 dkey = &zbr->key;
3009 if (key_inum(c, dkey) != key_inum(c, key) ||
3010 key_type(c, dkey) != type) {
3011 err = -ENOENT;
3012 goto out_free;
3013 }
3014
Richard Weinbergerb91dc982016-10-10 10:14:40 +02003015 err = tnc_read_hashed_node(c, zbr, dent);
Artem Bityutskiy1e517642008-07-14 19:08:37 +03003016 if (unlikely(err))
3017 goto out_free;
3018
3019 mutex_unlock(&c->tnc_mutex);
3020 return dent;
3021
3022out_free:
3023 kfree(dent);
3024out_unlock:
3025 mutex_unlock(&c->tnc_mutex);
3026 return ERR_PTR(err);
3027}
3028
3029/**
3030 * tnc_destroy_cnext - destroy left-over obsolete znodes from a failed commit.
3031 * @c: UBIFS file-system description object
3032 *
3033 * Destroy left-over obsolete znodes from a failed commit.
3034 */
3035static void tnc_destroy_cnext(struct ubifs_info *c)
3036{
3037 struct ubifs_znode *cnext;
3038
3039 if (!c->cnext)
3040 return;
Richard Weinberger6eb61d52018-07-12 13:01:57 +02003041 ubifs_assert(c, c->cmt_state == COMMIT_BROKEN);
Artem Bityutskiy1e517642008-07-14 19:08:37 +03003042 cnext = c->cnext;
3043 do {
3044 struct ubifs_znode *znode = cnext;
3045
3046 cnext = cnext->cnext;
Artem Bityutskiyf42eed72011-05-30 14:45:30 +03003047 if (ubifs_zn_obsolete(znode))
Artem Bityutskiy1e517642008-07-14 19:08:37 +03003048 kfree(znode);
3049 } while (cnext && cnext != c->cnext);
3050}
3051
3052/**
3053 * ubifs_tnc_close - close TNC subsystem and free all related resources.
3054 * @c: UBIFS file-system description object
3055 */
3056void ubifs_tnc_close(struct ubifs_info *c)
3057{
Artem Bityutskiy1e517642008-07-14 19:08:37 +03003058 tnc_destroy_cnext(c);
3059 if (c->zroot.znode) {
hujianyang380347e2014-06-03 14:49:11 +08003060 long n, freed;
Artem Bityutskiy83707232011-05-31 14:26:07 +03003061
Artem Bityutskiy83707232011-05-31 14:26:07 +03003062 n = atomic_long_read(&c->clean_zn_cnt);
Richard Weinberger6eb61d52018-07-12 13:01:57 +02003063 freed = ubifs_destroy_tnc_subtree(c, c->zroot.znode);
3064 ubifs_assert(c, freed == n);
Artem Bityutskiy83707232011-05-31 14:26:07 +03003065 atomic_long_sub(n, &ubifs_clean_zn_cnt);
Artem Bityutskiy1e517642008-07-14 19:08:37 +03003066 }
3067 kfree(c->gap_lebs);
3068 kfree(c->ilebs);
3069 destroy_old_idx(c);
3070}
3071
3072/**
3073 * left_znode - get the znode to the left.
3074 * @c: UBIFS file-system description object
3075 * @znode: znode
3076 *
3077 * This function returns a pointer to the znode to the left of @znode or NULL if
3078 * there is not one. A negative error code is returned on failure.
3079 */
3080static struct ubifs_znode *left_znode(struct ubifs_info *c,
3081 struct ubifs_znode *znode)
3082{
3083 int level = znode->level;
3084
3085 while (1) {
3086 int n = znode->iip - 1;
3087
3088 /* Go up until we can go left */
3089 znode = znode->parent;
3090 if (!znode)
3091 return NULL;
3092 if (n >= 0) {
3093 /* Now go down the rightmost branch to 'level' */
3094 znode = get_znode(c, znode, n);
3095 if (IS_ERR(znode))
3096 return znode;
3097 while (znode->level != level) {
3098 n = znode->child_cnt - 1;
3099 znode = get_znode(c, znode, n);
3100 if (IS_ERR(znode))
3101 return znode;
3102 }
3103 break;
3104 }
3105 }
3106 return znode;
3107}
3108
3109/**
3110 * right_znode - get the znode to the right.
3111 * @c: UBIFS file-system description object
3112 * @znode: znode
3113 *
3114 * This function returns a pointer to the znode to the right of @znode or NULL
3115 * if there is not one. A negative error code is returned on failure.
3116 */
3117static struct ubifs_znode *right_znode(struct ubifs_info *c,
3118 struct ubifs_znode *znode)
3119{
3120 int level = znode->level;
3121
3122 while (1) {
3123 int n = znode->iip + 1;
3124
3125 /* Go up until we can go right */
3126 znode = znode->parent;
3127 if (!znode)
3128 return NULL;
3129 if (n < znode->child_cnt) {
3130 /* Now go down the leftmost branch to 'level' */
3131 znode = get_znode(c, znode, n);
3132 if (IS_ERR(znode))
3133 return znode;
3134 while (znode->level != level) {
3135 znode = get_znode(c, znode, 0);
3136 if (IS_ERR(znode))
3137 return znode;
3138 }
3139 break;
3140 }
3141 }
3142 return znode;
3143}
3144
3145/**
3146 * lookup_znode - find a particular indexing node from TNC.
3147 * @c: UBIFS file-system description object
3148 * @key: index node key to lookup
3149 * @level: index node level
3150 * @lnum: index node LEB number
3151 * @offs: index node offset
3152 *
3153 * This function searches an indexing node by its first key @key and its
3154 * address @lnum:@offs. It looks up the indexing tree by pulling all indexing
Artem Bityutskiyba2f48f2010-08-22 07:10:12 +03003155 * nodes it traverses to TNC. This function is called for indexing nodes which
Artem Bityutskiy1e517642008-07-14 19:08:37 +03003156 * were found on the media by scanning, for example when garbage-collecting or
3157 * when doing in-the-gaps commit. This means that the indexing node which is
3158 * looked for does not have to have exactly the same leftmost key @key, because
3159 * the leftmost key may have been changed, in which case TNC will contain a
3160 * dirty znode which still refers the same @lnum:@offs. This function is clever
3161 * enough to recognize such indexing nodes.
3162 *
3163 * Note, if a znode was deleted or changed too much, then this function will
3164 * not find it. For situations like this UBIFS has the old index RB-tree
3165 * (indexed by @lnum:@offs).
3166 *
3167 * This function returns a pointer to the znode found or %NULL if it is not
3168 * found. A negative error code is returned on failure.
3169 */
3170static struct ubifs_znode *lookup_znode(struct ubifs_info *c,
3171 union ubifs_key *key, int level,
3172 int lnum, int offs)
3173{
3174 struct ubifs_znode *znode, *zn;
3175 int n, nn;
3176
Richard Weinberger6eb61d52018-07-12 13:01:57 +02003177 ubifs_assert(c, key_type(c, key) < UBIFS_INVALID_KEY);
Artem Bityutskiyba2f48f2010-08-22 07:10:12 +03003178
Artem Bityutskiy1e517642008-07-14 19:08:37 +03003179 /*
3180 * The arguments have probably been read off flash, so don't assume
3181 * they are valid.
3182 */
3183 if (level < 0)
3184 return ERR_PTR(-EINVAL);
3185
3186 /* Get the root znode */
3187 znode = c->zroot.znode;
3188 if (!znode) {
3189 znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
3190 if (IS_ERR(znode))
3191 return znode;
3192 }
3193 /* Check if it is the one we are looking for */
3194 if (c->zroot.lnum == lnum && c->zroot.offs == offs)
3195 return znode;
3196 /* Descend to the parent level i.e. (level + 1) */
3197 if (level >= znode->level)
3198 return NULL;
3199 while (1) {
3200 ubifs_search_zbranch(c, znode, key, &n);
3201 if (n < 0) {
3202 /*
3203 * We reached a znode where the leftmost key is greater
3204 * than the key we are searching for. This is the same
3205 * situation as the one described in a huge comment at
3206 * the end of the 'ubifs_lookup_level0()' function. And
3207 * for exactly the same reasons we have to try to look
3208 * left before giving up.
3209 */
3210 znode = left_znode(c, znode);
3211 if (!znode)
3212 return NULL;
3213 if (IS_ERR(znode))
3214 return znode;
3215 ubifs_search_zbranch(c, znode, key, &n);
Richard Weinberger6eb61d52018-07-12 13:01:57 +02003216 ubifs_assert(c, n >= 0);
Artem Bityutskiy1e517642008-07-14 19:08:37 +03003217 }
3218 if (znode->level == level + 1)
3219 break;
3220 znode = get_znode(c, znode, n);
3221 if (IS_ERR(znode))
3222 return znode;
3223 }
3224 /* Check if the child is the one we are looking for */
3225 if (znode->zbranch[n].lnum == lnum && znode->zbranch[n].offs == offs)
3226 return get_znode(c, znode, n);
3227 /* If the key is unique, there is nowhere else to look */
3228 if (!is_hash_key(c, key))
3229 return NULL;
3230 /*
3231 * The key is not unique and so may be also in the znodes to either
3232 * side.
3233 */
3234 zn = znode;
3235 nn = n;
3236 /* Look left */
3237 while (1) {
3238 /* Move one branch to the left */
3239 if (n)
3240 n -= 1;
3241 else {
3242 znode = left_znode(c, znode);
3243 if (!znode)
3244 break;
3245 if (IS_ERR(znode))
3246 return znode;
3247 n = znode->child_cnt - 1;
3248 }
3249 /* Check it */
3250 if (znode->zbranch[n].lnum == lnum &&
3251 znode->zbranch[n].offs == offs)
3252 return get_znode(c, znode, n);
3253 /* Stop if the key is less than the one we are looking for */
3254 if (keys_cmp(c, &znode->zbranch[n].key, key) < 0)
3255 break;
3256 }
3257 /* Back to the middle */
3258 znode = zn;
3259 n = nn;
3260 /* Look right */
3261 while (1) {
3262 /* Move one branch to the right */
3263 if (++n >= znode->child_cnt) {
3264 znode = right_znode(c, znode);
3265 if (!znode)
3266 break;
3267 if (IS_ERR(znode))
3268 return znode;
3269 n = 0;
3270 }
3271 /* Check it */
3272 if (znode->zbranch[n].lnum == lnum &&
3273 znode->zbranch[n].offs == offs)
3274 return get_znode(c, znode, n);
3275 /* Stop if the key is greater than the one we are looking for */
3276 if (keys_cmp(c, &znode->zbranch[n].key, key) > 0)
3277 break;
3278 }
3279 return NULL;
3280}
3281
3282/**
3283 * is_idx_node_in_tnc - determine if an index node is in the TNC.
3284 * @c: UBIFS file-system description object
3285 * @key: key of index node
3286 * @level: index node level
3287 * @lnum: LEB number of index node
3288 * @offs: offset of index node
3289 *
3290 * This function returns %0 if the index node is not referred to in the TNC, %1
3291 * if the index node is referred to in the TNC and the corresponding znode is
3292 * dirty, %2 if an index node is referred to in the TNC and the corresponding
3293 * znode is clean, and a negative error code in case of failure.
3294 *
3295 * Note, the @key argument has to be the key of the first child. Also note,
3296 * this function relies on the fact that 0:0 is never a valid LEB number and
3297 * offset for a main-area node.
3298 */
3299int is_idx_node_in_tnc(struct ubifs_info *c, union ubifs_key *key, int level,
3300 int lnum, int offs)
3301{
3302 struct ubifs_znode *znode;
3303
3304 znode = lookup_znode(c, key, level, lnum, offs);
3305 if (!znode)
3306 return 0;
3307 if (IS_ERR(znode))
3308 return PTR_ERR(znode);
3309
3310 return ubifs_zn_dirty(znode) ? 1 : 2;
3311}
3312
3313/**
3314 * is_leaf_node_in_tnc - determine if a non-indexing not is in the TNC.
3315 * @c: UBIFS file-system description object
3316 * @key: node key
3317 * @lnum: node LEB number
3318 * @offs: node offset
3319 *
3320 * This function returns %1 if the node is referred to in the TNC, %0 if it is
3321 * not, and a negative error code in case of failure.
3322 *
3323 * Note, this function relies on the fact that 0:0 is never a valid LEB number
3324 * and offset for a main-area node.
3325 */
3326static int is_leaf_node_in_tnc(struct ubifs_info *c, union ubifs_key *key,
3327 int lnum, int offs)
3328{
3329 struct ubifs_zbranch *zbr;
3330 struct ubifs_znode *znode, *zn;
3331 int n, found, err, nn;
3332 const int unique = !is_hash_key(c, key);
3333
3334 found = ubifs_lookup_level0(c, key, &znode, &n);
3335 if (found < 0)
3336 return found; /* Error code */
3337 if (!found)
3338 return 0;
3339 zbr = &znode->zbranch[n];
3340 if (lnum == zbr->lnum && offs == zbr->offs)
3341 return 1; /* Found it */
3342 if (unique)
3343 return 0;
3344 /*
3345 * Because the key is not unique, we have to look left
3346 * and right as well
3347 */
3348 zn = znode;
3349 nn = n;
3350 /* Look left */
3351 while (1) {
3352 err = tnc_prev(c, &znode, &n);
3353 if (err == -ENOENT)
3354 break;
3355 if (err)
3356 return err;
3357 if (keys_cmp(c, key, &znode->zbranch[n].key))
3358 break;
3359 zbr = &znode->zbranch[n];
3360 if (lnum == zbr->lnum && offs == zbr->offs)
3361 return 1; /* Found it */
3362 }
3363 /* Look right */
3364 znode = zn;
3365 n = nn;
3366 while (1) {
3367 err = tnc_next(c, &znode, &n);
3368 if (err) {
3369 if (err == -ENOENT)
3370 return 0;
3371 return err;
3372 }
3373 if (keys_cmp(c, key, &znode->zbranch[n].key))
3374 break;
3375 zbr = &znode->zbranch[n];
3376 if (lnum == zbr->lnum && offs == zbr->offs)
3377 return 1; /* Found it */
3378 }
3379 return 0;
3380}
3381
3382/**
3383 * ubifs_tnc_has_node - determine whether a node is in the TNC.
3384 * @c: UBIFS file-system description object
3385 * @key: node key
3386 * @level: index node level (if it is an index node)
3387 * @lnum: node LEB number
3388 * @offs: node offset
3389 * @is_idx: non-zero if the node is an index node
3390 *
3391 * This function returns %1 if the node is in the TNC, %0 if it is not, and a
3392 * negative error code in case of failure. For index nodes, @key has to be the
3393 * key of the first child. An index node is considered to be in the TNC only if
3394 * the corresponding znode is clean or has not been loaded.
3395 */
3396int ubifs_tnc_has_node(struct ubifs_info *c, union ubifs_key *key, int level,
3397 int lnum, int offs, int is_idx)
3398{
3399 int err;
3400
3401 mutex_lock(&c->tnc_mutex);
3402 if (is_idx) {
3403 err = is_idx_node_in_tnc(c, key, level, lnum, offs);
3404 if (err < 0)
3405 goto out_unlock;
3406 if (err == 1)
3407 /* The index node was found but it was dirty */
3408 err = 0;
3409 else if (err == 2)
3410 /* The index node was found and it was clean */
3411 err = 1;
3412 else
3413 BUG_ON(err != 0);
3414 } else
3415 err = is_leaf_node_in_tnc(c, key, lnum, offs);
3416
3417out_unlock:
3418 mutex_unlock(&c->tnc_mutex);
3419 return err;
3420}
3421
3422/**
3423 * ubifs_dirty_idx_node - dirty an index node.
3424 * @c: UBIFS file-system description object
3425 * @key: index node key
3426 * @level: index node level
3427 * @lnum: index node LEB number
3428 * @offs: index node offset
3429 *
3430 * This function loads and dirties an index node so that it can be garbage
3431 * collected. The @key argument has to be the key of the first child. This
3432 * function relies on the fact that 0:0 is never a valid LEB number and offset
3433 * for a main-area node. Returns %0 on success and a negative error code on
3434 * failure.
3435 */
3436int ubifs_dirty_idx_node(struct ubifs_info *c, union ubifs_key *key, int level,
3437 int lnum, int offs)
3438{
3439 struct ubifs_znode *znode;
3440 int err = 0;
3441
3442 mutex_lock(&c->tnc_mutex);
3443 znode = lookup_znode(c, key, level, lnum, offs);
3444 if (!znode)
3445 goto out_unlock;
3446 if (IS_ERR(znode)) {
3447 err = PTR_ERR(znode);
3448 goto out_unlock;
3449 }
3450 znode = dirty_cow_bottom_up(c, znode);
3451 if (IS_ERR(znode)) {
3452 err = PTR_ERR(znode);
3453 goto out_unlock;
3454 }
3455
3456out_unlock:
3457 mutex_unlock(&c->tnc_mutex);
3458 return err;
3459}
Artem Bityutskiye3c3efc2009-08-27 16:34:19 +03003460
Artem Bityutskiye3c3efc2009-08-27 16:34:19 +03003461/**
3462 * dbg_check_inode_size - check if inode size is correct.
3463 * @c: UBIFS file-system description object
3464 * @inum: inode number
3465 * @size: inode size
3466 *
3467 * This function makes sure that the inode size (@size) is correct and it does
3468 * not have any pages beyond @size. Returns zero if the inode is OK, %-EINVAL
3469 * if it has a data page beyond @size, and other negative error code in case of
3470 * other errors.
3471 */
3472int dbg_check_inode_size(struct ubifs_info *c, const struct inode *inode,
3473 loff_t size)
3474{
3475 int err, n;
3476 union ubifs_key from_key, to_key, *key;
3477 struct ubifs_znode *znode;
3478 unsigned int block;
3479
3480 if (!S_ISREG(inode->i_mode))
3481 return 0;
Artem Bityutskiy2b1844a2011-06-03 08:31:29 +03003482 if (!dbg_is_chk_gen(c))
Artem Bityutskiye3c3efc2009-08-27 16:34:19 +03003483 return 0;
3484
3485 block = (size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT;
3486 data_key_init(c, &from_key, inode->i_ino, block);
3487 highest_data_key(c, &to_key, inode->i_ino);
3488
3489 mutex_lock(&c->tnc_mutex);
3490 err = ubifs_lookup_level0(c, &from_key, &znode, &n);
3491 if (err < 0)
3492 goto out_unlock;
3493
3494 if (err) {
Artem Bityutskiye3c3efc2009-08-27 16:34:19 +03003495 key = &from_key;
3496 goto out_dump;
3497 }
3498
3499 err = tnc_next(c, &znode, &n);
3500 if (err == -ENOENT) {
3501 err = 0;
3502 goto out_unlock;
3503 }
3504 if (err < 0)
3505 goto out_unlock;
3506
Richard Weinberger6eb61d52018-07-12 13:01:57 +02003507 ubifs_assert(c, err == 0);
Artem Bityutskiye3c3efc2009-08-27 16:34:19 +03003508 key = &znode->zbranch[n].key;
3509 if (!key_in_range(c, key, &from_key, &to_key))
3510 goto out_unlock;
3511
3512out_dump:
3513 block = key_block(c, key);
Sheng Yong235c3622015-03-20 10:39:42 +00003514 ubifs_err(c, "inode %lu has size %lld, but there are data at offset %lld",
Artem Bityutskiy515315a2012-01-13 12:33:53 +02003515 (unsigned long)inode->i_ino, size,
3516 ((loff_t)block) << UBIFS_BLOCK_SHIFT);
Artem Bityutskiy4315fb42011-05-25 17:32:42 +03003517 mutex_unlock(&c->tnc_mutex);
Artem Bityutskiyedf6be22012-05-16 19:15:56 +03003518 ubifs_dump_inode(c, inode);
Artem Bityutskiy7c46d0a2012-05-16 19:04:54 +03003519 dump_stack();
Artem Bityutskiy4315fb42011-05-25 17:32:42 +03003520 return -EINVAL;
Artem Bityutskiye3c3efc2009-08-27 16:34:19 +03003521
3522out_unlock:
3523 mutex_unlock(&c->tnc_mutex);
3524 return err;
3525}