Benjamin Herrenschmidt | 6cd3209 | 2012-04-29 15:42:27 +0000 | [diff] [blame] | 1 | /* |
| 2 | * Windfarm PowerMac thermal control. |
| 3 | * Control loops for PowerMac7,2 and 7,3 |
| 4 | * |
| 5 | * Copyright (C) 2012 Benjamin Herrenschmidt, IBM Corp. |
| 6 | * |
| 7 | * Use and redistribute under the terms of the GNU GPL v2. |
| 8 | */ |
| 9 | #include <linux/types.h> |
| 10 | #include <linux/errno.h> |
| 11 | #include <linux/kernel.h> |
| 12 | #include <linux/device.h> |
| 13 | #include <linux/platform_device.h> |
| 14 | #include <linux/reboot.h> |
| 15 | #include <asm/prom.h> |
| 16 | #include <asm/smu.h> |
| 17 | |
| 18 | #include "windfarm.h" |
| 19 | #include "windfarm_pid.h" |
| 20 | #include "windfarm_mpu.h" |
| 21 | |
| 22 | #define VERSION "1.0" |
| 23 | |
| 24 | #undef DEBUG |
| 25 | #undef LOTSA_DEBUG |
| 26 | |
| 27 | #ifdef DEBUG |
| 28 | #define DBG(args...) printk(args) |
| 29 | #else |
| 30 | #define DBG(args...) do { } while(0) |
| 31 | #endif |
| 32 | |
| 33 | #ifdef LOTSA_DEBUG |
| 34 | #define DBG_LOTS(args...) printk(args) |
| 35 | #else |
| 36 | #define DBG_LOTS(args...) do { } while(0) |
| 37 | #endif |
| 38 | |
| 39 | /* define this to force CPU overtemp to 60 degree, useful for testing |
| 40 | * the overtemp code |
| 41 | */ |
| 42 | #undef HACKED_OVERTEMP |
| 43 | |
| 44 | /* We currently only handle 2 chips */ |
| 45 | #define NR_CHIPS 2 |
| 46 | #define NR_CPU_FANS 3 * NR_CHIPS |
| 47 | |
| 48 | /* Controls and sensors */ |
| 49 | static struct wf_sensor *sens_cpu_temp[NR_CHIPS]; |
| 50 | static struct wf_sensor *sens_cpu_volts[NR_CHIPS]; |
| 51 | static struct wf_sensor *sens_cpu_amps[NR_CHIPS]; |
| 52 | static struct wf_sensor *backside_temp; |
| 53 | static struct wf_sensor *drives_temp; |
| 54 | |
| 55 | static struct wf_control *cpu_front_fans[NR_CHIPS]; |
| 56 | static struct wf_control *cpu_rear_fans[NR_CHIPS]; |
| 57 | static struct wf_control *cpu_pumps[NR_CHIPS]; |
| 58 | static struct wf_control *backside_fan; |
| 59 | static struct wf_control *drives_fan; |
| 60 | static struct wf_control *slots_fan; |
| 61 | static struct wf_control *cpufreq_clamp; |
| 62 | |
| 63 | /* We keep a temperature history for average calculation of 180s */ |
| 64 | #define CPU_TEMP_HIST_SIZE 180 |
| 65 | |
| 66 | /* Fixed speed for slot fan */ |
| 67 | #define SLOTS_FAN_DEFAULT_PWM 40 |
| 68 | |
| 69 | /* Scale value for CPU intake fans */ |
| 70 | #define CPU_INTAKE_SCALE 0x0000f852 |
| 71 | |
| 72 | /* PID loop state */ |
| 73 | static const struct mpu_data *cpu_mpu_data[NR_CHIPS]; |
| 74 | static struct wf_cpu_pid_state cpu_pid[NR_CHIPS]; |
| 75 | static bool cpu_pid_combined; |
| 76 | static u32 cpu_thist[CPU_TEMP_HIST_SIZE]; |
| 77 | static int cpu_thist_pt; |
| 78 | static s64 cpu_thist_total; |
| 79 | static s32 cpu_all_tmax = 100 << 16; |
| 80 | static struct wf_pid_state backside_pid; |
| 81 | static int backside_tick; |
| 82 | static struct wf_pid_state drives_pid; |
| 83 | static int drives_tick; |
| 84 | |
| 85 | static int nr_chips; |
| 86 | static bool have_all_controls; |
| 87 | static bool have_all_sensors; |
| 88 | static bool started; |
| 89 | |
| 90 | static int failure_state; |
| 91 | #define FAILURE_SENSOR 1 |
| 92 | #define FAILURE_FAN 2 |
| 93 | #define FAILURE_PERM 4 |
| 94 | #define FAILURE_LOW_OVERTEMP 8 |
| 95 | #define FAILURE_HIGH_OVERTEMP 16 |
| 96 | |
| 97 | /* Overtemp values */ |
| 98 | #define LOW_OVER_AVERAGE 0 |
| 99 | #define LOW_OVER_IMMEDIATE (10 << 16) |
| 100 | #define LOW_OVER_CLEAR ((-10) << 16) |
| 101 | #define HIGH_OVER_IMMEDIATE (14 << 16) |
| 102 | #define HIGH_OVER_AVERAGE (10 << 16) |
| 103 | #define HIGH_OVER_IMMEDIATE (14 << 16) |
| 104 | |
| 105 | |
| 106 | static void cpu_max_all_fans(void) |
| 107 | { |
| 108 | int i; |
| 109 | |
| 110 | /* We max all CPU fans in case of a sensor error. We also do the |
| 111 | * cpufreq clamping now, even if it's supposedly done later by the |
| 112 | * generic code anyway, we do it earlier here to react faster |
| 113 | */ |
| 114 | if (cpufreq_clamp) |
| 115 | wf_control_set_max(cpufreq_clamp); |
| 116 | for (i = 0; i < nr_chips; i++) { |
| 117 | if (cpu_front_fans[i]) |
| 118 | wf_control_set_max(cpu_front_fans[i]); |
| 119 | if (cpu_rear_fans[i]) |
| 120 | wf_control_set_max(cpu_rear_fans[i]); |
| 121 | if (cpu_pumps[i]) |
| 122 | wf_control_set_max(cpu_pumps[i]); |
| 123 | } |
| 124 | } |
| 125 | |
| 126 | static int cpu_check_overtemp(s32 temp) |
| 127 | { |
| 128 | int new_state = 0; |
| 129 | s32 t_avg, t_old; |
| 130 | static bool first = true; |
| 131 | |
| 132 | /* First check for immediate overtemps */ |
| 133 | if (temp >= (cpu_all_tmax + LOW_OVER_IMMEDIATE)) { |
| 134 | new_state |= FAILURE_LOW_OVERTEMP; |
| 135 | if ((failure_state & FAILURE_LOW_OVERTEMP) == 0) |
| 136 | printk(KERN_ERR "windfarm: Overtemp due to immediate CPU" |
| 137 | " temperature !\n"); |
| 138 | } |
| 139 | if (temp >= (cpu_all_tmax + HIGH_OVER_IMMEDIATE)) { |
| 140 | new_state |= FAILURE_HIGH_OVERTEMP; |
| 141 | if ((failure_state & FAILURE_HIGH_OVERTEMP) == 0) |
| 142 | printk(KERN_ERR "windfarm: Critical overtemp due to" |
| 143 | " immediate CPU temperature !\n"); |
| 144 | } |
| 145 | |
| 146 | /* |
| 147 | * The first time around, initialize the array with the first |
| 148 | * temperature reading |
| 149 | */ |
| 150 | if (first) { |
| 151 | int i; |
| 152 | |
| 153 | cpu_thist_total = 0; |
| 154 | for (i = 0; i < CPU_TEMP_HIST_SIZE; i++) { |
| 155 | cpu_thist[i] = temp; |
| 156 | cpu_thist_total += temp; |
| 157 | } |
| 158 | first = false; |
| 159 | } |
| 160 | |
| 161 | /* |
| 162 | * We calculate a history of max temperatures and use that for the |
| 163 | * overtemp management |
| 164 | */ |
| 165 | t_old = cpu_thist[cpu_thist_pt]; |
| 166 | cpu_thist[cpu_thist_pt] = temp; |
| 167 | cpu_thist_pt = (cpu_thist_pt + 1) % CPU_TEMP_HIST_SIZE; |
| 168 | cpu_thist_total -= t_old; |
| 169 | cpu_thist_total += temp; |
| 170 | t_avg = cpu_thist_total / CPU_TEMP_HIST_SIZE; |
| 171 | |
| 172 | DBG_LOTS(" t_avg = %d.%03d (out: %d.%03d, in: %d.%03d)\n", |
| 173 | FIX32TOPRINT(t_avg), FIX32TOPRINT(t_old), FIX32TOPRINT(temp)); |
| 174 | |
| 175 | /* Now check for average overtemps */ |
| 176 | if (t_avg >= (cpu_all_tmax + LOW_OVER_AVERAGE)) { |
| 177 | new_state |= FAILURE_LOW_OVERTEMP; |
| 178 | if ((failure_state & FAILURE_LOW_OVERTEMP) == 0) |
| 179 | printk(KERN_ERR "windfarm: Overtemp due to average CPU" |
| 180 | " temperature !\n"); |
| 181 | } |
| 182 | if (t_avg >= (cpu_all_tmax + HIGH_OVER_AVERAGE)) { |
| 183 | new_state |= FAILURE_HIGH_OVERTEMP; |
| 184 | if ((failure_state & FAILURE_HIGH_OVERTEMP) == 0) |
| 185 | printk(KERN_ERR "windfarm: Critical overtemp due to" |
| 186 | " average CPU temperature !\n"); |
| 187 | } |
| 188 | |
| 189 | /* Now handle overtemp conditions. We don't currently use the windfarm |
| 190 | * overtemp handling core as it's not fully suited to the needs of those |
| 191 | * new machine. This will be fixed later. |
| 192 | */ |
| 193 | if (new_state) { |
| 194 | /* High overtemp -> immediate shutdown */ |
| 195 | if (new_state & FAILURE_HIGH_OVERTEMP) |
| 196 | machine_power_off(); |
| 197 | if ((failure_state & new_state) != new_state) |
| 198 | cpu_max_all_fans(); |
| 199 | failure_state |= new_state; |
| 200 | } else if ((failure_state & FAILURE_LOW_OVERTEMP) && |
| 201 | (temp < (cpu_all_tmax + LOW_OVER_CLEAR))) { |
| 202 | printk(KERN_ERR "windfarm: Overtemp condition cleared !\n"); |
| 203 | failure_state &= ~FAILURE_LOW_OVERTEMP; |
| 204 | } |
| 205 | |
| 206 | return failure_state & (FAILURE_LOW_OVERTEMP | FAILURE_HIGH_OVERTEMP); |
| 207 | } |
| 208 | |
| 209 | static int read_one_cpu_vals(int cpu, s32 *temp, s32 *power) |
| 210 | { |
| 211 | s32 dtemp, volts, amps; |
| 212 | int rc; |
| 213 | |
| 214 | /* Get diode temperature */ |
| 215 | rc = wf_sensor_get(sens_cpu_temp[cpu], &dtemp); |
| 216 | if (rc) { |
| 217 | DBG(" CPU%d: temp reading error !\n", cpu); |
| 218 | return -EIO; |
| 219 | } |
| 220 | DBG_LOTS(" CPU%d: temp = %d.%03d\n", cpu, FIX32TOPRINT((dtemp))); |
| 221 | *temp = dtemp; |
| 222 | |
| 223 | /* Get voltage */ |
| 224 | rc = wf_sensor_get(sens_cpu_volts[cpu], &volts); |
| 225 | if (rc) { |
| 226 | DBG(" CPU%d, volts reading error !\n", cpu); |
| 227 | return -EIO; |
| 228 | } |
| 229 | DBG_LOTS(" CPU%d: volts = %d.%03d\n", cpu, FIX32TOPRINT((volts))); |
| 230 | |
| 231 | /* Get current */ |
| 232 | rc = wf_sensor_get(sens_cpu_amps[cpu], &s); |
| 233 | if (rc) { |
| 234 | DBG(" CPU%d, current reading error !\n", cpu); |
| 235 | return -EIO; |
| 236 | } |
| 237 | DBG_LOTS(" CPU%d: amps = %d.%03d\n", cpu, FIX32TOPRINT((amps))); |
| 238 | |
| 239 | /* Calculate power */ |
| 240 | |
| 241 | /* Scale voltage and current raw sensor values according to fixed scales |
| 242 | * obtained in Darwin and calculate power from I and V |
| 243 | */ |
| 244 | *power = (((u64)volts) * ((u64)amps)) >> 16; |
| 245 | |
| 246 | DBG_LOTS(" CPU%d: power = %d.%03d\n", cpu, FIX32TOPRINT((*power))); |
| 247 | |
| 248 | return 0; |
| 249 | |
| 250 | } |
| 251 | |
| 252 | static void cpu_fans_tick_split(void) |
| 253 | { |
| 254 | int err, cpu; |
| 255 | s32 intake, temp, power, t_max = 0; |
| 256 | |
| 257 | DBG_LOTS("* cpu fans_tick_split()\n"); |
| 258 | |
| 259 | for (cpu = 0; cpu < nr_chips; ++cpu) { |
| 260 | struct wf_cpu_pid_state *sp = &cpu_pid[cpu]; |
| 261 | |
| 262 | /* Read current speed */ |
| 263 | wf_control_get(cpu_rear_fans[cpu], &sp->target); |
| 264 | |
| 265 | DBG_LOTS(" CPU%d: cur_target = %d RPM\n", cpu, sp->target); |
| 266 | |
| 267 | err = read_one_cpu_vals(cpu, &temp, &power); |
| 268 | if (err) { |
| 269 | failure_state |= FAILURE_SENSOR; |
| 270 | cpu_max_all_fans(); |
| 271 | return; |
| 272 | } |
| 273 | |
| 274 | /* Keep track of highest temp */ |
| 275 | t_max = max(t_max, temp); |
| 276 | |
| 277 | /* Handle possible overtemps */ |
| 278 | if (cpu_check_overtemp(t_max)) |
| 279 | return; |
| 280 | |
| 281 | /* Run PID */ |
| 282 | wf_cpu_pid_run(sp, power, temp); |
| 283 | |
| 284 | DBG_LOTS(" CPU%d: target = %d RPM\n", cpu, sp->target); |
| 285 | |
| 286 | /* Apply result directly to exhaust fan */ |
| 287 | err = wf_control_set(cpu_rear_fans[cpu], sp->target); |
| 288 | if (err) { |
| 289 | pr_warning("wf_pm72: Fan %s reports error %d\n", |
| 290 | cpu_rear_fans[cpu]->name, err); |
| 291 | failure_state |= FAILURE_FAN; |
| 292 | break; |
| 293 | } |
| 294 | |
| 295 | /* Scale result for intake fan */ |
| 296 | intake = (sp->target * CPU_INTAKE_SCALE) >> 16; |
| 297 | DBG_LOTS(" CPU%d: intake = %d RPM\n", cpu, intake); |
| 298 | err = wf_control_set(cpu_front_fans[cpu], intake); |
| 299 | if (err) { |
| 300 | pr_warning("wf_pm72: Fan %s reports error %d\n", |
| 301 | cpu_front_fans[cpu]->name, err); |
| 302 | failure_state |= FAILURE_FAN; |
| 303 | break; |
| 304 | } |
| 305 | } |
| 306 | } |
| 307 | |
| 308 | static void cpu_fans_tick_combined(void) |
| 309 | { |
| 310 | s32 temp0, power0, temp1, power1, t_max = 0; |
| 311 | s32 temp, power, intake, pump; |
| 312 | struct wf_control *pump0, *pump1; |
| 313 | struct wf_cpu_pid_state *sp = &cpu_pid[0]; |
| 314 | int err, cpu; |
| 315 | |
| 316 | DBG_LOTS("* cpu fans_tick_combined()\n"); |
| 317 | |
| 318 | /* Read current speed from cpu 0 */ |
| 319 | wf_control_get(cpu_rear_fans[0], &sp->target); |
| 320 | |
| 321 | DBG_LOTS(" CPUs: cur_target = %d RPM\n", sp->target); |
| 322 | |
| 323 | /* Read values for both CPUs */ |
| 324 | err = read_one_cpu_vals(0, &temp0, &power0); |
| 325 | if (err) { |
| 326 | failure_state |= FAILURE_SENSOR; |
| 327 | cpu_max_all_fans(); |
| 328 | return; |
| 329 | } |
| 330 | err = read_one_cpu_vals(1, &temp1, &power1); |
| 331 | if (err) { |
| 332 | failure_state |= FAILURE_SENSOR; |
| 333 | cpu_max_all_fans(); |
| 334 | return; |
| 335 | } |
| 336 | |
| 337 | /* Keep track of highest temp */ |
| 338 | t_max = max(t_max, max(temp0, temp1)); |
| 339 | |
| 340 | /* Handle possible overtemps */ |
| 341 | if (cpu_check_overtemp(t_max)) |
| 342 | return; |
| 343 | |
| 344 | /* Use the max temp & power of both */ |
| 345 | temp = max(temp0, temp1); |
| 346 | power = max(power0, power1); |
| 347 | |
| 348 | /* Run PID */ |
| 349 | wf_cpu_pid_run(sp, power, temp); |
| 350 | |
| 351 | /* Scale result for intake fan */ |
| 352 | intake = (sp->target * CPU_INTAKE_SCALE) >> 16; |
| 353 | |
| 354 | /* Same deal with pump speed */ |
| 355 | pump0 = cpu_pumps[0]; |
| 356 | pump1 = cpu_pumps[1]; |
| 357 | if (!pump0) { |
| 358 | pump0 = pump1; |
| 359 | pump1 = NULL; |
| 360 | } |
| 361 | pump = (sp->target * wf_control_get_max(pump0)) / |
| 362 | cpu_mpu_data[0]->rmaxn_exhaust_fan; |
| 363 | |
| 364 | DBG_LOTS(" CPUs: target = %d RPM\n", sp->target); |
| 365 | DBG_LOTS(" CPUs: intake = %d RPM\n", intake); |
| 366 | DBG_LOTS(" CPUs: pump = %d RPM\n", pump); |
| 367 | |
| 368 | for (cpu = 0; cpu < nr_chips; cpu++) { |
| 369 | err = wf_control_set(cpu_rear_fans[cpu], sp->target); |
| 370 | if (err) { |
| 371 | pr_warning("wf_pm72: Fan %s reports error %d\n", |
| 372 | cpu_rear_fans[cpu]->name, err); |
| 373 | failure_state |= FAILURE_FAN; |
| 374 | } |
| 375 | err = wf_control_set(cpu_front_fans[cpu], intake); |
| 376 | if (err) { |
| 377 | pr_warning("wf_pm72: Fan %s reports error %d\n", |
| 378 | cpu_front_fans[cpu]->name, err); |
| 379 | failure_state |= FAILURE_FAN; |
| 380 | } |
| 381 | err = 0; |
| 382 | if (cpu_pumps[cpu]) |
| 383 | err = wf_control_set(cpu_pumps[cpu], pump); |
| 384 | if (err) { |
| 385 | pr_warning("wf_pm72: Pump %s reports error %d\n", |
| 386 | cpu_pumps[cpu]->name, err); |
| 387 | failure_state |= FAILURE_FAN; |
| 388 | } |
| 389 | } |
| 390 | } |
| 391 | |
| 392 | /* Implementation... */ |
| 393 | static int cpu_setup_pid(int cpu) |
| 394 | { |
| 395 | struct wf_cpu_pid_param pid; |
| 396 | const struct mpu_data *mpu = cpu_mpu_data[cpu]; |
| 397 | s32 tmax, ttarget, ptarget; |
| 398 | int fmin, fmax, hsize; |
| 399 | |
| 400 | /* Get PID params from the appropriate MPU EEPROM */ |
| 401 | tmax = mpu->tmax << 16; |
| 402 | ttarget = mpu->ttarget << 16; |
| 403 | ptarget = ((s32)(mpu->pmaxh - mpu->padjmax)) << 16; |
| 404 | |
| 405 | DBG("wf_72: CPU%d ttarget = %d.%03d, tmax = %d.%03d\n", |
| 406 | cpu, FIX32TOPRINT(ttarget), FIX32TOPRINT(tmax)); |
| 407 | |
| 408 | /* We keep a global tmax for overtemp calculations */ |
| 409 | if (tmax < cpu_all_tmax) |
| 410 | cpu_all_tmax = tmax; |
| 411 | |
| 412 | /* Set PID min/max by using the rear fan min/max */ |
| 413 | fmin = wf_control_get_min(cpu_rear_fans[cpu]); |
| 414 | fmax = wf_control_get_max(cpu_rear_fans[cpu]); |
| 415 | DBG("wf_72: CPU%d max RPM range = [%d..%d]\n", cpu, fmin, fmax); |
| 416 | |
| 417 | /* History size */ |
| 418 | hsize = min_t(int, mpu->tguardband, WF_PID_MAX_HISTORY); |
| 419 | DBG("wf_72: CPU%d history size = %d\n", cpu, hsize); |
| 420 | |
| 421 | /* Initialize PID loop */ |
| 422 | pid.interval = 1; /* seconds */ |
| 423 | pid.history_len = hsize; |
| 424 | pid.gd = mpu->pid_gd; |
| 425 | pid.gp = mpu->pid_gp; |
| 426 | pid.gr = mpu->pid_gr; |
| 427 | pid.tmax = tmax; |
| 428 | pid.ttarget = ttarget; |
| 429 | pid.pmaxadj = ptarget; |
| 430 | pid.min = fmin; |
| 431 | pid.max = fmax; |
| 432 | |
| 433 | wf_cpu_pid_init(&cpu_pid[cpu], &pid); |
| 434 | cpu_pid[cpu].target = 1000; |
| 435 | |
| 436 | return 0; |
| 437 | } |
| 438 | |
| 439 | /* Backside/U3 fan */ |
| 440 | static struct wf_pid_param backside_u3_param = { |
| 441 | .interval = 5, |
| 442 | .history_len = 2, |
| 443 | .gd = 40 << 20, |
| 444 | .gp = 5 << 20, |
| 445 | .gr = 0, |
| 446 | .itarget = 65 << 16, |
| 447 | .additive = 1, |
| 448 | .min = 20, |
| 449 | .max = 100, |
| 450 | }; |
| 451 | |
| 452 | static struct wf_pid_param backside_u3h_param = { |
| 453 | .interval = 5, |
| 454 | .history_len = 2, |
| 455 | .gd = 20 << 20, |
| 456 | .gp = 5 << 20, |
| 457 | .gr = 0, |
| 458 | .itarget = 75 << 16, |
| 459 | .additive = 1, |
| 460 | .min = 20, |
| 461 | .max = 100, |
| 462 | }; |
| 463 | |
| 464 | static void backside_fan_tick(void) |
| 465 | { |
| 466 | s32 temp; |
| 467 | int speed; |
| 468 | int err; |
| 469 | |
| 470 | if (!backside_fan || !backside_temp || !backside_tick) |
| 471 | return; |
| 472 | if (--backside_tick > 0) |
| 473 | return; |
| 474 | backside_tick = backside_pid.param.interval; |
| 475 | |
| 476 | DBG_LOTS("* backside fans tick\n"); |
| 477 | |
| 478 | /* Update fan speed from actual fans */ |
| 479 | err = wf_control_get(backside_fan, &speed); |
| 480 | if (!err) |
| 481 | backside_pid.target = speed; |
| 482 | |
| 483 | err = wf_sensor_get(backside_temp, &temp); |
| 484 | if (err) { |
| 485 | printk(KERN_WARNING "windfarm: U4 temp sensor error %d\n", |
| 486 | err); |
| 487 | failure_state |= FAILURE_SENSOR; |
| 488 | wf_control_set_max(backside_fan); |
| 489 | return; |
| 490 | } |
| 491 | speed = wf_pid_run(&backside_pid, temp); |
| 492 | |
| 493 | DBG_LOTS("backside PID temp=%d.%.3d speed=%d\n", |
| 494 | FIX32TOPRINT(temp), speed); |
| 495 | |
| 496 | err = wf_control_set(backside_fan, speed); |
| 497 | if (err) { |
| 498 | printk(KERN_WARNING "windfarm: backside fan error %d\n", err); |
| 499 | failure_state |= FAILURE_FAN; |
| 500 | } |
| 501 | } |
| 502 | |
| 503 | static void backside_setup_pid(void) |
| 504 | { |
| 505 | /* first time initialize things */ |
| 506 | s32 fmin = wf_control_get_min(backside_fan); |
| 507 | s32 fmax = wf_control_get_max(backside_fan); |
| 508 | struct wf_pid_param param; |
| 509 | struct device_node *u3; |
| 510 | int u3h = 1; /* conservative by default */ |
| 511 | |
| 512 | u3 = of_find_node_by_path("/u3@0,f8000000"); |
| 513 | if (u3 != NULL) { |
| 514 | const u32 *vers = of_get_property(u3, "device-rev", NULL); |
| 515 | if (vers) |
| 516 | if (((*vers) & 0x3f) < 0x34) |
| 517 | u3h = 0; |
| 518 | of_node_put(u3); |
| 519 | } |
| 520 | |
| 521 | param = u3h ? backside_u3h_param : backside_u3_param; |
| 522 | |
| 523 | param.min = max(param.min, fmin); |
| 524 | param.max = min(param.max, fmax); |
| 525 | wf_pid_init(&backside_pid, ¶m); |
| 526 | backside_tick = 1; |
| 527 | |
| 528 | pr_info("wf_pm72: Backside control loop started.\n"); |
| 529 | } |
| 530 | |
| 531 | /* Drive bay fan */ |
| 532 | static const struct wf_pid_param drives_param = { |
| 533 | .interval = 5, |
| 534 | .history_len = 2, |
| 535 | .gd = 30 << 20, |
| 536 | .gp = 5 << 20, |
| 537 | .gr = 0, |
| 538 | .itarget = 40 << 16, |
| 539 | .additive = 1, |
| 540 | .min = 300, |
| 541 | .max = 4000, |
| 542 | }; |
| 543 | |
| 544 | static void drives_fan_tick(void) |
| 545 | { |
| 546 | s32 temp; |
| 547 | int speed; |
| 548 | int err; |
| 549 | |
| 550 | if (!drives_fan || !drives_temp || !drives_tick) |
| 551 | return; |
| 552 | if (--drives_tick > 0) |
| 553 | return; |
| 554 | drives_tick = drives_pid.param.interval; |
| 555 | |
| 556 | DBG_LOTS("* drives fans tick\n"); |
| 557 | |
| 558 | /* Update fan speed from actual fans */ |
| 559 | err = wf_control_get(drives_fan, &speed); |
| 560 | if (!err) |
| 561 | drives_pid.target = speed; |
| 562 | |
| 563 | err = wf_sensor_get(drives_temp, &temp); |
| 564 | if (err) { |
| 565 | pr_warning("wf_pm72: drive bay temp sensor error %d\n", err); |
| 566 | failure_state |= FAILURE_SENSOR; |
| 567 | wf_control_set_max(drives_fan); |
| 568 | return; |
| 569 | } |
| 570 | speed = wf_pid_run(&drives_pid, temp); |
| 571 | |
| 572 | DBG_LOTS("drives PID temp=%d.%.3d speed=%d\n", |
| 573 | FIX32TOPRINT(temp), speed); |
| 574 | |
| 575 | err = wf_control_set(drives_fan, speed); |
| 576 | if (err) { |
| 577 | printk(KERN_WARNING "windfarm: drive bay fan error %d\n", err); |
| 578 | failure_state |= FAILURE_FAN; |
| 579 | } |
| 580 | } |
| 581 | |
| 582 | static void drives_setup_pid(void) |
| 583 | { |
| 584 | /* first time initialize things */ |
| 585 | s32 fmin = wf_control_get_min(drives_fan); |
| 586 | s32 fmax = wf_control_get_max(drives_fan); |
| 587 | struct wf_pid_param param = drives_param; |
| 588 | |
| 589 | param.min = max(param.min, fmin); |
| 590 | param.max = min(param.max, fmax); |
| 591 | wf_pid_init(&drives_pid, ¶m); |
| 592 | drives_tick = 1; |
| 593 | |
| 594 | pr_info("wf_pm72: Drive bay control loop started.\n"); |
| 595 | } |
| 596 | |
| 597 | static void set_fail_state(void) |
| 598 | { |
| 599 | cpu_max_all_fans(); |
| 600 | |
| 601 | if (backside_fan) |
| 602 | wf_control_set_max(backside_fan); |
| 603 | if (slots_fan) |
| 604 | wf_control_set_max(slots_fan); |
| 605 | if (drives_fan) |
| 606 | wf_control_set_max(drives_fan); |
| 607 | } |
| 608 | |
| 609 | static void pm72_tick(void) |
| 610 | { |
| 611 | int i, last_failure; |
| 612 | |
| 613 | if (!started) { |
| 614 | started = 1; |
| 615 | printk(KERN_INFO "windfarm: CPUs control loops started.\n"); |
| 616 | for (i = 0; i < nr_chips; ++i) { |
| 617 | if (cpu_setup_pid(i) < 0) { |
| 618 | failure_state = FAILURE_PERM; |
| 619 | set_fail_state(); |
| 620 | break; |
| 621 | } |
| 622 | } |
| 623 | DBG_LOTS("cpu_all_tmax=%d.%03d\n", FIX32TOPRINT(cpu_all_tmax)); |
| 624 | |
| 625 | backside_setup_pid(); |
| 626 | drives_setup_pid(); |
| 627 | |
| 628 | /* |
| 629 | * We don't have the right stuff to drive the PCI fan |
| 630 | * so we fix it to a default value |
| 631 | */ |
| 632 | wf_control_set(slots_fan, SLOTS_FAN_DEFAULT_PWM); |
| 633 | |
| 634 | #ifdef HACKED_OVERTEMP |
| 635 | cpu_all_tmax = 60 << 16; |
| 636 | #endif |
| 637 | } |
| 638 | |
| 639 | /* Permanent failure, bail out */ |
| 640 | if (failure_state & FAILURE_PERM) |
| 641 | return; |
| 642 | |
| 643 | /* |
| 644 | * Clear all failure bits except low overtemp which will be eventually |
| 645 | * cleared by the control loop itself |
| 646 | */ |
| 647 | last_failure = failure_state; |
| 648 | failure_state &= FAILURE_LOW_OVERTEMP; |
| 649 | if (cpu_pid_combined) |
| 650 | cpu_fans_tick_combined(); |
| 651 | else |
| 652 | cpu_fans_tick_split(); |
| 653 | backside_fan_tick(); |
| 654 | drives_fan_tick(); |
| 655 | |
| 656 | DBG_LOTS(" last_failure: 0x%x, failure_state: %x\n", |
| 657 | last_failure, failure_state); |
| 658 | |
| 659 | /* Check for failures. Any failure causes cpufreq clamping */ |
| 660 | if (failure_state && last_failure == 0 && cpufreq_clamp) |
| 661 | wf_control_set_max(cpufreq_clamp); |
| 662 | if (failure_state == 0 && last_failure && cpufreq_clamp) |
| 663 | wf_control_set_min(cpufreq_clamp); |
| 664 | |
| 665 | /* That's it for now, we might want to deal with other failures |
| 666 | * differently in the future though |
| 667 | */ |
| 668 | } |
| 669 | |
| 670 | static void pm72_new_control(struct wf_control *ct) |
| 671 | { |
| 672 | bool all_controls; |
| 673 | bool had_pump = cpu_pumps[0] || cpu_pumps[1]; |
| 674 | |
| 675 | if (!strcmp(ct->name, "cpu-front-fan-0")) |
| 676 | cpu_front_fans[0] = ct; |
| 677 | else if (!strcmp(ct->name, "cpu-front-fan-1")) |
| 678 | cpu_front_fans[1] = ct; |
| 679 | else if (!strcmp(ct->name, "cpu-rear-fan-0")) |
| 680 | cpu_rear_fans[0] = ct; |
| 681 | else if (!strcmp(ct->name, "cpu-rear-fan-1")) |
| 682 | cpu_rear_fans[1] = ct; |
| 683 | else if (!strcmp(ct->name, "cpu-pump-0")) |
| 684 | cpu_pumps[0] = ct; |
| 685 | else if (!strcmp(ct->name, "cpu-pump-1")) |
| 686 | cpu_pumps[1] = ct; |
| 687 | else if (!strcmp(ct->name, "backside-fan")) |
| 688 | backside_fan = ct; |
| 689 | else if (!strcmp(ct->name, "slots-fan")) |
| 690 | slots_fan = ct; |
| 691 | else if (!strcmp(ct->name, "drive-bay-fan")) |
| 692 | drives_fan = ct; |
| 693 | else if (!strcmp(ct->name, "cpufreq-clamp")) |
| 694 | cpufreq_clamp = ct; |
| 695 | |
| 696 | all_controls = |
| 697 | cpu_front_fans[0] && |
| 698 | cpu_rear_fans[0] && |
| 699 | backside_fan && |
| 700 | slots_fan && |
| 701 | drives_fan; |
| 702 | if (nr_chips > 1) |
| 703 | all_controls &= |
| 704 | cpu_front_fans[1] && |
| 705 | cpu_rear_fans[1]; |
| 706 | have_all_controls = all_controls; |
| 707 | |
| 708 | if ((cpu_pumps[0] || cpu_pumps[1]) && !had_pump) { |
| 709 | pr_info("wf_pm72: Liquid cooling pump(s) detected," |
| 710 | " using new algorithm !\n"); |
| 711 | cpu_pid_combined = true; |
| 712 | } |
| 713 | } |
| 714 | |
| 715 | |
| 716 | static void pm72_new_sensor(struct wf_sensor *sr) |
| 717 | { |
| 718 | bool all_sensors; |
| 719 | |
| 720 | if (!strcmp(sr->name, "cpu-diode-temp-0")) |
| 721 | sens_cpu_temp[0] = sr; |
| 722 | else if (!strcmp(sr->name, "cpu-diode-temp-1")) |
| 723 | sens_cpu_temp[1] = sr; |
| 724 | else if (!strcmp(sr->name, "cpu-voltage-0")) |
| 725 | sens_cpu_volts[0] = sr; |
| 726 | else if (!strcmp(sr->name, "cpu-voltage-1")) |
| 727 | sens_cpu_volts[1] = sr; |
| 728 | else if (!strcmp(sr->name, "cpu-current-0")) |
| 729 | sens_cpu_amps[0] = sr; |
| 730 | else if (!strcmp(sr->name, "cpu-current-1")) |
| 731 | sens_cpu_amps[1] = sr; |
| 732 | else if (!strcmp(sr->name, "backside-temp")) |
| 733 | backside_temp = sr; |
| 734 | else if (!strcmp(sr->name, "hd-temp")) |
| 735 | drives_temp = sr; |
| 736 | |
| 737 | all_sensors = |
| 738 | sens_cpu_temp[0] && |
| 739 | sens_cpu_volts[0] && |
| 740 | sens_cpu_amps[0] && |
| 741 | backside_temp && |
| 742 | drives_temp; |
| 743 | if (nr_chips > 1) |
| 744 | all_sensors &= |
| 745 | sens_cpu_temp[1] && |
| 746 | sens_cpu_volts[1] && |
| 747 | sens_cpu_amps[1]; |
| 748 | |
| 749 | have_all_sensors = all_sensors; |
| 750 | } |
| 751 | |
| 752 | static int pm72_wf_notify(struct notifier_block *self, |
| 753 | unsigned long event, void *data) |
| 754 | { |
| 755 | switch (event) { |
| 756 | case WF_EVENT_NEW_SENSOR: |
| 757 | pm72_new_sensor(data); |
| 758 | break; |
| 759 | case WF_EVENT_NEW_CONTROL: |
| 760 | pm72_new_control(data); |
| 761 | break; |
| 762 | case WF_EVENT_TICK: |
| 763 | if (have_all_controls && have_all_sensors) |
| 764 | pm72_tick(); |
| 765 | } |
| 766 | return 0; |
| 767 | } |
| 768 | |
| 769 | static struct notifier_block pm72_events = { |
| 770 | .notifier_call = pm72_wf_notify, |
| 771 | }; |
| 772 | |
| 773 | static int wf_pm72_probe(struct platform_device *dev) |
| 774 | { |
| 775 | wf_register_client(&pm72_events); |
| 776 | return 0; |
| 777 | } |
| 778 | |
Greg Kroah-Hartman | 1da42fb | 2012-12-21 15:03:50 -0800 | [diff] [blame] | 779 | static int wf_pm72_remove(struct platform_device *dev) |
Benjamin Herrenschmidt | 6cd3209 | 2012-04-29 15:42:27 +0000 | [diff] [blame] | 780 | { |
| 781 | wf_unregister_client(&pm72_events); |
| 782 | |
| 783 | /* should release all sensors and controls */ |
| 784 | return 0; |
| 785 | } |
| 786 | |
| 787 | static struct platform_driver wf_pm72_driver = { |
| 788 | .probe = wf_pm72_probe, |
| 789 | .remove = wf_pm72_remove, |
| 790 | .driver = { |
| 791 | .name = "windfarm", |
Benjamin Herrenschmidt | 6cd3209 | 2012-04-29 15:42:27 +0000 | [diff] [blame] | 792 | }, |
| 793 | }; |
| 794 | |
| 795 | static int __init wf_pm72_init(void) |
| 796 | { |
| 797 | struct device_node *cpu; |
| 798 | int i; |
| 799 | |
| 800 | if (!of_machine_is_compatible("PowerMac7,2") && |
| 801 | !of_machine_is_compatible("PowerMac7,3")) |
| 802 | return -ENODEV; |
| 803 | |
| 804 | /* Count the number of CPU cores */ |
| 805 | nr_chips = 0; |
Wei Yongjun | c7c360e | 2012-12-02 03:00:09 +0000 | [diff] [blame] | 806 | for_each_node_by_type(cpu, "cpu") |
Benjamin Herrenschmidt | 6cd3209 | 2012-04-29 15:42:27 +0000 | [diff] [blame] | 807 | ++nr_chips; |
| 808 | if (nr_chips > NR_CHIPS) |
| 809 | nr_chips = NR_CHIPS; |
| 810 | |
| 811 | pr_info("windfarm: Initializing for desktop G5 with %d chips\n", |
| 812 | nr_chips); |
| 813 | |
| 814 | /* Get MPU data for each CPU */ |
| 815 | for (i = 0; i < nr_chips; i++) { |
| 816 | cpu_mpu_data[i] = wf_get_mpu(i); |
| 817 | if (!cpu_mpu_data[i]) { |
| 818 | pr_err("wf_pm72: Failed to find MPU data for CPU %d\n", i); |
| 819 | return -ENXIO; |
| 820 | } |
| 821 | } |
| 822 | |
| 823 | #ifdef MODULE |
| 824 | request_module("windfarm_fcu_controls"); |
| 825 | request_module("windfarm_lm75_sensor"); |
| 826 | request_module("windfarm_ad7417_sensor"); |
| 827 | request_module("windfarm_max6690_sensor"); |
| 828 | request_module("windfarm_cpufreq_clamp"); |
| 829 | #endif /* MODULE */ |
| 830 | |
| 831 | platform_driver_register(&wf_pm72_driver); |
| 832 | return 0; |
| 833 | } |
| 834 | |
| 835 | static void __exit wf_pm72_exit(void) |
| 836 | { |
| 837 | platform_driver_unregister(&wf_pm72_driver); |
| 838 | } |
| 839 | |
| 840 | module_init(wf_pm72_init); |
| 841 | module_exit(wf_pm72_exit); |
| 842 | |
| 843 | MODULE_AUTHOR("Benjamin Herrenschmidt <benh@kernel.crashing.org>"); |
| 844 | MODULE_DESCRIPTION("Thermal control for AGP PowerMac G5s"); |
| 845 | MODULE_LICENSE("GPL"); |
| 846 | MODULE_ALIAS("platform:windfarm"); |