blob: 7b73c67cb4e81802cde151ce3733e2f34db7f956 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001// -------------------------------------------------------------------------
2// Copyright (c) 2001, Dr Brian Gladman < >, Worcester, UK.
3// All rights reserved.
4//
5// LICENSE TERMS
6//
7// The free distribution and use of this software in both source and binary
8// form is allowed (with or without changes) provided that:
9//
10// 1. distributions of this source code include the above copyright
11// notice, this list of conditions and the following disclaimer//
12//
13// 2. distributions in binary form include the above copyright
14// notice, this list of conditions and the following disclaimer
15// in the documentation and/or other associated materials//
16//
17// 3. the copyright holder's name is not used to endorse products
18// built using this software without specific written permission.
19//
20//
21// ALTERNATIVELY, provided that this notice is retained in full, this product
22// may be distributed under the terms of the GNU General Public License (GPL),
23// in which case the provisions of the GPL apply INSTEAD OF those given above.
24//
25// Copyright (c) 2004 Linus Torvalds <torvalds@osdl.org>
26// Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
27
28// DISCLAIMER
29//
30// This software is provided 'as is' with no explicit or implied warranties
31// in respect of its properties including, but not limited to, correctness
32// and fitness for purpose.
33// -------------------------------------------------------------------------
34// Issue Date: 29/07/2002
35
36.file "aes-i586-asm.S"
37.text
38
39// aes_rval aes_enc_blk(const unsigned char in_blk[], unsigned char out_blk[], const aes_ctx cx[1])//
40// aes_rval aes_dec_blk(const unsigned char in_blk[], unsigned char out_blk[], const aes_ctx cx[1])//
41
42#define tlen 1024 // length of each of 4 'xor' arrays (256 32-bit words)
43
44// offsets to parameters with one register pushed onto stack
45
46#define in_blk 8 // input byte array address parameter
47#define out_blk 12 // output byte array address parameter
48#define ctx 16 // AES context structure
49
50// offsets in context structure
51
52#define ekey 0 // encryption key schedule base address
53#define nrnd 256 // number of rounds
54#define dkey 260 // decryption key schedule base address
55
56// register mapping for encrypt and decrypt subroutines
57
58#define r0 eax
59#define r1 ebx
60#define r2 ecx
61#define r3 edx
62#define r4 esi
63#define r5 edi
64
65#define eaxl al
66#define eaxh ah
67#define ebxl bl
68#define ebxh bh
69#define ecxl cl
70#define ecxh ch
71#define edxl dl
72#define edxh dh
73
74#define _h(reg) reg##h
75#define h(reg) _h(reg)
76
77#define _l(reg) reg##l
78#define l(reg) _l(reg)
79
80// This macro takes a 32-bit word representing a column and uses
81// each of its four bytes to index into four tables of 256 32-bit
82// words to obtain values that are then xored into the appropriate
83// output registers r0, r1, r4 or r5.
84
85// Parameters:
86// table table base address
87// %1 out_state[0]
88// %2 out_state[1]
89// %3 out_state[2]
90// %4 out_state[3]
91// idx input register for the round (destroyed)
92// tmp scratch register for the round
93// sched key schedule
94
95#define do_col(table, a1,a2,a3,a4, idx, tmp) \
96 movzx %l(idx),%tmp; \
97 xor table(,%tmp,4),%a1; \
98 movzx %h(idx),%tmp; \
99 shr $16,%idx; \
100 xor table+tlen(,%tmp,4),%a2; \
101 movzx %l(idx),%tmp; \
102 movzx %h(idx),%idx; \
103 xor table+2*tlen(,%tmp,4),%a3; \
104 xor table+3*tlen(,%idx,4),%a4;
105
106// initialise output registers from the key schedule
107// NB1: original value of a3 is in idx on exit
108// NB2: original values of a1,a2,a4 aren't used
109#define do_fcol(table, a1,a2,a3,a4, idx, tmp, sched) \
110 mov 0 sched,%a1; \
111 movzx %l(idx),%tmp; \
112 mov 12 sched,%a2; \
113 xor table(,%tmp,4),%a1; \
114 mov 4 sched,%a4; \
115 movzx %h(idx),%tmp; \
116 shr $16,%idx; \
117 xor table+tlen(,%tmp,4),%a2; \
118 movzx %l(idx),%tmp; \
119 movzx %h(idx),%idx; \
120 xor table+3*tlen(,%idx,4),%a4; \
121 mov %a3,%idx; \
122 mov 8 sched,%a3; \
123 xor table+2*tlen(,%tmp,4),%a3;
124
125// initialise output registers from the key schedule
126// NB1: original value of a3 is in idx on exit
127// NB2: original values of a1,a2,a4 aren't used
128#define do_icol(table, a1,a2,a3,a4, idx, tmp, sched) \
129 mov 0 sched,%a1; \
130 movzx %l(idx),%tmp; \
131 mov 4 sched,%a2; \
132 xor table(,%tmp,4),%a1; \
133 mov 12 sched,%a4; \
134 movzx %h(idx),%tmp; \
135 shr $16,%idx; \
136 xor table+tlen(,%tmp,4),%a2; \
137 movzx %l(idx),%tmp; \
138 movzx %h(idx),%idx; \
139 xor table+3*tlen(,%idx,4),%a4; \
140 mov %a3,%idx; \
141 mov 8 sched,%a3; \
142 xor table+2*tlen(,%tmp,4),%a3;
143
144
145// original Gladman had conditional saves to MMX regs.
146#define save(a1, a2) \
147 mov %a2,4*a1(%esp)
148
149#define restore(a1, a2) \
150 mov 4*a2(%esp),%a1
151
152// These macros perform a forward encryption cycle. They are entered with
153// the first previous round column values in r0,r1,r4,r5 and
154// exit with the final values in the same registers, using stack
155// for temporary storage.
156
157// round column values
158// on entry: r0,r1,r4,r5
159// on exit: r2,r1,r4,r5
160#define fwd_rnd1(arg, table) \
161 save (0,r1); \
162 save (1,r5); \
163 \
164 /* compute new column values */ \
165 do_fcol(table, r2,r5,r4,r1, r0,r3, arg); /* idx=r0 */ \
166 do_col (table, r4,r1,r2,r5, r0,r3); /* idx=r4 */ \
167 restore(r0,0); \
168 do_col (table, r1,r2,r5,r4, r0,r3); /* idx=r1 */ \
169 restore(r0,1); \
170 do_col (table, r5,r4,r1,r2, r0,r3); /* idx=r5 */
171
172// round column values
173// on entry: r2,r1,r4,r5
174// on exit: r0,r1,r4,r5
175#define fwd_rnd2(arg, table) \
176 save (0,r1); \
177 save (1,r5); \
178 \
179 /* compute new column values */ \
180 do_fcol(table, r0,r5,r4,r1, r2,r3, arg); /* idx=r2 */ \
181 do_col (table, r4,r1,r0,r5, r2,r3); /* idx=r4 */ \
182 restore(r2,0); \
183 do_col (table, r1,r0,r5,r4, r2,r3); /* idx=r1 */ \
184 restore(r2,1); \
185 do_col (table, r5,r4,r1,r0, r2,r3); /* idx=r5 */
186
187// These macros performs an inverse encryption cycle. They are entered with
188// the first previous round column values in r0,r1,r4,r5 and
189// exit with the final values in the same registers, using stack
190// for temporary storage
191
192// round column values
193// on entry: r0,r1,r4,r5
194// on exit: r2,r1,r4,r5
195#define inv_rnd1(arg, table) \
196 save (0,r1); \
197 save (1,r5); \
198 \
199 /* compute new column values */ \
200 do_icol(table, r2,r1,r4,r5, r0,r3, arg); /* idx=r0 */ \
201 do_col (table, r4,r5,r2,r1, r0,r3); /* idx=r4 */ \
202 restore(r0,0); \
203 do_col (table, r1,r4,r5,r2, r0,r3); /* idx=r1 */ \
204 restore(r0,1); \
205 do_col (table, r5,r2,r1,r4, r0,r3); /* idx=r5 */
206
207// round column values
208// on entry: r2,r1,r4,r5
209// on exit: r0,r1,r4,r5
210#define inv_rnd2(arg, table) \
211 save (0,r1); \
212 save (1,r5); \
213 \
214 /* compute new column values */ \
215 do_icol(table, r0,r1,r4,r5, r2,r3, arg); /* idx=r2 */ \
216 do_col (table, r4,r5,r0,r1, r2,r3); /* idx=r4 */ \
217 restore(r2,0); \
218 do_col (table, r1,r4,r5,r0, r2,r3); /* idx=r1 */ \
219 restore(r2,1); \
220 do_col (table, r5,r0,r1,r4, r2,r3); /* idx=r5 */
221
222// AES (Rijndael) Encryption Subroutine
223
224.global aes_enc_blk
225
226.extern ft_tab
227.extern fl_tab
228
229.align 4
230
231aes_enc_blk:
232 push %ebp
233 mov ctx(%esp),%ebp // pointer to context
234
235// CAUTION: the order and the values used in these assigns
236// rely on the register mappings
237
2381: push %ebx
239 mov in_blk+4(%esp),%r2
240 push %esi
241 mov nrnd(%ebp),%r3 // number of rounds
242 push %edi
243#if ekey != 0
244 lea ekey(%ebp),%ebp // key pointer
245#endif
246
247// input four columns and xor in first round key
248
249 mov (%r2),%r0
250 mov 4(%r2),%r1
251 mov 8(%r2),%r4
252 mov 12(%r2),%r5
253 xor (%ebp),%r0
254 xor 4(%ebp),%r1
255 xor 8(%ebp),%r4
256 xor 12(%ebp),%r5
257
258 sub $8,%esp // space for register saves on stack
259 add $16,%ebp // increment to next round key
260 sub $10,%r3
261 je 4f // 10 rounds for 128-bit key
262 add $32,%ebp
263 sub $2,%r3
264 je 3f // 12 rounds for 128-bit key
265 add $32,%ebp
266
2672: fwd_rnd1( -64(%ebp) ,ft_tab) // 14 rounds for 128-bit key
268 fwd_rnd2( -48(%ebp) ,ft_tab)
2693: fwd_rnd1( -32(%ebp) ,ft_tab) // 12 rounds for 128-bit key
270 fwd_rnd2( -16(%ebp) ,ft_tab)
2714: fwd_rnd1( (%ebp) ,ft_tab) // 10 rounds for 128-bit key
272 fwd_rnd2( +16(%ebp) ,ft_tab)
273 fwd_rnd1( +32(%ebp) ,ft_tab)
274 fwd_rnd2( +48(%ebp) ,ft_tab)
275 fwd_rnd1( +64(%ebp) ,ft_tab)
276 fwd_rnd2( +80(%ebp) ,ft_tab)
277 fwd_rnd1( +96(%ebp) ,ft_tab)
278 fwd_rnd2(+112(%ebp) ,ft_tab)
279 fwd_rnd1(+128(%ebp) ,ft_tab)
280 fwd_rnd2(+144(%ebp) ,fl_tab) // last round uses a different table
281
282// move final values to the output array. CAUTION: the
283// order of these assigns rely on the register mappings
284
285 add $8,%esp
286 mov out_blk+12(%esp),%ebp
287 mov %r5,12(%ebp)
288 pop %edi
289 mov %r4,8(%ebp)
290 pop %esi
291 mov %r1,4(%ebp)
292 pop %ebx
293 mov %r0,(%ebp)
294 pop %ebp
295 mov $1,%eax
296 ret
297
298// AES (Rijndael) Decryption Subroutine
299
300.global aes_dec_blk
301
302.extern it_tab
303.extern il_tab
304
305.align 4
306
307aes_dec_blk:
308 push %ebp
309 mov ctx(%esp),%ebp // pointer to context
310
311// CAUTION: the order and the values used in these assigns
312// rely on the register mappings
313
3141: push %ebx
315 mov in_blk+4(%esp),%r2
316 push %esi
317 mov nrnd(%ebp),%r3 // number of rounds
318 push %edi
319#if dkey != 0
320 lea dkey(%ebp),%ebp // key pointer
321#endif
322 mov %r3,%r0
323 shl $4,%r0
324 add %r0,%ebp
325
326// input four columns and xor in first round key
327
328 mov (%r2),%r0
329 mov 4(%r2),%r1
330 mov 8(%r2),%r4
331 mov 12(%r2),%r5
332 xor (%ebp),%r0
333 xor 4(%ebp),%r1
334 xor 8(%ebp),%r4
335 xor 12(%ebp),%r5
336
337 sub $8,%esp // space for register saves on stack
338 sub $16,%ebp // increment to next round key
339 sub $10,%r3
340 je 4f // 10 rounds for 128-bit key
341 sub $32,%ebp
342 sub $2,%r3
343 je 3f // 12 rounds for 128-bit key
344 sub $32,%ebp
345
3462: inv_rnd1( +64(%ebp), it_tab) // 14 rounds for 128-bit key
347 inv_rnd2( +48(%ebp), it_tab)
3483: inv_rnd1( +32(%ebp), it_tab) // 12 rounds for 128-bit key
349 inv_rnd2( +16(%ebp), it_tab)
3504: inv_rnd1( (%ebp), it_tab) // 10 rounds for 128-bit key
351 inv_rnd2( -16(%ebp), it_tab)
352 inv_rnd1( -32(%ebp), it_tab)
353 inv_rnd2( -48(%ebp), it_tab)
354 inv_rnd1( -64(%ebp), it_tab)
355 inv_rnd2( -80(%ebp), it_tab)
356 inv_rnd1( -96(%ebp), it_tab)
357 inv_rnd2(-112(%ebp), it_tab)
358 inv_rnd1(-128(%ebp), it_tab)
359 inv_rnd2(-144(%ebp), il_tab) // last round uses a different table
360
361// move final values to the output array. CAUTION: the
362// order of these assigns rely on the register mappings
363
364 add $8,%esp
365 mov out_blk+12(%esp),%ebp
366 mov %r5,12(%ebp)
367 pop %edi
368 mov %r4,8(%ebp)
369 pop %esi
370 mov %r1,4(%ebp)
371 pop %ebx
372 mov %r0,(%ebp)
373 pop %ebp
374 mov $1,%eax
375 ret
376