Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | // ------------------------------------------------------------------------- |
| 2 | // Copyright (c) 2001, Dr Brian Gladman < >, Worcester, UK. |
| 3 | // All rights reserved. |
| 4 | // |
| 5 | // LICENSE TERMS |
| 6 | // |
| 7 | // The free distribution and use of this software in both source and binary |
| 8 | // form is allowed (with or without changes) provided that: |
| 9 | // |
| 10 | // 1. distributions of this source code include the above copyright |
| 11 | // notice, this list of conditions and the following disclaimer// |
| 12 | // |
| 13 | // 2. distributions in binary form include the above copyright |
| 14 | // notice, this list of conditions and the following disclaimer |
| 15 | // in the documentation and/or other associated materials// |
| 16 | // |
| 17 | // 3. the copyright holder's name is not used to endorse products |
| 18 | // built using this software without specific written permission. |
| 19 | // |
| 20 | // |
| 21 | // ALTERNATIVELY, provided that this notice is retained in full, this product |
| 22 | // may be distributed under the terms of the GNU General Public License (GPL), |
| 23 | // in which case the provisions of the GPL apply INSTEAD OF those given above. |
| 24 | // |
| 25 | // Copyright (c) 2004 Linus Torvalds <torvalds@osdl.org> |
| 26 | // Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> |
| 27 | |
| 28 | // DISCLAIMER |
| 29 | // |
| 30 | // This software is provided 'as is' with no explicit or implied warranties |
| 31 | // in respect of its properties including, but not limited to, correctness |
| 32 | // and fitness for purpose. |
| 33 | // ------------------------------------------------------------------------- |
| 34 | // Issue Date: 29/07/2002 |
| 35 | |
| 36 | .file "aes-i586-asm.S" |
| 37 | .text |
| 38 | |
| 39 | // aes_rval aes_enc_blk(const unsigned char in_blk[], unsigned char out_blk[], const aes_ctx cx[1])// |
| 40 | // aes_rval aes_dec_blk(const unsigned char in_blk[], unsigned char out_blk[], const aes_ctx cx[1])// |
| 41 | |
| 42 | #define tlen 1024 // length of each of 4 'xor' arrays (256 32-bit words) |
| 43 | |
| 44 | // offsets to parameters with one register pushed onto stack |
| 45 | |
| 46 | #define in_blk 8 // input byte array address parameter |
| 47 | #define out_blk 12 // output byte array address parameter |
| 48 | #define ctx 16 // AES context structure |
| 49 | |
| 50 | // offsets in context structure |
| 51 | |
| 52 | #define ekey 0 // encryption key schedule base address |
| 53 | #define nrnd 256 // number of rounds |
| 54 | #define dkey 260 // decryption key schedule base address |
| 55 | |
| 56 | // register mapping for encrypt and decrypt subroutines |
| 57 | |
| 58 | #define r0 eax |
| 59 | #define r1 ebx |
| 60 | #define r2 ecx |
| 61 | #define r3 edx |
| 62 | #define r4 esi |
| 63 | #define r5 edi |
| 64 | |
| 65 | #define eaxl al |
| 66 | #define eaxh ah |
| 67 | #define ebxl bl |
| 68 | #define ebxh bh |
| 69 | #define ecxl cl |
| 70 | #define ecxh ch |
| 71 | #define edxl dl |
| 72 | #define edxh dh |
| 73 | |
| 74 | #define _h(reg) reg##h |
| 75 | #define h(reg) _h(reg) |
| 76 | |
| 77 | #define _l(reg) reg##l |
| 78 | #define l(reg) _l(reg) |
| 79 | |
| 80 | // This macro takes a 32-bit word representing a column and uses |
| 81 | // each of its four bytes to index into four tables of 256 32-bit |
| 82 | // words to obtain values that are then xored into the appropriate |
| 83 | // output registers r0, r1, r4 or r5. |
| 84 | |
| 85 | // Parameters: |
| 86 | // table table base address |
| 87 | // %1 out_state[0] |
| 88 | // %2 out_state[1] |
| 89 | // %3 out_state[2] |
| 90 | // %4 out_state[3] |
| 91 | // idx input register for the round (destroyed) |
| 92 | // tmp scratch register for the round |
| 93 | // sched key schedule |
| 94 | |
| 95 | #define do_col(table, a1,a2,a3,a4, idx, tmp) \ |
| 96 | movzx %l(idx),%tmp; \ |
| 97 | xor table(,%tmp,4),%a1; \ |
| 98 | movzx %h(idx),%tmp; \ |
| 99 | shr $16,%idx; \ |
| 100 | xor table+tlen(,%tmp,4),%a2; \ |
| 101 | movzx %l(idx),%tmp; \ |
| 102 | movzx %h(idx),%idx; \ |
| 103 | xor table+2*tlen(,%tmp,4),%a3; \ |
| 104 | xor table+3*tlen(,%idx,4),%a4; |
| 105 | |
| 106 | // initialise output registers from the key schedule |
| 107 | // NB1: original value of a3 is in idx on exit |
| 108 | // NB2: original values of a1,a2,a4 aren't used |
| 109 | #define do_fcol(table, a1,a2,a3,a4, idx, tmp, sched) \ |
| 110 | mov 0 sched,%a1; \ |
| 111 | movzx %l(idx),%tmp; \ |
| 112 | mov 12 sched,%a2; \ |
| 113 | xor table(,%tmp,4),%a1; \ |
| 114 | mov 4 sched,%a4; \ |
| 115 | movzx %h(idx),%tmp; \ |
| 116 | shr $16,%idx; \ |
| 117 | xor table+tlen(,%tmp,4),%a2; \ |
| 118 | movzx %l(idx),%tmp; \ |
| 119 | movzx %h(idx),%idx; \ |
| 120 | xor table+3*tlen(,%idx,4),%a4; \ |
| 121 | mov %a3,%idx; \ |
| 122 | mov 8 sched,%a3; \ |
| 123 | xor table+2*tlen(,%tmp,4),%a3; |
| 124 | |
| 125 | // initialise output registers from the key schedule |
| 126 | // NB1: original value of a3 is in idx on exit |
| 127 | // NB2: original values of a1,a2,a4 aren't used |
| 128 | #define do_icol(table, a1,a2,a3,a4, idx, tmp, sched) \ |
| 129 | mov 0 sched,%a1; \ |
| 130 | movzx %l(idx),%tmp; \ |
| 131 | mov 4 sched,%a2; \ |
| 132 | xor table(,%tmp,4),%a1; \ |
| 133 | mov 12 sched,%a4; \ |
| 134 | movzx %h(idx),%tmp; \ |
| 135 | shr $16,%idx; \ |
| 136 | xor table+tlen(,%tmp,4),%a2; \ |
| 137 | movzx %l(idx),%tmp; \ |
| 138 | movzx %h(idx),%idx; \ |
| 139 | xor table+3*tlen(,%idx,4),%a4; \ |
| 140 | mov %a3,%idx; \ |
| 141 | mov 8 sched,%a3; \ |
| 142 | xor table+2*tlen(,%tmp,4),%a3; |
| 143 | |
| 144 | |
| 145 | // original Gladman had conditional saves to MMX regs. |
| 146 | #define save(a1, a2) \ |
| 147 | mov %a2,4*a1(%esp) |
| 148 | |
| 149 | #define restore(a1, a2) \ |
| 150 | mov 4*a2(%esp),%a1 |
| 151 | |
| 152 | // These macros perform a forward encryption cycle. They are entered with |
| 153 | // the first previous round column values in r0,r1,r4,r5 and |
| 154 | // exit with the final values in the same registers, using stack |
| 155 | // for temporary storage. |
| 156 | |
| 157 | // round column values |
| 158 | // on entry: r0,r1,r4,r5 |
| 159 | // on exit: r2,r1,r4,r5 |
| 160 | #define fwd_rnd1(arg, table) \ |
| 161 | save (0,r1); \ |
| 162 | save (1,r5); \ |
| 163 | \ |
| 164 | /* compute new column values */ \ |
| 165 | do_fcol(table, r2,r5,r4,r1, r0,r3, arg); /* idx=r0 */ \ |
| 166 | do_col (table, r4,r1,r2,r5, r0,r3); /* idx=r4 */ \ |
| 167 | restore(r0,0); \ |
| 168 | do_col (table, r1,r2,r5,r4, r0,r3); /* idx=r1 */ \ |
| 169 | restore(r0,1); \ |
| 170 | do_col (table, r5,r4,r1,r2, r0,r3); /* idx=r5 */ |
| 171 | |
| 172 | // round column values |
| 173 | // on entry: r2,r1,r4,r5 |
| 174 | // on exit: r0,r1,r4,r5 |
| 175 | #define fwd_rnd2(arg, table) \ |
| 176 | save (0,r1); \ |
| 177 | save (1,r5); \ |
| 178 | \ |
| 179 | /* compute new column values */ \ |
| 180 | do_fcol(table, r0,r5,r4,r1, r2,r3, arg); /* idx=r2 */ \ |
| 181 | do_col (table, r4,r1,r0,r5, r2,r3); /* idx=r4 */ \ |
| 182 | restore(r2,0); \ |
| 183 | do_col (table, r1,r0,r5,r4, r2,r3); /* idx=r1 */ \ |
| 184 | restore(r2,1); \ |
| 185 | do_col (table, r5,r4,r1,r0, r2,r3); /* idx=r5 */ |
| 186 | |
| 187 | // These macros performs an inverse encryption cycle. They are entered with |
| 188 | // the first previous round column values in r0,r1,r4,r5 and |
| 189 | // exit with the final values in the same registers, using stack |
| 190 | // for temporary storage |
| 191 | |
| 192 | // round column values |
| 193 | // on entry: r0,r1,r4,r5 |
| 194 | // on exit: r2,r1,r4,r5 |
| 195 | #define inv_rnd1(arg, table) \ |
| 196 | save (0,r1); \ |
| 197 | save (1,r5); \ |
| 198 | \ |
| 199 | /* compute new column values */ \ |
| 200 | do_icol(table, r2,r1,r4,r5, r0,r3, arg); /* idx=r0 */ \ |
| 201 | do_col (table, r4,r5,r2,r1, r0,r3); /* idx=r4 */ \ |
| 202 | restore(r0,0); \ |
| 203 | do_col (table, r1,r4,r5,r2, r0,r3); /* idx=r1 */ \ |
| 204 | restore(r0,1); \ |
| 205 | do_col (table, r5,r2,r1,r4, r0,r3); /* idx=r5 */ |
| 206 | |
| 207 | // round column values |
| 208 | // on entry: r2,r1,r4,r5 |
| 209 | // on exit: r0,r1,r4,r5 |
| 210 | #define inv_rnd2(arg, table) \ |
| 211 | save (0,r1); \ |
| 212 | save (1,r5); \ |
| 213 | \ |
| 214 | /* compute new column values */ \ |
| 215 | do_icol(table, r0,r1,r4,r5, r2,r3, arg); /* idx=r2 */ \ |
| 216 | do_col (table, r4,r5,r0,r1, r2,r3); /* idx=r4 */ \ |
| 217 | restore(r2,0); \ |
| 218 | do_col (table, r1,r4,r5,r0, r2,r3); /* idx=r1 */ \ |
| 219 | restore(r2,1); \ |
| 220 | do_col (table, r5,r0,r1,r4, r2,r3); /* idx=r5 */ |
| 221 | |
| 222 | // AES (Rijndael) Encryption Subroutine |
| 223 | |
| 224 | .global aes_enc_blk |
| 225 | |
| 226 | .extern ft_tab |
| 227 | .extern fl_tab |
| 228 | |
| 229 | .align 4 |
| 230 | |
| 231 | aes_enc_blk: |
| 232 | push %ebp |
| 233 | mov ctx(%esp),%ebp // pointer to context |
| 234 | |
| 235 | // CAUTION: the order and the values used in these assigns |
| 236 | // rely on the register mappings |
| 237 | |
| 238 | 1: push %ebx |
| 239 | mov in_blk+4(%esp),%r2 |
| 240 | push %esi |
| 241 | mov nrnd(%ebp),%r3 // number of rounds |
| 242 | push %edi |
| 243 | #if ekey != 0 |
| 244 | lea ekey(%ebp),%ebp // key pointer |
| 245 | #endif |
| 246 | |
| 247 | // input four columns and xor in first round key |
| 248 | |
| 249 | mov (%r2),%r0 |
| 250 | mov 4(%r2),%r1 |
| 251 | mov 8(%r2),%r4 |
| 252 | mov 12(%r2),%r5 |
| 253 | xor (%ebp),%r0 |
| 254 | xor 4(%ebp),%r1 |
| 255 | xor 8(%ebp),%r4 |
| 256 | xor 12(%ebp),%r5 |
| 257 | |
| 258 | sub $8,%esp // space for register saves on stack |
| 259 | add $16,%ebp // increment to next round key |
| 260 | sub $10,%r3 |
| 261 | je 4f // 10 rounds for 128-bit key |
| 262 | add $32,%ebp |
| 263 | sub $2,%r3 |
| 264 | je 3f // 12 rounds for 128-bit key |
| 265 | add $32,%ebp |
| 266 | |
| 267 | 2: fwd_rnd1( -64(%ebp) ,ft_tab) // 14 rounds for 128-bit key |
| 268 | fwd_rnd2( -48(%ebp) ,ft_tab) |
| 269 | 3: fwd_rnd1( -32(%ebp) ,ft_tab) // 12 rounds for 128-bit key |
| 270 | fwd_rnd2( -16(%ebp) ,ft_tab) |
| 271 | 4: fwd_rnd1( (%ebp) ,ft_tab) // 10 rounds for 128-bit key |
| 272 | fwd_rnd2( +16(%ebp) ,ft_tab) |
| 273 | fwd_rnd1( +32(%ebp) ,ft_tab) |
| 274 | fwd_rnd2( +48(%ebp) ,ft_tab) |
| 275 | fwd_rnd1( +64(%ebp) ,ft_tab) |
| 276 | fwd_rnd2( +80(%ebp) ,ft_tab) |
| 277 | fwd_rnd1( +96(%ebp) ,ft_tab) |
| 278 | fwd_rnd2(+112(%ebp) ,ft_tab) |
| 279 | fwd_rnd1(+128(%ebp) ,ft_tab) |
| 280 | fwd_rnd2(+144(%ebp) ,fl_tab) // last round uses a different table |
| 281 | |
| 282 | // move final values to the output array. CAUTION: the |
| 283 | // order of these assigns rely on the register mappings |
| 284 | |
| 285 | add $8,%esp |
| 286 | mov out_blk+12(%esp),%ebp |
| 287 | mov %r5,12(%ebp) |
| 288 | pop %edi |
| 289 | mov %r4,8(%ebp) |
| 290 | pop %esi |
| 291 | mov %r1,4(%ebp) |
| 292 | pop %ebx |
| 293 | mov %r0,(%ebp) |
| 294 | pop %ebp |
| 295 | mov $1,%eax |
| 296 | ret |
| 297 | |
| 298 | // AES (Rijndael) Decryption Subroutine |
| 299 | |
| 300 | .global aes_dec_blk |
| 301 | |
| 302 | .extern it_tab |
| 303 | .extern il_tab |
| 304 | |
| 305 | .align 4 |
| 306 | |
| 307 | aes_dec_blk: |
| 308 | push %ebp |
| 309 | mov ctx(%esp),%ebp // pointer to context |
| 310 | |
| 311 | // CAUTION: the order and the values used in these assigns |
| 312 | // rely on the register mappings |
| 313 | |
| 314 | 1: push %ebx |
| 315 | mov in_blk+4(%esp),%r2 |
| 316 | push %esi |
| 317 | mov nrnd(%ebp),%r3 // number of rounds |
| 318 | push %edi |
| 319 | #if dkey != 0 |
| 320 | lea dkey(%ebp),%ebp // key pointer |
| 321 | #endif |
| 322 | mov %r3,%r0 |
| 323 | shl $4,%r0 |
| 324 | add %r0,%ebp |
| 325 | |
| 326 | // input four columns and xor in first round key |
| 327 | |
| 328 | mov (%r2),%r0 |
| 329 | mov 4(%r2),%r1 |
| 330 | mov 8(%r2),%r4 |
| 331 | mov 12(%r2),%r5 |
| 332 | xor (%ebp),%r0 |
| 333 | xor 4(%ebp),%r1 |
| 334 | xor 8(%ebp),%r4 |
| 335 | xor 12(%ebp),%r5 |
| 336 | |
| 337 | sub $8,%esp // space for register saves on stack |
| 338 | sub $16,%ebp // increment to next round key |
| 339 | sub $10,%r3 |
| 340 | je 4f // 10 rounds for 128-bit key |
| 341 | sub $32,%ebp |
| 342 | sub $2,%r3 |
| 343 | je 3f // 12 rounds for 128-bit key |
| 344 | sub $32,%ebp |
| 345 | |
| 346 | 2: inv_rnd1( +64(%ebp), it_tab) // 14 rounds for 128-bit key |
| 347 | inv_rnd2( +48(%ebp), it_tab) |
| 348 | 3: inv_rnd1( +32(%ebp), it_tab) // 12 rounds for 128-bit key |
| 349 | inv_rnd2( +16(%ebp), it_tab) |
| 350 | 4: inv_rnd1( (%ebp), it_tab) // 10 rounds for 128-bit key |
| 351 | inv_rnd2( -16(%ebp), it_tab) |
| 352 | inv_rnd1( -32(%ebp), it_tab) |
| 353 | inv_rnd2( -48(%ebp), it_tab) |
| 354 | inv_rnd1( -64(%ebp), it_tab) |
| 355 | inv_rnd2( -80(%ebp), it_tab) |
| 356 | inv_rnd1( -96(%ebp), it_tab) |
| 357 | inv_rnd2(-112(%ebp), it_tab) |
| 358 | inv_rnd1(-128(%ebp), it_tab) |
| 359 | inv_rnd2(-144(%ebp), il_tab) // last round uses a different table |
| 360 | |
| 361 | // move final values to the output array. CAUTION: the |
| 362 | // order of these assigns rely on the register mappings |
| 363 | |
| 364 | add $8,%esp |
| 365 | mov out_blk+12(%esp),%ebp |
| 366 | mov %r5,12(%ebp) |
| 367 | pop %edi |
| 368 | mov %r4,8(%ebp) |
| 369 | pop %esi |
| 370 | mov %r1,4(%ebp) |
| 371 | pop %ebx |
| 372 | mov %r0,(%ebp) |
| 373 | pop %ebp |
| 374 | mov $1,%eax |
| 375 | ret |
| 376 | |