Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* |
| 2 | * INET An implementation of the TCP/IP protocol suite for the LINUX |
| 3 | * operating system. INET is implemented using the BSD Socket |
| 4 | * interface as the means of communication with the user level. |
| 5 | * |
| 6 | * Implementation of the Transmission Control Protocol(TCP). |
| 7 | * |
| 8 | * Version: $Id: tcp_minisocks.c,v 1.15 2002/02/01 22:01:04 davem Exp $ |
| 9 | * |
| 10 | * Authors: Ross Biro, <bir7@leland.Stanford.Edu> |
| 11 | * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> |
| 12 | * Mark Evans, <evansmp@uhura.aston.ac.uk> |
| 13 | * Corey Minyard <wf-rch!minyard@relay.EU.net> |
| 14 | * Florian La Roche, <flla@stud.uni-sb.de> |
| 15 | * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> |
| 16 | * Linus Torvalds, <torvalds@cs.helsinki.fi> |
| 17 | * Alan Cox, <gw4pts@gw4pts.ampr.org> |
| 18 | * Matthew Dillon, <dillon@apollo.west.oic.com> |
| 19 | * Arnt Gulbrandsen, <agulbra@nvg.unit.no> |
| 20 | * Jorge Cwik, <jorge@laser.satlink.net> |
| 21 | */ |
| 22 | |
| 23 | #include <linux/config.h> |
| 24 | #include <linux/mm.h> |
| 25 | #include <linux/module.h> |
| 26 | #include <linux/sysctl.h> |
| 27 | #include <linux/workqueue.h> |
| 28 | #include <net/tcp.h> |
| 29 | #include <net/inet_common.h> |
| 30 | #include <net/xfrm.h> |
| 31 | |
| 32 | #ifdef CONFIG_SYSCTL |
| 33 | #define SYNC_INIT 0 /* let the user enable it */ |
| 34 | #else |
| 35 | #define SYNC_INIT 1 |
| 36 | #endif |
| 37 | |
| 38 | int sysctl_tcp_tw_recycle; |
| 39 | int sysctl_tcp_max_tw_buckets = NR_FILE*2; |
| 40 | |
| 41 | int sysctl_tcp_syncookies = SYNC_INIT; |
| 42 | int sysctl_tcp_abort_on_overflow; |
| 43 | |
| 44 | static void tcp_tw_schedule(struct tcp_tw_bucket *tw, int timeo); |
| 45 | |
| 46 | static __inline__ int tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win) |
| 47 | { |
| 48 | if (seq == s_win) |
| 49 | return 1; |
| 50 | if (after(end_seq, s_win) && before(seq, e_win)) |
| 51 | return 1; |
| 52 | return (seq == e_win && seq == end_seq); |
| 53 | } |
| 54 | |
| 55 | /* New-style handling of TIME_WAIT sockets. */ |
| 56 | |
| 57 | int tcp_tw_count; |
| 58 | |
| 59 | |
| 60 | /* Must be called with locally disabled BHs. */ |
| 61 | static void tcp_timewait_kill(struct tcp_tw_bucket *tw) |
| 62 | { |
| 63 | struct tcp_ehash_bucket *ehead; |
| 64 | struct tcp_bind_hashbucket *bhead; |
| 65 | struct tcp_bind_bucket *tb; |
| 66 | |
| 67 | /* Unlink from established hashes. */ |
| 68 | ehead = &tcp_ehash[tw->tw_hashent]; |
| 69 | write_lock(&ehead->lock); |
| 70 | if (hlist_unhashed(&tw->tw_node)) { |
| 71 | write_unlock(&ehead->lock); |
| 72 | return; |
| 73 | } |
| 74 | __hlist_del(&tw->tw_node); |
| 75 | sk_node_init(&tw->tw_node); |
| 76 | write_unlock(&ehead->lock); |
| 77 | |
| 78 | /* Disassociate with bind bucket. */ |
| 79 | bhead = &tcp_bhash[tcp_bhashfn(tw->tw_num)]; |
| 80 | spin_lock(&bhead->lock); |
| 81 | tb = tw->tw_tb; |
| 82 | __hlist_del(&tw->tw_bind_node); |
| 83 | tw->tw_tb = NULL; |
| 84 | tcp_bucket_destroy(tb); |
| 85 | spin_unlock(&bhead->lock); |
| 86 | |
| 87 | #ifdef INET_REFCNT_DEBUG |
| 88 | if (atomic_read(&tw->tw_refcnt) != 1) { |
| 89 | printk(KERN_DEBUG "tw_bucket %p refcnt=%d\n", tw, |
| 90 | atomic_read(&tw->tw_refcnt)); |
| 91 | } |
| 92 | #endif |
| 93 | tcp_tw_put(tw); |
| 94 | } |
| 95 | |
| 96 | /* |
| 97 | * * Main purpose of TIME-WAIT state is to close connection gracefully, |
| 98 | * when one of ends sits in LAST-ACK or CLOSING retransmitting FIN |
| 99 | * (and, probably, tail of data) and one or more our ACKs are lost. |
| 100 | * * What is TIME-WAIT timeout? It is associated with maximal packet |
| 101 | * lifetime in the internet, which results in wrong conclusion, that |
| 102 | * it is set to catch "old duplicate segments" wandering out of their path. |
| 103 | * It is not quite correct. This timeout is calculated so that it exceeds |
| 104 | * maximal retransmission timeout enough to allow to lose one (or more) |
| 105 | * segments sent by peer and our ACKs. This time may be calculated from RTO. |
| 106 | * * When TIME-WAIT socket receives RST, it means that another end |
| 107 | * finally closed and we are allowed to kill TIME-WAIT too. |
| 108 | * * Second purpose of TIME-WAIT is catching old duplicate segments. |
| 109 | * Well, certainly it is pure paranoia, but if we load TIME-WAIT |
| 110 | * with this semantics, we MUST NOT kill TIME-WAIT state with RSTs. |
| 111 | * * If we invented some more clever way to catch duplicates |
| 112 | * (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs. |
| 113 | * |
| 114 | * The algorithm below is based on FORMAL INTERPRETATION of RFCs. |
| 115 | * When you compare it to RFCs, please, read section SEGMENT ARRIVES |
| 116 | * from the very beginning. |
| 117 | * |
| 118 | * NOTE. With recycling (and later with fin-wait-2) TW bucket |
| 119 | * is _not_ stateless. It means, that strictly speaking we must |
| 120 | * spinlock it. I do not want! Well, probability of misbehaviour |
| 121 | * is ridiculously low and, seems, we could use some mb() tricks |
| 122 | * to avoid misread sequence numbers, states etc. --ANK |
| 123 | */ |
| 124 | enum tcp_tw_status |
| 125 | tcp_timewait_state_process(struct tcp_tw_bucket *tw, struct sk_buff *skb, |
| 126 | struct tcphdr *th, unsigned len) |
| 127 | { |
| 128 | struct tcp_options_received tmp_opt; |
| 129 | int paws_reject = 0; |
| 130 | |
| 131 | tmp_opt.saw_tstamp = 0; |
| 132 | if (th->doff > (sizeof(struct tcphdr) >> 2) && tw->tw_ts_recent_stamp) { |
| 133 | tcp_parse_options(skb, &tmp_opt, 0); |
| 134 | |
| 135 | if (tmp_opt.saw_tstamp) { |
| 136 | tmp_opt.ts_recent = tw->tw_ts_recent; |
| 137 | tmp_opt.ts_recent_stamp = tw->tw_ts_recent_stamp; |
| 138 | paws_reject = tcp_paws_check(&tmp_opt, th->rst); |
| 139 | } |
| 140 | } |
| 141 | |
| 142 | if (tw->tw_substate == TCP_FIN_WAIT2) { |
| 143 | /* Just repeat all the checks of tcp_rcv_state_process() */ |
| 144 | |
| 145 | /* Out of window, send ACK */ |
| 146 | if (paws_reject || |
| 147 | !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq, |
| 148 | tw->tw_rcv_nxt, |
| 149 | tw->tw_rcv_nxt + tw->tw_rcv_wnd)) |
| 150 | return TCP_TW_ACK; |
| 151 | |
| 152 | if (th->rst) |
| 153 | goto kill; |
| 154 | |
| 155 | if (th->syn && !before(TCP_SKB_CB(skb)->seq, tw->tw_rcv_nxt)) |
| 156 | goto kill_with_rst; |
| 157 | |
| 158 | /* Dup ACK? */ |
| 159 | if (!after(TCP_SKB_CB(skb)->end_seq, tw->tw_rcv_nxt) || |
| 160 | TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) { |
| 161 | tcp_tw_put(tw); |
| 162 | return TCP_TW_SUCCESS; |
| 163 | } |
| 164 | |
| 165 | /* New data or FIN. If new data arrive after half-duplex close, |
| 166 | * reset. |
| 167 | */ |
| 168 | if (!th->fin || |
| 169 | TCP_SKB_CB(skb)->end_seq != tw->tw_rcv_nxt + 1) { |
| 170 | kill_with_rst: |
| 171 | tcp_tw_deschedule(tw); |
| 172 | tcp_tw_put(tw); |
| 173 | return TCP_TW_RST; |
| 174 | } |
| 175 | |
| 176 | /* FIN arrived, enter true time-wait state. */ |
| 177 | tw->tw_substate = TCP_TIME_WAIT; |
| 178 | tw->tw_rcv_nxt = TCP_SKB_CB(skb)->end_seq; |
| 179 | if (tmp_opt.saw_tstamp) { |
| 180 | tw->tw_ts_recent_stamp = xtime.tv_sec; |
| 181 | tw->tw_ts_recent = tmp_opt.rcv_tsval; |
| 182 | } |
| 183 | |
| 184 | /* I am shamed, but failed to make it more elegant. |
| 185 | * Yes, it is direct reference to IP, which is impossible |
| 186 | * to generalize to IPv6. Taking into account that IPv6 |
| 187 | * do not undertsnad recycling in any case, it not |
| 188 | * a big problem in practice. --ANK */ |
| 189 | if (tw->tw_family == AF_INET && |
| 190 | sysctl_tcp_tw_recycle && tw->tw_ts_recent_stamp && |
| 191 | tcp_v4_tw_remember_stamp(tw)) |
| 192 | tcp_tw_schedule(tw, tw->tw_timeout); |
| 193 | else |
| 194 | tcp_tw_schedule(tw, TCP_TIMEWAIT_LEN); |
| 195 | return TCP_TW_ACK; |
| 196 | } |
| 197 | |
| 198 | /* |
| 199 | * Now real TIME-WAIT state. |
| 200 | * |
| 201 | * RFC 1122: |
| 202 | * "When a connection is [...] on TIME-WAIT state [...] |
| 203 | * [a TCP] MAY accept a new SYN from the remote TCP to |
| 204 | * reopen the connection directly, if it: |
| 205 | * |
| 206 | * (1) assigns its initial sequence number for the new |
| 207 | * connection to be larger than the largest sequence |
| 208 | * number it used on the previous connection incarnation, |
| 209 | * and |
| 210 | * |
| 211 | * (2) returns to TIME-WAIT state if the SYN turns out |
| 212 | * to be an old duplicate". |
| 213 | */ |
| 214 | |
| 215 | if (!paws_reject && |
| 216 | (TCP_SKB_CB(skb)->seq == tw->tw_rcv_nxt && |
| 217 | (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) { |
| 218 | /* In window segment, it may be only reset or bare ack. */ |
| 219 | |
| 220 | if (th->rst) { |
| 221 | /* This is TIME_WAIT assasination, in two flavors. |
| 222 | * Oh well... nobody has a sufficient solution to this |
| 223 | * protocol bug yet. |
| 224 | */ |
| 225 | if (sysctl_tcp_rfc1337 == 0) { |
| 226 | kill: |
| 227 | tcp_tw_deschedule(tw); |
| 228 | tcp_tw_put(tw); |
| 229 | return TCP_TW_SUCCESS; |
| 230 | } |
| 231 | } |
| 232 | tcp_tw_schedule(tw, TCP_TIMEWAIT_LEN); |
| 233 | |
| 234 | if (tmp_opt.saw_tstamp) { |
| 235 | tw->tw_ts_recent = tmp_opt.rcv_tsval; |
| 236 | tw->tw_ts_recent_stamp = xtime.tv_sec; |
| 237 | } |
| 238 | |
| 239 | tcp_tw_put(tw); |
| 240 | return TCP_TW_SUCCESS; |
| 241 | } |
| 242 | |
| 243 | /* Out of window segment. |
| 244 | |
| 245 | All the segments are ACKed immediately. |
| 246 | |
| 247 | The only exception is new SYN. We accept it, if it is |
| 248 | not old duplicate and we are not in danger to be killed |
| 249 | by delayed old duplicates. RFC check is that it has |
| 250 | newer sequence number works at rates <40Mbit/sec. |
| 251 | However, if paws works, it is reliable AND even more, |
| 252 | we even may relax silly seq space cutoff. |
| 253 | |
| 254 | RED-PEN: we violate main RFC requirement, if this SYN will appear |
| 255 | old duplicate (i.e. we receive RST in reply to SYN-ACK), |
| 256 | we must return socket to time-wait state. It is not good, |
| 257 | but not fatal yet. |
| 258 | */ |
| 259 | |
| 260 | if (th->syn && !th->rst && !th->ack && !paws_reject && |
| 261 | (after(TCP_SKB_CB(skb)->seq, tw->tw_rcv_nxt) || |
| 262 | (tmp_opt.saw_tstamp && (s32)(tw->tw_ts_recent - tmp_opt.rcv_tsval) < 0))) { |
| 263 | u32 isn = tw->tw_snd_nxt + 65535 + 2; |
| 264 | if (isn == 0) |
| 265 | isn++; |
| 266 | TCP_SKB_CB(skb)->when = isn; |
| 267 | return TCP_TW_SYN; |
| 268 | } |
| 269 | |
| 270 | if (paws_reject) |
| 271 | NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED); |
| 272 | |
| 273 | if(!th->rst) { |
| 274 | /* In this case we must reset the TIMEWAIT timer. |
| 275 | * |
| 276 | * If it is ACKless SYN it may be both old duplicate |
| 277 | * and new good SYN with random sequence number <rcv_nxt. |
| 278 | * Do not reschedule in the last case. |
| 279 | */ |
| 280 | if (paws_reject || th->ack) |
| 281 | tcp_tw_schedule(tw, TCP_TIMEWAIT_LEN); |
| 282 | |
| 283 | /* Send ACK. Note, we do not put the bucket, |
| 284 | * it will be released by caller. |
| 285 | */ |
| 286 | return TCP_TW_ACK; |
| 287 | } |
| 288 | tcp_tw_put(tw); |
| 289 | return TCP_TW_SUCCESS; |
| 290 | } |
| 291 | |
| 292 | /* Enter the time wait state. This is called with locally disabled BH. |
| 293 | * Essentially we whip up a timewait bucket, copy the |
| 294 | * relevant info into it from the SK, and mess with hash chains |
| 295 | * and list linkage. |
| 296 | */ |
| 297 | static void __tcp_tw_hashdance(struct sock *sk, struct tcp_tw_bucket *tw) |
| 298 | { |
| 299 | struct tcp_ehash_bucket *ehead = &tcp_ehash[sk->sk_hashent]; |
| 300 | struct tcp_bind_hashbucket *bhead; |
| 301 | |
| 302 | /* Step 1: Put TW into bind hash. Original socket stays there too. |
| 303 | Note, that any socket with inet_sk(sk)->num != 0 MUST be bound in |
| 304 | binding cache, even if it is closed. |
| 305 | */ |
| 306 | bhead = &tcp_bhash[tcp_bhashfn(inet_sk(sk)->num)]; |
| 307 | spin_lock(&bhead->lock); |
| 308 | tw->tw_tb = tcp_sk(sk)->bind_hash; |
| 309 | BUG_TRAP(tcp_sk(sk)->bind_hash); |
| 310 | tw_add_bind_node(tw, &tw->tw_tb->owners); |
| 311 | spin_unlock(&bhead->lock); |
| 312 | |
| 313 | write_lock(&ehead->lock); |
| 314 | |
| 315 | /* Step 2: Remove SK from established hash. */ |
| 316 | if (__sk_del_node_init(sk)) |
| 317 | sock_prot_dec_use(sk->sk_prot); |
| 318 | |
| 319 | /* Step 3: Hash TW into TIMEWAIT half of established hash table. */ |
| 320 | tw_add_node(tw, &(ehead + tcp_ehash_size)->chain); |
| 321 | atomic_inc(&tw->tw_refcnt); |
| 322 | |
| 323 | write_unlock(&ehead->lock); |
| 324 | } |
| 325 | |
| 326 | /* |
| 327 | * Move a socket to time-wait or dead fin-wait-2 state. |
| 328 | */ |
| 329 | void tcp_time_wait(struct sock *sk, int state, int timeo) |
| 330 | { |
| 331 | struct tcp_tw_bucket *tw = NULL; |
| 332 | struct tcp_sock *tp = tcp_sk(sk); |
| 333 | int recycle_ok = 0; |
| 334 | |
| 335 | if (sysctl_tcp_tw_recycle && tp->rx_opt.ts_recent_stamp) |
| 336 | recycle_ok = tp->af_specific->remember_stamp(sk); |
| 337 | |
| 338 | if (tcp_tw_count < sysctl_tcp_max_tw_buckets) |
| 339 | tw = kmem_cache_alloc(tcp_timewait_cachep, SLAB_ATOMIC); |
| 340 | |
| 341 | if(tw != NULL) { |
| 342 | struct inet_sock *inet = inet_sk(sk); |
| 343 | int rto = (tp->rto<<2) - (tp->rto>>1); |
| 344 | |
| 345 | /* Give us an identity. */ |
| 346 | tw->tw_daddr = inet->daddr; |
| 347 | tw->tw_rcv_saddr = inet->rcv_saddr; |
| 348 | tw->tw_bound_dev_if = sk->sk_bound_dev_if; |
| 349 | tw->tw_num = inet->num; |
| 350 | tw->tw_state = TCP_TIME_WAIT; |
| 351 | tw->tw_substate = state; |
| 352 | tw->tw_sport = inet->sport; |
| 353 | tw->tw_dport = inet->dport; |
| 354 | tw->tw_family = sk->sk_family; |
| 355 | tw->tw_reuse = sk->sk_reuse; |
| 356 | tw->tw_rcv_wscale = tp->rx_opt.rcv_wscale; |
| 357 | atomic_set(&tw->tw_refcnt, 1); |
| 358 | |
| 359 | tw->tw_hashent = sk->sk_hashent; |
| 360 | tw->tw_rcv_nxt = tp->rcv_nxt; |
| 361 | tw->tw_snd_nxt = tp->snd_nxt; |
| 362 | tw->tw_rcv_wnd = tcp_receive_window(tp); |
| 363 | tw->tw_ts_recent = tp->rx_opt.ts_recent; |
| 364 | tw->tw_ts_recent_stamp = tp->rx_opt.ts_recent_stamp; |
| 365 | tw_dead_node_init(tw); |
| 366 | |
| 367 | #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) |
| 368 | if (tw->tw_family == PF_INET6) { |
| 369 | struct ipv6_pinfo *np = inet6_sk(sk); |
| 370 | |
| 371 | ipv6_addr_copy(&tw->tw_v6_daddr, &np->daddr); |
| 372 | ipv6_addr_copy(&tw->tw_v6_rcv_saddr, &np->rcv_saddr); |
| 373 | tw->tw_v6_ipv6only = np->ipv6only; |
| 374 | } else { |
| 375 | memset(&tw->tw_v6_daddr, 0, sizeof(tw->tw_v6_daddr)); |
| 376 | memset(&tw->tw_v6_rcv_saddr, 0, sizeof(tw->tw_v6_rcv_saddr)); |
| 377 | tw->tw_v6_ipv6only = 0; |
| 378 | } |
| 379 | #endif |
| 380 | /* Linkage updates. */ |
| 381 | __tcp_tw_hashdance(sk, tw); |
| 382 | |
| 383 | /* Get the TIME_WAIT timeout firing. */ |
| 384 | if (timeo < rto) |
| 385 | timeo = rto; |
| 386 | |
| 387 | if (recycle_ok) { |
| 388 | tw->tw_timeout = rto; |
| 389 | } else { |
| 390 | tw->tw_timeout = TCP_TIMEWAIT_LEN; |
| 391 | if (state == TCP_TIME_WAIT) |
| 392 | timeo = TCP_TIMEWAIT_LEN; |
| 393 | } |
| 394 | |
| 395 | tcp_tw_schedule(tw, timeo); |
| 396 | tcp_tw_put(tw); |
| 397 | } else { |
| 398 | /* Sorry, if we're out of memory, just CLOSE this |
| 399 | * socket up. We've got bigger problems than |
| 400 | * non-graceful socket closings. |
| 401 | */ |
| 402 | if (net_ratelimit()) |
| 403 | printk(KERN_INFO "TCP: time wait bucket table overflow\n"); |
| 404 | } |
| 405 | |
| 406 | tcp_update_metrics(sk); |
| 407 | tcp_done(sk); |
| 408 | } |
| 409 | |
| 410 | /* Kill off TIME_WAIT sockets once their lifetime has expired. */ |
| 411 | static int tcp_tw_death_row_slot; |
| 412 | |
| 413 | static void tcp_twkill(unsigned long); |
| 414 | |
| 415 | /* TIME_WAIT reaping mechanism. */ |
| 416 | #define TCP_TWKILL_SLOTS 8 /* Please keep this a power of 2. */ |
| 417 | #define TCP_TWKILL_PERIOD (TCP_TIMEWAIT_LEN/TCP_TWKILL_SLOTS) |
| 418 | |
| 419 | #define TCP_TWKILL_QUOTA 100 |
| 420 | |
| 421 | static struct hlist_head tcp_tw_death_row[TCP_TWKILL_SLOTS]; |
| 422 | static DEFINE_SPINLOCK(tw_death_lock); |
| 423 | static struct timer_list tcp_tw_timer = TIMER_INITIALIZER(tcp_twkill, 0, 0); |
| 424 | static void twkill_work(void *); |
| 425 | static DECLARE_WORK(tcp_twkill_work, twkill_work, NULL); |
| 426 | static u32 twkill_thread_slots; |
| 427 | |
| 428 | /* Returns non-zero if quota exceeded. */ |
| 429 | static int tcp_do_twkill_work(int slot, unsigned int quota) |
| 430 | { |
| 431 | struct tcp_tw_bucket *tw; |
| 432 | struct hlist_node *node; |
| 433 | unsigned int killed; |
| 434 | int ret; |
| 435 | |
| 436 | /* NOTE: compare this to previous version where lock |
| 437 | * was released after detaching chain. It was racy, |
| 438 | * because tw buckets are scheduled in not serialized context |
| 439 | * in 2.3 (with netfilter), and with softnet it is common, because |
| 440 | * soft irqs are not sequenced. |
| 441 | */ |
| 442 | killed = 0; |
| 443 | ret = 0; |
| 444 | rescan: |
| 445 | tw_for_each_inmate(tw, node, &tcp_tw_death_row[slot]) { |
| 446 | __tw_del_dead_node(tw); |
| 447 | spin_unlock(&tw_death_lock); |
| 448 | tcp_timewait_kill(tw); |
| 449 | tcp_tw_put(tw); |
| 450 | killed++; |
| 451 | spin_lock(&tw_death_lock); |
| 452 | if (killed > quota) { |
| 453 | ret = 1; |
| 454 | break; |
| 455 | } |
| 456 | |
| 457 | /* While we dropped tw_death_lock, another cpu may have |
| 458 | * killed off the next TW bucket in the list, therefore |
| 459 | * do a fresh re-read of the hlist head node with the |
| 460 | * lock reacquired. We still use the hlist traversal |
| 461 | * macro in order to get the prefetches. |
| 462 | */ |
| 463 | goto rescan; |
| 464 | } |
| 465 | |
| 466 | tcp_tw_count -= killed; |
| 467 | NET_ADD_STATS_BH(LINUX_MIB_TIMEWAITED, killed); |
| 468 | |
| 469 | return ret; |
| 470 | } |
| 471 | |
| 472 | static void tcp_twkill(unsigned long dummy) |
| 473 | { |
| 474 | int need_timer, ret; |
| 475 | |
| 476 | spin_lock(&tw_death_lock); |
| 477 | |
| 478 | if (tcp_tw_count == 0) |
| 479 | goto out; |
| 480 | |
| 481 | need_timer = 0; |
| 482 | ret = tcp_do_twkill_work(tcp_tw_death_row_slot, TCP_TWKILL_QUOTA); |
| 483 | if (ret) { |
| 484 | twkill_thread_slots |= (1 << tcp_tw_death_row_slot); |
| 485 | mb(); |
| 486 | schedule_work(&tcp_twkill_work); |
| 487 | need_timer = 1; |
| 488 | } else { |
| 489 | /* We purged the entire slot, anything left? */ |
| 490 | if (tcp_tw_count) |
| 491 | need_timer = 1; |
| 492 | } |
| 493 | tcp_tw_death_row_slot = |
| 494 | ((tcp_tw_death_row_slot + 1) & (TCP_TWKILL_SLOTS - 1)); |
| 495 | if (need_timer) |
| 496 | mod_timer(&tcp_tw_timer, jiffies + TCP_TWKILL_PERIOD); |
| 497 | out: |
| 498 | spin_unlock(&tw_death_lock); |
| 499 | } |
| 500 | |
| 501 | extern void twkill_slots_invalid(void); |
| 502 | |
| 503 | static void twkill_work(void *dummy) |
| 504 | { |
| 505 | int i; |
| 506 | |
| 507 | if ((TCP_TWKILL_SLOTS - 1) > (sizeof(twkill_thread_slots) * 8)) |
| 508 | twkill_slots_invalid(); |
| 509 | |
| 510 | while (twkill_thread_slots) { |
| 511 | spin_lock_bh(&tw_death_lock); |
| 512 | for (i = 0; i < TCP_TWKILL_SLOTS; i++) { |
| 513 | if (!(twkill_thread_slots & (1 << i))) |
| 514 | continue; |
| 515 | |
| 516 | while (tcp_do_twkill_work(i, TCP_TWKILL_QUOTA) != 0) { |
| 517 | if (need_resched()) { |
| 518 | spin_unlock_bh(&tw_death_lock); |
| 519 | schedule(); |
| 520 | spin_lock_bh(&tw_death_lock); |
| 521 | } |
| 522 | } |
| 523 | |
| 524 | twkill_thread_slots &= ~(1 << i); |
| 525 | } |
| 526 | spin_unlock_bh(&tw_death_lock); |
| 527 | } |
| 528 | } |
| 529 | |
| 530 | /* These are always called from BH context. See callers in |
| 531 | * tcp_input.c to verify this. |
| 532 | */ |
| 533 | |
| 534 | /* This is for handling early-kills of TIME_WAIT sockets. */ |
| 535 | void tcp_tw_deschedule(struct tcp_tw_bucket *tw) |
| 536 | { |
| 537 | spin_lock(&tw_death_lock); |
| 538 | if (tw_del_dead_node(tw)) { |
| 539 | tcp_tw_put(tw); |
| 540 | if (--tcp_tw_count == 0) |
| 541 | del_timer(&tcp_tw_timer); |
| 542 | } |
| 543 | spin_unlock(&tw_death_lock); |
| 544 | tcp_timewait_kill(tw); |
| 545 | } |
| 546 | |
| 547 | /* Short-time timewait calendar */ |
| 548 | |
| 549 | static int tcp_twcal_hand = -1; |
| 550 | static int tcp_twcal_jiffie; |
| 551 | static void tcp_twcal_tick(unsigned long); |
| 552 | static struct timer_list tcp_twcal_timer = |
| 553 | TIMER_INITIALIZER(tcp_twcal_tick, 0, 0); |
| 554 | static struct hlist_head tcp_twcal_row[TCP_TW_RECYCLE_SLOTS]; |
| 555 | |
| 556 | static void tcp_tw_schedule(struct tcp_tw_bucket *tw, int timeo) |
| 557 | { |
| 558 | struct hlist_head *list; |
| 559 | int slot; |
| 560 | |
| 561 | /* timeout := RTO * 3.5 |
| 562 | * |
| 563 | * 3.5 = 1+2+0.5 to wait for two retransmits. |
| 564 | * |
| 565 | * RATIONALE: if FIN arrived and we entered TIME-WAIT state, |
| 566 | * our ACK acking that FIN can be lost. If N subsequent retransmitted |
| 567 | * FINs (or previous seqments) are lost (probability of such event |
| 568 | * is p^(N+1), where p is probability to lose single packet and |
| 569 | * time to detect the loss is about RTO*(2^N - 1) with exponential |
| 570 | * backoff). Normal timewait length is calculated so, that we |
| 571 | * waited at least for one retransmitted FIN (maximal RTO is 120sec). |
| 572 | * [ BTW Linux. following BSD, violates this requirement waiting |
| 573 | * only for 60sec, we should wait at least for 240 secs. |
| 574 | * Well, 240 consumes too much of resources 8) |
| 575 | * ] |
| 576 | * This interval is not reduced to catch old duplicate and |
| 577 | * responces to our wandering segments living for two MSLs. |
| 578 | * However, if we use PAWS to detect |
| 579 | * old duplicates, we can reduce the interval to bounds required |
| 580 | * by RTO, rather than MSL. So, if peer understands PAWS, we |
| 581 | * kill tw bucket after 3.5*RTO (it is important that this number |
| 582 | * is greater than TS tick!) and detect old duplicates with help |
| 583 | * of PAWS. |
| 584 | */ |
| 585 | slot = (timeo + (1<<TCP_TW_RECYCLE_TICK) - 1) >> TCP_TW_RECYCLE_TICK; |
| 586 | |
| 587 | spin_lock(&tw_death_lock); |
| 588 | |
| 589 | /* Unlink it, if it was scheduled */ |
| 590 | if (tw_del_dead_node(tw)) |
| 591 | tcp_tw_count--; |
| 592 | else |
| 593 | atomic_inc(&tw->tw_refcnt); |
| 594 | |
| 595 | if (slot >= TCP_TW_RECYCLE_SLOTS) { |
| 596 | /* Schedule to slow timer */ |
| 597 | if (timeo >= TCP_TIMEWAIT_LEN) { |
| 598 | slot = TCP_TWKILL_SLOTS-1; |
| 599 | } else { |
| 600 | slot = (timeo + TCP_TWKILL_PERIOD-1) / TCP_TWKILL_PERIOD; |
| 601 | if (slot >= TCP_TWKILL_SLOTS) |
| 602 | slot = TCP_TWKILL_SLOTS-1; |
| 603 | } |
| 604 | tw->tw_ttd = jiffies + timeo; |
| 605 | slot = (tcp_tw_death_row_slot + slot) & (TCP_TWKILL_SLOTS - 1); |
| 606 | list = &tcp_tw_death_row[slot]; |
| 607 | } else { |
| 608 | tw->tw_ttd = jiffies + (slot << TCP_TW_RECYCLE_TICK); |
| 609 | |
| 610 | if (tcp_twcal_hand < 0) { |
| 611 | tcp_twcal_hand = 0; |
| 612 | tcp_twcal_jiffie = jiffies; |
| 613 | tcp_twcal_timer.expires = tcp_twcal_jiffie + (slot<<TCP_TW_RECYCLE_TICK); |
| 614 | add_timer(&tcp_twcal_timer); |
| 615 | } else { |
| 616 | if (time_after(tcp_twcal_timer.expires, jiffies + (slot<<TCP_TW_RECYCLE_TICK))) |
| 617 | mod_timer(&tcp_twcal_timer, jiffies + (slot<<TCP_TW_RECYCLE_TICK)); |
| 618 | slot = (tcp_twcal_hand + slot)&(TCP_TW_RECYCLE_SLOTS-1); |
| 619 | } |
| 620 | list = &tcp_twcal_row[slot]; |
| 621 | } |
| 622 | |
| 623 | hlist_add_head(&tw->tw_death_node, list); |
| 624 | |
| 625 | if (tcp_tw_count++ == 0) |
| 626 | mod_timer(&tcp_tw_timer, jiffies+TCP_TWKILL_PERIOD); |
| 627 | spin_unlock(&tw_death_lock); |
| 628 | } |
| 629 | |
| 630 | void tcp_twcal_tick(unsigned long dummy) |
| 631 | { |
| 632 | int n, slot; |
| 633 | unsigned long j; |
| 634 | unsigned long now = jiffies; |
| 635 | int killed = 0; |
| 636 | int adv = 0; |
| 637 | |
| 638 | spin_lock(&tw_death_lock); |
| 639 | if (tcp_twcal_hand < 0) |
| 640 | goto out; |
| 641 | |
| 642 | slot = tcp_twcal_hand; |
| 643 | j = tcp_twcal_jiffie; |
| 644 | |
| 645 | for (n=0; n<TCP_TW_RECYCLE_SLOTS; n++) { |
| 646 | if (time_before_eq(j, now)) { |
| 647 | struct hlist_node *node, *safe; |
| 648 | struct tcp_tw_bucket *tw; |
| 649 | |
| 650 | tw_for_each_inmate_safe(tw, node, safe, |
| 651 | &tcp_twcal_row[slot]) { |
| 652 | __tw_del_dead_node(tw); |
| 653 | tcp_timewait_kill(tw); |
| 654 | tcp_tw_put(tw); |
| 655 | killed++; |
| 656 | } |
| 657 | } else { |
| 658 | if (!adv) { |
| 659 | adv = 1; |
| 660 | tcp_twcal_jiffie = j; |
| 661 | tcp_twcal_hand = slot; |
| 662 | } |
| 663 | |
| 664 | if (!hlist_empty(&tcp_twcal_row[slot])) { |
| 665 | mod_timer(&tcp_twcal_timer, j); |
| 666 | goto out; |
| 667 | } |
| 668 | } |
| 669 | j += (1<<TCP_TW_RECYCLE_TICK); |
| 670 | slot = (slot+1)&(TCP_TW_RECYCLE_SLOTS-1); |
| 671 | } |
| 672 | tcp_twcal_hand = -1; |
| 673 | |
| 674 | out: |
| 675 | if ((tcp_tw_count -= killed) == 0) |
| 676 | del_timer(&tcp_tw_timer); |
| 677 | NET_ADD_STATS_BH(LINUX_MIB_TIMEWAITKILLED, killed); |
| 678 | spin_unlock(&tw_death_lock); |
| 679 | } |
| 680 | |
| 681 | /* This is not only more efficient than what we used to do, it eliminates |
| 682 | * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM |
| 683 | * |
| 684 | * Actually, we could lots of memory writes here. tp of listening |
| 685 | * socket contains all necessary default parameters. |
| 686 | */ |
| 687 | struct sock *tcp_create_openreq_child(struct sock *sk, struct open_request *req, struct sk_buff *skb) |
| 688 | { |
| 689 | /* allocate the newsk from the same slab of the master sock, |
| 690 | * if not, at sk_free time we'll try to free it from the wrong |
| 691 | * slabcache (i.e. is it TCPv4 or v6?), this is handled thru sk->sk_prot -acme */ |
| 692 | struct sock *newsk = sk_alloc(PF_INET, GFP_ATOMIC, sk->sk_prot, 0); |
| 693 | |
| 694 | if(newsk != NULL) { |
| 695 | struct tcp_sock *newtp; |
| 696 | struct sk_filter *filter; |
| 697 | |
| 698 | memcpy(newsk, sk, sizeof(struct tcp_sock)); |
| 699 | newsk->sk_state = TCP_SYN_RECV; |
| 700 | |
| 701 | /* SANITY */ |
| 702 | sk_node_init(&newsk->sk_node); |
| 703 | tcp_sk(newsk)->bind_hash = NULL; |
| 704 | |
| 705 | /* Clone the TCP header template */ |
| 706 | inet_sk(newsk)->dport = req->rmt_port; |
| 707 | |
| 708 | sock_lock_init(newsk); |
| 709 | bh_lock_sock(newsk); |
| 710 | |
| 711 | rwlock_init(&newsk->sk_dst_lock); |
| 712 | atomic_set(&newsk->sk_rmem_alloc, 0); |
| 713 | skb_queue_head_init(&newsk->sk_receive_queue); |
| 714 | atomic_set(&newsk->sk_wmem_alloc, 0); |
| 715 | skb_queue_head_init(&newsk->sk_write_queue); |
| 716 | atomic_set(&newsk->sk_omem_alloc, 0); |
| 717 | newsk->sk_wmem_queued = 0; |
| 718 | newsk->sk_forward_alloc = 0; |
| 719 | |
| 720 | sock_reset_flag(newsk, SOCK_DONE); |
| 721 | newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK; |
| 722 | newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL; |
| 723 | newsk->sk_send_head = NULL; |
| 724 | rwlock_init(&newsk->sk_callback_lock); |
| 725 | skb_queue_head_init(&newsk->sk_error_queue); |
| 726 | newsk->sk_write_space = sk_stream_write_space; |
| 727 | |
| 728 | if ((filter = newsk->sk_filter) != NULL) |
| 729 | sk_filter_charge(newsk, filter); |
| 730 | |
| 731 | if (unlikely(xfrm_sk_clone_policy(newsk))) { |
| 732 | /* It is still raw copy of parent, so invalidate |
| 733 | * destructor and make plain sk_free() */ |
| 734 | newsk->sk_destruct = NULL; |
| 735 | sk_free(newsk); |
| 736 | return NULL; |
| 737 | } |
| 738 | |
| 739 | /* Now setup tcp_sock */ |
| 740 | newtp = tcp_sk(newsk); |
| 741 | newtp->pred_flags = 0; |
| 742 | newtp->rcv_nxt = req->rcv_isn + 1; |
| 743 | newtp->snd_nxt = req->snt_isn + 1; |
| 744 | newtp->snd_una = req->snt_isn + 1; |
| 745 | newtp->snd_sml = req->snt_isn + 1; |
| 746 | |
| 747 | tcp_prequeue_init(newtp); |
| 748 | |
| 749 | tcp_init_wl(newtp, req->snt_isn, req->rcv_isn); |
| 750 | |
| 751 | newtp->retransmits = 0; |
| 752 | newtp->backoff = 0; |
| 753 | newtp->srtt = 0; |
| 754 | newtp->mdev = TCP_TIMEOUT_INIT; |
| 755 | newtp->rto = TCP_TIMEOUT_INIT; |
| 756 | |
| 757 | newtp->packets_out = 0; |
| 758 | newtp->left_out = 0; |
| 759 | newtp->retrans_out = 0; |
| 760 | newtp->sacked_out = 0; |
| 761 | newtp->fackets_out = 0; |
| 762 | newtp->snd_ssthresh = 0x7fffffff; |
| 763 | |
| 764 | /* So many TCP implementations out there (incorrectly) count the |
| 765 | * initial SYN frame in their delayed-ACK and congestion control |
| 766 | * algorithms that we must have the following bandaid to talk |
| 767 | * efficiently to them. -DaveM |
| 768 | */ |
| 769 | newtp->snd_cwnd = 2; |
| 770 | newtp->snd_cwnd_cnt = 0; |
| 771 | |
| 772 | newtp->frto_counter = 0; |
| 773 | newtp->frto_highmark = 0; |
| 774 | |
| 775 | tcp_set_ca_state(newtp, TCP_CA_Open); |
| 776 | tcp_init_xmit_timers(newsk); |
| 777 | skb_queue_head_init(&newtp->out_of_order_queue); |
| 778 | newtp->rcv_wup = req->rcv_isn + 1; |
| 779 | newtp->write_seq = req->snt_isn + 1; |
| 780 | newtp->pushed_seq = newtp->write_seq; |
| 781 | newtp->copied_seq = req->rcv_isn + 1; |
| 782 | |
| 783 | newtp->rx_opt.saw_tstamp = 0; |
| 784 | |
| 785 | newtp->rx_opt.dsack = 0; |
| 786 | newtp->rx_opt.eff_sacks = 0; |
| 787 | |
| 788 | newtp->probes_out = 0; |
| 789 | newtp->rx_opt.num_sacks = 0; |
| 790 | newtp->urg_data = 0; |
| 791 | newtp->listen_opt = NULL; |
| 792 | newtp->accept_queue = newtp->accept_queue_tail = NULL; |
| 793 | /* Deinitialize syn_wait_lock to trap illegal accesses. */ |
| 794 | memset(&newtp->syn_wait_lock, 0, sizeof(newtp->syn_wait_lock)); |
| 795 | |
| 796 | /* Back to base struct sock members. */ |
| 797 | newsk->sk_err = 0; |
| 798 | newsk->sk_priority = 0; |
| 799 | atomic_set(&newsk->sk_refcnt, 2); |
| 800 | #ifdef INET_REFCNT_DEBUG |
| 801 | atomic_inc(&inet_sock_nr); |
| 802 | #endif |
| 803 | atomic_inc(&tcp_sockets_allocated); |
| 804 | |
| 805 | if (sock_flag(newsk, SOCK_KEEPOPEN)) |
| 806 | tcp_reset_keepalive_timer(newsk, |
| 807 | keepalive_time_when(newtp)); |
| 808 | newsk->sk_socket = NULL; |
| 809 | newsk->sk_sleep = NULL; |
| 810 | |
| 811 | newtp->rx_opt.tstamp_ok = req->tstamp_ok; |
| 812 | if((newtp->rx_opt.sack_ok = req->sack_ok) != 0) { |
| 813 | if (sysctl_tcp_fack) |
| 814 | newtp->rx_opt.sack_ok |= 2; |
| 815 | } |
| 816 | newtp->window_clamp = req->window_clamp; |
| 817 | newtp->rcv_ssthresh = req->rcv_wnd; |
| 818 | newtp->rcv_wnd = req->rcv_wnd; |
| 819 | newtp->rx_opt.wscale_ok = req->wscale_ok; |
| 820 | if (newtp->rx_opt.wscale_ok) { |
| 821 | newtp->rx_opt.snd_wscale = req->snd_wscale; |
| 822 | newtp->rx_opt.rcv_wscale = req->rcv_wscale; |
| 823 | } else { |
| 824 | newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0; |
| 825 | newtp->window_clamp = min(newtp->window_clamp, 65535U); |
| 826 | } |
| 827 | newtp->snd_wnd = ntohs(skb->h.th->window) << newtp->rx_opt.snd_wscale; |
| 828 | newtp->max_window = newtp->snd_wnd; |
| 829 | |
| 830 | if (newtp->rx_opt.tstamp_ok) { |
| 831 | newtp->rx_opt.ts_recent = req->ts_recent; |
| 832 | newtp->rx_opt.ts_recent_stamp = xtime.tv_sec; |
| 833 | newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; |
| 834 | } else { |
| 835 | newtp->rx_opt.ts_recent_stamp = 0; |
| 836 | newtp->tcp_header_len = sizeof(struct tcphdr); |
| 837 | } |
| 838 | if (skb->len >= TCP_MIN_RCVMSS+newtp->tcp_header_len) |
| 839 | newtp->ack.last_seg_size = skb->len-newtp->tcp_header_len; |
| 840 | newtp->rx_opt.mss_clamp = req->mss; |
| 841 | TCP_ECN_openreq_child(newtp, req); |
| 842 | if (newtp->ecn_flags&TCP_ECN_OK) |
| 843 | sock_set_flag(newsk, SOCK_NO_LARGESEND); |
| 844 | |
| 845 | tcp_ca_init(newtp); |
| 846 | |
| 847 | TCP_INC_STATS_BH(TCP_MIB_PASSIVEOPENS); |
| 848 | } |
| 849 | return newsk; |
| 850 | } |
| 851 | |
| 852 | /* |
| 853 | * Process an incoming packet for SYN_RECV sockets represented |
| 854 | * as an open_request. |
| 855 | */ |
| 856 | |
| 857 | struct sock *tcp_check_req(struct sock *sk,struct sk_buff *skb, |
| 858 | struct open_request *req, |
| 859 | struct open_request **prev) |
| 860 | { |
| 861 | struct tcphdr *th = skb->h.th; |
| 862 | struct tcp_sock *tp = tcp_sk(sk); |
| 863 | u32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK); |
| 864 | int paws_reject = 0; |
| 865 | struct tcp_options_received tmp_opt; |
| 866 | struct sock *child; |
| 867 | |
| 868 | tmp_opt.saw_tstamp = 0; |
| 869 | if (th->doff > (sizeof(struct tcphdr)>>2)) { |
| 870 | tcp_parse_options(skb, &tmp_opt, 0); |
| 871 | |
| 872 | if (tmp_opt.saw_tstamp) { |
| 873 | tmp_opt.ts_recent = req->ts_recent; |
| 874 | /* We do not store true stamp, but it is not required, |
| 875 | * it can be estimated (approximately) |
| 876 | * from another data. |
| 877 | */ |
| 878 | tmp_opt.ts_recent_stamp = xtime.tv_sec - ((TCP_TIMEOUT_INIT/HZ)<<req->retrans); |
| 879 | paws_reject = tcp_paws_check(&tmp_opt, th->rst); |
| 880 | } |
| 881 | } |
| 882 | |
| 883 | /* Check for pure retransmitted SYN. */ |
| 884 | if (TCP_SKB_CB(skb)->seq == req->rcv_isn && |
| 885 | flg == TCP_FLAG_SYN && |
| 886 | !paws_reject) { |
| 887 | /* |
| 888 | * RFC793 draws (Incorrectly! It was fixed in RFC1122) |
| 889 | * this case on figure 6 and figure 8, but formal |
| 890 | * protocol description says NOTHING. |
| 891 | * To be more exact, it says that we should send ACK, |
| 892 | * because this segment (at least, if it has no data) |
| 893 | * is out of window. |
| 894 | * |
| 895 | * CONCLUSION: RFC793 (even with RFC1122) DOES NOT |
| 896 | * describe SYN-RECV state. All the description |
| 897 | * is wrong, we cannot believe to it and should |
| 898 | * rely only on common sense and implementation |
| 899 | * experience. |
| 900 | * |
| 901 | * Enforce "SYN-ACK" according to figure 8, figure 6 |
| 902 | * of RFC793, fixed by RFC1122. |
| 903 | */ |
| 904 | req->class->rtx_syn_ack(sk, req, NULL); |
| 905 | return NULL; |
| 906 | } |
| 907 | |
| 908 | /* Further reproduces section "SEGMENT ARRIVES" |
| 909 | for state SYN-RECEIVED of RFC793. |
| 910 | It is broken, however, it does not work only |
| 911 | when SYNs are crossed. |
| 912 | |
| 913 | You would think that SYN crossing is impossible here, since |
| 914 | we should have a SYN_SENT socket (from connect()) on our end, |
| 915 | but this is not true if the crossed SYNs were sent to both |
| 916 | ends by a malicious third party. We must defend against this, |
| 917 | and to do that we first verify the ACK (as per RFC793, page |
| 918 | 36) and reset if it is invalid. Is this a true full defense? |
| 919 | To convince ourselves, let us consider a way in which the ACK |
| 920 | test can still pass in this 'malicious crossed SYNs' case. |
| 921 | Malicious sender sends identical SYNs (and thus identical sequence |
| 922 | numbers) to both A and B: |
| 923 | |
| 924 | A: gets SYN, seq=7 |
| 925 | B: gets SYN, seq=7 |
| 926 | |
| 927 | By our good fortune, both A and B select the same initial |
| 928 | send sequence number of seven :-) |
| 929 | |
| 930 | A: sends SYN|ACK, seq=7, ack_seq=8 |
| 931 | B: sends SYN|ACK, seq=7, ack_seq=8 |
| 932 | |
| 933 | So we are now A eating this SYN|ACK, ACK test passes. So |
| 934 | does sequence test, SYN is truncated, and thus we consider |
| 935 | it a bare ACK. |
| 936 | |
| 937 | If tp->defer_accept, we silently drop this bare ACK. Otherwise, |
| 938 | we create an established connection. Both ends (listening sockets) |
| 939 | accept the new incoming connection and try to talk to each other. 8-) |
| 940 | |
| 941 | Note: This case is both harmless, and rare. Possibility is about the |
| 942 | same as us discovering intelligent life on another plant tomorrow. |
| 943 | |
| 944 | But generally, we should (RFC lies!) to accept ACK |
| 945 | from SYNACK both here and in tcp_rcv_state_process(). |
| 946 | tcp_rcv_state_process() does not, hence, we do not too. |
| 947 | |
| 948 | Note that the case is absolutely generic: |
| 949 | we cannot optimize anything here without |
| 950 | violating protocol. All the checks must be made |
| 951 | before attempt to create socket. |
| 952 | */ |
| 953 | |
| 954 | /* RFC793 page 36: "If the connection is in any non-synchronized state ... |
| 955 | * and the incoming segment acknowledges something not yet |
| 956 | * sent (the segment carries an unaccaptable ACK) ... |
| 957 | * a reset is sent." |
| 958 | * |
| 959 | * Invalid ACK: reset will be sent by listening socket |
| 960 | */ |
| 961 | if ((flg & TCP_FLAG_ACK) && |
| 962 | (TCP_SKB_CB(skb)->ack_seq != req->snt_isn+1)) |
| 963 | return sk; |
| 964 | |
| 965 | /* Also, it would be not so bad idea to check rcv_tsecr, which |
| 966 | * is essentially ACK extension and too early or too late values |
| 967 | * should cause reset in unsynchronized states. |
| 968 | */ |
| 969 | |
| 970 | /* RFC793: "first check sequence number". */ |
| 971 | |
| 972 | if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq, |
| 973 | req->rcv_isn+1, req->rcv_isn+1+req->rcv_wnd)) { |
| 974 | /* Out of window: send ACK and drop. */ |
| 975 | if (!(flg & TCP_FLAG_RST)) |
| 976 | req->class->send_ack(skb, req); |
| 977 | if (paws_reject) |
| 978 | NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED); |
| 979 | return NULL; |
| 980 | } |
| 981 | |
| 982 | /* In sequence, PAWS is OK. */ |
| 983 | |
| 984 | if (tmp_opt.saw_tstamp && !after(TCP_SKB_CB(skb)->seq, req->rcv_isn+1)) |
| 985 | req->ts_recent = tmp_opt.rcv_tsval; |
| 986 | |
| 987 | if (TCP_SKB_CB(skb)->seq == req->rcv_isn) { |
| 988 | /* Truncate SYN, it is out of window starting |
| 989 | at req->rcv_isn+1. */ |
| 990 | flg &= ~TCP_FLAG_SYN; |
| 991 | } |
| 992 | |
| 993 | /* RFC793: "second check the RST bit" and |
| 994 | * "fourth, check the SYN bit" |
| 995 | */ |
| 996 | if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN)) |
| 997 | goto embryonic_reset; |
| 998 | |
| 999 | /* ACK sequence verified above, just make sure ACK is |
| 1000 | * set. If ACK not set, just silently drop the packet. |
| 1001 | */ |
| 1002 | if (!(flg & TCP_FLAG_ACK)) |
| 1003 | return NULL; |
| 1004 | |
| 1005 | /* If TCP_DEFER_ACCEPT is set, drop bare ACK. */ |
| 1006 | if (tp->defer_accept && TCP_SKB_CB(skb)->end_seq == req->rcv_isn+1) { |
| 1007 | req->acked = 1; |
| 1008 | return NULL; |
| 1009 | } |
| 1010 | |
| 1011 | /* OK, ACK is valid, create big socket and |
| 1012 | * feed this segment to it. It will repeat all |
| 1013 | * the tests. THIS SEGMENT MUST MOVE SOCKET TO |
| 1014 | * ESTABLISHED STATE. If it will be dropped after |
| 1015 | * socket is created, wait for troubles. |
| 1016 | */ |
| 1017 | child = tp->af_specific->syn_recv_sock(sk, skb, req, NULL); |
| 1018 | if (child == NULL) |
| 1019 | goto listen_overflow; |
| 1020 | |
| 1021 | tcp_synq_unlink(tp, req, prev); |
| 1022 | tcp_synq_removed(sk, req); |
| 1023 | |
| 1024 | tcp_acceptq_queue(sk, req, child); |
| 1025 | return child; |
| 1026 | |
| 1027 | listen_overflow: |
| 1028 | if (!sysctl_tcp_abort_on_overflow) { |
| 1029 | req->acked = 1; |
| 1030 | return NULL; |
| 1031 | } |
| 1032 | |
| 1033 | embryonic_reset: |
| 1034 | NET_INC_STATS_BH(LINUX_MIB_EMBRYONICRSTS); |
| 1035 | if (!(flg & TCP_FLAG_RST)) |
| 1036 | req->class->send_reset(skb); |
| 1037 | |
| 1038 | tcp_synq_drop(sk, req, prev); |
| 1039 | return NULL; |
| 1040 | } |
| 1041 | |
| 1042 | /* |
| 1043 | * Queue segment on the new socket if the new socket is active, |
| 1044 | * otherwise we just shortcircuit this and continue with |
| 1045 | * the new socket. |
| 1046 | */ |
| 1047 | |
| 1048 | int tcp_child_process(struct sock *parent, struct sock *child, |
| 1049 | struct sk_buff *skb) |
| 1050 | { |
| 1051 | int ret = 0; |
| 1052 | int state = child->sk_state; |
| 1053 | |
| 1054 | if (!sock_owned_by_user(child)) { |
| 1055 | ret = tcp_rcv_state_process(child, skb, skb->h.th, skb->len); |
| 1056 | |
| 1057 | /* Wakeup parent, send SIGIO */ |
| 1058 | if (state == TCP_SYN_RECV && child->sk_state != state) |
| 1059 | parent->sk_data_ready(parent, 0); |
| 1060 | } else { |
| 1061 | /* Alas, it is possible again, because we do lookup |
| 1062 | * in main socket hash table and lock on listening |
| 1063 | * socket does not protect us more. |
| 1064 | */ |
| 1065 | sk_add_backlog(child, skb); |
| 1066 | } |
| 1067 | |
| 1068 | bh_unlock_sock(child); |
| 1069 | sock_put(child); |
| 1070 | return ret; |
| 1071 | } |
| 1072 | |
| 1073 | EXPORT_SYMBOL(tcp_check_req); |
| 1074 | EXPORT_SYMBOL(tcp_child_process); |
| 1075 | EXPORT_SYMBOL(tcp_create_openreq_child); |
| 1076 | EXPORT_SYMBOL(tcp_timewait_state_process); |
| 1077 | EXPORT_SYMBOL(tcp_tw_deschedule); |