blob: a0ef4f75d4573b2db17ec1435003c50bdd7ef350 [file] [log] [blame]
Alex Elder1f27f152014-02-14 12:29:18 -06001/*
2 * Copyright (C) 2013 Broadcom Corporation
3 * Copyright 2013 Linaro Limited
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation version 2.
8 *
9 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
10 * kind, whether express or implied; without even the implied warranty
11 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 */
14
15#include "clk-kona.h"
16
17#include <linux/delay.h>
Javi Merinoaa776202015-04-16 12:43:48 -070018#include <linux/kernel.h>
Alex Elder1f27f152014-02-14 12:29:18 -060019
Alex Eldera597fac2014-04-21 16:11:42 -050020/*
21 * "Policies" affect the frequencies of bus clocks provided by a
22 * CCU. (I believe these polices are named "Deep Sleep", "Economy",
23 * "Normal", and "Turbo".) A lower policy number has lower power
24 * consumption, and policy 2 is the default.
25 */
26#define CCU_POLICY_COUNT 4
27
Alex Elder1f27f152014-02-14 12:29:18 -060028#define CCU_ACCESS_PASSWORD 0xA5A500
29#define CLK_GATE_DELAY_LOOP 2000
30
31/* Bitfield operations */
32
33/* Produces a mask of set bits covering a range of a 32-bit value */
34static inline u32 bitfield_mask(u32 shift, u32 width)
35{
36 return ((1 << width) - 1) << shift;
37}
38
39/* Extract the value of a bitfield found within a given register value */
40static inline u32 bitfield_extract(u32 reg_val, u32 shift, u32 width)
41{
42 return (reg_val & bitfield_mask(shift, width)) >> shift;
43}
44
45/* Replace the value of a bitfield found within a given register value */
46static inline u32 bitfield_replace(u32 reg_val, u32 shift, u32 width, u32 val)
47{
48 u32 mask = bitfield_mask(shift, width);
49
50 return (reg_val & ~mask) | (val << shift);
51}
52
53/* Divider and scaling helpers */
54
Alex Elder1f27f152014-02-14 12:29:18 -060055/* Convert a divider into the scaled divisor value it represents. */
56static inline u64 scaled_div_value(struct bcm_clk_div *div, u32 reg_div)
57{
Alex Eldere813d492014-04-07 08:22:12 -050058 return (u64)reg_div + ((u64)1 << div->u.s.frac_width);
Alex Elder1f27f152014-02-14 12:29:18 -060059}
60
61/*
62 * Build a scaled divider value as close as possible to the
63 * given whole part (div_value) and fractional part (expressed
64 * in billionths).
65 */
66u64 scaled_div_build(struct bcm_clk_div *div, u32 div_value, u32 billionths)
67{
68 u64 combined;
69
70 BUG_ON(!div_value);
71 BUG_ON(billionths >= BILLION);
72
73 combined = (u64)div_value * BILLION + billionths;
Alex Eldere813d492014-04-07 08:22:12 -050074 combined <<= div->u.s.frac_width;
Alex Elder1f27f152014-02-14 12:29:18 -060075
Javi Merinoaa776202015-04-16 12:43:48 -070076 return DIV_ROUND_CLOSEST_ULL(combined, BILLION);
Alex Elder1f27f152014-02-14 12:29:18 -060077}
78
79/* The scaled minimum divisor representable by a divider */
80static inline u64
81scaled_div_min(struct bcm_clk_div *div)
82{
83 if (divider_is_fixed(div))
Alex Eldere813d492014-04-07 08:22:12 -050084 return (u64)div->u.fixed;
Alex Elder1f27f152014-02-14 12:29:18 -060085
86 return scaled_div_value(div, 0);
87}
88
89/* The scaled maximum divisor representable by a divider */
90u64 scaled_div_max(struct bcm_clk_div *div)
91{
92 u32 reg_div;
93
94 if (divider_is_fixed(div))
Alex Eldere813d492014-04-07 08:22:12 -050095 return (u64)div->u.fixed;
Alex Elder1f27f152014-02-14 12:29:18 -060096
Alex Eldere813d492014-04-07 08:22:12 -050097 reg_div = ((u32)1 << div->u.s.width) - 1;
Alex Elder1f27f152014-02-14 12:29:18 -060098
99 return scaled_div_value(div, reg_div);
100}
101
102/*
103 * Convert a scaled divisor into its divider representation as
104 * stored in a divider register field.
105 */
106static inline u32
107divider(struct bcm_clk_div *div, u64 scaled_div)
108{
109 BUG_ON(scaled_div < scaled_div_min(div));
110 BUG_ON(scaled_div > scaled_div_max(div));
111
Alex Eldere813d492014-04-07 08:22:12 -0500112 return (u32)(scaled_div - ((u64)1 << div->u.s.frac_width));
Alex Elder1f27f152014-02-14 12:29:18 -0600113}
114
115/* Return a rate scaled for use when dividing by a scaled divisor. */
116static inline u64
117scale_rate(struct bcm_clk_div *div, u32 rate)
118{
119 if (divider_is_fixed(div))
120 return (u64)rate;
121
Alex Eldere813d492014-04-07 08:22:12 -0500122 return (u64)rate << div->u.s.frac_width;
Alex Elder1f27f152014-02-14 12:29:18 -0600123}
124
125/* CCU access */
126
127/* Read a 32-bit register value from a CCU's address space. */
128static inline u32 __ccu_read(struct ccu_data *ccu, u32 reg_offset)
129{
130 return readl(ccu->base + reg_offset);
131}
132
133/* Write a 32-bit register value into a CCU's address space. */
134static inline void
135__ccu_write(struct ccu_data *ccu, u32 reg_offset, u32 reg_val)
136{
137 writel(reg_val, ccu->base + reg_offset);
138}
139
140static inline unsigned long ccu_lock(struct ccu_data *ccu)
141{
142 unsigned long flags;
143
144 spin_lock_irqsave(&ccu->lock, flags);
145
146 return flags;
147}
148static inline void ccu_unlock(struct ccu_data *ccu, unsigned long flags)
149{
150 spin_unlock_irqrestore(&ccu->lock, flags);
151}
152
153/*
154 * Enable/disable write access to CCU protected registers. The
155 * WR_ACCESS register for all CCUs is at offset 0.
156 */
157static inline void __ccu_write_enable(struct ccu_data *ccu)
158{
159 if (ccu->write_enabled) {
160 pr_err("%s: access already enabled for %s\n", __func__,
161 ccu->name);
162 return;
163 }
164 ccu->write_enabled = true;
165 __ccu_write(ccu, 0, CCU_ACCESS_PASSWORD | 1);
166}
167
168static inline void __ccu_write_disable(struct ccu_data *ccu)
169{
170 if (!ccu->write_enabled) {
171 pr_err("%s: access wasn't enabled for %s\n", __func__,
172 ccu->name);
173 return;
174 }
175
176 __ccu_write(ccu, 0, CCU_ACCESS_PASSWORD);
177 ccu->write_enabled = false;
178}
179
180/*
181 * Poll a register in a CCU's address space, returning when the
182 * specified bit in that register's value is set (or clear). Delay
183 * a microsecond after each read of the register. Returns true if
184 * successful, or false if we gave up trying.
185 *
186 * Caller must ensure the CCU lock is held.
187 */
188static inline bool
189__ccu_wait_bit(struct ccu_data *ccu, u32 reg_offset, u32 bit, bool want)
190{
191 unsigned int tries;
192 u32 bit_mask = 1 << bit;
193
194 for (tries = 0; tries < CLK_GATE_DELAY_LOOP; tries++) {
195 u32 val;
196 bool bit_val;
197
198 val = __ccu_read(ccu, reg_offset);
199 bit_val = (val & bit_mask) != 0;
200 if (bit_val == want)
201 return true;
202 udelay(1);
203 }
Alex Elder4bac65c2014-04-21 16:11:37 -0500204 pr_warn("%s: %s/0x%04x bit %u was never %s\n", __func__,
205 ccu->name, reg_offset, bit, want ? "set" : "clear");
206
Alex Elder1f27f152014-02-14 12:29:18 -0600207 return false;
208}
209
Alex Eldera597fac2014-04-21 16:11:42 -0500210/* Policy operations */
211
212static bool __ccu_policy_engine_start(struct ccu_data *ccu, bool sync)
213{
214 struct bcm_policy_ctl *control = &ccu->policy.control;
215 u32 offset;
216 u32 go_bit;
217 u32 mask;
218 bool ret;
219
220 /* If we don't need to control policy for this CCU, we're done. */
221 if (!policy_ctl_exists(control))
222 return true;
223
224 offset = control->offset;
225 go_bit = control->go_bit;
226
227 /* Ensure we're not busy before we start */
228 ret = __ccu_wait_bit(ccu, offset, go_bit, false);
229 if (!ret) {
230 pr_err("%s: ccu %s policy engine wouldn't go idle\n",
231 __func__, ccu->name);
232 return false;
233 }
234
235 /*
236 * If it's a synchronous request, we'll wait for the voltage
237 * and frequency of the active load to stabilize before
238 * returning. To do this we select the active load by
239 * setting the ATL bit.
240 *
241 * An asynchronous request instead ramps the voltage in the
242 * background, and when that process stabilizes, the target
243 * load is copied to the active load and the CCU frequency
244 * is switched. We do this by selecting the target load
245 * (ATL bit clear) and setting the request auto-copy (AC bit
246 * set).
247 *
248 * Note, we do NOT read-modify-write this register.
249 */
250 mask = (u32)1 << go_bit;
251 if (sync)
252 mask |= 1 << control->atl_bit;
253 else
254 mask |= 1 << control->ac_bit;
255 __ccu_write(ccu, offset, mask);
256
257 /* Wait for indication that operation is complete. */
258 ret = __ccu_wait_bit(ccu, offset, go_bit, false);
259 if (!ret)
260 pr_err("%s: ccu %s policy engine never started\n",
261 __func__, ccu->name);
262
263 return ret;
264}
265
266static bool __ccu_policy_engine_stop(struct ccu_data *ccu)
267{
268 struct bcm_lvm_en *enable = &ccu->policy.enable;
269 u32 offset;
270 u32 enable_bit;
271 bool ret;
272
273 /* If we don't need to control policy for this CCU, we're done. */
274 if (!policy_lvm_en_exists(enable))
275 return true;
276
277 /* Ensure we're not busy before we start */
278 offset = enable->offset;
279 enable_bit = enable->bit;
280 ret = __ccu_wait_bit(ccu, offset, enable_bit, false);
281 if (!ret) {
282 pr_err("%s: ccu %s policy engine already stopped\n",
283 __func__, ccu->name);
284 return false;
285 }
286
287 /* Now set the bit to stop the engine (NO read-modify-write) */
288 __ccu_write(ccu, offset, (u32)1 << enable_bit);
289
290 /* Wait for indication that it has stopped. */
291 ret = __ccu_wait_bit(ccu, offset, enable_bit, false);
292 if (!ret)
293 pr_err("%s: ccu %s policy engine never stopped\n",
294 __func__, ccu->name);
295
296 return ret;
297}
298
299/*
300 * A CCU has four operating conditions ("policies"), and some clocks
301 * can be disabled or enabled based on which policy is currently in
302 * effect. Such clocks have a bit in a "policy mask" register for
303 * each policy indicating whether the clock is enabled for that
304 * policy or not. The bit position for a clock is the same for all
305 * four registers, and the 32-bit registers are at consecutive
306 * addresses.
307 */
308static bool policy_init(struct ccu_data *ccu, struct bcm_clk_policy *policy)
309{
310 u32 offset;
311 u32 mask;
312 int i;
313 bool ret;
314
315 if (!policy_exists(policy))
316 return true;
317
318 /*
319 * We need to stop the CCU policy engine to allow update
320 * of our policy bits.
321 */
322 if (!__ccu_policy_engine_stop(ccu)) {
323 pr_err("%s: unable to stop CCU %s policy engine\n",
324 __func__, ccu->name);
325 return false;
326 }
327
328 /*
329 * For now, if a clock defines its policy bit we just mark
330 * it "enabled" for all four policies.
331 */
332 offset = policy->offset;
333 mask = (u32)1 << policy->bit;
334 for (i = 0; i < CCU_POLICY_COUNT; i++) {
335 u32 reg_val;
336
337 reg_val = __ccu_read(ccu, offset);
338 reg_val |= mask;
339 __ccu_write(ccu, offset, reg_val);
340 offset += sizeof(u32);
341 }
342
343 /* We're done updating; fire up the policy engine again. */
344 ret = __ccu_policy_engine_start(ccu, true);
345 if (!ret)
346 pr_err("%s: unable to restart CCU %s policy engine\n",
347 __func__, ccu->name);
348
349 return ret;
350}
351
Alex Elder1f27f152014-02-14 12:29:18 -0600352/* Gate operations */
353
354/* Determine whether a clock is gated. CCU lock must be held. */
355static bool
356__is_clk_gate_enabled(struct ccu_data *ccu, struct bcm_clk_gate *gate)
357{
358 u32 bit_mask;
359 u32 reg_val;
360
361 /* If there is no gate we can assume it's enabled. */
362 if (!gate_exists(gate))
363 return true;
364
365 bit_mask = 1 << gate->status_bit;
366 reg_val = __ccu_read(ccu, gate->offset);
367
368 return (reg_val & bit_mask) != 0;
369}
370
371/* Determine whether a clock is gated. */
372static bool
373is_clk_gate_enabled(struct ccu_data *ccu, struct bcm_clk_gate *gate)
374{
375 long flags;
376 bool ret;
377
378 /* Avoid taking the lock if we can */
379 if (!gate_exists(gate))
380 return true;
381
382 flags = ccu_lock(ccu);
383 ret = __is_clk_gate_enabled(ccu, gate);
384 ccu_unlock(ccu, flags);
385
386 return ret;
387}
388
389/*
390 * Commit our desired gate state to the hardware.
391 * Returns true if successful, false otherwise.
392 */
393static bool
394__gate_commit(struct ccu_data *ccu, struct bcm_clk_gate *gate)
395{
396 u32 reg_val;
397 u32 mask;
398 bool enabled = false;
399
400 BUG_ON(!gate_exists(gate));
401 if (!gate_is_sw_controllable(gate))
402 return true; /* Nothing we can change */
403
404 reg_val = __ccu_read(ccu, gate->offset);
405
406 /* For a hardware/software gate, set which is in control */
407 if (gate_is_hw_controllable(gate)) {
408 mask = (u32)1 << gate->hw_sw_sel_bit;
409 if (gate_is_sw_managed(gate))
410 reg_val |= mask;
411 else
412 reg_val &= ~mask;
413 }
414
415 /*
416 * If software is in control, enable or disable the gate.
417 * If hardware is, clear the enabled bit for good measure.
418 * If a software controlled gate can't be disabled, we're
419 * required to write a 0 into the enable bit (but the gate
420 * will be enabled).
421 */
422 mask = (u32)1 << gate->en_bit;
423 if (gate_is_sw_managed(gate) && (enabled = gate_is_enabled(gate)) &&
424 !gate_is_no_disable(gate))
425 reg_val |= mask;
426 else
427 reg_val &= ~mask;
428
429 __ccu_write(ccu, gate->offset, reg_val);
430
431 /* For a hardware controlled gate, we're done */
432 if (!gate_is_sw_managed(gate))
433 return true;
434
435 /* Otherwise wait for the gate to be in desired state */
436 return __ccu_wait_bit(ccu, gate->offset, gate->status_bit, enabled);
437}
438
439/*
440 * Initialize a gate. Our desired state (hardware/software select,
441 * and if software, its enable state) is committed to hardware
442 * without the usual checks to see if it's already set up that way.
443 * Returns true if successful, false otherwise.
444 */
445static bool gate_init(struct ccu_data *ccu, struct bcm_clk_gate *gate)
446{
447 if (!gate_exists(gate))
448 return true;
449 return __gate_commit(ccu, gate);
450}
451
452/*
453 * Set a gate to enabled or disabled state. Does nothing if the
454 * gate is not currently under software control, or if it is already
455 * in the requested state. Returns true if successful, false
456 * otherwise. CCU lock must be held.
457 */
458static bool
459__clk_gate(struct ccu_data *ccu, struct bcm_clk_gate *gate, bool enable)
460{
461 bool ret;
462
463 if (!gate_exists(gate) || !gate_is_sw_managed(gate))
464 return true; /* Nothing to do */
465
466 if (!enable && gate_is_no_disable(gate)) {
467 pr_warn("%s: invalid gate disable request (ignoring)\n",
468 __func__);
469 return true;
470 }
471
472 if (enable == gate_is_enabled(gate))
473 return true; /* No change */
474
475 gate_flip_enabled(gate);
476 ret = __gate_commit(ccu, gate);
477 if (!ret)
478 gate_flip_enabled(gate); /* Revert the change */
479
480 return ret;
481}
482
483/* Enable or disable a gate. Returns 0 if successful, -EIO otherwise */
484static int clk_gate(struct ccu_data *ccu, const char *name,
485 struct bcm_clk_gate *gate, bool enable)
486{
487 unsigned long flags;
488 bool success;
489
490 /*
491 * Avoid taking the lock if we can. We quietly ignore
492 * requests to change state that don't make sense.
493 */
494 if (!gate_exists(gate) || !gate_is_sw_managed(gate))
495 return 0;
496 if (!enable && gate_is_no_disable(gate))
497 return 0;
498
499 flags = ccu_lock(ccu);
500 __ccu_write_enable(ccu);
501
502 success = __clk_gate(ccu, gate, enable);
503
504 __ccu_write_disable(ccu);
505 ccu_unlock(ccu, flags);
506
507 if (success)
508 return 0;
509
510 pr_err("%s: failed to %s gate for %s\n", __func__,
511 enable ? "enable" : "disable", name);
512
513 return -EIO;
514}
515
Alex Elderdc613842014-04-21 16:11:43 -0500516/* Hysteresis operations */
517
518/*
519 * If a clock gate requires a turn-off delay it will have
520 * "hysteresis" register bits defined. The first, if set, enables
521 * the delay; and if enabled, the second bit determines whether the
522 * delay is "low" or "high" (1 means high). For now, if it's
523 * defined for a clock, we set it.
524 */
525static bool hyst_init(struct ccu_data *ccu, struct bcm_clk_hyst *hyst)
526{
527 u32 offset;
528 u32 reg_val;
529 u32 mask;
530
531 if (!hyst_exists(hyst))
532 return true;
533
534 offset = hyst->offset;
535 mask = (u32)1 << hyst->en_bit;
536 mask |= (u32)1 << hyst->val_bit;
537
538 reg_val = __ccu_read(ccu, offset);
539 reg_val |= mask;
540 __ccu_write(ccu, offset, reg_val);
541
542 return true;
543}
544
Alex Elder1f27f152014-02-14 12:29:18 -0600545/* Trigger operations */
546
547/*
548 * Caller must ensure CCU lock is held and access is enabled.
549 * Returns true if successful, false otherwise.
550 */
551static bool __clk_trigger(struct ccu_data *ccu, struct bcm_clk_trig *trig)
552{
553 /* Trigger the clock and wait for it to finish */
554 __ccu_write(ccu, trig->offset, 1 << trig->bit);
555
556 return __ccu_wait_bit(ccu, trig->offset, trig->bit, false);
557}
558
559/* Divider operations */
560
561/* Read a divider value and return the scaled divisor it represents. */
562static u64 divider_read_scaled(struct ccu_data *ccu, struct bcm_clk_div *div)
563{
564 unsigned long flags;
565 u32 reg_val;
566 u32 reg_div;
567
568 if (divider_is_fixed(div))
Alex Eldere813d492014-04-07 08:22:12 -0500569 return (u64)div->u.fixed;
Alex Elder1f27f152014-02-14 12:29:18 -0600570
571 flags = ccu_lock(ccu);
Alex Eldere813d492014-04-07 08:22:12 -0500572 reg_val = __ccu_read(ccu, div->u.s.offset);
Alex Elder1f27f152014-02-14 12:29:18 -0600573 ccu_unlock(ccu, flags);
574
575 /* Extract the full divider field from the register value */
Alex Eldere813d492014-04-07 08:22:12 -0500576 reg_div = bitfield_extract(reg_val, div->u.s.shift, div->u.s.width);
Alex Elder1f27f152014-02-14 12:29:18 -0600577
578 /* Return the scaled divisor value it represents */
579 return scaled_div_value(div, reg_div);
580}
581
582/*
583 * Convert a divider's scaled divisor value into its recorded form
584 * and commit it into the hardware divider register.
585 *
586 * Returns 0 on success. Returns -EINVAL for invalid arguments.
587 * Returns -ENXIO if gating failed, and -EIO if a trigger failed.
588 */
589static int __div_commit(struct ccu_data *ccu, struct bcm_clk_gate *gate,
590 struct bcm_clk_div *div, struct bcm_clk_trig *trig)
591{
592 bool enabled;
593 u32 reg_div;
594 u32 reg_val;
595 int ret = 0;
596
597 BUG_ON(divider_is_fixed(div));
598
599 /*
600 * If we're just initializing the divider, and no initial
601 * state was defined in the device tree, we just find out
602 * what its current value is rather than updating it.
603 */
Alex Eldere813d492014-04-07 08:22:12 -0500604 if (div->u.s.scaled_div == BAD_SCALED_DIV_VALUE) {
605 reg_val = __ccu_read(ccu, div->u.s.offset);
606 reg_div = bitfield_extract(reg_val, div->u.s.shift,
607 div->u.s.width);
608 div->u.s.scaled_div = scaled_div_value(div, reg_div);
Alex Elder1f27f152014-02-14 12:29:18 -0600609
610 return 0;
611 }
612
613 /* Convert the scaled divisor to the value we need to record */
Alex Eldere813d492014-04-07 08:22:12 -0500614 reg_div = divider(div, div->u.s.scaled_div);
Alex Elder1f27f152014-02-14 12:29:18 -0600615
616 /* Clock needs to be enabled before changing the rate */
617 enabled = __is_clk_gate_enabled(ccu, gate);
618 if (!enabled && !__clk_gate(ccu, gate, true)) {
619 ret = -ENXIO;
620 goto out;
621 }
622
623 /* Replace the divider value and record the result */
Alex Eldere813d492014-04-07 08:22:12 -0500624 reg_val = __ccu_read(ccu, div->u.s.offset);
625 reg_val = bitfield_replace(reg_val, div->u.s.shift, div->u.s.width,
626 reg_div);
627 __ccu_write(ccu, div->u.s.offset, reg_val);
Alex Elder1f27f152014-02-14 12:29:18 -0600628
629 /* If the trigger fails we still want to disable the gate */
630 if (!__clk_trigger(ccu, trig))
631 ret = -EIO;
632
633 /* Disable the clock again if it was disabled to begin with */
634 if (!enabled && !__clk_gate(ccu, gate, false))
635 ret = ret ? ret : -ENXIO; /* return first error */
636out:
637 return ret;
638}
639
640/*
641 * Initialize a divider by committing our desired state to hardware
642 * without the usual checks to see if it's already set up that way.
643 * Returns true if successful, false otherwise.
644 */
645static bool div_init(struct ccu_data *ccu, struct bcm_clk_gate *gate,
646 struct bcm_clk_div *div, struct bcm_clk_trig *trig)
647{
648 if (!divider_exists(div) || divider_is_fixed(div))
649 return true;
650 return !__div_commit(ccu, gate, div, trig);
651}
652
653static int divider_write(struct ccu_data *ccu, struct bcm_clk_gate *gate,
654 struct bcm_clk_div *div, struct bcm_clk_trig *trig,
655 u64 scaled_div)
656{
657 unsigned long flags;
658 u64 previous;
659 int ret;
660
661 BUG_ON(divider_is_fixed(div));
662
Alex Eldere813d492014-04-07 08:22:12 -0500663 previous = div->u.s.scaled_div;
Alex Elder1f27f152014-02-14 12:29:18 -0600664 if (previous == scaled_div)
665 return 0; /* No change */
666
Alex Eldere813d492014-04-07 08:22:12 -0500667 div->u.s.scaled_div = scaled_div;
Alex Elder1f27f152014-02-14 12:29:18 -0600668
669 flags = ccu_lock(ccu);
670 __ccu_write_enable(ccu);
671
672 ret = __div_commit(ccu, gate, div, trig);
673
674 __ccu_write_disable(ccu);
675 ccu_unlock(ccu, flags);
676
677 if (ret)
Alex Eldere813d492014-04-07 08:22:12 -0500678 div->u.s.scaled_div = previous; /* Revert the change */
Alex Elder1f27f152014-02-14 12:29:18 -0600679
680 return ret;
681
682}
683
684/* Common clock rate helpers */
685
686/*
687 * Implement the common clock framework recalc_rate method, taking
688 * into account a divider and an optional pre-divider. The
689 * pre-divider register pointer may be NULL.
690 */
691static unsigned long clk_recalc_rate(struct ccu_data *ccu,
692 struct bcm_clk_div *div, struct bcm_clk_div *pre_div,
693 unsigned long parent_rate)
694{
695 u64 scaled_parent_rate;
696 u64 scaled_div;
697 u64 result;
698
699 if (!divider_exists(div))
700 return parent_rate;
701
702 if (parent_rate > (unsigned long)LONG_MAX)
703 return 0; /* actually this would be a caller bug */
704
705 /*
706 * If there is a pre-divider, divide the scaled parent rate
707 * by the pre-divider value first. In this case--to improve
708 * accuracy--scale the parent rate by *both* the pre-divider
709 * value and the divider before actually computing the
710 * result of the pre-divider.
711 *
712 * If there's only one divider, just scale the parent rate.
713 */
714 if (pre_div && divider_exists(pre_div)) {
715 u64 scaled_rate;
716
717 scaled_rate = scale_rate(pre_div, parent_rate);
718 scaled_rate = scale_rate(div, scaled_rate);
719 scaled_div = divider_read_scaled(ccu, pre_div);
Javi Merinoaa776202015-04-16 12:43:48 -0700720 scaled_parent_rate = DIV_ROUND_CLOSEST_ULL(scaled_rate,
Alex Elder1f27f152014-02-14 12:29:18 -0600721 scaled_div);
722 } else {
723 scaled_parent_rate = scale_rate(div, parent_rate);
724 }
725
726 /*
727 * Get the scaled divisor value, and divide the scaled
728 * parent rate by that to determine this clock's resulting
729 * rate.
730 */
731 scaled_div = divider_read_scaled(ccu, div);
Javi Merinoaa776202015-04-16 12:43:48 -0700732 result = DIV_ROUND_CLOSEST_ULL(scaled_parent_rate, scaled_div);
Alex Elder1f27f152014-02-14 12:29:18 -0600733
734 return (unsigned long)result;
735}
736
737/*
738 * Compute the output rate produced when a given parent rate is fed
739 * into two dividers. The pre-divider can be NULL, and even if it's
740 * non-null it may be nonexistent. It's also OK for the divider to
741 * be nonexistent, and in that case the pre-divider is also ignored.
742 *
743 * If scaled_div is non-null, it is used to return the scaled divisor
744 * value used by the (downstream) divider to produce that rate.
745 */
746static long round_rate(struct ccu_data *ccu, struct bcm_clk_div *div,
747 struct bcm_clk_div *pre_div,
748 unsigned long rate, unsigned long parent_rate,
749 u64 *scaled_div)
750{
751 u64 scaled_parent_rate;
752 u64 min_scaled_div;
753 u64 max_scaled_div;
754 u64 best_scaled_div;
755 u64 result;
756
757 BUG_ON(!divider_exists(div));
758 BUG_ON(!rate);
759 BUG_ON(parent_rate > (u64)LONG_MAX);
760
761 /*
762 * If there is a pre-divider, divide the scaled parent rate
763 * by the pre-divider value first. In this case--to improve
764 * accuracy--scale the parent rate by *both* the pre-divider
765 * value and the divider before actually computing the
766 * result of the pre-divider.
767 *
768 * If there's only one divider, just scale the parent rate.
769 *
770 * For simplicity we treat the pre-divider as fixed (for now).
771 */
772 if (divider_exists(pre_div)) {
773 u64 scaled_rate;
774 u64 scaled_pre_div;
775
776 scaled_rate = scale_rate(pre_div, parent_rate);
777 scaled_rate = scale_rate(div, scaled_rate);
778 scaled_pre_div = divider_read_scaled(ccu, pre_div);
Javi Merinoaa776202015-04-16 12:43:48 -0700779 scaled_parent_rate = DIV_ROUND_CLOSEST_ULL(scaled_rate,
Alex Elder1f27f152014-02-14 12:29:18 -0600780 scaled_pre_div);
781 } else {
782 scaled_parent_rate = scale_rate(div, parent_rate);
783 }
784
785 /*
786 * Compute the best possible divider and ensure it is in
787 * range. A fixed divider can't be changed, so just report
788 * the best we can do.
789 */
790 if (!divider_is_fixed(div)) {
Javi Merinoaa776202015-04-16 12:43:48 -0700791 best_scaled_div = DIV_ROUND_CLOSEST_ULL(scaled_parent_rate,
Alex Elder1f27f152014-02-14 12:29:18 -0600792 rate);
793 min_scaled_div = scaled_div_min(div);
794 max_scaled_div = scaled_div_max(div);
795 if (best_scaled_div > max_scaled_div)
796 best_scaled_div = max_scaled_div;
797 else if (best_scaled_div < min_scaled_div)
798 best_scaled_div = min_scaled_div;
799 } else {
800 best_scaled_div = divider_read_scaled(ccu, div);
801 }
802
803 /* OK, figure out the resulting rate */
Javi Merinoaa776202015-04-16 12:43:48 -0700804 result = DIV_ROUND_CLOSEST_ULL(scaled_parent_rate, best_scaled_div);
Alex Elder1f27f152014-02-14 12:29:18 -0600805
806 if (scaled_div)
807 *scaled_div = best_scaled_div;
808
809 return (long)result;
810}
811
812/* Common clock parent helpers */
813
814/*
815 * For a given parent selector (register field) value, find the
816 * index into a selector's parent_sel array that contains it.
817 * Returns the index, or BAD_CLK_INDEX if it's not found.
818 */
819static u8 parent_index(struct bcm_clk_sel *sel, u8 parent_sel)
820{
821 u8 i;
822
823 BUG_ON(sel->parent_count > (u32)U8_MAX);
824 for (i = 0; i < sel->parent_count; i++)
825 if (sel->parent_sel[i] == parent_sel)
826 return i;
827 return BAD_CLK_INDEX;
828}
829
830/*
831 * Fetch the current value of the selector, and translate that into
832 * its corresponding index in the parent array we registered with
833 * the clock framework.
834 *
835 * Returns parent array index that corresponds with the value found,
836 * or BAD_CLK_INDEX if the found value is out of range.
837 */
838static u8 selector_read_index(struct ccu_data *ccu, struct bcm_clk_sel *sel)
839{
840 unsigned long flags;
841 u32 reg_val;
842 u32 parent_sel;
843 u8 index;
844
845 /* If there's no selector, there's only one parent */
846 if (!selector_exists(sel))
847 return 0;
848
849 /* Get the value in the selector register */
850 flags = ccu_lock(ccu);
851 reg_val = __ccu_read(ccu, sel->offset);
852 ccu_unlock(ccu, flags);
853
854 parent_sel = bitfield_extract(reg_val, sel->shift, sel->width);
855
856 /* Look up that selector's parent array index and return it */
857 index = parent_index(sel, parent_sel);
858 if (index == BAD_CLK_INDEX)
859 pr_err("%s: out-of-range parent selector %u (%s 0x%04x)\n",
860 __func__, parent_sel, ccu->name, sel->offset);
861
862 return index;
863}
864
865/*
866 * Commit our desired selector value to the hardware.
867 *
868 * Returns 0 on success. Returns -EINVAL for invalid arguments.
869 * Returns -ENXIO if gating failed, and -EIO if a trigger failed.
870 */
871static int
872__sel_commit(struct ccu_data *ccu, struct bcm_clk_gate *gate,
873 struct bcm_clk_sel *sel, struct bcm_clk_trig *trig)
874{
875 u32 parent_sel;
876 u32 reg_val;
877 bool enabled;
878 int ret = 0;
879
880 BUG_ON(!selector_exists(sel));
881
882 /*
883 * If we're just initializing the selector, and no initial
884 * state was defined in the device tree, we just find out
885 * what its current value is rather than updating it.
886 */
887 if (sel->clk_index == BAD_CLK_INDEX) {
888 u8 index;
889
890 reg_val = __ccu_read(ccu, sel->offset);
891 parent_sel = bitfield_extract(reg_val, sel->shift, sel->width);
892 index = parent_index(sel, parent_sel);
893 if (index == BAD_CLK_INDEX)
894 return -EINVAL;
895 sel->clk_index = index;
896
897 return 0;
898 }
899
900 BUG_ON((u32)sel->clk_index >= sel->parent_count);
901 parent_sel = sel->parent_sel[sel->clk_index];
902
903 /* Clock needs to be enabled before changing the parent */
904 enabled = __is_clk_gate_enabled(ccu, gate);
905 if (!enabled && !__clk_gate(ccu, gate, true))
906 return -ENXIO;
907
908 /* Replace the selector value and record the result */
909 reg_val = __ccu_read(ccu, sel->offset);
910 reg_val = bitfield_replace(reg_val, sel->shift, sel->width, parent_sel);
911 __ccu_write(ccu, sel->offset, reg_val);
912
913 /* If the trigger fails we still want to disable the gate */
914 if (!__clk_trigger(ccu, trig))
915 ret = -EIO;
916
917 /* Disable the clock again if it was disabled to begin with */
918 if (!enabled && !__clk_gate(ccu, gate, false))
919 ret = ret ? ret : -ENXIO; /* return first error */
920
921 return ret;
922}
923
924/*
925 * Initialize a selector by committing our desired state to hardware
926 * without the usual checks to see if it's already set up that way.
927 * Returns true if successful, false otherwise.
928 */
929static bool sel_init(struct ccu_data *ccu, struct bcm_clk_gate *gate,
930 struct bcm_clk_sel *sel, struct bcm_clk_trig *trig)
931{
932 if (!selector_exists(sel))
933 return true;
934 return !__sel_commit(ccu, gate, sel, trig);
935}
936
937/*
938 * Write a new value into a selector register to switch to a
939 * different parent clock. Returns 0 on success, or an error code
940 * (from __sel_commit()) otherwise.
941 */
942static int selector_write(struct ccu_data *ccu, struct bcm_clk_gate *gate,
943 struct bcm_clk_sel *sel, struct bcm_clk_trig *trig,
944 u8 index)
945{
946 unsigned long flags;
947 u8 previous;
948 int ret;
949
950 previous = sel->clk_index;
951 if (previous == index)
952 return 0; /* No change */
953
954 sel->clk_index = index;
955
956 flags = ccu_lock(ccu);
957 __ccu_write_enable(ccu);
958
959 ret = __sel_commit(ccu, gate, sel, trig);
960
961 __ccu_write_disable(ccu);
962 ccu_unlock(ccu, flags);
963
964 if (ret)
965 sel->clk_index = previous; /* Revert the change */
966
967 return ret;
968}
969
970/* Clock operations */
971
972static int kona_peri_clk_enable(struct clk_hw *hw)
973{
974 struct kona_clk *bcm_clk = to_kona_clk(hw);
Alex Eldere813d492014-04-07 08:22:12 -0500975 struct bcm_clk_gate *gate = &bcm_clk->u.peri->gate;
Alex Elder1f27f152014-02-14 12:29:18 -0600976
Alex Eldere7563252014-04-21 16:11:38 -0500977 return clk_gate(bcm_clk->ccu, bcm_clk->init_data.name, gate, true);
Alex Elder1f27f152014-02-14 12:29:18 -0600978}
979
980static void kona_peri_clk_disable(struct clk_hw *hw)
981{
982 struct kona_clk *bcm_clk = to_kona_clk(hw);
Alex Eldere813d492014-04-07 08:22:12 -0500983 struct bcm_clk_gate *gate = &bcm_clk->u.peri->gate;
Alex Elder1f27f152014-02-14 12:29:18 -0600984
Alex Eldere7563252014-04-21 16:11:38 -0500985 (void)clk_gate(bcm_clk->ccu, bcm_clk->init_data.name, gate, false);
Alex Elder1f27f152014-02-14 12:29:18 -0600986}
987
988static int kona_peri_clk_is_enabled(struct clk_hw *hw)
989{
990 struct kona_clk *bcm_clk = to_kona_clk(hw);
Alex Eldere813d492014-04-07 08:22:12 -0500991 struct bcm_clk_gate *gate = &bcm_clk->u.peri->gate;
Alex Elder1f27f152014-02-14 12:29:18 -0600992
993 return is_clk_gate_enabled(bcm_clk->ccu, gate) ? 1 : 0;
994}
995
996static unsigned long kona_peri_clk_recalc_rate(struct clk_hw *hw,
997 unsigned long parent_rate)
998{
999 struct kona_clk *bcm_clk = to_kona_clk(hw);
Alex Eldere813d492014-04-07 08:22:12 -05001000 struct peri_clk_data *data = bcm_clk->u.peri;
Alex Elder1f27f152014-02-14 12:29:18 -06001001
1002 return clk_recalc_rate(bcm_clk->ccu, &data->div, &data->pre_div,
1003 parent_rate);
1004}
1005
1006static long kona_peri_clk_round_rate(struct clk_hw *hw, unsigned long rate,
1007 unsigned long *parent_rate)
1008{
1009 struct kona_clk *bcm_clk = to_kona_clk(hw);
Alex Eldere813d492014-04-07 08:22:12 -05001010 struct bcm_clk_div *div = &bcm_clk->u.peri->div;
Alex Elder1f27f152014-02-14 12:29:18 -06001011
1012 if (!divider_exists(div))
1013 return __clk_get_rate(hw->clk);
1014
1015 /* Quietly avoid a zero rate */
Alex Eldere813d492014-04-07 08:22:12 -05001016 return round_rate(bcm_clk->ccu, div, &bcm_clk->u.peri->pre_div,
Alex Elder1f27f152014-02-14 12:29:18 -06001017 rate ? rate : 1, *parent_rate, NULL);
1018}
1019
Alex Elderc2152d02014-05-27 11:56:56 -05001020static long kona_peri_clk_determine_rate(struct clk_hw *hw, unsigned long rate,
Tomeu Vizoso1c8e6002015-01-23 12:03:31 +01001021 unsigned long min_rate,
1022 unsigned long max_rate,
Tomeu Vizoso646cafc2014-12-02 08:54:22 +01001023 unsigned long *best_parent_rate, struct clk_hw **best_parent)
Alex Elderc2152d02014-05-27 11:56:56 -05001024{
1025 struct kona_clk *bcm_clk = to_kona_clk(hw);
1026 struct clk *clk = hw->clk;
1027 struct clk *current_parent;
1028 unsigned long parent_rate;
1029 unsigned long best_delta;
1030 unsigned long best_rate;
1031 u32 parent_count;
1032 u32 which;
1033
1034 /*
1035 * If there is no other parent to choose, use the current one.
1036 * Note: We don't honor (or use) CLK_SET_RATE_NO_REPARENT.
1037 */
1038 WARN_ON_ONCE(bcm_clk->init_data.flags & CLK_SET_RATE_NO_REPARENT);
1039 parent_count = (u32)bcm_clk->init_data.num_parents;
1040 if (parent_count < 2)
1041 return kona_peri_clk_round_rate(hw, rate, best_parent_rate);
1042
1043 /* Unless we can do better, stick with current parent */
1044 current_parent = clk_get_parent(clk);
1045 parent_rate = __clk_get_rate(current_parent);
1046 best_rate = kona_peri_clk_round_rate(hw, rate, &parent_rate);
1047 best_delta = abs(best_rate - rate);
1048
1049 /* Check whether any other parent clock can produce a better result */
1050 for (which = 0; which < parent_count; which++) {
1051 struct clk *parent = clk_get_parent_by_index(clk, which);
1052 unsigned long delta;
1053 unsigned long other_rate;
1054
1055 BUG_ON(!parent);
1056 if (parent == current_parent)
1057 continue;
1058
1059 /* We don't support CLK_SET_RATE_PARENT */
1060 parent_rate = __clk_get_rate(parent);
1061 other_rate = kona_peri_clk_round_rate(hw, rate, &parent_rate);
1062 delta = abs(other_rate - rate);
1063 if (delta < best_delta) {
1064 best_delta = delta;
1065 best_rate = other_rate;
Tomeu Vizoso646cafc2014-12-02 08:54:22 +01001066 *best_parent = __clk_get_hw(parent);
Alex Elderc2152d02014-05-27 11:56:56 -05001067 *best_parent_rate = parent_rate;
1068 }
1069 }
1070
1071 return best_rate;
1072}
1073
Alex Elder1f27f152014-02-14 12:29:18 -06001074static int kona_peri_clk_set_parent(struct clk_hw *hw, u8 index)
1075{
1076 struct kona_clk *bcm_clk = to_kona_clk(hw);
Alex Eldere813d492014-04-07 08:22:12 -05001077 struct peri_clk_data *data = bcm_clk->u.peri;
Alex Elder1f27f152014-02-14 12:29:18 -06001078 struct bcm_clk_sel *sel = &data->sel;
1079 struct bcm_clk_trig *trig;
1080 int ret;
1081
1082 BUG_ON(index >= sel->parent_count);
1083
1084 /* If there's only one parent we don't require a selector */
1085 if (!selector_exists(sel))
1086 return 0;
1087
1088 /*
1089 * The regular trigger is used by default, but if there's a
1090 * pre-trigger we want to use that instead.
1091 */
1092 trig = trigger_exists(&data->pre_trig) ? &data->pre_trig
1093 : &data->trig;
1094
1095 ret = selector_write(bcm_clk->ccu, &data->gate, sel, trig, index);
1096 if (ret == -ENXIO) {
Alex Eldere7563252014-04-21 16:11:38 -05001097 pr_err("%s: gating failure for %s\n", __func__,
1098 bcm_clk->init_data.name);
Alex Elder1f27f152014-02-14 12:29:18 -06001099 ret = -EIO; /* Don't proliferate weird errors */
1100 } else if (ret == -EIO) {
1101 pr_err("%s: %strigger failed for %s\n", __func__,
1102 trig == &data->pre_trig ? "pre-" : "",
Alex Eldere7563252014-04-21 16:11:38 -05001103 bcm_clk->init_data.name);
Alex Elder1f27f152014-02-14 12:29:18 -06001104 }
1105
1106 return ret;
1107}
1108
1109static u8 kona_peri_clk_get_parent(struct clk_hw *hw)
1110{
1111 struct kona_clk *bcm_clk = to_kona_clk(hw);
Alex Eldere813d492014-04-07 08:22:12 -05001112 struct peri_clk_data *data = bcm_clk->u.peri;
Alex Elder1f27f152014-02-14 12:29:18 -06001113 u8 index;
1114
1115 index = selector_read_index(bcm_clk->ccu, &data->sel);
1116
1117 /* Not all callers would handle an out-of-range value gracefully */
1118 return index == BAD_CLK_INDEX ? 0 : index;
1119}
1120
1121static int kona_peri_clk_set_rate(struct clk_hw *hw, unsigned long rate,
1122 unsigned long parent_rate)
1123{
1124 struct kona_clk *bcm_clk = to_kona_clk(hw);
Alex Eldere813d492014-04-07 08:22:12 -05001125 struct peri_clk_data *data = bcm_clk->u.peri;
Alex Elder1f27f152014-02-14 12:29:18 -06001126 struct bcm_clk_div *div = &data->div;
1127 u64 scaled_div = 0;
1128 int ret;
1129
1130 if (parent_rate > (unsigned long)LONG_MAX)
1131 return -EINVAL;
1132
1133 if (rate == __clk_get_rate(hw->clk))
1134 return 0;
1135
1136 if (!divider_exists(div))
1137 return rate == parent_rate ? 0 : -EINVAL;
1138
1139 /*
1140 * A fixed divider can't be changed. (Nor can a fixed
1141 * pre-divider be, but for now we never actually try to
1142 * change that.) Tolerate a request for a no-op change.
1143 */
1144 if (divider_is_fixed(&data->div))
1145 return rate == parent_rate ? 0 : -EINVAL;
1146
1147 /*
1148 * Get the scaled divisor value needed to achieve a clock
1149 * rate as close as possible to what was requested, given
1150 * the parent clock rate supplied.
1151 */
1152 (void)round_rate(bcm_clk->ccu, div, &data->pre_div,
1153 rate ? rate : 1, parent_rate, &scaled_div);
1154
1155 /*
1156 * We aren't updating any pre-divider at this point, so
1157 * we'll use the regular trigger.
1158 */
1159 ret = divider_write(bcm_clk->ccu, &data->gate, &data->div,
1160 &data->trig, scaled_div);
1161 if (ret == -ENXIO) {
Alex Eldere7563252014-04-21 16:11:38 -05001162 pr_err("%s: gating failure for %s\n", __func__,
1163 bcm_clk->init_data.name);
Alex Elder1f27f152014-02-14 12:29:18 -06001164 ret = -EIO; /* Don't proliferate weird errors */
1165 } else if (ret == -EIO) {
Alex Eldere7563252014-04-21 16:11:38 -05001166 pr_err("%s: trigger failed for %s\n", __func__,
1167 bcm_clk->init_data.name);
Alex Elder1f27f152014-02-14 12:29:18 -06001168 }
1169
1170 return ret;
1171}
1172
1173struct clk_ops kona_peri_clk_ops = {
1174 .enable = kona_peri_clk_enable,
1175 .disable = kona_peri_clk_disable,
1176 .is_enabled = kona_peri_clk_is_enabled,
1177 .recalc_rate = kona_peri_clk_recalc_rate,
Alex Elderc2152d02014-05-27 11:56:56 -05001178 .determine_rate = kona_peri_clk_determine_rate,
Alex Elder1f27f152014-02-14 12:29:18 -06001179 .set_parent = kona_peri_clk_set_parent,
1180 .get_parent = kona_peri_clk_get_parent,
1181 .set_rate = kona_peri_clk_set_rate,
1182};
1183
1184/* Put a peripheral clock into its initial state */
1185static bool __peri_clk_init(struct kona_clk *bcm_clk)
1186{
1187 struct ccu_data *ccu = bcm_clk->ccu;
Alex Eldere813d492014-04-07 08:22:12 -05001188 struct peri_clk_data *peri = bcm_clk->u.peri;
Alex Eldere7563252014-04-21 16:11:38 -05001189 const char *name = bcm_clk->init_data.name;
Alex Elder1f27f152014-02-14 12:29:18 -06001190 struct bcm_clk_trig *trig;
1191
1192 BUG_ON(bcm_clk->type != bcm_clk_peri);
1193
Alex Eldera597fac2014-04-21 16:11:42 -05001194 if (!policy_init(ccu, &peri->policy)) {
1195 pr_err("%s: error initializing policy for %s\n",
1196 __func__, name);
1197 return false;
1198 }
Alex Elder1f27f152014-02-14 12:29:18 -06001199 if (!gate_init(ccu, &peri->gate)) {
1200 pr_err("%s: error initializing gate for %s\n", __func__, name);
1201 return false;
1202 }
Alex Elderdc613842014-04-21 16:11:43 -05001203 if (!hyst_init(ccu, &peri->hyst)) {
1204 pr_err("%s: error initializing hyst for %s\n", __func__, name);
1205 return false;
1206 }
Alex Elder1f27f152014-02-14 12:29:18 -06001207 if (!div_init(ccu, &peri->gate, &peri->div, &peri->trig)) {
1208 pr_err("%s: error initializing divider for %s\n", __func__,
1209 name);
1210 return false;
1211 }
1212
1213 /*
1214 * For the pre-divider and selector, the pre-trigger is used
1215 * if it's present, otherwise we just use the regular trigger.
1216 */
1217 trig = trigger_exists(&peri->pre_trig) ? &peri->pre_trig
1218 : &peri->trig;
1219
1220 if (!div_init(ccu, &peri->gate, &peri->pre_div, trig)) {
1221 pr_err("%s: error initializing pre-divider for %s\n", __func__,
1222 name);
1223 return false;
1224 }
1225
1226 if (!sel_init(ccu, &peri->gate, &peri->sel, trig)) {
1227 pr_err("%s: error initializing selector for %s\n", __func__,
1228 name);
1229 return false;
1230 }
1231
1232 return true;
1233}
1234
1235static bool __kona_clk_init(struct kona_clk *bcm_clk)
1236{
1237 switch (bcm_clk->type) {
1238 case bcm_clk_peri:
1239 return __peri_clk_init(bcm_clk);
1240 default:
1241 BUG();
1242 }
1243 return -EINVAL;
1244}
1245
1246/* Set a CCU and all its clocks into their desired initial state */
1247bool __init kona_ccu_init(struct ccu_data *ccu)
1248{
1249 unsigned long flags;
1250 unsigned int which;
Alex Elderb12151c2014-04-21 16:11:40 -05001251 struct clk **clks = ccu->clk_data.clks;
Alex Elder1f27f152014-02-14 12:29:18 -06001252 bool success = true;
1253
1254 flags = ccu_lock(ccu);
1255 __ccu_write_enable(ccu);
1256
Alex Elderb12151c2014-04-21 16:11:40 -05001257 for (which = 0; which < ccu->clk_data.clk_num; which++) {
Alex Elder1f27f152014-02-14 12:29:18 -06001258 struct kona_clk *bcm_clk;
1259
1260 if (!clks[which])
1261 continue;
1262 bcm_clk = to_kona_clk(__clk_get_hw(clks[which]));
1263 success &= __kona_clk_init(bcm_clk);
1264 }
1265
1266 __ccu_write_disable(ccu);
1267 ccu_unlock(ccu, flags);
1268 return success;
1269}