blob: 3e13d579aef87a115800e7d9ffbe1fbaf1f5f8f0 [file] [log] [blame]
Lee Jonesd90db4a2014-03-20 09:20:33 +00001/*
2 * st_spi_fsm.c - ST Fast Sequence Mode (FSM) Serial Flash Controller
3 *
4 * Author: Angus Clark <angus.clark@st.com>
5 *
6 * Copyright (C) 2010-2014 STicroelectronics Limited
7 *
8 * JEDEC probe based on drivers/mtd/devices/m25p80.c
9 *
10 * This code is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 *
14 */
15#include <linux/kernel.h>
16#include <linux/module.h>
Lee Jonesa63984c2014-03-20 09:20:46 +000017#include <linux/regmap.h>
Lee Jonesd90db4a2014-03-20 09:20:33 +000018#include <linux/platform_device.h>
Lee Jonesa63984c2014-03-20 09:20:46 +000019#include <linux/mfd/syscon.h>
Lee Jonesd90db4a2014-03-20 09:20:33 +000020#include <linux/mtd/mtd.h>
21#include <linux/sched.h>
22#include <linux/delay.h>
23#include <linux/io.h>
24#include <linux/of.h>
25
Lee Jones5549fbd2014-03-20 09:20:39 +000026#include "serial_flash_cmds.h"
27
Lee Jonesbc09fb52014-03-20 09:20:34 +000028/*
29 * FSM SPI Controller Registers
30 */
31#define SPI_CLOCKDIV 0x0010
32#define SPI_MODESELECT 0x0018
33#define SPI_CONFIGDATA 0x0020
34#define SPI_STA_MODE_CHANGE 0x0028
35#define SPI_FAST_SEQ_TRANSFER_SIZE 0x0100
36#define SPI_FAST_SEQ_ADD1 0x0104
37#define SPI_FAST_SEQ_ADD2 0x0108
38#define SPI_FAST_SEQ_ADD_CFG 0x010c
39#define SPI_FAST_SEQ_OPC1 0x0110
40#define SPI_FAST_SEQ_OPC2 0x0114
41#define SPI_FAST_SEQ_OPC3 0x0118
42#define SPI_FAST_SEQ_OPC4 0x011c
43#define SPI_FAST_SEQ_OPC5 0x0120
44#define SPI_MODE_BITS 0x0124
45#define SPI_DUMMY_BITS 0x0128
46#define SPI_FAST_SEQ_FLASH_STA_DATA 0x012c
47#define SPI_FAST_SEQ_1 0x0130
48#define SPI_FAST_SEQ_2 0x0134
49#define SPI_FAST_SEQ_3 0x0138
50#define SPI_FAST_SEQ_4 0x013c
51#define SPI_FAST_SEQ_CFG 0x0140
52#define SPI_FAST_SEQ_STA 0x0144
53#define SPI_QUAD_BOOT_SEQ_INIT_1 0x0148
54#define SPI_QUAD_BOOT_SEQ_INIT_2 0x014c
55#define SPI_QUAD_BOOT_READ_SEQ_1 0x0150
56#define SPI_QUAD_BOOT_READ_SEQ_2 0x0154
57#define SPI_PROGRAM_ERASE_TIME 0x0158
58#define SPI_MULT_PAGE_REPEAT_SEQ_1 0x015c
59#define SPI_MULT_PAGE_REPEAT_SEQ_2 0x0160
60#define SPI_STATUS_WR_TIME_REG 0x0164
61#define SPI_FAST_SEQ_DATA_REG 0x0300
62
63/*
64 * Register: SPI_MODESELECT
65 */
66#define SPI_MODESELECT_CONTIG 0x01
67#define SPI_MODESELECT_FASTREAD 0x02
68#define SPI_MODESELECT_DUALIO 0x04
69#define SPI_MODESELECT_FSM 0x08
70#define SPI_MODESELECT_QUADBOOT 0x10
71
72/*
73 * Register: SPI_CONFIGDATA
74 */
75#define SPI_CFG_DEVICE_ST 0x1
76#define SPI_CFG_DEVICE_ATMEL 0x4
77#define SPI_CFG_MIN_CS_HIGH(x) (((x) & 0xfff) << 4)
78#define SPI_CFG_CS_SETUPHOLD(x) (((x) & 0xff) << 16)
79#define SPI_CFG_DATA_HOLD(x) (((x) & 0xff) << 24)
80
Lee Jones86f309fd2014-03-20 09:20:35 +000081#define SPI_CFG_DEFAULT_MIN_CS_HIGH SPI_CFG_MIN_CS_HIGH(0x0AA)
82#define SPI_CFG_DEFAULT_CS_SETUPHOLD SPI_CFG_CS_SETUPHOLD(0xA0)
83#define SPI_CFG_DEFAULT_DATA_HOLD SPI_CFG_DATA_HOLD(0x00)
84
Lee Jonesbc09fb52014-03-20 09:20:34 +000085/*
86 * Register: SPI_FAST_SEQ_TRANSFER_SIZE
87 */
88#define TRANSFER_SIZE(x) ((x) * 8)
89
90/*
91 * Register: SPI_FAST_SEQ_ADD_CFG
92 */
93#define ADR_CFG_CYCLES_ADD1(x) ((x) << 0)
94#define ADR_CFG_PADS_1_ADD1 (0x0 << 6)
95#define ADR_CFG_PADS_2_ADD1 (0x1 << 6)
96#define ADR_CFG_PADS_4_ADD1 (0x3 << 6)
97#define ADR_CFG_CSDEASSERT_ADD1 (1 << 8)
98#define ADR_CFG_CYCLES_ADD2(x) ((x) << (0+16))
99#define ADR_CFG_PADS_1_ADD2 (0x0 << (6+16))
100#define ADR_CFG_PADS_2_ADD2 (0x1 << (6+16))
101#define ADR_CFG_PADS_4_ADD2 (0x3 << (6+16))
102#define ADR_CFG_CSDEASSERT_ADD2 (1 << (8+16))
103
104/*
105 * Register: SPI_FAST_SEQ_n
106 */
107#define SEQ_OPC_OPCODE(x) ((x) << 0)
108#define SEQ_OPC_CYCLES(x) ((x) << 8)
109#define SEQ_OPC_PADS_1 (0x0 << 14)
110#define SEQ_OPC_PADS_2 (0x1 << 14)
111#define SEQ_OPC_PADS_4 (0x3 << 14)
112#define SEQ_OPC_CSDEASSERT (1 << 16)
113
114/*
115 * Register: SPI_FAST_SEQ_CFG
116 */
117#define SEQ_CFG_STARTSEQ (1 << 0)
118#define SEQ_CFG_SWRESET (1 << 5)
119#define SEQ_CFG_CSDEASSERT (1 << 6)
120#define SEQ_CFG_READNOTWRITE (1 << 7)
121#define SEQ_CFG_ERASE (1 << 8)
122#define SEQ_CFG_PADS_1 (0x0 << 16)
123#define SEQ_CFG_PADS_2 (0x1 << 16)
124#define SEQ_CFG_PADS_4 (0x3 << 16)
125
126/*
127 * Register: SPI_MODE_BITS
128 */
129#define MODE_DATA(x) (x & 0xff)
130#define MODE_CYCLES(x) ((x & 0x3f) << 16)
131#define MODE_PADS_1 (0x0 << 22)
132#define MODE_PADS_2 (0x1 << 22)
133#define MODE_PADS_4 (0x3 << 22)
134#define DUMMY_CSDEASSERT (1 << 24)
135
136/*
137 * Register: SPI_DUMMY_BITS
138 */
139#define DUMMY_CYCLES(x) ((x & 0x3f) << 16)
140#define DUMMY_PADS_1 (0x0 << 22)
141#define DUMMY_PADS_2 (0x1 << 22)
142#define DUMMY_PADS_4 (0x3 << 22)
143#define DUMMY_CSDEASSERT (1 << 24)
144
145/*
146 * Register: SPI_FAST_SEQ_FLASH_STA_DATA
147 */
148#define STA_DATA_BYTE1(x) ((x & 0xff) << 0)
149#define STA_DATA_BYTE2(x) ((x & 0xff) << 8)
150#define STA_PADS_1 (0x0 << 16)
151#define STA_PADS_2 (0x1 << 16)
152#define STA_PADS_4 (0x3 << 16)
153#define STA_CSDEASSERT (0x1 << 20)
154#define STA_RDNOTWR (0x1 << 21)
155
156/*
157 * FSM SPI Instruction Opcodes
158 */
159#define STFSM_OPC_CMD 0x1
160#define STFSM_OPC_ADD 0x2
161#define STFSM_OPC_STA 0x3
162#define STFSM_OPC_MODE 0x4
163#define STFSM_OPC_DUMMY 0x5
164#define STFSM_OPC_DATA 0x6
165#define STFSM_OPC_WAIT 0x7
166#define STFSM_OPC_JUMP 0x8
167#define STFSM_OPC_GOTO 0x9
168#define STFSM_OPC_STOP 0xF
169
170/*
171 * FSM SPI Instructions (== opcode + operand).
172 */
173#define STFSM_INSTR(cmd, op) ((cmd) | ((op) << 4))
174
175#define STFSM_INST_CMD1 STFSM_INSTR(STFSM_OPC_CMD, 1)
176#define STFSM_INST_CMD2 STFSM_INSTR(STFSM_OPC_CMD, 2)
177#define STFSM_INST_CMD3 STFSM_INSTR(STFSM_OPC_CMD, 3)
178#define STFSM_INST_CMD4 STFSM_INSTR(STFSM_OPC_CMD, 4)
179#define STFSM_INST_CMD5 STFSM_INSTR(STFSM_OPC_CMD, 5)
180#define STFSM_INST_ADD1 STFSM_INSTR(STFSM_OPC_ADD, 1)
181#define STFSM_INST_ADD2 STFSM_INSTR(STFSM_OPC_ADD, 2)
182
183#define STFSM_INST_DATA_WRITE STFSM_INSTR(STFSM_OPC_DATA, 1)
184#define STFSM_INST_DATA_READ STFSM_INSTR(STFSM_OPC_DATA, 2)
185
186#define STFSM_INST_STA_RD1 STFSM_INSTR(STFSM_OPC_STA, 0x1)
187#define STFSM_INST_STA_WR1 STFSM_INSTR(STFSM_OPC_STA, 0x1)
188#define STFSM_INST_STA_RD2 STFSM_INSTR(STFSM_OPC_STA, 0x2)
189#define STFSM_INST_STA_WR1_2 STFSM_INSTR(STFSM_OPC_STA, 0x3)
190
191#define STFSM_INST_MODE STFSM_INSTR(STFSM_OPC_MODE, 0)
192#define STFSM_INST_DUMMY STFSM_INSTR(STFSM_OPC_DUMMY, 0)
193#define STFSM_INST_WAIT STFSM_INSTR(STFSM_OPC_WAIT, 0)
194#define STFSM_INST_STOP STFSM_INSTR(STFSM_OPC_STOP, 0)
195
Lee Jones86f309fd2014-03-20 09:20:35 +0000196#define STFSM_DEFAULT_EMI_FREQ 100000000UL /* 100 MHz */
197#define STFSM_DEFAULT_WR_TIME (STFSM_DEFAULT_EMI_FREQ * (15/1000)) /* 15ms */
198
199#define STFSM_FLASH_SAFE_FREQ 10000000UL /* 10 MHz */
200
Lee Jones3c8b85b2014-03-20 09:20:36 +0000201#define STFSM_MAX_WAIT_SEQ_MS 1000 /* FSM execution time */
202
Lee Jonesd90db4a2014-03-20 09:20:33 +0000203struct stfsm {
204 struct device *dev;
205 void __iomem *base;
206 struct resource *region;
207 struct mtd_info mtd;
208 struct mutex lock;
Lee Jones24fec652014-03-20 09:20:41 +0000209 struct flash_info *info;
Lee Jones86f309fd2014-03-20 09:20:35 +0000210
211 uint32_t fifo_dir_delay;
Lee Jonesa63984c2014-03-20 09:20:46 +0000212 bool booted_from_spi;
Lee Jonesd90db4a2014-03-20 09:20:33 +0000213};
214
Lee Jones3c8b85b2014-03-20 09:20:36 +0000215struct stfsm_seq {
216 uint32_t data_size;
217 uint32_t addr1;
218 uint32_t addr2;
219 uint32_t addr_cfg;
220 uint32_t seq_opc[5];
221 uint32_t mode;
222 uint32_t dummy;
223 uint32_t status;
224 uint8_t seq[16];
225 uint32_t seq_cfg;
226} __packed __aligned(4);
227
Lee Jones08981272014-03-20 09:20:42 +0000228/* Parameters to configure a READ or WRITE FSM sequence */
229struct seq_rw_config {
230 uint32_t flags; /* flags to support config */
231 uint8_t cmd; /* FLASH command */
232 int write; /* Write Sequence */
233 uint8_t addr_pads; /* No. of addr pads (MODE & DUMMY) */
234 uint8_t data_pads; /* No. of data pads */
235 uint8_t mode_data; /* MODE data */
236 uint8_t mode_cycles; /* No. of MODE cycles */
237 uint8_t dummy_cycles; /* No. of DUMMY cycles */
238};
239
Lee Jones11d7f822014-03-20 09:20:40 +0000240/* SPI Flash Device Table */
241struct flash_info {
242 char *name;
243 /*
244 * JEDEC id zero means "no ID" (most older chips); otherwise it has
245 * a high byte of zero plus three data bytes: the manufacturer id,
246 * then a two byte device id.
247 */
248 u32 jedec_id;
249 u16 ext_id;
250 /*
251 * The size listed here is what works with FLASH_CMD_SE, which isn't
252 * necessarily called a "sector" by the vendor.
253 */
254 unsigned sector_size;
255 u16 n_sectors;
256 u32 flags;
257 /*
258 * Note, where FAST_READ is supported, freq_max specifies the
259 * FAST_READ frequency, not the READ frequency.
260 */
261 u32 max_freq;
262 int (*config)(struct stfsm *);
263};
264
265static struct flash_info flash_types[] = {
266 /*
267 * ST Microelectronics/Numonyx --
268 * (newer production versions may have feature updates
269 * (eg faster operating frequency)
270 */
271#define M25P_FLAG (FLASH_FLAG_READ_WRITE | FLASH_FLAG_READ_FAST)
272 { "m25p40", 0x202013, 0, 64 * 1024, 8, M25P_FLAG, 25, NULL },
273 { "m25p80", 0x202014, 0, 64 * 1024, 16, M25P_FLAG, 25, NULL },
274 { "m25p16", 0x202015, 0, 64 * 1024, 32, M25P_FLAG, 25, NULL },
275 { "m25p32", 0x202016, 0, 64 * 1024, 64, M25P_FLAG, 50, NULL },
276 { "m25p64", 0x202017, 0, 64 * 1024, 128, M25P_FLAG, 50, NULL },
277 { "m25p128", 0x202018, 0, 256 * 1024, 64, M25P_FLAG, 50, NULL },
278
279#define M25PX_FLAG (FLASH_FLAG_READ_WRITE | \
280 FLASH_FLAG_READ_FAST | \
281 FLASH_FLAG_READ_1_1_2 | \
282 FLASH_FLAG_WRITE_1_1_2)
283 { "m25px32", 0x207116, 0, 64 * 1024, 64, M25PX_FLAG, 75, NULL },
284 { "m25px64", 0x207117, 0, 64 * 1024, 128, M25PX_FLAG, 75, NULL },
285
286#define MX25_FLAG (FLASH_FLAG_READ_WRITE | \
287 FLASH_FLAG_READ_FAST | \
288 FLASH_FLAG_READ_1_1_2 | \
289 FLASH_FLAG_READ_1_2_2 | \
290 FLASH_FLAG_READ_1_1_4 | \
291 FLASH_FLAG_READ_1_4_4 | \
292 FLASH_FLAG_SE_4K | \
293 FLASH_FLAG_SE_32K)
294 { "mx25l25635e", 0xc22019, 0, 64*1024, 512,
295 (MX25_FLAG | FLASH_FLAG_32BIT_ADDR | FLASH_FLAG_RESET), 70, NULL }
296
297#define N25Q_FLAG (FLASH_FLAG_READ_WRITE | \
298 FLASH_FLAG_READ_FAST | \
299 FLASH_FLAG_READ_1_1_2 | \
300 FLASH_FLAG_READ_1_2_2 | \
301 FLASH_FLAG_READ_1_1_4 | \
302 FLASH_FLAG_READ_1_4_4 | \
303 FLASH_FLAG_WRITE_1_1_2 | \
304 FLASH_FLAG_WRITE_1_2_2 | \
305 FLASH_FLAG_WRITE_1_1_4 | \
306 FLASH_FLAG_WRITE_1_4_4)
307 { "n25q128", 0x20ba18, 0, 64 * 1024, 256, N25Q_FLAG, 108, NULL },
308 { "n25q256", 0x20ba19, 0, 64 * 1024, 512,
309 N25Q_FLAG | FLASH_FLAG_32BIT_ADDR, 108, NULL },
310
311 /*
312 * Spansion S25FLxxxP
313 * - 256KiB and 64KiB sector variants (identified by ext. JEDEC)
314 */
315#define S25FLXXXP_FLAG (FLASH_FLAG_READ_WRITE | \
316 FLASH_FLAG_READ_1_1_2 | \
317 FLASH_FLAG_READ_1_2_2 | \
318 FLASH_FLAG_READ_1_1_4 | \
319 FLASH_FLAG_READ_1_4_4 | \
320 FLASH_FLAG_WRITE_1_1_4 | \
321 FLASH_FLAG_READ_FAST)
322 { "s25fl129p0", 0x012018, 0x4d00, 256 * 1024, 64, S25FLXXXP_FLAG, 80,
323 NULL },
324 { "s25fl129p1", 0x012018, 0x4d01, 64 * 1024, 256, S25FLXXXP_FLAG, 80,
325 NULL },
326
327 /*
328 * Spansion S25FLxxxS
329 * - 256KiB and 64KiB sector variants (identified by ext. JEDEC)
330 * - RESET# signal supported by die but not bristled out on all
331 * package types. The package type is a function of board design,
332 * so this information is captured in the board's flags.
333 * - Supports 'DYB' sector protection. Depending on variant, sectors
334 * may default to locked state on power-on.
335 */
336#define S25FLXXXS_FLAG (S25FLXXXP_FLAG | \
337 FLASH_FLAG_RESET | \
338 FLASH_FLAG_DYB_LOCKING)
339 { "s25fl128s0", 0x012018, 0x0300, 256 * 1024, 64, S25FLXXXS_FLAG, 80,
340 NULL },
341 { "s25fl128s1", 0x012018, 0x0301, 64 * 1024, 256, S25FLXXXS_FLAG, 80,
342 NULL },
343 { "s25fl256s0", 0x010219, 0x4d00, 256 * 1024, 128,
344 S25FLXXXS_FLAG | FLASH_FLAG_32BIT_ADDR, 80, NULL },
345 { "s25fl256s1", 0x010219, 0x4d01, 64 * 1024, 512,
346 S25FLXXXS_FLAG | FLASH_FLAG_32BIT_ADDR, 80, NULL },
347
348 /* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
349#define W25X_FLAG (FLASH_FLAG_READ_WRITE | \
350 FLASH_FLAG_READ_FAST | \
351 FLASH_FLAG_READ_1_1_2 | \
352 FLASH_FLAG_WRITE_1_1_2)
353 { "w25x40", 0xef3013, 0, 64 * 1024, 8, W25X_FLAG, 75, NULL },
354 { "w25x80", 0xef3014, 0, 64 * 1024, 16, W25X_FLAG, 75, NULL },
355 { "w25x16", 0xef3015, 0, 64 * 1024, 32, W25X_FLAG, 75, NULL },
356 { "w25x32", 0xef3016, 0, 64 * 1024, 64, W25X_FLAG, 75, NULL },
357 { "w25x64", 0xef3017, 0, 64 * 1024, 128, W25X_FLAG, 75, NULL },
358
359 /* Winbond -- w25q "blocks" are 64K, "sectors" are 4KiB */
360#define W25Q_FLAG (FLASH_FLAG_READ_WRITE | \
361 FLASH_FLAG_READ_FAST | \
362 FLASH_FLAG_READ_1_1_2 | \
363 FLASH_FLAG_READ_1_2_2 | \
364 FLASH_FLAG_READ_1_1_4 | \
365 FLASH_FLAG_READ_1_4_4 | \
366 FLASH_FLAG_WRITE_1_1_4)
367 { "w25q80", 0xef4014, 0, 64 * 1024, 16, W25Q_FLAG, 80, NULL },
368 { "w25q16", 0xef4015, 0, 64 * 1024, 32, W25Q_FLAG, 80, NULL },
369 { "w25q32", 0xef4016, 0, 64 * 1024, 64, W25Q_FLAG, 80, NULL },
370 { "w25q64", 0xef4017, 0, 64 * 1024, 128, W25Q_FLAG, 80, NULL },
371
372 /* Sentinel */
373 { NULL, 0x000000, 0, 0, 0, 0, 0, NULL },
374};
375
Lee Jones1bd512b2014-03-20 09:20:38 +0000376static struct stfsm_seq stfsm_seq_read_jedec = {
377 .data_size = TRANSFER_SIZE(8),
378 .seq_opc[0] = (SEQ_OPC_PADS_1 |
379 SEQ_OPC_CYCLES(8) |
380 SEQ_OPC_OPCODE(FLASH_CMD_RDID)),
381 .seq = {
382 STFSM_INST_CMD1,
383 STFSM_INST_DATA_READ,
384 STFSM_INST_STOP,
385 },
386 .seq_cfg = (SEQ_CFG_PADS_1 |
387 SEQ_CFG_READNOTWRITE |
388 SEQ_CFG_CSDEASSERT |
389 SEQ_CFG_STARTSEQ),
390};
391
Lee Jonesfa5ba3a2014-03-20 09:20:47 +0000392static struct stfsm_seq stfsm_seq_erase_sector = {
393 /* 'addr_cfg' configured during initialisation */
394 .seq_opc = {
395 (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
396 SEQ_OPC_OPCODE(FLASH_CMD_WREN) | SEQ_OPC_CSDEASSERT),
397
398 (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
399 SEQ_OPC_OPCODE(FLASH_CMD_SE)),
400 },
401 .seq = {
402 STFSM_INST_CMD1,
403 STFSM_INST_CMD2,
404 STFSM_INST_ADD1,
405 STFSM_INST_ADD2,
406 STFSM_INST_STOP,
407 },
408 .seq_cfg = (SEQ_CFG_PADS_1 |
409 SEQ_CFG_READNOTWRITE |
410 SEQ_CFG_CSDEASSERT |
411 SEQ_CFG_STARTSEQ),
412};
413
Lee Jones6bd29602014-03-20 09:20:48 +0000414static int stfsm_n25q_en_32bit_addr_seq(struct stfsm_seq *seq)
415{
416 seq->seq_opc[0] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
417 SEQ_OPC_OPCODE(FLASH_CMD_EN4B_ADDR));
418 seq->seq_opc[1] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
419 SEQ_OPC_OPCODE(FLASH_CMD_WREN) |
420 SEQ_OPC_CSDEASSERT);
421
422 seq->seq[0] = STFSM_INST_CMD2;
423 seq->seq[1] = STFSM_INST_CMD1;
424 seq->seq[2] = STFSM_INST_WAIT;
425 seq->seq[3] = STFSM_INST_STOP;
426
427 seq->seq_cfg = (SEQ_CFG_PADS_1 |
428 SEQ_CFG_ERASE |
429 SEQ_CFG_READNOTWRITE |
430 SEQ_CFG_CSDEASSERT |
431 SEQ_CFG_STARTSEQ);
432
433 return 0;
434}
435
Lee Jones3c8b85b2014-03-20 09:20:36 +0000436static inline int stfsm_is_idle(struct stfsm *fsm)
437{
438 return readl(fsm->base + SPI_FAST_SEQ_STA) & 0x10;
439}
440
Lee Jones86f309fd2014-03-20 09:20:35 +0000441static inline uint32_t stfsm_fifo_available(struct stfsm *fsm)
442{
443 return (readl(fsm->base + SPI_FAST_SEQ_STA) >> 5) & 0x7f;
444}
445
446static void stfsm_clear_fifo(struct stfsm *fsm)
447{
448 uint32_t avail;
449
450 for (;;) {
451 avail = stfsm_fifo_available(fsm);
452 if (!avail)
453 break;
454
455 while (avail) {
456 readl(fsm->base + SPI_FAST_SEQ_DATA_REG);
457 avail--;
458 }
459 }
460}
461
Lee Jones3c8b85b2014-03-20 09:20:36 +0000462static inline void stfsm_load_seq(struct stfsm *fsm,
463 const struct stfsm_seq *seq)
464{
465 void __iomem *dst = fsm->base + SPI_FAST_SEQ_TRANSFER_SIZE;
466 const uint32_t *src = (const uint32_t *)seq;
467 int words = sizeof(*seq) / sizeof(*src);
468
469 BUG_ON(!stfsm_is_idle(fsm));
470
471 while (words--) {
472 writel(*src, dst);
473 src++;
474 dst += 4;
475 }
476}
477
478static void stfsm_wait_seq(struct stfsm *fsm)
479{
480 unsigned long deadline;
481 int timeout = 0;
482
483 deadline = jiffies + msecs_to_jiffies(STFSM_MAX_WAIT_SEQ_MS);
484
485 while (!timeout) {
486 if (time_after_eq(jiffies, deadline))
487 timeout = 1;
488
489 if (stfsm_is_idle(fsm))
490 return;
491
492 cond_resched();
493 }
494
495 dev_err(fsm->dev, "timeout on sequence completion\n");
496}
497
Lee Jones030e82d2014-03-20 09:20:37 +0000498static void stfsm_read_fifo(struct stfsm *fsm, uint32_t *buf,
499 const uint32_t size)
500{
501 uint32_t remaining = size >> 2;
502 uint32_t avail;
503 uint32_t words;
504
505 dev_dbg(fsm->dev, "Reading %d bytes from FIFO\n", size);
506
507 BUG_ON((((uint32_t)buf) & 0x3) || (size & 0x3));
508
509 while (remaining) {
510 for (;;) {
511 avail = stfsm_fifo_available(fsm);
512 if (avail)
513 break;
514 udelay(1);
515 }
516 words = min(avail, remaining);
517 remaining -= words;
518
519 readsl(fsm->base + SPI_FAST_SEQ_DATA_REG, buf, words);
520 buf += words;
521 }
522}
523
Lee Jonesfa5ba3a2014-03-20 09:20:47 +0000524/* Configure 'addr_cfg' according to addressing mode */
525static void stfsm_prepare_erasesec_seq(struct stfsm *fsm,
526 struct stfsm_seq *seq)
527{
528 int addr1_cycles = fsm->info->flags & FLASH_FLAG_32BIT_ADDR ? 16 : 8;
529
530 seq->addr_cfg = (ADR_CFG_CYCLES_ADD1(addr1_cycles) |
531 ADR_CFG_PADS_1_ADD1 |
532 ADR_CFG_CYCLES_ADD2(16) |
533 ADR_CFG_PADS_1_ADD2 |
534 ADR_CFG_CSDEASSERT_ADD2);
535}
536
Lee Jones08981272014-03-20 09:20:42 +0000537/* Search for preferred configuration based on available flags */
538static struct seq_rw_config *
539stfsm_search_seq_rw_configs(struct stfsm *fsm,
540 struct seq_rw_config cfgs[])
541{
542 struct seq_rw_config *config;
543 int flags = fsm->info->flags;
544
545 for (config = cfgs; config->cmd != 0; config++)
546 if ((config->flags & flags) == config->flags)
547 return config;
548
549 return NULL;
550}
551
Lee Jones97ccf2d2014-03-20 09:20:44 +0000552/* Prepare a READ/WRITE sequence according to configuration parameters */
553static void stfsm_prepare_rw_seq(struct stfsm *fsm,
554 struct stfsm_seq *seq,
555 struct seq_rw_config *cfg)
556{
557 int addr1_cycles, addr2_cycles;
558 int i = 0;
559
560 memset(seq, 0, sizeof(*seq));
561
562 /* Add READ/WRITE OPC */
563 seq->seq_opc[i++] = (SEQ_OPC_PADS_1 |
564 SEQ_OPC_CYCLES(8) |
565 SEQ_OPC_OPCODE(cfg->cmd));
566
567 /* Add WREN OPC for a WRITE sequence */
568 if (cfg->write)
569 seq->seq_opc[i++] = (SEQ_OPC_PADS_1 |
570 SEQ_OPC_CYCLES(8) |
571 SEQ_OPC_OPCODE(FLASH_CMD_WREN) |
572 SEQ_OPC_CSDEASSERT);
573
574 /* Address configuration (24 or 32-bit addresses) */
575 addr1_cycles = (fsm->info->flags & FLASH_FLAG_32BIT_ADDR) ? 16 : 8;
576 addr1_cycles /= cfg->addr_pads;
577 addr2_cycles = 16 / cfg->addr_pads;
578 seq->addr_cfg = ((addr1_cycles & 0x3f) << 0 | /* ADD1 cycles */
579 (cfg->addr_pads - 1) << 6 | /* ADD1 pads */
580 (addr2_cycles & 0x3f) << 16 | /* ADD2 cycles */
581 ((cfg->addr_pads - 1) << 22)); /* ADD2 pads */
582
583 /* Data/Sequence configuration */
584 seq->seq_cfg = ((cfg->data_pads - 1) << 16 |
585 SEQ_CFG_STARTSEQ |
586 SEQ_CFG_CSDEASSERT);
587 if (!cfg->write)
588 seq->seq_cfg |= SEQ_CFG_READNOTWRITE;
589
590 /* Mode configuration (no. of pads taken from addr cfg) */
591 seq->mode = ((cfg->mode_data & 0xff) << 0 | /* data */
592 (cfg->mode_cycles & 0x3f) << 16 | /* cycles */
593 (cfg->addr_pads - 1) << 22); /* pads */
594
595 /* Dummy configuration (no. of pads taken from addr cfg) */
596 seq->dummy = ((cfg->dummy_cycles & 0x3f) << 16 | /* cycles */
597 (cfg->addr_pads - 1) << 22); /* pads */
598
599
600 /* Instruction sequence */
601 i = 0;
602 if (cfg->write)
603 seq->seq[i++] = STFSM_INST_CMD2;
604
605 seq->seq[i++] = STFSM_INST_CMD1;
606
607 seq->seq[i++] = STFSM_INST_ADD1;
608 seq->seq[i++] = STFSM_INST_ADD2;
609
610 if (cfg->mode_cycles)
611 seq->seq[i++] = STFSM_INST_MODE;
612
613 if (cfg->dummy_cycles)
614 seq->seq[i++] = STFSM_INST_DUMMY;
615
616 seq->seq[i++] =
617 cfg->write ? STFSM_INST_DATA_WRITE : STFSM_INST_DATA_READ;
618 seq->seq[i++] = STFSM_INST_STOP;
619}
620
Lee Jones88cccb82014-03-20 09:20:49 +0000621static int stfsm_search_prepare_rw_seq(struct stfsm *fsm,
622 struct stfsm_seq *seq,
623 struct seq_rw_config *cfgs)
624{
625 struct seq_rw_config *config;
626
627 config = stfsm_search_seq_rw_configs(fsm, cfgs);
628 if (!config) {
629 dev_err(fsm->dev, "failed to find suitable config\n");
630 return -EINVAL;
631 }
632
633 stfsm_prepare_rw_seq(fsm, seq, config);
634
635 return 0;
636}
637
Lee Jones1bd512b2014-03-20 09:20:38 +0000638static void stfsm_read_jedec(struct stfsm *fsm, uint8_t *const jedec)
639{
640 const struct stfsm_seq *seq = &stfsm_seq_read_jedec;
641 uint32_t tmp[2];
642
643 stfsm_load_seq(fsm, seq);
644
645 stfsm_read_fifo(fsm, tmp, 8);
646
647 memcpy(jedec, tmp, 5);
648
649 stfsm_wait_seq(fsm);
650}
651
652static struct flash_info *stfsm_jedec_probe(struct stfsm *fsm)
653{
Lee Jones24fec652014-03-20 09:20:41 +0000654 struct flash_info *info;
Lee Jones1bd512b2014-03-20 09:20:38 +0000655 u16 ext_jedec;
656 u32 jedec;
657 u8 id[5];
658
659 stfsm_read_jedec(fsm, id);
660
661 jedec = id[0] << 16 | id[1] << 8 | id[2];
662 /*
663 * JEDEC also defines an optional "extended device information"
664 * string for after vendor-specific data, after the three bytes
665 * we use here. Supporting some chips might require using it.
666 */
667 ext_jedec = id[3] << 8 | id[4];
668
669 dev_dbg(fsm->dev, "JEDEC = 0x%08x [%02x %02x %02x %02x %02x]\n",
670 jedec, id[0], id[1], id[2], id[3], id[4]);
671
Lee Jones24fec652014-03-20 09:20:41 +0000672 for (info = flash_types; info->name; info++) {
673 if (info->jedec_id == jedec) {
674 if (info->ext_id && info->ext_id != ext_jedec)
675 continue;
676 return info;
677 }
678 }
679 dev_err(fsm->dev, "Unrecognized JEDEC id %06x\n", jedec);
680
Lee Jones1bd512b2014-03-20 09:20:38 +0000681 return NULL;
682}
683
Lee Jones86f309fd2014-03-20 09:20:35 +0000684static int stfsm_set_mode(struct stfsm *fsm, uint32_t mode)
685{
686 int ret, timeout = 10;
687
688 /* Wait for controller to accept mode change */
689 while (--timeout) {
690 ret = readl(fsm->base + SPI_STA_MODE_CHANGE);
691 if (ret & 0x1)
692 break;
693 udelay(1);
694 }
695
696 if (!timeout)
697 return -EBUSY;
698
699 writel(mode, fsm->base + SPI_MODESELECT);
700
701 return 0;
702}
703
704static void stfsm_set_freq(struct stfsm *fsm, uint32_t spi_freq)
705{
706 uint32_t emi_freq;
707 uint32_t clk_div;
708
709 /* TODO: Make this dynamic */
710 emi_freq = STFSM_DEFAULT_EMI_FREQ;
711
712 /*
713 * Calculate clk_div - values between 2 and 128
714 * Multiple of 2, rounded up
715 */
716 clk_div = 2 * DIV_ROUND_UP(emi_freq, 2 * spi_freq);
717 if (clk_div < 2)
718 clk_div = 2;
719 else if (clk_div > 128)
720 clk_div = 128;
721
722 /*
723 * Determine a suitable delay for the IP to complete a change of
724 * direction of the FIFO. The required delay is related to the clock
725 * divider used. The following heuristics are based on empirical tests,
726 * using a 100MHz EMI clock.
727 */
728 if (clk_div <= 4)
729 fsm->fifo_dir_delay = 0;
730 else if (clk_div <= 10)
731 fsm->fifo_dir_delay = 1;
732 else
733 fsm->fifo_dir_delay = DIV_ROUND_UP(clk_div, 10);
734
735 dev_dbg(fsm->dev, "emi_clk = %uHZ, spi_freq = %uHZ, clk_div = %u\n",
736 emi_freq, spi_freq, clk_div);
737
738 writel(clk_div, fsm->base + SPI_CLOCKDIV);
739}
740
741static int stfsm_init(struct stfsm *fsm)
742{
743 int ret;
744
745 /* Perform a soft reset of the FSM controller */
746 writel(SEQ_CFG_SWRESET, fsm->base + SPI_FAST_SEQ_CFG);
747 udelay(1);
748 writel(0, fsm->base + SPI_FAST_SEQ_CFG);
749
750 /* Set clock to 'safe' frequency initially */
751 stfsm_set_freq(fsm, STFSM_FLASH_SAFE_FREQ);
752
753 /* Switch to FSM */
754 ret = stfsm_set_mode(fsm, SPI_MODESELECT_FSM);
755 if (ret)
756 return ret;
757
758 /* Set timing parameters */
759 writel(SPI_CFG_DEVICE_ST |
760 SPI_CFG_DEFAULT_MIN_CS_HIGH |
761 SPI_CFG_DEFAULT_CS_SETUPHOLD |
762 SPI_CFG_DEFAULT_DATA_HOLD,
763 fsm->base + SPI_CONFIGDATA);
764 writel(STFSM_DEFAULT_WR_TIME, fsm->base + SPI_STATUS_WR_TIME_REG);
765
766 /* Clear FIFO, just in case */
767 stfsm_clear_fifo(fsm);
768
769 return 0;
770}
771
Lee Jonesa63984c2014-03-20 09:20:46 +0000772static void stfsm_fetch_platform_configs(struct platform_device *pdev)
773{
774 struct stfsm *fsm = platform_get_drvdata(pdev);
775 struct device_node *np = pdev->dev.of_node;
776 struct regmap *regmap;
777 uint32_t boot_device_reg;
778 uint32_t boot_device_spi;
779 uint32_t boot_device; /* Value we read from *boot_device_reg */
780 int ret;
781
782 /* Booting from SPI NOR Flash is the default */
783 fsm->booted_from_spi = true;
784
785 regmap = syscon_regmap_lookup_by_phandle(np, "st,syscfg");
786 if (IS_ERR(regmap))
787 goto boot_device_fail;
788
789 /* Where in the syscon the boot device information lives */
790 ret = of_property_read_u32(np, "st,boot-device-reg", &boot_device_reg);
791 if (ret)
792 goto boot_device_fail;
793
794 /* Boot device value when booted from SPI NOR */
795 ret = of_property_read_u32(np, "st,boot-device-spi", &boot_device_spi);
796 if (ret)
797 goto boot_device_fail;
798
799 ret = regmap_read(regmap, boot_device_reg, &boot_device);
800 if (ret)
801 goto boot_device_fail;
802
803 if (boot_device != boot_device_spi)
804 fsm->booted_from_spi = false;
805
806 return;
807
808boot_device_fail:
809 dev_warn(&pdev->dev,
810 "failed to fetch boot device, assuming boot from SPI\n");
811}
812
Lee Jonesd90db4a2014-03-20 09:20:33 +0000813static int stfsm_probe(struct platform_device *pdev)
814{
815 struct device_node *np = pdev->dev.of_node;
Lee Jones24fec652014-03-20 09:20:41 +0000816 struct flash_info *info;
Lee Jonesd90db4a2014-03-20 09:20:33 +0000817 struct resource *res;
818 struct stfsm *fsm;
Lee Jones86f309fd2014-03-20 09:20:35 +0000819 int ret;
Lee Jonesd90db4a2014-03-20 09:20:33 +0000820
821 if (!np) {
822 dev_err(&pdev->dev, "No DT found\n");
823 return -EINVAL;
824 }
825
826 fsm = devm_kzalloc(&pdev->dev, sizeof(*fsm), GFP_KERNEL);
827 if (!fsm)
828 return -ENOMEM;
829
830 fsm->dev = &pdev->dev;
831
832 platform_set_drvdata(pdev, fsm);
833
834 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
835 if (!res) {
836 dev_err(&pdev->dev, "Resource not found\n");
837 return -ENODEV;
838 }
839
840 fsm->base = devm_ioremap_resource(&pdev->dev, res);
841 if (IS_ERR(fsm->base)) {
842 dev_err(&pdev->dev,
843 "Failed to reserve memory region %pR\n", res);
844 return PTR_ERR(fsm->base);
845 }
846
847 mutex_init(&fsm->lock);
848
Lee Jones86f309fd2014-03-20 09:20:35 +0000849 ret = stfsm_init(fsm);
850 if (ret) {
851 dev_err(&pdev->dev, "Failed to initialise FSM Controller\n");
852 return ret;
853 }
854
Lee Jonesa63984c2014-03-20 09:20:46 +0000855 stfsm_fetch_platform_configs(pdev);
856
Lee Jones1bd512b2014-03-20 09:20:38 +0000857 /* Detect SPI FLASH device */
Lee Jones24fec652014-03-20 09:20:41 +0000858 info = stfsm_jedec_probe(fsm);
859 if (!info)
860 return -ENODEV;
861 fsm->info = info;
Lee Jones1bd512b2014-03-20 09:20:38 +0000862
Lee Jones3b5d1982014-03-20 09:20:43 +0000863 /* Use device size to determine address width */
864 if (info->sector_size * info->n_sectors > 0x1000000)
865 info->flags |= FLASH_FLAG_32BIT_ADDR;
866
Lee Jonesd90db4a2014-03-20 09:20:33 +0000867 fsm->mtd.dev.parent = &pdev->dev;
868 fsm->mtd.type = MTD_NORFLASH;
869 fsm->mtd.writesize = 4;
870 fsm->mtd.writebufsize = fsm->mtd.writesize;
871 fsm->mtd.flags = MTD_CAP_NORFLASH;
Lee Jones24fec652014-03-20 09:20:41 +0000872 fsm->mtd.size = info->sector_size * info->n_sectors;
873 fsm->mtd.erasesize = info->sector_size;
874
875 dev_err(&pdev->dev,
876 "Found serial flash device: %s\n"
877 " size = %llx (%lldMiB) erasesize = 0x%08x (%uKiB)\n",
878 info->name,
879 (long long)fsm->mtd.size, (long long)(fsm->mtd.size >> 20),
880 fsm->mtd.erasesize, (fsm->mtd.erasesize >> 10));
Lee Jonesd90db4a2014-03-20 09:20:33 +0000881
882 return mtd_device_parse_register(&fsm->mtd, NULL, NULL, NULL, 0);
883}
884
885static int stfsm_remove(struct platform_device *pdev)
886{
887 struct stfsm *fsm = platform_get_drvdata(pdev);
888 int err;
889
890 err = mtd_device_unregister(&fsm->mtd);
891 if (err)
892 return err;
893
894 return 0;
895}
896
897static struct of_device_id stfsm_match[] = {
898 { .compatible = "st,spi-fsm", },
899 {},
900};
901MODULE_DEVICE_TABLE(of, stfsm_match);
902
903static struct platform_driver stfsm_driver = {
904 .probe = stfsm_probe,
905 .remove = stfsm_remove,
906 .driver = {
907 .name = "st-spi-fsm",
908 .owner = THIS_MODULE,
909 .of_match_table = stfsm_match,
910 },
911};
912module_platform_driver(stfsm_driver);
913
914MODULE_AUTHOR("Angus Clark <angus.clark@st.com>");
915MODULE_DESCRIPTION("ST SPI FSM driver");
916MODULE_LICENSE("GPL");